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1 Topology

1.1 Metric spaces and topological spaces

Recall the following notions from the theory of metric spaces. A metric d on a set
X is a function d : X × X → R+ such that

• d(x, y) ≥ 0 for all x, y ∈ X , and d(x, y) = 0 ⇐⇒ x = y,

• d(x, y) = d(y, x) for all x, y ∈ X ,

• d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality).

For any x ∈ X and ε > 0, the open ε-ball B(x, ε) of radius ε around x is
B(x, ε) := {y ∈ X : d(x, y) < ε}. A set G ⊆ X is called open w.r.t. the metric d if
for every x ∈ G, there exists an ε > 0 such that B(x, ε) ⊆ G. We denote the set of
open sets w.r.t. d by τd. A function f : (X , dX )→ (Y , dY) is called continuous if

∀x ∈ X , ∀ε > 0 : ∃δ > 0 s.t. d(y, x) < δ =⇒ d(f(y), f(x)) < ε.

Exercise 1.1. Show that a function f : (X , dX )→ (Y , dY) is continuous if and only
if ∀G ∈ τdY : f−1(G) ∈ τdX , i.e., if the inverse image of any open set in Y is an open
set in X .

The above example shows that as far as we are only interested in the concept of
continuity of functions, it is enough to consider the collection of open sets, without
reference to the metric generating it. The study of continuity, convergence, etc., in
terms of open sets, leads to the concept of topological spaces.

De�nition 1.2. Let X be a non-empty set. A set system τ ⊆ P(X ) is a topology
on X , if

• ∅,X ∈ τ ,

• {Gi}i∈I ⊆ τ =⇒ ∪i∈IGi ∈ τ , where I can be any index set,
(closedness under arbitrary union)

• {Gi}i∈I ⊆ τ =⇒ ∩i∈IGi ∈ τ if I is �nite.
(closedness under �nite intersection)

Elements of τ are called open sets w.r.t. the topology τ .

Example 1.3. {∅,X} and P(X ) are both topologies on X , called the anti-discrete
topology and the discrete topology, respectively.
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Example 1.4. Let (X , d) be a metric space, and τd the collection of all open sets
w.r.t. d. Show that τd is a topology. We call τd the topology induced by the metric d.

Exercise 1.5. Let X be a non-empty set. Find a metric d such that τd = P(X ),
the discrete topology. Is such a metric unique?

Exercise 1.6. Let X be a non-empty set. Does there exist a metric that induces
the anti-discrete topology?

Just as for the previously studied types of set systems, it is trivial to see that the
intersection of any collection of topologies on a given set X is again a topology. In
particular, for any set system A ⊆ P(X ), we can de�ne the topology generated by
A as

τ(A) := ∩{κ ⊆ P(X ) : A ⊆ κ, κ is a topology on X} .
De�nition 1.7. Let {(Xi, τi)}i∈I be an arbitrary collection of topological spaces.
We call the elements of (×)i∈I τi open boxes. The product topology ×i∈Iτi is the
topology on ×i∈IXi generated by all open boxes, i.e.,

⊗i∈Iτi := τ
(
(×)i∈I τi

)
.

We call⊗i∈I(Xi, τi) := (×i∈IXi,⊗i∈Iτi) the product of the topological spaces {(Xi, τi)}i∈I .
Exercise 1.8. Show that

⊗i∈Iτi = ∪
(
(×)i∈I τi

)
,

i.e., a set is open in the product topology if and only if it is the union of open boxes.
Conclude that

τRd = ⊗di=1τR,

where for any d ∈ N, τRd denotes the usual Euclidean topology of Rd, generated by
the Euclidean metric. More generally, for any d1, . . . , dr ∈ N,

τRd1+...+dr = ⊗di=1τRdi .

Exercise 1.9. Let {(Xi, di)}i∈I be metric spaces, where I is a �nite index set.

(i) Let

(×i∈Idi)1(x, y) :=
∑
i∈I

d(xi, yi),

(×i∈Idi)2(x, y) :=

(∑
i∈I

d(xi, yi)
2

)1/2

,

(×i∈Idi)∞(x, y) := max
i∈I

d(xi, yi), x, y ∈ ×i∈IXi.

Show that all of the above are metrics on ×i∈IXi, and they all generate the
product topology ⊗i∈Iτdi .
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(ii) Show that for any 1 ≤ p < +∞,

(×i∈Idi)p(x, y) :=

(∑
i∈I

d(xi, yi)
p

)1/p

, x, y ∈ ×i∈IXi

also generates ⊗i∈Iτdi . (Hint: Use the Hölder inequality to show the triangle
inequality.)

1.2 Separation properties

De�nition 1.10. A topological space (X , τ) is

• Hausdor� (T2) if any two points can be separated by open sets, i.e., for any
x, y ∈ X , x 6= y, there exist U ∈ τx and V ∈ τy such that U ∩ V = ∅.

• regular, if any closed set F ⊆ X and any point x ∈ X \ F can be separated by
open sets, i.e., there exist U ∈ τx and V ∈ τ such that V ⊇ F and U ∩ V = ∅.

• normal, if any two disjoint closed sets can be separated by open sets, i.e.,
for any two disjoint closed F1, F2 there exist open sets U1, U2 ∈ τ such that
U1 ⊇ F1, U2 ⊇ F2 and U1 ∩ U2 = ∅.

Lemma 1.11. A topological space (X , τ) is regular if and only if for any x ∈ X and
G ∈ τx there exists a U ∈ τx such that U ⊆ G.

Proof. Assume that (X , τ) is regular, and G ∈ τx. Then x /∈ X \G =: F , and hence
there exist disjoint open sets U ∈ τx and V ⊇ F . Thus U ⊆ X \ V ⊆ X \ F = G.

Conversely, if F is closed and x ∈ X \ F =: G then any U ∈ τx such that U ⊆ G
de�nes an open V := X \ U containing F and disjoint from U .

Lemma 1.12. Any closed subset of a compact topological space is compact.

Proof. Let (X , τ) be compact and F ⊆ X be closed. If F ⊆ ∪i∈IUi is an open cover
of F then (X \ F ) ∪ (∪i∈IUi) is an open cover of X and hence there exists a �nite
subcover X ⊆ (X\F )∪(∪i∈I0Ui), where I0 ⊆ I is �nite. Obviously, F ⊆ ∪i∈I0Ui.

Lemma 1.13. A compact Hausdor� space is normal.

Proof. Let (X , τ) be a compact Hausdor� space and F1, F2 ⊆ X be disjoint closed
sets; then they are also compact by Lemma 1.12. By the Husdor� property, for any
x ∈ F1, y ∈ F2, there exist Ux,y ∈ τx and Vx,y ∈ τy disjoint open sets. For a �xed
x ∈ F1, {Vx,y}y∈F2 is an open cover of F2, and hence there exist y1, . . . , ym ∈ F2
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such that F2 ⊆ ∪mi=1Vx,yi =: Vx. Let Ux := ∩mi=1Ux,yi , so that Ux is an open set and
Ux ∩ Vx = ∅. Then {Ux}x∈X is an open cover of F1, and hence there exists an �nite
subcover {Uxj}nj=1. Let U := ∪nj=1Uxj and V := ∩nj=1Vxj . Then U is an open set
containing F1, V is an open set containing F2, and U ∩ V = ∅.

De�nition 1.14. A topological space (X , τ) is locally compact if every neighbour-
hood of x contains a compact neighbourhood of x, or equivalently, if for every x ∈ X
and every U ∈ τx there exists a compact set K such that x ∈ intK ⊆ K ⊆ U .

Lemma 1.15. A Hausdor� topological space is locally compact if and only if for
any x ∈ X and U ∈ τx there exists a V ∈ τx such that V is compact and V ⊆ U .

Proof. The �if� direction is obvious. Assume now that (X , τ) is locally compact, so
that for any x ∈ X and U ∈ τx there exists a compact set K such that x ∈ intK ⊆
K ⊆ U . Then V := intK is open, and V ⊆ K is a closed subset of a compact set,
and hence it is compact by Lemma 1.12.

Corollary 1.16. A locally compact Hausdor� space is regular.

Proof. Immediate from Lemmas 1.11 and 1.15.

Lemma 1.17. Let (X , τ) be a locally compact Hausdor� topological space. Then
for every compact set K contained in an open set G, there exists an open set U such
that U is compact, and K ⊆ U ⊆ U ⊆ G.

Proof. By Lemma 1.15, for any x ∈ K there exists a Ux ∈ τx such that Ux is
compact and Ux ⊆ G. Obviously, {Ux}x∈X is an open cover of K, and hence there
exist x1, . . . , xn ∈ K such that K ⊆ ∪ni=1Uxi =: U . Then U ⊆ ∪ni=1Uxi ⊆ G, and U ,
as a closed subset of the compact set ∪ni=1Uxi , is itself compact.

Theorem 1.18. (Urysohn's lemma) A topological space (X , τ) is normal if and
only if any two disjoint closed sets can be separated by a continuous function in the
sense that if F1, F2 are disjoint closed sets then there exists a continuous function
f : X → [0, 1] such that f |F1 ≡ 1 and f |F2 ≡ 0.

Proposition 1.19. Let (X , τ) be a locally compact Hausdor� space, and K ⊆ G ∈
τ , where K is compact. Then there exists a continuous function f : X → [0, 1] with
compact support such that f |K ≡ 1 and supp f ⊆ G.

Proof. By Lemma 1.17, there exists an open set U such that U is compact, and
K ⊆ U ⊆ U ⊆ G. Now, U is a compact Hausdor� space, and hence it is normal by
Lemma 1.13. By Urisohn's lemma, there exists a continuous function f0 : U → [0, 1]
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such that f0|K ≡ 1 and f0|U\U ≡ 0. Let us extend f0 to X \U to be constant 0, and
let f denote the resulting function on X . For any closed set B ⊆ R, we have

f−1(B) =

{
f−1

0 (B), 0 /∈ B,
f−1

0 (B) ∪ (X \ U).

Here f−1
0 (B) is a closed subset of U in the subspace topology of U , and hence there

exists a closed set F ⊆ X such that f−1
0 (B) = U ∩ F ; therefore f−1

0 (B) is closed in
X . Since X \ U is also closed, we see that f−1(B) is closed for any closed subset
B ⊆ R, i.e., f is continuous on X . The rest of the properties are immediate from
the construction of f .
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2 Measure theory primer

2.1 Introduction

The aim of a mathematical model in physics is to correctly reproduce measurement
statistics. Assume that the results of some measurements can take values in some set
X ; this will most often be the real line R, in which case we talk about a real-valued
measurement, or Rd for d = 2, 3. Imagine, for instance, that we want to determine
the position of a particle, e.g., a photon. What we can do is that we set up a detector
that �clicks� when it absorbs a photon, so if our detector clicks in the experiment,
we know that our photon was at the location of the detector, and if it does not click
then we know that it was somewhere else. By setting up multiple detectors, we can
obtain more detailed information about the location of the particle, namely, whether
it was at the same place as detector D1, . . . , Dr, or somewhere else.

If we prepare many particles in the same way, and repeat the experiment many
times (say, n times), then we obtain a measurement statistics k0

n
, k1

n
, . . . , kr

n
, where

ki is the number of times the particle was detected by detector i, when i ∈ [n] :=
{1, 2, . . . , n}, and k0 is the number of times the particle was not detected by any
of the detectors. We have

∑n
i=0

ki
n

= 1, i.e., the numbers pi = ki
n
form a probabil-

ity distribution on the possible measurement outcomes. In this particular example
the probabilities are rational number with denominator n, but since we want to
build a model that correctly reproduces the measurement statistics for any number
of repetitions, we should consider any rational numbers for pi. For mathematical
convenience, we will also consider probability distributions where the pi can also
be irrational numbers; from a physical point of view, this may be justi�ed by the
fact that any real number can be approximated by rational numbers with arbitrary
precision.

Now, our aim is to �nd a mathematical model that correctly reproduces our
measurement statistics, for all possible constellation of the detectors and all possible
preparations of the photons. Note that the detectors are not point-like, but extended
objects (and so are the particles, in fact), so the click of the k-th detector means
that the particle was in a subset Ak of X , where the latter may be R, if the detectors
are arranged along a line, or R2, if the detectors correspond to regions of a screen, or
R3, if the detectors can be in a general position in the 3-dimensional space. Since we
want to model the measurement statistics for all possible constellations of detectors,
we need a model that assigns probabilities to subsets of X such that the probabilities
sum to 1 on any �nite collection of mutually exclusive events that is complete, i.e.,
if A1, . . . , An are disjoint subsets of X such that ∪ni=1Ai = X then

∑n
i=1 p(Ai) = 1.

In order to have a mathematically well-behaved theory, we will introduce some
further requirements and restrictions: we will require the additivity of the probabili-
ties also on any countably in�nite family of mutually disjoint sets; this will guarantee
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that our model has nice continuity properties. On the other hand, we will not nec-
essarily assign a probability to all possible subsets of X , but only those that are
�nice enough� in some sense, but these will still contain all sets that we can imagine
or describe in some constructive way. These requirements formally mean that the
subsets to which we assign probabilities form a σ-algebra, that we de�ne in Section
2.2. We give the mathematical de�nition of a probability measure on a σ-algebra in
Section 2.3.

2.2 Measurable spaces

Our �rst goal is to discuss how to introduce a notion of volume for sets in the d-
dimensional real Euclidean space Rd that is compatible with our everyday geometric
intuition.

Let us introduce

Box(Rd) :=
{
×di=1[ai, bi) : ai, bi ∈ R

}
,

the elements of which are called boxes. It is clear that any reasonable notion of
volume should satisfy

Vol
(
×di=1[ai, bi)

)
:=

d∏
i=1

(bi − ai).

Remark 2.1. We consider boxes whose sides are �nite intervals that contain their
left endpoints but not the right ones merely for notational convenience, so that we
do not have to list all the other possibilities or invent cumbersome notations to cover
them. It is anyway clear that the sets

×di=1(ai, bi), ×di=1 [ai, bi), ×di=1 (ai, bi], ×di=1 [ai, bi]

should have the same volume.

Let us now move on to what we require from a volume function on more general
sets. It is again intuitively clear that the following should be satis�ed:

• �nite additivity: the volume of the union of �nitely many disjoint sets should
be the sum of the volumes of the individual sets:

Vol ( ·∪ni=1Ai) =
n∑
i=1

Vol(Ai).

• translation-invariance:

Vol(A+ x) = Vol(A),

where for A ⊆ Rd and x ∈ Rd, we de�ne A+ x := {a+ x : a ∈ A}.
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• rotational invariance:

Vol(R(A)) = Vol(A), R ∈ R(d),

where R(A) := {R(a) : a ∈ A}, and R(d) denotes the set of rotations in Rd
(a subset of the special orthogonal group SO(d).)

The second and the third requirements together may be expressed as the requirement
that the volume function is invariant under rigid motions.

Now, one runs into an unexpected di�culty: Intuitive though the above require-
ments may seem, it is not possible to de�ne a volume function on all subsets of Rd
that satis�es all of them, at least if one accepts the so-called axiom of choice, one of
the key elements of the set-theoretic axiomatization of Mathematics. Indeed, Banach
and Tarski showed that for any d ≥ 3, a solid box in Rd can be decomposed into
�nitely many disjoint subsets such that applying only rotations and translations to
these sets, it is possible to assemble two identical copies of the original box. This phe-
nomenon, called the Banach-Tarski paradox, is clearly extremely counter-intuitive,
and prompted some mathematicians to reject the axiom of choice. However, it is
an indispensable tool to prove many important results in mathematics, some of
which we will also encounter in these notes. Hence, the overwhelming majority of
mathematicians accepts the axiom of choice, and gives up the existence of a volume
function on all subsets of Rd with the above listed properties, and we will follow this
majority here.

There are obviously two ways out of the above di�culty: one is to give up some of
the requirements on the volume function formulated above; this however, would lead
to an awkward notion of volume that we would prefer to avoid. The other option,
which we will follow, is to keep the requirements, but to assign a volume to not
every, but only some �nice enough� subsets of Rd, including all boxes. In particular,
the pieces into which a box is cut in the Banach-Tarski paradox will not be �nice
enough� according to this de�nition.

To make this approach mathematically precise, we need to introduce a few new
concepts. We will also take this opportunity to take our discussion onto a more
general and abstract level, which will be very useful later.

De�nition 2.2. For any set X , let P(X ) := {A ⊆ X} be the collection of all subsets
of X (including the empty set ∅ and X itself). P stands for �potenz� in German,
meaning �power� in English, and P(X ) is called the power set of X .

Next, we postulate what properties the collection of sets with a volume should
have; we will call such sets measurable. We have already stated that the union of
�nitely many disjoint measurable sets should be measurable. It is also quite intuitive
to require that if A1, A2 ⊆ Rd are measurable then so is their intersection A1 ∩ A2,
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as well as A1 \ (A1 ∩ A2) = A1 \ A2 (and then of course also A2 \ A1). Finally, we
require that the increasing union of measurable sets is again measurable (see below).
While this last requirement may seem sligthly less intuitive than the preceding ones,
it will be very useful in building a theory where limits can be handled well.

De�nition 2.3. Let X 6= ∅ be a set and A ⊆ P(X ) be non-empty. We say that A
is a σ-ring on X if it is closed under the following set operations:

(i) set di�erence:

A1, A2 ∈ A =⇒ A2 \ A1 ∈ A. (2.1)

(ii) �nite disjoint union:

(Ai)
n
i=1 ⊆ A, Ai ∩i 6=j Aj = ∅ =⇒ ·∪ni=1 An ∈ A. (2.2)

(iii) union of increasing sequences:

(An)n∈N ⊆ A, An ⊆ An+1, n ∈ N, =⇒ ∪n∈N An ∈ A. (2.3)

A σ-ring A is called a σ-algebra if X ∈ A.

Remark 2.4. Any σ-ring contains the empty set; indeed, for any A ∈ A,

∅ = A \ A ∈ A.

Remark 2.5. A σ-algebra A is also closed under complement :

A ∈ A =⇒ X \ A ∈ A.

Example 2.6. There are two trivial σ-algebras on any non-empty set X : The mini-
mal one {∅,X}, and the maximal one P(X ). (Exercise: Check that these are indeed
σ-algebras.)

In view of the above considerations, our aim is to �nd an extension of the volume
function from the set of boxes to a σ-ring that contains all the boxes, such that the
extension satis�es the requirements postulated above. First, note the following:

Remark 2.7. Any σ-ring A on Rd that contains Box(Rd) is also a σ-algebra. Indeed,
let Bn := ×i∈[d][−n, n) ∈ Box(Rd) ⊆ A, n ∈ N; then Rd = ∪n∈NBn ∈ A, according
to (2.3).

Remark 2.8. The above observation is one of the reasons why we will mainly be
interested in σ-algebras, and not in the more general structure of σ-rings.
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Of course, the smaller the σ-algebra A contaning Box(Rd), the easier to �nd an
extension of the volume function to A with the desired properties. Thus, the most
economic approach is to look for an extension onto the smallest σ-algebra containing
Box(Rd); the following simple observations guarantee that it indeed exists.

Lemma 2.9. The intersection of any collection of σ-rings/σ-algebras on the same
set is again a σ-ring/σ-algebra.

Proof. Trivial, exercise.

Corollary 2.10. For any collection of subsets A ⊆ P(X ), there exists a smallest
σ-algebra containing A, which we denote by σ(A), and call it the σ-algebra generated
by A.

Proof. Let σ(A) := ∩{B ⊆ P(X ) : B σ-algebra, A ⊆ B}. Then σ(A) is a σ-algebra
by Lemma 2.9, and it is clearly a subset of any σ-algebra containing A.

De�nition 2.11. The Borel σ-algebra of Rd (denoted as B(Rd)) is the smallest
σ-algebra on Rd containing all the boxes in Rd, i.e.,

B(Rd) := σ(Box(Rd)).

The elements of B(Rd) are called Borel sets or Borel measurable sets.

Hence, our aim will be to �nd an extension of the volume function onto the Borel
σ-algebra, with the required properties. We will do this in the next section; in the
rest of this section, we explore some further properties of σ-rings and σ-algebras that
will be useful later.

We start with the following simple but very useful disjunctization lemma:

Lemma 2.12. The countable union of elements of a σ-ring can be written as the
countable union of disjoint elements of the σ-ring, and also as the union of an in-
creasing chain of elements in the σ-ring.

Moreover, the union is again an element of the σ-ring.

Proof. Let An ∈ A, n ∈ N, and for every n ∈ N, let Ãn := An \
(
∪n−1
i=1 Ai

)
, n ∈ N.

Then Ã1 = A1 ∈ A, Ã2 = A2 \A1 ∈ A by (2.1), and A1∪A2 = Ã1 ·∪ Ã2 ∈ A by (2.2).
Continuing this argument, we see that Ãn ∈ A, n ∈ N, and ∪ni=1Ai = ·∪ni=1Ãi ∈ A
by (2.2). Finally,

∪n∈NAn = ·∪n∈NÃn = ∪n∈N
(
·∪ni=1Ãi

)
∈ A,

where the last step is due to (2.3), since ·∪ni=1Ãi ⊆ ·∪n+1
i=1 Ãi, n ∈ N.
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Corollary 2.13. A σ-ring A is also closed under

• countable union:

(An)n∈N ⊆ A =⇒ ∪n∈N An ∈ A, (2.4)

by Lemma 2.12;

• countable intersection; indeed

(An)n∈N ⊆ A, =⇒ ∩n∈N An =
(
Ā
)
\
(
∪n∈N(Ā \ An)

)
∈ A,

where Ā := ∪n∈NAn, and we used (2.4) and (2.1).

Remark 2.14. Obviously, a σ-algebra is closed under �nite intersections and unions
as well, since we can always take arbitrarily many of the An to be ∅ or the whole set
X .

Exercise 2.15. Let A ⊆ P(X ) be closed under set di�erence. Show that the
following are equivalent:

(i) A is closed under countable unions.

(ii) • A is closed under �nite disjoint union, i.e., (Ai)
n
i=1 ⊆ A, Ai∩i 6=j = ∅ implies

·∪ni=1Ai ∈ A, and
• A is closed under the union of increasing sequences, i.e., if (An)n∈N ⊆ A is
such that An ⊆ An+1, n ∈ N, then ∪n∈NAn ∈ A.

The above exercise immediately yields the following

Corollary 2.16. A non-empty A ⊆ P(X ) is a σ-ring if and only if it is closed under
set di�erence and countable union.

We will often restrict our considerations to a given subset of Rd, e.g., some interval
in R. In this case it is useful to introduce the following:

De�nition 2.17. Let A ∈ B(Rd) be a Borel set. The Borel σ-algebra on A is simply
the collection of Borel sets in A, i.e.,

B(A) := {B ∈ B(Rd) : B ⊆ A}.

It is easy to see that B(A) is a σ-algebra on A.
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We will sometimes need to consider functions taking values in the extended real
line

R := R ·∪ {±∞}.

The Borel σ algebra in this case is de�ned to be

B(R) := {A,A ∪ {+∞}, A ∪ {−∞}, A ∪ {±∞} : A ∈ B(R)}.

It is often useful to have simple generating sets for σ-algebras. For the Borel
σ-algebra of R (resp. R), the following will be useful:

Exercise 2.18. Show that

B(R) = σ ({(c,+∞) : c ∈ R}) = σ ({[c,+∞) : c ∈ R})
= σ ({(−∞, c) : c ∈ R}) = σ ({(−∞, c] : c ∈ R}) ,

B(R) = σ ({(c,+∞] : c ∈ R}) = σ ({[c,+∞] : c ∈ R})
= σ ({[−∞, c) : c ∈ R}) = σ ({[−∞, c] : c ∈ R}) .

Exercise 2.19. (i) Show that the Borel σ-algebra on Rd contains all open and all
closed subsets of Rd.

(ii) Conclude that B(Rd) contains all boxes of the form ×di=1Ji, where Ji ⊆ R is an
arbitrary interval.

(iii) Conclude that every singleton {x}, x ∈ Rd, is a Borel set.

(iv) Show that the Borel σ-algebra is the smallest σ-algebra on Rd that contains
all open sets (equivalently, all closed sets).

Remark 2.20. In a general topological space, the Borel σ-algebra is de�ned to be
the smallest σ-algebra containing all open sets. It is easy to verify that in the cases
in which we de�ned the Borel σ-algebras above, our de�nition coincides with this
more general de�nition.

It is natural to ask if the Cartesian product of two Borel sets is again a Borel set.
The answer is easily seen to be yes, as we show below. To formulate it, we introduce
the notion of product σ-algebra.

Note that if Ai is a σ-algebra on Xi for i ∈ [n] then the collection of all Cartesian
products

A1 (×) . . . (×)An := {A1 × . . .× An : Ai ∈ Ai, i ∈ [n]}
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need not be a σ-algebra in general, but we can of course always take the generated
σ-algebra

A1⊗ . . .⊗An := σ (A1 (×) . . . (×)An) , (2.5)

which we call the product of the σ-algebras A1, . . . ,An. Note that (2.5) makes sense,
and gives a σ-algebra for arbitrary Ai ⊆ Xi that need not be σ-algebras. Moreover,
we may de�ne the product σ-ring exactly the same way. Note that

Box(Rd) = Box(R) (×) . . . (×) Box(R). (2.6)

Proposition 2.21. For any d1, . . . , dn ∈ N,

B(Rd1)⊗ . . .⊗B(Rdn) = B(Rd1+...+dn). (2.7)

In particular,

⊗di=1B(R) = B(Rd). (2.8)

Proof. We only prove (2.8), as the proof of (2.7) goes exactly the same way. For
A ⊆ R and i ∈ [d], let

A× R[d]\i := {x ∈ Rd : xi ∈ A}.

Then

Box(R) ⊆ Bi := {A ∈ B(R) : A× R[d]\i ∈ B(Rd)} ⊆ B(R). (2.9)

It is straightforward to verify that Bi is a σ-algebra, and hence, by (2.9), B(R) =
σ (Box(R)) ⊆ Bi ⊆ B(R) yields that Bi = B(R). Next, for any Ai ∈ B(R), the above
yields

A1× . . .×An = ∩ni=1 (Ai × R[d]\i)︸ ︷︷ ︸
∈B(Rd)

∈ B(Rd). (2.10)

Hence, we get

B(Rd) = σ
(
Box(Rd)

)
= σ (Box(R) (×) . . . (×) Box(R))

⊆ σ (B(R) (×) . . . (×)B(R)) ⊆ B(Rd), (2.11)

where the �rst equality is by de�nition, the second equality is due to (2.6), the �rst
containment is trivial, and the last one is due to (2.10). Hence, all containments in
(2.11) are equalities, and we obtain (2.8).
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It is clear that the set of boxes, Box(Rd) does not form a σ-ring; in general,
the set di�erence of two boxes need not be a box, and already the union of two
disjoint non-empty boxes is not a box. However, Box(Rd) has the following weaker
properties:

Lemma 2.22. Let S := Box(Rd). Then

• S is closed under �nite intersections:

A1, . . . , Ar ∈ S =⇒ ∩ri=1 Ai ∈ S;

• the set di�erence of any two elements in A can be written as the disjoint union
of �nitely many elements in A:

A1, A2 ∈ S =⇒ A1 \ A2 = ·∪ni=1Bi for some n ∈ N and

B1, . . . , Bn ∈ S, Bi ∩i 6=j Bj = ∅.

De�nition 2.23. A set system S ⊆ P(X ) on an arbitrary set X is called a semi-ring
if it satis�es the two properties given in Lemma reflemma:semi-ring.

Remark 2.24. It is easy to see that for the �nite intersection property, it is su�cient
to check that A,B ∈ S =⇒ A ∩B ∈ A.

Example 2.25. Box(Rd) is a semi-ring.

Although a semi-ring is a much �weaker� structure then a σ-ring, it is still rich
enough to have many useful properties, and in fact, it is a very central concept
in measure theory, as it is somehow the minimal structure that guarantees �good�
properties.

One of the key features of semi-rings is that they allow for a similar disjunctization
of set sequences as σ-rings (Lemma 2.12). We explore this in the following exercises.

Remark 2.26. While this disjunctization property may not seem terribly exciting at
�rst sight, it will actually be the basis of many important features of the measure and
integral theory that we develop; for instance, that even the most exotic measurable
set can be arbitrarily well approximated by �nitely many disjoint boxes, in the
sense that the measure of their di�erence is negligible (Exercise 2.53), or that any
integrable function can be arbitrarily well approximated by continuous functions.

Exercise 2.27. Let A,A1, . . . , Ar be elements of a semi-ring S. Show that there
exist pairwise disjoint elements B1, . . . , Bm ∈ S such that

A \ (∪ri=1Ai) = B1 ·∪ . . . ·∪Bm.
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Solution: Hidden.

Exercise 2.28. Let A1, . . . , Ar be �nitely many elements in a semi-ring S. Show
that there exist pairwise disjoint elements B1, . . . , Bm ∈ S such that

A1 ∪ . . . ∪ Ar = B1 ·∪ . . . ·∪Bm.

Solution: Hidden.

Exercise 2.29. Let {Ai}i∈I ⊆ S be a countable collection of elements in a semi-
ring S. Then there exists a countable collection {Bj}j∈J ⊆ S of pairwise disjoint
elements in S such that

∪i∈IAi = ·∪j∈JBj.

Solution: Hidden.

Specializing the above to boxes, we get the following:

Corollary 2.30. Let {Ai}i∈I ⊆ Box(Rd) be a countable collection of boxes. Then
there exists a countable collection {Bj}j∈J ⊆ Box(Rd) of pairwise disjoint boxes
such that

∪i∈IAi = ·∪j∈JBj.

2.3 Measures

Let us now continue our project of assigning a volume to subsets of Rd. In the
previous section we have discussed the properties that the collection of sets to which
we assign a volume should satisfy, and we came to the conclusion that they should
form a σ-algebra on Rd. Hence, our aim now is to show that a volume function
may be de�ned on the smallest σ-algebra containing all boxes, namely, the Borel
σ-algebra, satisfying the intuitive requirements that we postulated in the previous
section.

We start our discussion by having a more detailed look at those properties, and
also in a more abstract setting, as that will be very useful, e.g., for de�ning proba-
bilistic models of physical systems. In this general setting, instead of the geometric
idea of a volume, we will want to assign a number to every element of a σ-algebra in a
way that imitates the requirements that we postulated for the volume function. Such
an assignment of numbers to sets will be called a measure, and the d-dimensional
volume, as well as the probability of sets in a probability space, will be special cases
of it.

Note that we want to assign a measure to elements of a σ-algebra, which motivates
the following terminology:
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De�nition 2.31. A pair (X ,A), where A is a σ-algebra on the set X , is called
a measurable space. For a given measurable space, the elements of A are called
measurable sets.

De�nition 2.32. A function µ : A → [0,+∞] on a σ-algebra A is a (positive)
measure if µ(∅) = 0, and it is countably additive (or σ-additive), i.e.,

(An)n∈N ⊆ A, An ∩n6=m Am = ∅ =⇒ µ ( ·∪n∈NAn) =
∑
n∈N

µ(An).

A triple (X ,A, µ) is called a measure space if A is a σ-algebra on X , and µ is a
measure on A. We denote the set of all measures on (X ,A) byM(X ,A).

De�nition 2.33. We say that a measure µ ∈M(X ,A) is �nite if µ(X ) < +∞, and
it is a probability measure if µ(X ) = 1. We denote the set of probability measures
on (X ,A) by S(X ,A), and call it the state space of (X ,A).

Remark 2.34. It is customary in probability theory to use the notation Ω instead
of X for the basis set, and P to denote a probability measure on some σ-algebra on
Ω. A triple (Ω,F , P ) is called a probability space if F is a σ-algebra on Ω, and P
a probability measure on F . Elements of F are called events, and P (E) gives the
probability of an event E ∈ F occuring. For instance, to describe the outcome of
rolling a die, one may choose Ω = [6] = {1, 2, . . . , 6}, F = P([6]), and P ({i}) := 1/6
for every i ∈ [6].

Example 2.35. Here we give a few simple examples of measures. We will encounter
more complicated ones later on.

(i) A is an arbitrary σ-algebra, and µ ≡ 0.

(ii) A is an arbitrary σ-algebra, µ(∅) = 0, and µ(A) = +∞ for all A ∈ A \ {∅}.

(iii) A is an arbitrary σ-algebra, and µ(A) := |A| is the cardinality of A ∈ A when
it is �nite, and +∞ otherwise. This is called the counting measure.

(iv) A ⊆ P(X ) is an arbitrary σ-algebra, and for a �xed x ∈ X ,

µ(A) := δx(A) :=

{
1, x ∈ A,
0, otherwise.

This is called the point measure or Dirac measure concentrated at point x.
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(v) A ⊆ P(X ) is an arbitrary σ-algebra, and for �xed x1, . . . , xr ∈ X , c1, . . . , cr ∈
[0,+∞],

µ :=
r∑
i=1

ciδxi : A 7→
∑
i:xi∈A

ci, A ∈ A.

This is called a �nitely supported measure, and is a generalization of the Dirac
measure.

Remark 2.36. We can take generalized positive linear combinations of measures
in a natural way, and obtain again a measure. That is, if µi ∈ M(X ,A), and
ci ∈ [0,+∞], i ∈ [n], then

(c1µ1 + . . .+ cnµn)(A) := c1µ1(A) + . . .+ cnµn(A), A ∈ A,

de�nes a measure on A. The measure in the last example above is obtained from
the Dirac measures by this construction.

Note that we allow some of the coe�cients to be +∞, and if ci = +∞ and
µi(A) = 0 then we need to evaluate an expression of the form (+∞) · 0. The
standard convention in measure theory, that we will use throughout the text, is to
de�ne

(±∞) · 0 := 0.

Remark 2.37. We may de�ne the sum of arbitrarily many (e.g., continuum many)
non-negative numbers λi ∈ [0,+∞], i ∈ I, as

∑
i∈I

λi := sup

{∑
i∈J

λi : J ⊆ I �nite

}
.

With this convention, we may generalize (iv) in Example 2.35 by allowing the positive
linear combination of arbitrarily many measures, i.e., if µi ∈ M(X ,A), and ci ∈
[0,+∞], i ∈ I, where I may be any index set, then we set(∑

i∈I

ciµi

)
(A) :=

∑
i∈I

ciµi(A).

For instance, the counting measure in (iii) of Example 2.35 is of this form, with
I = X , cx = 1, µx = δx, x ∈ X .

De�nition 2.38. We say that a measure µ ∈M(X ,A) is σ-�nite if X is the union
of countably many sets in A with �nite measure.
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Exercise 2.39. Which of the measures in Example 2.35 are a) �nite, b) probability
measures, c) σ-�nite measures?

Next, we brie�y discuss some general properties of measures.

It is clear that a measure is also �nitely additive, i.e.,

(Ai)
n
i=1 ⊆ A, Ai ∩i 6=j Aj = ∅ =⇒ µ ( ·∪ni=1Ai) =

n∑
i=1

µ(Ai),

since we can choose arbitrarily many of the An in De�nition 2.32 to be the empty
set. It is also clear that a measure is monotone, in the sense that for A,B ∈ A,
A ⊆ B, we have

µ(B) = µ(A ·∪ (B \ A)) = µ(A) + µ(B \ A) ≥ µ(A).

Lemma 2.40. (Monotone continuity of measures) Let (X ,A, µ) be a measure space,
and (An)n∈N ⊆ A be an increasing sequence, i.e., An ⊆ An+1, n ∈ N. Then

µ (∪n∈NAn) = sup
n∈N

µ(An) = lim
n→+∞

µ(An).

Proof. As in Lemma 2.12, we write Ãn := An \
(
∪n−1
i=1 Ai

)
, so that Ãn ∈ A, n ∈ N,

and for any N ∈ N, AN = ·∪Nn=1Ãn. Then

µ (∪n∈NAn) = µ
(
·∪n∈NÃn

)
=

+∞∑
n=1

µ(Ãn) = lim
N→+∞

N∑
n=1

µ(Ãn)

= lim
N→+∞

µ(AN) = sup
n∈N

µ(AN),

where in the second and the fourth identity we used the σ-additivity of the measure,
and the last identity is due to the monotonicity.

Exercise 2.41. Show the following complement of the above statement: If (X ,A, µ)
is a measure space, and (An)n∈N ⊆ A is a decreasing sequence, i.e., An ⊇ An+1,
n ∈ N, such that µ(A1) < +∞, then

µ (∩n∈NAn) = inf
n∈N

µ(An) = lim
n→+∞

µ(An).

Show an example where µ(A1) = +∞ and the above continuity relation does not
hold.

Lemma 2.42. (σ-subadditivity of measures) In any measure space (X ,A, µ),

(An)n∈N ⊆ A =⇒ µ (∪n∈NAn) ≤
∑
n∈N

µ(An).
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Proof. Let Ãn := An \
(
∪n−1
i=1 Ai

)
, n ∈ N. Then, as we have seen in Lemma 2.40,

Ãn ∩n 6=m Ãm = ∅, and ·∪n∈NÃn = ∪n∈NAn, and hence

µ (∪n∈NAn) = µ
(
·∪n∈NÃn

)
=
∑
n∈N

µ(Ãn)︸ ︷︷ ︸
≤µ(An)

≤
∑
n∈N

µ(An).

Exercise 2.43. Show that the countable union of zero measure sets is again of zero
measure. That is, if An ∈ A, µ(An) = 0, n ∈ N, then µ (∪n∈NAn) = 0.
(Hint: Use Lemma 2.42.)

Let us now return to our original goal of de�ning a volume function on the
Borel sets of Rd. A natural idea is to approximate more general sets by boxes. One
possible approach is to use approximations by �nitely many boxes from the inside and
from the outside, and de�ne the volume of a set as a limit of these approximations,
provided they coincide. This approach leads to the concept of the Jordan measure,
which has many useful properties and applications, but it does not satisfy all the
requirements we postulated at the beginning of our discussion, and hence we follow
a slightly di�erent approach below, due to Lebesgue. (Readers interested in the
Jordan measure in more detail may consult Appendix A.)

The fruitful approach will turn out to be using approximations by boxes only
from the outside, but in the same time allow coverings with a countably in�nite
number of boxes. This leads to the concept of the outer Lebesgue measure Vol∗,
de�ned as

Vol∗(A) := inf

{∑
n∈N

Vol(Bn) : Bn ∈ Box(Rd), n ∈ N, A ⊆ ∪n∈NBn

}
(2.12)

for any A ⊆ Rd.

Theorem 2.44. The Lebesgue outer measure Vol∗ has the following properties:

(i) It is a measure on the Borel σ-algebra B(Rd) in the sense of De�nition 2.32.

(ii) It is an extension of Vol on Box(Rd) in the sense that

Vol∗(B) = Vol(B) =
d∏
i=1

(bi − ai), B = ×di=1[ai, bi) ∈ Box(Rd).

(iii) It is translation-invariant, i.e., for any A ⊆ Rd and y ∈ Rd,

Vol∗ ({x+ y : x ∈ A}) = Vol∗(A).
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(iv) For any linear transformation T on Rd, we have

Vol∗(T (A)) = | det(T )| · Vol∗(A), A ∈ B(Rd).

De�nition 2.45. The restriction of Vol∗ to B(Rd) is called the Lebesgue measure
on the Borel sets of Rd, and is denoted by λd.

Remark 2.46. We will use the simpler notation λ for the Lebesgue measure if the
dimension is obvious from the context or if it is irrelevant.

Remark 2.47. If A ∈ B(Rd) is a Borel set then we can talk about the Lebesgue
measure on A, which simply means that we change the set X from Rd to A, the
σ-algebra from B(Rd) to B(A) = {B ∈ B(Rd) : B ⊆ A}, and de�ne the measure of
each B ∈ B(A) to be λd(A).

Remark 2.48. Note that rotational invariance of λd follows as a special case of (iv)
in Theorem 2.44, since for any rotation R, we have | detR| = 1.

We omit the proof of the above theorem, as it is beyond the scope of these notes,
and would not add much to the understanding of the rest of the material, anyway.
We only mention that (i) and (ii) are special cases of the Carathéodory extension
theorem, which gives a general method of extending measures from a collection of
sets to their generated σ-algebra. The proof of the Carathéodory extension theorem
is completely elementary, and �ts into a few pages; we refer the interested reader to
Sections 1.4 and 1.5 of [?], or Section 2.2 of [?]. The transformation property (iv)
can be proved using the Fubini-Tonelli theorem about the interchangeability of the
order of integrals; see Theorem 2.44 in [?]. Property (iii) is the simplest, and we
leave it as an exercise:

Exercise 2.49. Prove the translation-invariance of the Lebesgue outer measure.

Note that Theorem 2.44 only claims that Vol∗d is a measure on the Borel σ-
algebra B(Rd), and it is natural to ask whether a measure satisfying (ii)�(iv) can
be de�ned on a larger σ-algebra, or in fact on the whole of P(Rd). The answer
to the �rst question is positive; it turns out that Vol∗ is in fact a measure on a
σ-algebra that is strictly larger than the Borel σ-algebra. This is called the Lebesgue
σ-algebra, and its cardinality is the same as the cardinality of all the subsets of Rd
(i.e., 2 to the power continuum), while the cardinality of the Borel σ-algebra is �only�
continuum. However, every Lebesgue-measurable set di�ers from a Borel set only by
a set of zero Lebesgue outer measure, i.e., any Lebesgue-measurable set is essentially
a Borel-measurable set plus something negligible in the measure-theoretic sense.

On the other hand, it turns out that there exists no translation-invariant measure
on R that coincides with the usual length on intervals, i.e., satis�es (ii) and (iii). This
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can be shown by a very simple argument, (see , e.g., Section 1.1 in [?]), provided
that we accept the axiom of choice. In fact, it can be shown that the non-existence
of such a measure is equivalent to the axiom of choice.

Remark 2.50. Note that the Lebesgue measure is in some sense a �uniform distribu-
tion� on the real line, but it is not a probability measure, and cannot be normalized
to one. However, the same example showing the impossibility to de�ne a translation-
invariant extension of the length to all subsets of R shows also that it is impossible
to de�ne a uniform distribution on all possible subsets of [0, 1].

We de�ned the Borel σ-algebra in a rather abstract way, and it is indeed not
really possible to give a constructive description of a general Borel set. However, as
we will see in the following exercises, Borel sets are in fact very simple in a measure-
theoretic sense: namely, any Borel set can be arbitrarily well approximated by �nite
disjoint unions of boxes.

We start with the following simple reformulation of the de�nition of the outer
Lebesgue measure, showing that we may restrict the coverings in 2.12 without loss
of generality to countable collections of disjoint boxes.

Exercise 2.51. Show that the Lebesgue measure λ(A) of any Borel set A ⊆ Rd can
be written as

λ(A) = inf

{∑
n∈N

λ(Bn) : Bn ∈ Box(Rd), n ∈ N, Bn ∩n 6=m Bm = ∅, A ⊆ ·∪n∈NBn

}
.

(2.13)

Solution: Hidden.

De�nition 2.52. The symmetric di�erence of two sets A,B ⊆ X is

A4B := (A \B) ·∪ (B \ A).

Exercise 2.53. Let A ⊆ Rd be a Borel set of �nite Lebesgue measure. Show that
for any ε > 0, there exist nε ∈ N and �nitely many disjoint boxes Bε,1, . . . , Bε,nε

such that

λ(A4Bε) < ε, where Bε := ·∪nεk=1Bε,k. (2.14)

(Hint: Use Exercise 2.51.)

Solution: Hidden.

Remark 2.54. In words, (2.14) means that the part of A that is not covered by the
boxes, as well as the parts of the boxes that do not cover some part of A, have small
measure.
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It is easy to see that appoximation by �nitely many boxes in the above sense may
not be possible λ(A) = +∞; a simple example is given by A := ·∪n∈N[2n, 2n + 1).
However, we still have the following:

Exercise 2.55. Show that for any Borel set A ∈ B(Rd), and any ε > 0, there exist
countably many disjoint boxes (Bn)n∈N ⊆ Box(Rd) such that

A ⊆ ·∪n∈NBn, and λ (( ·∪n∈NBn) \ A) < ε.

Solution: Hidden.

Remark 2.56. See Exercises ?? and ?? for a generalizations of Exercises 2.53 and
2.55.

Sets of zero measure play an important role in the theory of integrals. The
following is immediate from the de�nition Vol∗:

Lemma 2.57. A set A ∈ B(Rd) has zero outer Lebesgue measure if and only if
for every ε > 0 there exists a sequence of boxes Bk ∈ Box(Rdi), k ∈ N, such that
Ai ⊆ ∪k∈NBk, and

∑
k∈N λ(Bk) < ε.

Exercise 2.58. Use the de�nition of the Lebesgue measure (but not Theorem 2.59
or 2.62 below) to show that if Ai ∈ B(Rdi), i ∈ [n], and there exists an i such that
λ(Ai) = 0 then λ(A1× . . .×An) = 0.

Solution: Hidden.

Finally, we also mention without proof that the product property in (ii) of The-
orem 2.44 holds more generally, not only for the product of boxes, but of arbitrary
Borel sets:

Theorem 2.59. For any Ai ∈ B(Rdi), i ∈ [n],

λd1+...+dn(A1× . . .×An) = λd1(A1) · . . . · λdn(An).

The above can be reformulated using the notion of the product measure:

De�nition 2.60. Let (Xi,Ai, µi), i ∈ [n], be measure spaces. We say that a measure
µ on ⊗ni=1Ai = σ ({A1× . . .×An : Ai ∈ Ai, i ∈ [n]}) factorizes to the product of the
µi if

µ(A1× . . .×An) = µ1(A1) · . . . ·µn(An), Ai ∈ Ai, i ∈ [n].

If there exists a unique such measure on ⊗ni=1Ai then we call it the product of the
µi, and denote it by ⊗ni=1µi.
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The following is also a consequence of the general Carathéodory extension theo-
rem:

Theorem 2.61. For any measure spaces (Xi,Ai, µ), i ∈ [n], there exists a measure
µ on ⊗ni=1Ai that factorizes to the product of the µi. If all µi are σ-�nite then there
is a exactly one such measure, i.e., ⊗ni=1µi exists.

The factorization property of the Lebesgue measure in Theorem 2.59 can be
expressed in the following stronger form:

Theorem 2.62. For any d1, . . . , dn ∈ N,

λd1+...+dn = ⊗ni=1λdi .

2.4 Classical models of physical systems

We are now ready to de�ne classical probabilistic models of physical systems.
Any such model is speci�ed by a measurable space (Ω,F), where Ω is the set of

elementary events, also called the set of physical states or phase space in physics. Ω
may be a �nite set, e.g., for modeling the roll of a die, we may choose Ω = [6] =
{1, 2, . . . , 6}, or for the modeling of the toss of a coin, Ω = {heads, tails}. It may
also be countably in�nite; e.g., when modeling the random walk of a particle on a
d-dimensional square lattice, we would choose Ω = Zd. In all of these examples,
the natural choice for the σ-algebra F is the trivial F = P(Ω), i.e., all subsets of Ω
are measurable. A more involved example is the description of the continuous-time
random walk of a particle in a d-dimensional space, in which case the natural choice
for the phase space is Ω = Rd, and the usual choice for F is the Borel σ-algebra
B(Rd).

Possible states of the system are described by probability measures on F , and we
call the set of all probability measures on F the state space of the model, and denote
it by S(Ω,F). In this picture, a Dirac measure concentrated at a point ω represents
a well-de�ned physical state of the system, while more general probability measures
model our uncertainty about the physical state of the system. For instance, consider
the task of describing the number on the top of a die after it has been rolled, but is
covered by a cup so that we cannot see it. The die may have a well-de�ned physical
state, i.e., one of its sides being on the top, but this is inaccessible to us. Hence, our
best description of the state of the system (i.e., the number on the top of the die)
may be some probability distribution on the possible physical states. For instance,
if we expect the die to be fair, then this would be the uniform distribution on [6].
However, if we know that there is a small piece of lead inside the die that changes
its chances of falling on some of its faces, then we may instead describe its state by a
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non-uniform probability distribution, depending on the size and location of the piece
of lead.

As another example, one may imagine a particle moving on a one-dimensional
lattice described by Ω = Z, at each time instance moving one step to the left with
probability p, and one step to the right with probability 1− p. Even if we knew that
the particle was at the origin at time t = 0, if we let the particle wander for, say, 3
time steps without looking at it, our best description of the particle's position will
be a probability distribution on Z that does not correspond to a physical state, i.e.,
a Dirac distribution concentrated at some node k ∈ Z.

Exercise 2.63. Calculate the probability distribution describing the particle's po-
sition after 3 time steps in the above example.

Remark 2.64. We use the terms �proability measure� and �probability distribution�
more or less as as synonyms, and while some distinctions could be made between the
two, there are no general rules for it. In principle, �probability measure� is the gen-
eral notion, as introduced in the previous section. One context where �distribution�
is preferred is when one talks about the probability measure induced by a random
variable (or push-forward measure); see the next section. Another case where �prob-
ability distribution� may be used is when a probability measure is speci�ed by a
function on X instead of de�ning it as a function on the subsets of X .

For instance, in the above two examples (the roll of a die, and the random walk
on Z), the natural σ-algebra to work with is F = P(X ) (where X = [6] or X = Z),
and any probability measure % on P(X ) determines a function %̂ : X → [0, 1] by
%̂(x) := %({x}), such that∑

x∈X

%̂(x) = 1, and %(A) =
∑
x∈A

%̂(x), A ∈ P(X ).

Vice versa, any function %̂ : X → [0, 1] with the property
∑

x∈X %̂(x) = 1 deter-
mines a probability measure % on P(X ) via %(A) :=

∑
x∈A %̂(x), A ∈ P(X ). Such a

function % may be called a �probability density function�, or a �weight function�. We
remark that in this case the correspondence between probability measures (functions
on subsets with certain properties) and probability density functions (functions on
points with certain properties) is one-to-one, but this is so only when the σ-algebra
is the full power set. Probability measures may also be identi�ed with density func-
tions also in the general case, but this correspondence is more limited and more
complicated; we will brie�y touch upon this in the next section.

Finally, yet another example of de�ning a probability measure by a function is by
a so-called cumulative distribution function, mainly for real-valued random variables,
which is very common in probability theory, but we are not going to use this concept
in these notes.
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To complete the mathematical description of classical models, we need to �nd
a description of measurements on the system, and specify a rule describing the
probabilities of the various possible measurement outcomes when the measurement
is performed in a given state of the system. For instance, imagine that in the above
example, the particle and the origin are connected by a rubber band that stretches
more and more as the particle gets further and further away from the origin, storing
an amount of energy E(k) = ck2 if the particle is at position k. What will we �nd if
we measure the energy of the particle after the particle has wandered for three steps
without us observing its position? If % is the probability distribution describing its
position, then we will observe an energy value

0 with probability %(0),

c with probability %(1) + %(−1) = %({k : E(k) = c},
4c with probability %(2) + %(−2) = %({k : E(k) = 4c},

etc. If we are only interested in whether the energy is above a certain threshold E0,
then the probability of this can be computed by∑

k∈Z: ck2≥E0

%(k) = %
(
{k ∈ Z : ck2 ≥ E0}

)
.

This suggests that physical quantities should be described by functions on the
phase space Ω, and if the system is in state %, then the probability that the result
of the measurement of the physical quantity described by f falls in a set A should
be computed by the formula

P%,f (A) := % ({ω ∈ Ω : f(ω) ∈ A}) . (2.15)

While physical quantities like energy, position, momentum, etc., are usually de-
scribed by real-valued functions, we may consider more general physical quantities,
e.g., when rolling two dice together, our quantity of interest may be the parity of the
sum on their top faces, that is modeled by a function f : [6] × [6] → {odd, even}.
In the most general scenario, a physical quantity may be any function f : Ω → X ,
where X is some arbitrary set.

Note that, in order for the RHS above to make sense,

{ω ∈ Ω : f(ω) ∈ A} =: f−1(A) (2.16)

should be a measurable set in our model, i.e., an element of F . (Here, f−1 does not
denote the inverse (we do not assume f to be invertible), but the inverse image or
preimage function that maps from P(X ) to P(Ω).) This may be too much to require
for every subset of X , and it also does not seem necessary from a physical point
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of view. Indeed, while we may be interested in whether the value of some physical
quantity falls into an interval, it makes no physical sense to ask if its value falls into
a set that we cannot describe, but only prove its existence using the axiom of choice,
as we have seen in the previous section.

Thus, we will always assume that the set X of possible values of some physical
quantity is also equipped with a collection of subsets, for which we may want to know
the probability of the measurement outcome falling into any one of those subsets,
and for the elements of which f−1(A) ∈ F has to hold, in order to be able to compute
probabilities as given in (2.16). As we will see in the next section, we may assume
without loss of generality that this collection of subsets of X forms a σ-algebra. We
will elaborate further on these concepts in the next section.

2.5 Measurable functions

In this section we discuss the concept of measurability of a function between two
measurable spaces. This is motivated by the considerations in Section 2.4 related
to building (classical) probabilistic models of physical phenomena, but it is also
instrumental in building a theory of integrals that will allow us to de�ne the function
spaces that will play a central role in building quantum models.

As we have already mentioned in the previous section, a function f : X → Y
induces a map f−1 : P(Y) → P(X ), where f−1 here does not denote the inverse
(we do not assume f to be invertible), but the inverse image or preimage function,
de�ned as

f−1(B) := {x ∈ X : f(x) ∈ B}, B ∈ P(Y).

Exercise 2.65. Show that the preimage function is compatible with the set opera-
tions in the sense that

(i) f−1(B1 \B2) = f−1(B1) \ f−1(B2),

(ii) f−1 (∪i∈IBi) = ∪i∈If−1(Bi),

(iii) f−1 (∩i∈IBi) = ∩i∈If−1(Bi),

where I is an arbitary index set, and B1, B2, Bi ∈ P(Y).

De�nition 2.66. Let (X ,A) and (Y ,B) be measurable spaces. We say that a
function f : X → Y is measurable if f−1(B) ∈ A for all B ∈ B, i.e., the preimage of
all measurable subsets in Y is a measurable subset in X .

Remark 2.67. In probability theory, measurable functions are called random vari-
ables, in statistics they are called tests.
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De�nition 2.68. In a classical probabilistic model (Ω,F) of a physical system, mea-
surable functions f : (Ω,F)→ (X ,A) will be called X -valued sharp measurements.

Remark 2.69. As the terminology suggests, one may also consider unsharp mea-
surement; we will discuss these later.

Remark 2.70. Note that the concept of measurability of a function f : X → Y
depends on the σ-algebras given on X and Y . When we want to emphasize this,
we may write the function as f : (X , A) → (Y ,B), which still means that the
function maps from X to Y , but it also indicates that measurability is de�ned with
respect to the σ-algebras A and B. Alternatively, we may say that the function is
(A,B)-measurable.

When one of the σ-algebras are canonical (e.g., the Borel σ-algebra on R, or P(X )
for a �nite X ) then we may omit that from the notation, and write f : (X ,A)→ R,
for instance.

Likewise, by measurability of a K-valued function de�ned on a Borel subset A
of Rd, by measurability we always mean measurability with respect to the Borel
σ-algebras (B(A),B(K)), unless otherwise stated.

Exercise 2.71. Show that every function f : X → Y is measurable if Y is equipped
with the smallest σ-algebra B = {∅,Y}, or X is equipped with the largest σ-algebra
A = P(X ).

The notion of measurability plays an analogous role in measure theory to the
notion of continuity in topology. Recall that a set G ⊆ Kd is open, if for every x ∈ G
there exists an εx > 0 such that the εx-ball B(x, εx) := {y ∈ Kd : ‖y − x‖ < ε} ⊆ G.
The topology� τKd of Kd is, by de�nition, the collection of all open sets in Kd. The
relative topology of a subset A ⊆ Kd is τA := {G ∩ A : G ∈ τRd}.

Exercise 2.72. Let A ⊆ Kd, and f : A→ Km be a function.

(i) Show that f is continuous on A if and only if for all B ∈ τRm , f−1(B) ∈ τA.

(ii) Show that if f is continuous and A is a Borel set then f is (B(A),B(Kd))-
measurable.

Remark 2.73. It is easy to see that the above holds true if Kd and Km are replaced
with arbitrary topological spaces.

Proposition 2.74. Every measurable function f : (X ,A) → (Y ,B) de�nes a map
f∗ : M(X ,A)→M(Y ,B) by

f∗µ := µ ◦ f−1.
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This map is positive linear, i.e., for every µ1, µ2 ∈M(X ,A), c1, c2 ∈ [0,+∞],

f∗(c1µ1 + c2µ2) = c1f∗µ1 + c2f∗µ2,

and it maps probability measures into probability measures.

Proof. Trivial from the de�nition, exercise.

De�nition 2.75. Given a state % ∈ S(Ω,F) in a classical probabilistic model, and
a sharp measurement f : (Ω,F)→ (X ,A), we call

P%,f := f∗% ∈ S(X ,A) (2.17)

the distribution of measurement outcomes, or post-measurement distribution de�ned
by the state % and the measurement f .

Remark 2.76. Note that (2.17) is the same as (2.15). The probability P%,f (A)
should give a good approximation of the frequency with which the outcome of the
measurement falls in the set A when the same measurement f is performed indepen-
dently on many identical copies of the system, all prepared in state %.

Remark 2.77. In measure theory, f∗µ is called the push-forward of the measure µ
by the measurable function f . In probability theory, P%,f is called the distribution
of the random variable f under the probability measure %.

We will most often consider real-valued measurements, i.e., real-valued measur-
able functions, while in de�ning the relevant function spaces for quantum theory, we
will need to work with complex-valued functions. Hence, we study measurability in
these cases in more detail below.

We start with the following simple observation, that shows that it is enough to
verify measurability on a generating system of the image σ-algebra.

Lemma 2.78. Let (X ,A) and (Y ,B) be measurable spaces, and B0 ⊆ B be a
generator for B, i.e., σ(B0) = B. Then f : (X ,A) → (Y ,B) is measurable if and
only if f−1(B) ∈ A for all B ∈ B0.

Proof. Let B̂ := {B ⊆ Y : f−1(B) ∈ A}. Then it is easy to verify that B̂ is a
σ-algebra. By assumption, it contains B0, and hence it also contains σ(B0) = B.

For an extended real-valued function f : X → R, let us introduce the notations

{f ≥ c} := {x ∈ X : f(x) ≥ c}, {f > c} := {x ∈ X : f(x) > c},
{f ≤ c} := {x ∈ X : f(x) ≤ c}, {f < c} := {x ∈ X : f(x) < c},

for every c ∈ R.
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Remark 2.79. Note that every real-valued function is also an extended real-valued
function, and hence in what follows, we always consider the more general case of
extended real-valued functions, whenever possible.

By Exercise 2.18 and Lemma 2.78, we immediately have the following:

Corollary 2.80. A real-valued or extended real-valued function f on (X ,A) is
measurable if and only if any (and hence all) of the following holds:

(i) {f ≥ c} ∈ A, c ∈ R, (ii) {f > c} ∈ A, c ∈ R,
(iiii) {f ≤ c} ∈ A, c ∈ R, (iv) {f < c} ∈ A, c ∈ R.

Exercise 2.81. Let fi : (X ,A) → R, i ∈ I be functions, where I is a �nite or
countably in�nite index set. Show that if all fi is measurable, then so is infi fi and
supi fi, where the in�mum and the supremum are taken in the pointwise sense, i.e.,
(infi fi)(x) := infi fi(x), x ∈ X , and similarly for the supremum.

Solution: Hidden.For every c ∈ R,

{infi fi ≥ c} = ∩i∈I{fi ≥ c}, {supi fi ≤ c} = ∩i∈I{fi ≤ c},

and the assertion follows from Corollary 2.80 and the fact that a σ-algebra is closed
under countable unions and products.

Exercise 2.82. Show that an extended real-valued function f : (X ,A) → R is
measurable if and only if

f+ := max{0, f} and f− := −min{0, f}

are also measurable.

De�nition 2.83. For an extended real-valued sequence (an)n∈N ⊂ R, let

lim inf
n

an := sup
n∈N

inf
k≥n

ak, lim sup
n

an := inf
n∈N

sup
k≥n

ak,

be the limit inferior and the limit superior of the sequence, respectively. For a
sequence of functions fn : X → R, we de�ne

(lim inf
n

fn)(x) := lim inf
n

fn(x), x ∈ X ,

(lim sup
n

fn)(x) := lim sup
n

fn(x), x ∈ X .

Remark 2.84. It is easy to see that lim infn an is the smallest, and lim supn an is the
largest accumulation point of the sequence (an)n∈N. In particular, the sequence has
a limit (possibly ±∞) if and only if lim infn an = lim supn an, and in this case this
common value is equal to limn an. We leave the veri�cation of this as an exercise.
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Exercise 2.81 with the above de�nition immediately implies that the following is
true:

Exercise 2.85. Let fn : (X ,A) → R, n ∈ N, be a sequence of measurable
functions. Show that lim infn fn and lim supn fn are both measurable. In partic-
ular, if the sequence of functions is pointwise convergent, then the limit function
f(x) := limn fn(x) is also measurable.

Lemma 2.86. A complex-valued function f : (X ,A)→ C is measurable if and only
if Re f and Im f are measurable.

Proof. The Borel σ-algebra of C is generated by boxes of the form J1+iJ2 := {a+ib :
a ∈ J1, b ∈ J2}, where J1, J2 ⊆ R are intervals. By Lemma 2.78, f is measurable if
and only if A 3 {x ∈ X : f(x) ∈ J1 + iJ2} = (Re f)−1(J1) ∩ (Im f)−1(J2). Thus, if
both Re f and Im f are measurable then so if f . Vice versa, if f is measurable then
taking J2 := R shows that (Re f)−1(J1) = (Re f)−1(J1) ∩ (Im f)−1(R) ∈ A, for any
interval J1 ⊆ R, and thus Re f is measurable. The measurability of Im f follows the
same way, by taking J1 = R.

Just as a general measurable set may be di�cult to describe, so is a general
measurable function. However, we can approximate every extended real-valued or
complex-valued measurable function by simpler measurable functions, as we show
below.

De�nition 2.87. For a set A ⊆ X , its characteristic function (or indicator function)
1A is de�ned as

1A(x) :=

{
1, x ∈ A,
0, x /∈ A.

Exercise 2.88. Let (X ,A) be a measurable space. Show that A ⊆ X is measurable
if and only if its characteristic function 1A : X → R is measurable.

Solution: The assertion follows immediately from the fact that

{1A ≥ c} =

{
∅ ∈ A, c > 1,

A, c ≤ 1.

De�nition 2.89. A function f : X → Y is called a simple function if it only takes
�nitely many di�erent values, i.e., | ran f | < +∞.

Remark 2.90. Recall the previously introduced convention

(±∞) · 0 := 0.
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Exercise 2.91. Let f be an extended real-valued or complex-valued simple function
on (X ,A).

(i) Show that f is simple if and only if it can be written as f =
∑r

i=1 ci1Ai , where
Ai ∩i 6=j Aj = ∅, and ci ∈ R (extended real-valued) or ci ∈ C (complex), i ∈ [r].

(ii) Show that f is a measurable simple function if and only if all Ai in the above
decomposition are measurable.

Proposition 2.92. Let f be an extended real-valued or complex-valued function on
(X ,A). Then f is measurable if and only if it is the pointwise limit of a sequence of
measurable simple functions. Moreover, an approximating sequence (fn)n∈N of such
functions can be taken so that |fn(x)| ≤ |f(x)| for all x ∈ X and n ∈ N, and if f is
bounded then the convergence is uniform in x.

Proof. We have seen that the limit of measurable functions is again measurable, so
we have to prove the converse direction. Let f be a non-negative extended real-valued
measurable function, and for every n ∈ N, de�ne

fn :=
n2n−1∑
k=0

k

2n
1f−1([ k2n ,

k+1
2n )).

Then clearly fn is measurable if f is measurable, fn(x) ≤ f(x) for all x ∈ X , and
|fn(x)−f(x)| ≤ 1

2n
for all x ∈ X such that |f(x)| < n, showing that limn fn(x) = f(x)

for all x ∈ X and that the convergence is uniform if f is bounded.
For an extended real-valued function, choose separate approximations for the

positive part f+ := max{0, f} and for the negative part f− := −min{0, f}, and for
a complex-valued function approximate separately Re f and Im f .

Use the above proposition to prove the following properties of measurable func-
tions:

Exercise 2.93. Let f, g : (X ,A)→ K be measurable functions, where K = R or C.
Show that fg is measurable, for any λ, η ∈ K, λf +ηg is measurable, and if g(x) 6= 0
for all x then f/g is measurable, too.

Remark 2.94. Note that the above algebraic operations on functions that preserve
measurablity also preserve continuity, another analogy between measure theory and
topology.

Exercise 2.95. Let f : (X ,A) → (Y ,B) and g : (Y ,B) → (Z, C) be measurable.
Show that g ◦ f : (X ,A)→ (Z, C) is measurable.

Conclude that if f : (X ,A)→ Kd is measurable and g : ran f → Km is continu-
ous then g ◦ f is measurable.
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De�nition 2.96. For functions fi ∈ KXi , i ∈ [n], their tensor product is the n-
variable function

(f1⊗ . . .⊗ fn)(x1, . . . , xn) := f1(x1) · . . . · fn(xn), xi ∈ Xi, i ∈ [n].

Exercise 2.97. Show that if fi : (Xi,Ai) → K, i ∈ [n], are measurable then
f1⊗ . . .⊗ fn is measurable, where ×ni=1Xi is equipped with the product σ-algebra
⊗ni=1Ai = σ ({A1× . . .×An : Ai ∈ Ai, i ∈ [n]}).

2.6 Integral

Imagine that we conduct the same real-valued sharp measurement f : (Ω,F) → R
on many identical copies of a system, all prepared in the state % ∈ S(Ω,F). The
average value and the variance of the measurement outcomes are two important
characteristics of the measurement. It is intuitively clear that the values of these
quantities should be predicted by our model to be

E%(f) :=

∫
R
t dP%,f (t) =

∫
R
t d(% ◦ f−1)(t) =

∫
Ω

f(ω) d%(ω), (2.18)

V%(f) :=

∫
R
(t− E%(f))2 dP%,f (t) =

∫
Ω

(f(ω)− E%(f))2 d%(ω). (2.19)

Note, however, that the integrals above are not Riemann integrals in general, and
hence their interpretation and the way to compute them is not covered by usual
calculus. Below we discuss how to make sense of these expressions, and why the
identities above hold.

Hence, our goal now is to develop a concept of integral that a) reduces to the
usual Riemann integral for continuous real-valued functions on a compact interval
(or, more generally, on a compact box in Rd), and b) it is compatible with the general
view that the integral measures the signed area (or volume) below the graph of a
function. This latter leads to the following:

De�nition 2.98. Let (X ,A, µ) be a measure space and f : X → R+ be a non-
negative simple measurable function, given as f =

∑r
i=1 ci1Ai , with all Ai ∈ A and

ci ∈ [0,+∞] (see Exercise 2.91). Then the integral of f with respect to the measure
µ (or the µ-integral of f) is de�ned as∫

f dµ :=

∫
X
f dµ :=

∫
X
f(x) dµ(x) :=

r∑
i=1

ciµ(Ai).

For a measurable set A ∈ A, we de�ne∫
A

f dµ :=

∫
X
f1A dµ.
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For convenience, let us introduce the notation

Lsimp(X ,A,R+) := {f : X → R+ : f simple and measurable}.

The following properties of the integral are easy to verify, and hence we leave them
as an exercise:

Exercise 2.99. Let (X ,A, µ) be a measure space. The integral of non-negative
simple measurable functions have the following properties:

(i) positive linearity: For any f1, f2 ∈ Lsimp(X ,A,R+), any c1, c2 ∈ [0,+∞], and
any A ∈ A,∫

A

(c1f1 + c2f2) dµ = c1

∫
A

f1 dµ+ c2

∫
A

f2 dµ;

(ii) monotonicity: For any f, g ∈ Lsimp(X ,A,R+), and any A ∈ A,

f ≤ g =⇒
∫
A

f dµ ≤
∫
A

g dµ.

Next, we want to extend the concept of integral to more complicated functions.
We start with non-negative measurable functions:

De�nition 2.100. Let (X ,A, µ) be a measure space, and µ be a measure on A. For
a non-negative measurable function f : X → R+, the integral of f with respect to
µ (or the µ-integral of f) is de�ned as∫

f dµ := sup

{∫
h dµ : h ∈ Lsimp(X ,A,R+), h ≤ f

}
.

De�nition 2.101. When X = A is a Borel set in Rd, A = {A∩B : B ∈ B(Rd)} are
the Borel sets in A, and µ = λ is the Lebesgue measure, then λ-integral of a Borel
measurable function f : A→ R is called the Lebesgue integral of f .

Exercise 2.102. Show that the above de�nition is consistent with the previous one,
in the sense that if f is a simple measurable function then its integrals given in
De�nition 2.98 and in De�nition 2.100 are the same.

Let us now recall that for a real-valued function f : [a, b] → R on an interval
[a, b] ⊆ R, its Riemann integral is de�ned in the following way: For every partition
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P : a = a0 < a1 < . . . < an = b of the interval, one considers the lower and upper
Riemann sums

I∗(f,P) :=
n−1∑
i=0

(
inf

x∈[ai,ai+1)
f(x)

)
(ai+1 − ai),

I∗(f,P) :=
n−1∑
i=0

(
sup

x∈[ai,ai+1)

f(x)

)
(ai+1 − ai).

Clearly, I∗(f) ≤ I∗(f) for any partition. The function f is called Riemann integrable,
if

sup
P
I∗(f,P) = inf

P
I∗(f,P),

where the supremum and the in�mum are over all partitions of [a, b], and this com-

mon value is called the Riemann integral of f , denoted by
∫ b
a
f(x) dx.

Now, let f : [a, b] → R+ be a non-negative extended real-valued function. For
any partition P : a = a0 < a1 < . . . < an = b, we have

n−1∑
i=0

(
inf

x∈[ai,ai+1)
f(x)

)
1[ai,ai+1) ≤ f ≤

n−1∑
i=0

(
sup

x∈[ai,ai+1)

f(x)

)
1[ai,ai+1].

By the monotonicity of the Lebesgue integral and Exercise 2.102, we have

I∗(f,P) ≤
∫

[a,b]

f dλ ≤ I∗(f,P).

Hence, if f is Riemann integrable then∫ b

a

f(x) dx =

∫
[a,b]

f dλ.

On the other hand, consider f : [0, 1] → R+, f := 1Q∩[0,1]. Since every interval
[ai, ai+1) in a partition P of [0, 1] contains both a rational and an irrational number,

I∗(1Q∩[0,1],P) = 0, I∗(1Q∩[0,1],P) = 1

for every partition, and hence 1Q∩[0,1] is not Riemann integrable on [0, 1]. On the on
the other hand, it is a non-negative measurable function, and hence it has a Lebesgue
integral according to De�nition 2.100.

It is also not too di�cult to show that every Riemann integrable function is mea-
surable, and hence we can conclude that the Lebesgue integral is a proper extension
of the Riemann integral for functions on a compact interval.
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Exercise 2.103. Compute the Lebesgue integral
∫

[0,1]
1Q∩[0,1] dλ based on De�nition

2.100.

The following important inequalities in probability theory follow immediately
from the above de�nition of the integral:

Exercise 2.104. Let f be a K-valued measurable function on a measure space
(X ,A, µ), and g : R+ → R+ be monotone. Show that for any c ∈ R+ such that
g(c) > 0,

µ ({|f | ≥ c}) ≤ 1

g(c)

∫
X

(g ◦ |f |) dµ. (Genralized Markov inequality) (2.20)

Remark 2.105. When (X ,A, µ) = (Ω,F , P ) for some probability space, and X :
Ω→ R is a real-valued random variable, then (2.20) yields

P ({|X| ≥ c}) ≤ 1

c
EP (|X|), (Markov inequality), (2.21)

P ({X ≥ c}) ≤ inf
t>0

e−tc EP (etX), (exponential Markov inequality). (2.22)

In the above, EP (etX) is called the moment generating function of X.

The following simple concept is crucial in all applications of measure theory:

De�nition 2.106. Let (X ,A, µ) be a measure space. We say that some statement
about the points of X holds µ-almost everywhere (µ-a.e. in short), if those points of
X where it does not hold form a measurable set of measure 0. When the measure µ
is �xed, we simply say almost everywhere (a.e.).

Exercise 2.107. Let f : (X ,A)→ R+ be a non-negative measurable function.

(i) Show that
∫
f dµ = 0 ⇐⇒ f = 0 µ-a.e.

(ii) Show that
∫
f dµ < +∞ =⇒ f < +∞ µ-a.e.

While the de�nition of the integral of non-negative functions given above is intu-
itively very clear, it is not the most useful one to work with. A simpli�ed approach
is enabled by the following fundamental theorem of integral theory:

Theorem 2.108. (Monotone convergence theorem)

Let (X ,A) be a measurable space, and fn : (X ,A) → R+, fn ≤ fn+1, n ∈ N, be a
monotone increasing sequence of non-negative measurable functions. Then∫

lim
n
fn dµ = lim

n

∫
fn dµ = sup

n

∫
fn dµ

for every measure µ on (X ,A).
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The proof of the above theorem is not complicated at all, but it is not really
necessary for us, so we refer the interested reader to [?, Theorem 2.14].

Corollary 2.109. Let f : X → R+ be a non-negative measurable function, and
0 ≤ f1 ≤ f2 ≤ . . . be a sequence of simple measurable functions converging pointwise
to f . Then∫

f dµ = lim
n→+∞

∫
fn dµ. (2.23)

In particular,∫
f dµ = lim

n→+∞

2n−1∑
k=0

k

2n
µ

(
f−1

([
k

2n
,
k + 1

2n

)))
.

Proof. The �rst assertion is immediate from the monotone convergence theorem, and
the second one follows by applying (2.23) to the approximating sequence constructed
in the proof of 2.92.

Remark 2.110. Let (rn)n∈N be an enumeration of the rational numbers in [0, 1], and
de�ne fn := 1{r1,...,rn}, n ∈ N. Obviously, (fn)n∈N is a monotone increasing sequence
of functions, fn is Riemann integrable for every n ∈ N, and it is easy to see that∫ 1

0

fn(x) dx = 0, n ∈ N.

However, as we have seen above,

lim
n→+∞

fn = 1Q∩[0,1]

is not Riemann integrable. Hence, the dominated convergence theorem may fail to
hold for the Riemann integral because already the Riemann integral of the limit
function is unde�ned.

Another important corollary of the monotone convergence theorem is the follow-
ing:

Corollary 2.111. Let fn : (X ,A)→ R+ be measurable functions for every n ∈ N.
Then ∫

X

∑
n∈N

fn(x) dµ(x) =
∑
n∈N

∫
X
fn(x) dµ(x).

In particular, the integral is additive on non-negative measurable functins.
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Proof. Let us �rst consider the case fn ≡ 0 for every n ≥ 3, and let fn,k ≤ fn,k+1 ≤
. . .→ fi, n = 1, 2. Then∫

X
(f1(x) + f2(x)) dµ(x) = lim

n→+∞

∫
X

(f1,k(x) + f2,k(x)) dµ(x)

= lim
n→+∞

[∫
X
f1,k(x) dµ(x) +

∫
X
f2,k(x) dµ(x)

]
= lim

n→+∞

∫
X
f1,k(x) dµ(x) + lim

n→+∞

∫
X
f2,k(x) dµ(x)

=

∫
X
f1(x) dµ(x) +

∫
X
f2(x) dµ(x),

where the �rst equality is due to the monotone convergence theorem, the second
equality is due to Exercise 2.99, the third equality is trivial, and the last equality is
again due to the monotone convergence theorem.

Iterating the above, we obtain that the integral is additive on �nite sums of
non-negative measurable functions. Finally, for an in�nite sum we obtain∫

X

∑
n∈N

fn(x) dµ(x) =

∫
X

lim
N→+∞

N∑
n=1

fn(x) dµ(x)

= lim
N→+∞

∫
X

n∑
i=1

fn(x) dµ(x)

= lim
N→+∞

n∑
i=1

∫
X
fn(x) dµ(x)

=
∑
n∈N

∫
X
fn(x) dµ(x),

where the �rst equality is by de�nition, the second equality is by the monotone
convergence theorem, the third equality follows from �nite additivity, and the last
equality is again by de�nition.

Corollary 2.112. Let f : (X ,A) → R+ be a non-negative measurable function.
Then

(fµ)(A) :=

∫
A

f dµ =

∫
X

(f1A) dµ, A ∈ A,

de�nes a measure on A, that we call the product of f and µ.
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Proof. For any (An)n∈N ⊆ A, An ∩n6=m Am = ∅, let fn := f1An . Then

(fµ) ( ·∪n∈NAn) =

∫
X
f1 ·∪n∈NAn dµ =

∫
X

∑
n∈N

f1An dµ =

∫
X

∑
n∈N

fn dµ

=
∑
n∈N

∫
X
fn dµ =

∑
n∈N

∫
X
f1An dµ =

∑
n∈N

(fµ)(An),

where the fourth equality is due to Corollary 2.111, and the rest are obvious.

Example 2.113. Let (X ,A, µ) = (R,B(R), λ), and f(x) := 1√
2π
e−x

2/2. This is the
density function of the standard normal distribution. The probability that the value
of a random variable X with this distribution falls into an interval [a, b] is given by

P(X ∈ [a, b]) =

∫
[a,b]

1√
2π
e−x

2/2 dλ(x) = (fλ)([a, b]).

Likewise, the probability that the value falls into an arbitrary Borel set A is given
by

P(X ∈ A) =

∫
A

1√
2π
e−x

2/2 dλ(x) = (fλ)(A).

De�nition 2.114. Let X : (Ω,F) → Rd be a measurable function, and P be a
probability measure on F . We say that X is a continuous (more precisely: ab-
solutely continuous w.r.t. the Lebesgue measure) random variable if there exists a
non-negative measurable function f : (Rd,B(Rd)→ R+ such that

X∗P = P ◦X−1 = fλd.

The function f is called the density function of X.

Finally, we de�ne the integral of extended real-valued functions of arbitrary sign,
and of complex-valued functions.

De�nition 2.115. Let f : (X , A) → R be an extended real-valued measurable
function, and µ be a measure on A. We say that the µ-integral of f exists, if at least
one of

∫
f+ dµ and

∫
f− dµ is �nite, and de�ne∫

f dµ :=

∫
f+ dµ−

∫
f− dµ.

We say that f is integrable, if its integral exists and is �nite.
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Remark 2.116. Note that the integral of a non-negative measurable function always
exists, but it is not necessarily �nite. Likewise, the integral of an extended real-valued
measurable function exists if

∫
f+ dµ < +∞ and

∫
f− dµ = +∞ or the other way

around, but the integral of f in these cases is in�nite.
Hence, f being integrable is a stronger property than the existence of the integral

of f . This might make the terminology slightly confusing at �rst, but one gets used
to it by time.

De�nition 2.117. Let f : (X , A)→ C be a complex measurable function. We say
that f is integrable with respect to a measure µ on A, if both Re f and Im f are
integrable, and de�ne the µ-integral of f as∫

f dµ :=

∫
Re f dµ+ i

∫
Im f dµ.

De�nition 2.118. If in De�nitions 2.115 or 2.117 (X ,A, µ) = (A,B(A), λ) for some
Borel measurable set A ⊆ Rd then we call the corresponding integral of a function
f its Lebesgue integral.

Exercise 2.119. Let f, g be extended real-valued or complex-valued functions on a
measurable space (X ,A), and µ be a measure on A. Show that

f = g µ-a.e. =⇒
[
f is integrable ⇐⇒ g is integrable

]
,

and if both are integrable then
∫
f dµ =

∫
g dµ.

Exercise 2.120. Let f be an extended real-valued or complex-valued measurable
function on a measure space (X ,A, µ).

(i) Show that if the integral of f exists then∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ =: ‖f‖1 .

(ii) Show that

f is integrable ⇐⇒ ‖f‖1 =

∫
|f | dµ < +∞.

(iii) Show that if f is extended real-valued and it is integrable then it is �nite µ-a.e.

(iv) Show that f = 0 µ-a.e. ⇐⇒ ‖f‖1 = 0.
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Remark 2.121. The integral of the absolute value of a function is called its 1-norm;
we will discuss this quantity in much more detail later.

Exercise 2.122. Let f, g be measurable K-valued functions on a measure space
(X ,A, µ), and c ∈ K. Show that

‖cf‖1 = |c| ‖f‖1 , ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1

(This means that ‖.‖1 is a semi-norm; see Section ??.)

Exercise 2.123. Show that if f1, f2 : (X ,A) → K are µ-integrable then so is
c1f1 + c2f2 for any c1, c2 ∈ K, and∫

(c1f1 + c2f2) = c1

∫
f1 dµ+ c2

∫
f2 dµ.

The �ndings of Exercises 2.122 and 2.123 can be summarized as follows:

Corollary 2.124. The integrable K-valued functions on a measure space form a
vector space on which the integral is a linear functional, and the 1-norm is a semi-
norm.

Exercise 2.125. Show that (2.18) holds for any measurable real-valued function
f : (Ω,F)→ R that is integrable w.r.t. %.
(Hint: Use approximation by simple measurable functions.)

Exercise 2.126. Let (Xi,Ai, µi), i ∈ [n], be measure spaces, and µ be a measure
on ⊗ni=1Ai that factorizes to the product of the µi (see De�nition 2.60). Show that
if fi ∈ KXi , i ∈ [n], are integrable then so is ⊗ni=1fi, and∫

×ni=1Xi
(⊗ni=1fi) dµ =

n∏
i=1

∫
Xi
fi dµi.

Conclude that for any integrable Borel measurable functions fi ∈ KR
di , i ∈ N,∫

Rd1+...+dn

(⊗ni=1fi) dλ =
n∏
i=1

∫
Rdi

fi dλ.

(Hint: Consider simple functions �rst.)

We close this section with the following convergence theorem for integrals, which
we will use extensively in the discussion of quantum observables. Its proof follows
easily from the monotone convergence theorem; see Section 2.3 in [?].
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Theorem 2.127. (Dominated convergence theorem)

Let (X ,A, µ) be a measure space and fn : (X ,A) → C, n ∈ N, be a sequence of
measurable functions that is pointwise convergent, and has an integrable dominating
function g, i.e.,

∃ lim
n→+∞

fn(x), x ∈ X , and |fn(x)| ≤ g(x), x ∈ X , n ∈ N,

where g : (X ,A)→ C is measurable and
∫
X |g(x)| dµ(x) < +∞. Then

∃ lim
n→+∞

∫
fn(x) dµ(x) =

∫ (
lim

n→+∞
fn(x)

)
dµ(x).

The most important applications of the dominated convergence theorem that we
will use are the continuity and di�erentiability of parametric integrals:

Theorem 2.128. Let (X ,A, µ) be a measure space, and f : X × [a, b]→ C be such
that for all t ∈ [a, b], f(., t) : (X ,A) → C is measurable, and

∫
X |f(x, t)| dµ(x) <

+∞.

(i) Assume that there exists an integrable function g : (X ,A)→ R+,
∫
X |g(x)| dµ(x) <

+∞, such that

sup
t∈[a,b]

|f(x, t)| ≤ g(x), x ∈ X , and ∃ lim
t→t0

f(x, t), x ∈ X .

Then

∃ lim
t→t0

∫
X
f(x, t) dµ(x) =

∫
X

(
lim
t→t0

f(x, t)

)
dµ(x). (2.24)

In particular, if f(x, .) is continuous at t0 for every x ∈ X , then so is
∫
X f(x, .) dµ(x).

(ii) Assume that

∃ ∂2f(x, t), x ∈ X , t ∈ (a, b), and sup
t∈(a,b)

|∂2f(x, t)| ≤ g(x), x ∈ X ,

for some measurable function g with
∫
X g(x) dµ(x) < +∞. Then

∃ ∂2

∫
X
f(x, t) dµ(x) =

∫
X
∂2f(x, t) dµ(x), t ∈ (a, b).
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Proof. (i) Let (tn)n∈N ⊆ [a, b] be such that limn→+∞ tn = t0, and fn(x) := f(x, tn).
By assumption, |fn(x)| ≤ g(x), x ∈ X , n ∈ N, and hence we can apply the
dominated convergence theorem, which yields

∃ lim
n→+∞

∫
X
fn(x) dµ(x) =

∫ (
lim

n→+∞
fn(x)

)
dµ(x)

=

∫ (
lim

n→+∞
f(x, tn)

)
dµ(x)

=

∫
X

(
lim
t→t0

f(x, t)

)
dµ(x).

Since this holds for any sequence (tn)n∈N converging to t0, the limit of the
integrals on the LHS in (2.24) exists, and the equality in (2.24) holds.

(ii) Consider a t0 ∈ (a, b), and a sequence (tn)n∈N ⊆ (a, b) \ {t0} converging to t0.
De�ne

hn(x) :=
f(x, tn)− f(x, t0)

tn − t0
, x ∈ X , n ∈ N.

Then hn is measurable, and

|hn(x)| ≤ sup
t∈(a,b)

|∂2f(x, t)| ≤ g(x), x ∈ X , n ∈ N,

where the �rst inequality is due to the mean value theorem, and the second
inequality is by assumption. Hence, we can apply the dominated convergence
theorem to the sequence (hn)n∈N to obtain

∃ lim
n→+∞

∫
X
hn(x) dµ(x) =

∫
X

(
lim

n→+∞
hn(x)

)
dµ(x) =

∫
X
∂2f(x, t0) dµ(x).

Note that the �rst limit above is equal to

lim
n→+∞

∫
X

f(x, tn)− f(x, t0)

tn − t0
dµ(x)

= lim
n→+∞

1

tn − t0

(∫
X
f(x, tn) dµ(x)−

∫
X
f(x, t0) dµ(x)

)
= ∂2

(∫
X
f(x, t) dµ(x)

) ∣∣∣∣∣
t=t0

.

Since this is true for any sequence (tn)n∈N as above, the assertion follows.
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3 Measure theory proper

3.1 Set systems

For a set X , we denote by P(X ) := {H ⊆ X} the power set of X , which is the
collection of all subsets of X . A set system A on X is simply a subset of P(X ); for
convenience, we include in the de�nition that it contains the empty set ∅. We have
already encountered various important classes of subsystems: σ-rings, σ-algebras,
and semi-rings in Section 2.2, and topologies in Section 1. For completeness, we
collect their de�nitions below, together with that of a few further classes of set
systems.

De�nition 3.1. Let X 6= ∅ be a non-empty set, and A ⊆ P(X ), We say that A is a

(i) semi-ring, if

• A,B ∈ A =⇒ A ∩B ∈ A, (closed under �nite intersection)

• for all A,B ∈ A, there exist �nitely many pairwise disjoint sets Ai ∈ A,
i = 1, . . . , r, such that A \B = ·∪ri=1Ai;

(ii) ring, if

• A,B ∈ A =⇒ A \B ∈ A (closed under set di�erence)

• A,B ∈ A =⇒ A ∪B ∈ A; (closed under �nite union)

(iii) σ-ring, if

• A,B ∈ A =⇒ A \B ∈ A (closed under set di�erence)

• {Ai}i∈I ⊆ A, I countable =⇒ ∪i∈IAi ∈ A; (closed under countable
union)

(iv) σ-algebra, if it is a σ-ring and X ∈ A, which is equivalent to

• X ∈ A,
• A ∈ A =⇒ X \ A ∈ A (closed under complement)

• {Ai}i∈I ⊆ A, I countable =⇒ ∪i∈IAi ∈ A; (closed under countable
union)

(v) topology, if

• ∅,X ∈ A,
• {Gi}i∈I ⊆ A =⇒ ∪i∈IGi ∈ A, where I can be any index set,
(closedness under arbitrary union)
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• {Gi}i∈I ⊆ A =⇒ ∩i∈IGi ∈ A if I is �nite.
(closedness under �nite intersection)

The �rst four classes are naturally related to measure theory, while the concept
of topology is á priori somewhat disjoint. However, we will often be interested in σ-
algebras that are generated by a topology, e.g., the Borel σ-algebra on a topological
space, and will study the interrelation of measures and the topology.

Remark 3.2. Note that we only required in the de�nition that a semi-ring contains
the union of two of its elements, but it is easy to see (by induction) that this implies
that it contains the union of any �nite collection of its elements. Likewise, a ring
contains the union of an arbitrary �nite collection of its elements.

Note also that the identity A∩B = A\ (A\B) implies that a ring is closed under
fnite intersections, and a semi-ring is closed under countable intersections.

It is easy to see that for any A ⊆ P(X ), we have the implications

A semi-ring =⇒ ring =⇒ σ-ring =⇒ σ-algebra.

The implications are not true in general in the converse direction, as the following
examples show.

Example 3.3. Let Box(Rd) := {×di=1[ai, bi) : ai, bi ∈ R, i ∈ [r]} be the set of boxes
in Rd. Then Box(Rd) is a semi-ring, as we will show in ..... It is trivial to verify that
Box(Rd) is not a ring.

On the other hand, for any semi-ring S, the generated ring is

{∪i=1Si : Si ∈ S, i ∈ [r], r ∈ N} .

In particular, the collection of unions of �nitely many boxes

B̃ox(Rd) :=
{
∪i=1Ti : Ti ∈ Box(Rd), i ∈ [r], r ∈ N

}
is a ring, and it is easy to see that it is not a σ-ring (e.g., Rd is the union of countably

many boxes, but not of �nitely many boxes, so B̃ox(Rd) is not closed under countable
union).

Consider now an uncountable set X , and let R := {H ⊆ X : H is countable}.
Then R is a σ-ring, but not a σ-algebra.

Semi-rings play a particularly important role in measure theory, for the following
reasons:

• They have good disjunctization properties; see Section 2.2.
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• They are closed under product, as we will show below. This is not true for any
of the other classes of set systems; in general, the product of σ-algebras need
not have stronger structure than being a semi-ring. This property of semi-rings
is fundamental for the de�nition of product measures; see Section ??.

• The left-closed right-open intervals (as well as the set of all intervals) in R form
a semi-ring; more generally (due to the above closedness property), the boxes
in Rd form a semi-ring.

• According to the Carathédory extension theorem, the semi-ring structure is
su�cient to guarantee that any measure on a semi-ring has an extension to a
measure on the generated σ-algebra; in particular, the volume function on the
boxes extends to a measure (the Lebesgue measure) on the Borel sets of B(Rd).

De�nition 3.4. Let Ai ⊆ P(Xi) for all i ∈ I, where I is an arbitrary index set.
The element-wise product of the Ai is de�ned as

(×)i∈I Ai := {×i∈IAi : Ai ∈ Ai, i ∈ I} .

Example 3.5. Box(Rd) = (×)di=1 T (R), i.e., the set of d-dimensional boxes is the
d-fold product of the set of 1-dimensional boxes (intervals) with itself.

Proposition 3.6. Let Si ⊆ P(Xi), i = 1, . . . , r be a �nite collection of semi-rings.
Then their element-wise product S1 (×) . . . (×)Sr is a semi-ring on X1 × . . .×Xr.

Proof. We prove by induction on r. Let r = 2, and Ai ×Bi ∈ Si, i = 1, 2. Then

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩ A2)× (B1 ∩B2) ∈ S1 (×)S2,

so S1 (×)S2 is closed under intersections. Next, note that

(A1 ×B1) \ (A2 ×B2) = [(A1 \ A2)×B1] ·∪ [(A1 ∩ A2)× (B1 \B2)] .

Since both S1 and S2 are semi-rings, we have decompositions A1 \ A2 = ·∪mi=1Ci,
B1 \B2 = ·∪ni=1Di for some C1, . . . , Cm ∈ S1 and D1, . . . , Dn ∈ S2. Hence,

(A1 ×B1) \ (A2 ×B2) = ( ·∪mi=1Ci ×B1) ·∪
(
·∪nj=1(A1 ∩ A2)×Dj

)
is a decomposition of (A1 ×B1) \ (A2 ×B2) into the disjoint union of �nitely many
elements in S1 (×)S2. Thus, S1 (×)S2 is a semi-ring.

Now assume that the claim of the proposition is true for r = 1, . . . , n, and let
Si ∈ P(Xi) be semi-rings for i = 1, . . . , n+ 1. Then we have the trivial identi�cation
S1 (×) . . . (×)Sn (×)Sn+1 = (S1 (×) . . . (×)Sn) (×)Sn+1. By the induction hypothe-
sis, S̃ := S1 (×) . . . (×)Sn is a semi-ring, and hence, by the above proof, S̃ (×)Sn+1

is a semi-ring, too.
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Exercise 3.7. Show that Box(R) is a semi-ring.

Corollary 3.8. Box(Rd) is a semi-ring.

Proof. We have Box(Rd) = (×)di=1 Box(R), and the assertion follows immediately
from Exercise 3.7 and Proposition 3.6.

The following is trivial to verify:

Proposition 3.9. Let {Ai}i∈I ⊆ P(X ) be a collection of set systems for an arbitrary
index set I, such that for every i ∈ I, Ai is a semi-ring/ring/σ-ring/σ-algebra. Then
∩i∈IAi is also a semi-ring/ring/σ-ring/σ-algebra.

As an immediate consequence, we can see that for anyA ⊆ P(X ), there is a small-
est semi-ring/ring/σ-ring/σ-algebra containing A, that we call the semi-ring/ring/σ-
ring/σ-algebra generated by A.

De�nition 3.10. Let A ⊆ X . We will use the notations

σ(A) := ∩{C ⊆ P(X ) : A ⊆ C, C is a σ-algebra}

for the σ-algebra generated by A.

For a non-empty set X , let Σ(X ) denote the set of all σ-algebras on X , i.e.,

Σ(X ) := {A ⊆ P(X ) : A is a σ-algebra} .

There is a natural partial order on Σ(X ), given by the set-theoretic inclusion. For
any collection {Ai}i∈I ⊆ Σ(X ),

∧i∈IAi := ∩i∈IAi
∨i∈IAi := σ (∪i∈IAi)

are the largest lower bound and the smallest upper bound of {Ai}i∈I , respectively.
This shows that Σ(X ) is a complete lattice. Moreover, Σ(X ) has a smallest element
{∅,X}, and largest element P(X ).

De�nition 3.11. Let (X ,A) and (Y ,B) be measurable spaces. We say that a map
f : X → Y is A → B measurable, if for every measurable set in (Y ,B), its inverse
image under f is measurable in (X ,A), i.e.,

∀B ∈ B : f−1(B) := {x ∈ X : f(x) ∈ B} ∈ A.

We will also use the terminology �f : (X ,A) → (Y ,B) is measurable�. When we
consider A and B �xed, we will simply call such an f measurable.

49



Example 3.12. • Let X be equipped with the largest possible σ-algebra, A :=
P(X ). Then for any (Y ,B), any map f : X → Y is measurable. That is, any
map is P(X )→ B measurable, irrespective of what B is.

• Similarly, if Y is equipped with the smallest possible σ-algebra B = {∅,X}
then for any (X ,A), any map f : X → Y is measurable. That is, any map is
A → {∅,Y} measurable, irrespective of what A is.

• Let X be equipped with the smallest possible σ-algebra, A := {∅,X}. Then
only the constant maps will be measurable for any (Y ,B). That is, only the
constant maps are {∅,X} → B measurable, irrespective of what B is.

• Let f : X → Y be A → B measurable. If we replace A with a larger σ-algebra
A′ ⊇ A, and B with a smaller σ-algebra B′ ⊆ B, then f will also be A′ → B′
measurable.

Example 3.13. Consider the constructions in Section ??.

• Let (X ,A) and (Y ,B) be measurable spaces, and f : X → Y be A → B
measurable. Then for any E ∈ A, f

∣∣
E
is A

∣∣
E
→ B measurable.

• Let {(Xi,Ai)}i∈I be disjoint measurable spaces, and fi : Xi → Yi be maps for
all i ∈ I. Then

f : ·∪i∈IXi → Y , f(x) := fi(x) if x ∈ Xi,

is ·∪i∈IAi → B measurable if and only if fi is Ai → B measurable for all i ∈ I.

• Let (X ,A) be a measurable space, and F ⊆ YX be a family of functions from

X to Y . Then the push-forward σ-algebra
→
F(A) is the largest σ-algebra B on

Y such that all f ∈ F is A → B measurable.

• Let (Y ,B) be a measurable space, and F ⊆ YX be a family of functions from

X to Y . Then the pull-back σ-algebra
←
F(A) is the smallest σ-algebra A on X

such that all f ∈ F is A → B measurable.

• Let {(Xi,Ai)}i∈I be an arbitrary collection of measurable spaces. Then ⊗cyl
i∈IAi

is the smallest σ-algebra B such that all coordinate functions

πi : ×i∈IXi → Xi, πi(x) := xi, x ∈ ×i∈IXi,

are B → Ai measurable.
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The last example above shows that the cylinder product is in some sense more
natural than the full product of the σ- algebras (note again that for a countable
index set the two coincide).
1. Restriction of a measurable space

Let (X ,A) be a measurable space, and E ∈ A. Then

A
∣∣
E

:= {A ∩ E : A ∈ A}

is a σ-algebra on E , that we call the restriction of A onto E. We call the measurable
space (X ,A)

∣∣
E

:= (EA
∣∣
E

) the restriction of (X ,A) onto E.

2. Disjoint union of measurable spaces

Let {(Xi,Ai)}i∈I be an arbitrary collection of measurable spaces, where the Xi
are pairwise disjoint. Then

·∪i∈IAi := { ·∪i∈IAi : Ai ∈ Ai, i ∈ I}

is a σ-algebra on ·∪i∈IXi, that we call the disjoint union of of the σ-algebras {Ai}i∈I .
The measurable space ·∪i∈I (Xi,Ai) := ( ·∪i∈IXi, ·∪i∈IAi) is called the disjoint union
of the measurable spaces {(Xi,Ai)}i∈I .

3. Push-forward of a σ-algebra by a function family

Let (X ,A) be a measurable space, and F := {fi : X → Y} be a collection of
functions from X to Y . Then

→
F(A) :=

{
B ⊆ Y : f−1

i (B) ∈ A, i ∈ I
}

= ∩i∈I
{
B ⊆ Y : f−1

i (B) ∈ A
}

is a σ-algebra in Y , that we call the push-forward of the σ-algebra A by the function
family F .

4. Pull-back of a σ-algebra by a function family

Let X be a set, (Y ,B) be a measurable space, and F := {fi : X → Y} be a
collection of functions from X to Y . Then

←
F(A) := σ

({
f−1
i (B) : B ∈ B, i ∈ I

})
= σ

(
∪i∈I

{
f−1
i (B) : B ∈ B

})
is a σ-algebra in X , that we call the pull-back of the σ-algebra B by the function
family F .

Before the next construction, we introduce the following notation: If Ai ⊆ P(Xi)
for all i ∈ I, where I is an arbitrary index set, then

(×)i∈I Ai := {×i∈IAi : Ai ∈ Ai, i ∈ I} .
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5. The product of measurable spaces

Let {(Xi,Ai)}i∈I be an arbitrary collection of measurable spaces. A product set
×i∈IAi, where all Ai ∈ Ai are measurable, is called a measurable box. The σ-algebra
generated by all measurable boxes is the product σ-algebra

⊗i∈IAi := σ
(
(×)i∈I Ai

)
= σ ({×i∈IAi : Ai ∈ Ai, i ∈ I}) .

We de�ne the product ⊗i∈I(Xi,Ai) of the measurable spaces {(Xi,Ai)}i∈I as ×i∈IXi
equipped with the product σ-algebra, i.e.,

⊗i∈I(Xi,Ai) := (×i∈IXi,⊗i∈IAi) .

6. The cylinder product of measurable spaces

Let {(Xi,Ai)}i∈I be an arbitrary collection of measurable spaces.

De�nition 3.14. Let Ai1 ∈ Ai1 , . . . , Aim ∈ Aim be a �nite collection of measurable
sets for some i1, . . . , im ∈ I. The cylinder set (Ai1 , . . . , Aim)cyl is de�ned as

(Ai1 , . . . , Aim)cyl :=
{
x ∈ ×i∈IXi : xij ∈ Aij , j ∈ [m]

}
.

The σ-algebra generated by all cylinder sets is the cylinder product σ-algebra

⊗cyl
i∈IAi = σ

({
(Ai1 , . . . , Aim)cyl : Aij ∈ Aij , j ∈ [m], {i1, . . . , im} ⊆ I, m ∈ N

})
.

We de�ne the cylinder product ⊗cyl
i∈I(Xi,Ai) of the measurable spaces {(Xi,Ai)}i∈I

as ×i∈IXi equipped with the cylinder product σ-algebra, i.e.,

⊗cyl
i∈I(Xi,Ai) :=

(
×i∈IXi,⊗cyl

i∈IAi
)
.

Exercise 3.15. (i) Show that the collection of the cylinder sets forms a semi-ring.

(ii) Show that when I is countable, the two notions of product coincide, i.e.,

⊗i∈IAi = ⊗cyl
i∈IAi.

In particular, the cylinder sets generate the product σ-algebra.
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3.2 The Borel σ-algebra

Example 3.16. What are the di�erences between the de�nitions of a σ-algebra and
a topology? Show an example of a set X and some A ⊆ P(X ) that is a σ-algebra but
not a topology. Show an example of a topology τ ⊆ P(X ) that is not a σ-algebra.

The following notion is crucial in the study of the connection of topology and
measure theory.

De�nition 3.17. Let (X, τX ) be a topological space, where τX denotes the set of
open sets in X . The Borel σ-algebra B(X ) on X is the σ-algebra generated by the
collection of open sets in X , i.e., B(X ) := σ(τX ).

Note that this depends on the topology on X , and di�erent topologies might lead
to di�erent Borel σ-algebras. In general, we will have one topology on X �xed, and
we suppress the dependence of the Borel σ-algebra on the topology in the notation
B(X ). If we want to make this dependence explicit, we will use the notation B(X , τ).

Example 3.18. It is easy to see that B(Rd) = σ(Box(Rd)), i.e., the set of boxes
generate the same σ-algebra as the set of all open sets. Moreover, by lemma ??,

B(Rd) = σ(Box(Rd)) = σr(Box(Rd)).

Assume now that, instead of the Euclidean topology, we equip Rd with the
discrete topology (generated by the discrete metric d(x, y) := 1 ∀x 6= y). Then
B(Rd, τdisc) = P(Rd), that is strictly larger than the Borel σ-algebra corresponding
to the Euclidean topology.

Our aim in the rest of this section is to explore the relation between the notion
of product for topological spaces and for σ-algebras. More precisely, we will show
that for a �nite collection of separable topological spaces, the Borel σ-algebra of
the product space is exactly the product of the Borel σ-algebras of the components.
In particular, the Borel σ-algebra of Rd is the product of the Borel σ-algebras of d
copies of R.

To explore the connection between the notion of product for topological and for
measure spaces, it will be useful to de�ne the product of σ-rings, analogously to the
product of σ-algebras.

For a collection {(Xi,Ri)}i∈I of σ-rings, we de�ne their product σ-ring ⊗(r)
i∈IAi

as

⊗(r)
i∈IAi := σr

(
(×)i∈IRi

)
= σr ({×i∈IAi : Ai ∈ Ri, i ∈ I}) .
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Lemma 3.19. Let Γi be a set system in Xi for i = 1, . . . , n. Then

σr(Γ1)⊗(r) . . .⊗(r) σr(Γn) = σr (σr(Γ1) (×) . . . (×)σr(Γn)) (3.25)

= σr (Γ1 (×) . . . (×) Γn) . (3.26)

Proof. The �rst equality is by de�nition, and the inclusion σr (σr(Γ1) (×) . . . (×)σr(Γn))
⊇ σr (Γ1 (×) . . . (×) Γn) is trivial, hence we only have to prove the converse inclusion

σr (σr(Γ1) (×) . . . (×)σr(Γn)) ⊆ σr (Γ1 (×) . . . (×) Γn) . (3.27)

We do this by induction on n.
Let n = 2. For a �xed B ∈ Γ2, let

{A ⊆ X1 : A×B ∈ σr (Γ1(×)Γ2)} . (3.28)

Since (∪j∈JAj)×B = ∪j∈J (Aj ×B), and (A1 \A2)×B = (A1 ×B) \ (A2 ×B), we
see that the set system in (7.188) is a σ-ring. Since it contains Γ1, we get

σr(Γ1) (×){B} ⊆ σr (Γ1(×)Γ2) .

Since this holds for every B ∈ Γ2, we can further conclude that

σr(Γ1) (×) Γ2 ⊆ σr (Γ1(×)Γ2) . (3.29)

As above, we can see that

{B ⊆ X2 : A×B ∈ σr (Γ1(×)Γ2) for all A ∈ σr(Γ1)}

=
⋂

A∈σr(Γ1)

{B ⊆ X2 : A×B ∈ σr (Γ1(×)Γ2)}

is a σ-ring. By (3.29) it contains Γ2, and hence

σr(Γ1) (×)σr(Γ2) ⊆ σr (Γ1(×)Γ2) ,

from which (3.25) follows.
Assume that we have proved the assertion for all n = 1, . . . ,m, and let n = m+1.

Then

σr (Γ1 (×) . . . (×) Γm (×) Γm+1)

⊇ σr (σr (Γ1 (×) . . . (×) Γm) (×)σr(Γm+1))

⊇ σr (σr (σr(Γ1) (×) . . . (×)σr(Γm)) (×)σr(Γm+1))

⊇ σr (σr(Γ1) (×) . . . (×)σr(Γm) (×)σr(Γm+1)) ,

where the �rst inclusion follows by applying (3.27) with n = 2, the second by applying
(3.27) with n = m, and the last inclusion is trivial.
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Corollary 3.20. Let Γi be a set system in Xi for i = 1, . . . , n. Assume that for all
i, there exists a countable family {Ai,j}j∈J ⊆ Γi such that ∪j∈JAi,j = Xi. Then

σ(Γ1)⊗ . . .⊗ σ(Γn) = σ (Γ1 (×) . . . (×) Γn) .

Proof. Immediate from Lemma ?? and Lemma 3.19.

Corollary 3.21. Let {(Xi, di)}i∈I be a �nite collection of separable metric spaces.
Then

B (⊗i∈I(Xi, di)) = ⊗i∈IB (Xi, di) .

Proof. Due to the assumption of separability, every open set in ⊗i∈Iτdi is a countable
union of open boxes, and therefore

B (⊗i∈I(Xi, di)) := σ (⊗i∈Iτdi) = σ
(
(×)i∈I τdi

)
(see Exercise 1.8). The assumption of Corollary 3.20 is trivially satis�ed (as Xi ∈ τdi),
and therefore we have

σ
(
(×)i∈I τdi

)
= ⊗i∈Iσ (τdi) = ⊗i∈IB (Xi, di) .

As a special case, we get

Corollary 3.22. For every d ∈ N, B(Kd) = ⊗di=1B(K). More generally, for any
d1, . . . , dr ∈ N,

B
(
Kd1+...+dr

)
= ⊗ri=1B(Kdi).

Proof. Immediate from Corollary 3.21 and Exercise 1.8.

3.3 Measurable maps

The continuity of a map between topological spaces is de�ned analogously to the
notion of measurability:

De�nition 3.23. Let (X , τX ) and (Y , τY) be topological spaces and f : X → Y be
a map. We say that f is continuous, if the inverse image of any open set in Y is an
open set in X , i.e.,

∀G ∈ τY : f−1(G) ∈ τX .
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Exercise 3.24. Show that when (X , dX ) and (Y , dY) are metric spaces then f :
X → Y is continuous in the above sense if and only if

∀x ∈ X ∀ε > 0 ∃δ > 0 : d(x, y) < δ =⇒ d(f(x), f(y)) < ε,

the usual description of continuity in metric spaces.

Exercise 3.25. Show that the product topology is the smallest topolgy on ×i∈IXi
such that all the coordinate functions

πi : ×i∈IXi → Xi, πi(x) := xi, x ∈ ×i∈IXi

are continuous.

Remark 3.26. When a function f is de�ned on a measurable space (X ,A) and maps
into a topological space (Y , τ) then, unless otherwise speci�ed, by its measurability
we mean its A → B(Y) measurability, where B(Y) is the Borel σ- algebra on Y .

This applies to functions mapping into K = R or C and, more generally, to
functions mapping into normed vector spaces over K.

Similarly, for functions taking extended real values, i.e., mapping into R = R ∪
{−∞,+∞}, measurability means measurability when R is equipped with its Borel
σ-algebra, generated by all sets {(−∞, c) : c ∈ R}.

Exercise 3.27. Let (X , τX ) and (Y , τY) be topological spaces. Show that if f : X →
Y is continuous then it is B(X )→ B(Y) measurable.

Next, we explore various operations that preserve measurability.

Proposition 3.28. The composition of measurable functions is measurable, i.e., if
f : (X ,A)→ (Y ,B) and g : (Y ,B)→ (Z, C) are measurable then g ◦ f : (X ,A)→
(Z, C) is also measurable.

Proof. Trivial.

We will often use the following lemma, without extra notice.

Lemma 3.29. Let (X ,A) and (Y ,B) be measurable spaces, and let Γ ⊆ P(Y) be a
generator system for B, i.e., σ(Γ) = B. Then a function f : X → Y is measurable if
and only if f−1(B) ∈ A for all A ∈ Γ.

Proof. Obviously, measurability of f implies that f−1(B) ∈ A for any B ∈ Γ. To
prove the converse, note that {B ⊆ Y : f−1(B) ∈ A} is a σ-algebra. By assumption,
this contains Γ, and hence it contains B, too, proving the measurability of f .
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Example 3.30. • A function f : X ,→ R is measurable if and only if {f >
c} ∈ A for all c ∈ R, if and only if {f ≥ c} ∈ A for all c ∈ R, if and only if
{f < c} ∈ A for all c ∈ R, if and only if {f ≤ c} ∈ A for all c ∈ R.

• Let (X ,A) be a measurable space and (Y , d) be a metric space. Then f : X →
Y is measurable if and only if f−1 (B(y, 1/m)) ∈ A for all y ∈ Y and m ∈ N,
where B(y, ε) := {z ∈ Y : d(z, y) < ε} for all y ∈ Y , ε > 0.

Lemma 3.31. Let {(Yi,Bi)}∈I be an arbitrary collection of measurable spaces,
and (X ,A) be a measurable space. A function f : X → ×ri=1Yi is A → ⊗

cyl
i∈IBi

measurable if and only if all of its coordinates fi := πi ◦ f are measurable.

Proof. Since all projections πi are ⊗cyl
i∈IBi → Bi measurable, measurability of f

implies the measurability of all fi. Conversely, if all fi are measurable then for all
�nite collection Bij ∈ Bij , j = 1, . . . ,m, f−1((Bi1 , . . . , Bim)cyl) = ∩mj=1f

−1
ij

(Bij) ∈
A. Since the cylinder sets generate the cylinder product σ-algebra on ×ri=1Yi by
de�nition, measurability of f follows by Lemma 3.29.

The following corollary is immediate:

Corollary 3.32. Let fi : (X ,A) → (Y ,Bi) be measurable functions for all i,
where {(Yi,Bi)}i∈I is an arbitrary collection of measurable spaces. Then f(x) :=
(fi(x))i∈I ∈ ×i∈IXi, x ∈ X is measurable.

Corollary 3.33. Let (X ,A) be a measurable space, and f(x) := (f1(x), . . . , fd(x)) ∈
Kd, x ∈ X , be a function. Then the following are equivalent:

(i) f is measurable

(ii) for all linear functionals ϕ ∈ K∗, ϕ ◦ f : (X ,A)→ (K,B(K)) is measurable,

(iii) for all i ∈ [d], fi is measurable.

Proof. (i)=⇒(ii) due to 3.27, as ϕ is continuous. (ii)=⇒(iii) is trivial, as taking the
i-th coordinate is a linear functional on Kd. Finally, (iii)=⇒(i) follows by Lemma
3.31 and Corollary 3.22.

Lemma 3.34. Let {(Yi, di)}ri=1 be a �nite collection of separable metric spaces, let
(Z, τZ) be an arbitrary topological space, and Φ : ×ri=1Yi → Z be a continuous map.
Then for any measurable space (X ,A), and measurable functions fi : X → Yi, the
function x 7→ Φ(f1(x), . . . , fn(x)) is measurable.

Proof.
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De�nition 3.35. We say that a map f : X → Y is simple if its range {f(x) : x ∈ X}
is �nite. Obviously, a function f is simple if and only if there exists a �nite partition
X = ·∪ri=1Ai such that f is constant on every Ai.

Assume that X and Y are equipped with σ-algebras A and B. Then we say that
f : X → Y is a measurable simple function or a simple measurable function if it
is simple and measurable. This is equivalent to the existence of a �nite partition
X = ·∪ri=1Ai such that f is constant on all Ai, and all Ai are measurable. We denote
the set of measurable simple functions from (X , A) to (Y , B) by E(X ,A,Y ,B). When
Y is a topological space and B is its Borel σ-algebra, we use the shorter notation
E(X ,A,Y).

When Y is a vector space, or Y = R, we can write every simple function as

f =
r∑
i=1

ci1Ai ,

where every ck ∈ Y , X = ·∪ri=1Ai, and f is measurable if and only if it can be written
in the above form with all Ai measurable.

As it turns out, any measurable function mapping into a separable metric space
can be well approximated by simple measurable functions. We start with the follow-
ing lemma, important on its own right.

Lemma 3.36. Let fn : (X , A) → (Y , d) be functions mapping from a measur-
able space (X , A) to a separable metric space (Y , d) such that (fn)n∈N is pointwise
convergent. If all fn are measurable then so is limn fn.

Proof. Let f := limn fn. The following is easy to see: For any open set U ∈ τY , and
any x ∈ X ,

f(x) ∈ U ⇐⇒ ∃m ∈ N s.t. for all large enough n, d(fn(x),Y \ U) > 1/m.

This can be rewritten as

f−1(U) = ∪m∈N ∪N∈N ∩+∞
n=Nf

−1
n ({y ∈ Y : d(y,Y \ U) > 1/m}) . (3.30)

Note that {y ∈ Y : d(y,Y \U) > 1/m} is an open set for every m ∈ N, and hence if
all fn are measurable then f−1

n ({y ∈ Y : d(y,Y \ U) > 1/m}) is measurable for all
n and m. Thus, by (3.30), f−1(U) is measurable as well.

Lemma 3.37. (Approximation lemma) Let f be a function mapping from a mea-
surable space (X ,A) into a separable metric space (Y , d). Then f is measurable
if and only if there exists a sequence (fn)n∈N if simple measurable functions that
pointwise converges to f .

Moreover, if Y is a separable normed space, then we can choose the sequence
(fn)n∈N such that ‖fn(x)‖ ≤ ‖f(x)‖ at all x ∈ X , and if y = R then we can further
assume that fn ≤ fn+1 ≤ f for all n ∈ N.
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Proof. By the separability assumption, we can �nd countably many open sets {Bn}n∈N
⊆ τY such that for any y ∈ Y and any U ∈ τY containing Y , there exists a Bn such
that y ∈ Bn ⊆ U . (For instance, the collection of open balls with rational radius
around points of a countable dense set will do.)

For every n ∈ N, let yn be a point in the closure of Bn. Let f1 ≡ y1, and for
every n ≥ 2, de�ne fn recursively as

fn(x) :=

{
yn, if f(x) ∈ Bn, and d(f(x), yn) < d(f(x), fn−1(x)),

fn−1(x), otherwise.

Obviously, all fn are simple functions, as | ran fn| ≤ n. Moreover, f1 is measur-
able, and if fn−1 is measurable then so is fn. Indeed, the value of fn can only
change, as compared to the value of fn−1, to become the constant yn on the set
f−1 (Bn ∩ {y ∈ Y : d(y, yn) < d})

3.4 Set functions

Next, we explore the properties of the volume function on the set of boxes. Again,
we follow a more general approach, where we introduce various notions for later
purposes.

De�nition 3.38. Let A be a set system in some set X . A set function on A is a
function α : A → [0,+∞] such that α(∅) = 0.

It is clear again that the volume function Vold on the set of d-dimensional boxes
is a set function.

De�nition 3.39. Let α be a set function on a set system A. We say that α is

• monotone, if A,B ∈ A, A ⊆ B =⇒ α(A) ≤ α(B).

• �nitely superadditive/σ-superadditive, if for anyA ∈ A, and any �nite/countable
collection {Ai}i∈I ⊆ A of pairwise disjoint sets,

·∪i∈IAi ⊆ A =⇒
∑
i∈I

α(Ai) ≤ α(A). (3.31)

• �nitely subadditive/σ-subadditive if for any A ∈ A, and any �nite/countable
collection {Ai}i∈I ⊆ A such that

A ⊆ ∪i∈IAi, we have α(A) ≤
∑
i∈I

α(Ai).
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• �nitely additive/σ-additive if for every �nite/countable family {Ai}i∈I ⊆ A of
pairwise disjoint sets such that ·∪i∈IAi ∈ A, we have

α ( ·∪i∈IAi) =
∑
i∈I

α(Ai).

A σ-additive set function on A is called a measure on A.

Remark 3.40. Note that ∪i∈IAi is not required to be an element of A in any of
the above de�nitions. In particular, we only require additivity/σ-additivity of α on
a disjoint union when the union itself is again an element of A.

Exercise 3.41. Show that a set function α is �nitely superadditive if and only if it
is σ-superadditive, and either property implies monotonicity.

Remark 3.42. Note that in the de�nitions of subadditivity, we do not require the
Ai to be pairwise disjoint.

According to the following proposition, a set function on a semi-ring that is
�nitely additive and σ-subadditive is also σ-additive, i.e., a measure. This is an
important observation, as the �rst two properties are in general easier to verify than
σ-additivity.

Proposition 3.43. A �nitely additive set function on a semi-ring is monotone, σ-
superadditive and �nitely subadditive. Moreover, it is σ-subadditive if and only if it
is σ-additive.

Proof. Let S be a semi-ring and α : S → [0,+∞] be additive. Let A,A1, . . . , Ar ∈ S
such that the Ai are pairwise disjoint and ·∪ri=1Ai ⊆ A. By Exercise 2.27, we have
A \ ( ·∪ri=1Ai) = ·∪mj=1Bj, with all Bj ∈ S. Thus, A = ( ·∪ri=1Ai) ·∪

(
·∪mj=1Bj

)
, and by

the additivity of α,

α(A) =
r∑
i=1

α(Ai) +
m∑
j=1

α(Bj) ≥
r∑
i=1

α(Ai).

Thus, α is �nitely superadditive, and therefore also σ-superadditive and monotone.
Assume now that A,A1, . . . , Ar ∈ S are such that A ⊆ ∪ri=1Ai. Let A

′
i := A∩Ai,

so that A′i ∈ S and A = ∪ri=1A
′
i. By Exercise 2.27, Ã′i := A′i \

(
∪r−1
j=1A

′
j

)
= ·∪mij=1Bi,j,

where the Bi,j are pairwise disjoint elements of S. Then A = ·∪ri=1 ·∪
mi
j=1 Bi,j, and

α(A) =
r∑
i=1

mi∑
j=1

α(Bi,j) ≤
r∑
i=1

α(A′i) ≤
r∑
i=1

α(Ai),
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where the �rst inequality is due to �nite superadditivity applied to ·∪mij=1Bi,j ⊆ A′i,
and the second one is due to monotonicity applied to A′i ⊆ Ai.

If α is σ-subadditive and A 3 A = ·∪i∈IAi for some countable family {Ai}i∈I ⊆ A
then we have α(A) ≤

∑
i∈I α(Ai), and the converse inequality also holds due to the

previously established σ-superadditivity. Thus, α is σ-additive.
Conversely, assume that α is σ-additive, and let A 3 A = ·∪i∈IAi for some

countable family {Ai}i∈I ⊆ A. We can assume without loss of generality that I = N ,
and by Exercise 2.27, we have An \

(
∪n−1
i=1 Ai

)
= ·∪j∈JnBn,j for some �nite collection

{Bn,j}j∈Jn ⊆ A for every n ≥ 2. For n = 1 we de�ne J1 := {1}, B1,1 := A1. Thus,
A = ·∪n∈N ·∪j∈Jn(A∩Bj,n), and α(A) =

∑
n∈N

∑
j∈Jn α(A∩Bj,n) ≤

∑
n∈N α(An), where

the equality is due to σ-additivity, and the inequality follows by superadditivity.

Proposition 3.44. The volume function Vol is �nitely additive on Box(Rd).

Proof. Let A,A1, . . . , An ∈
boxx(Rd) be such that A = ∪rk=1Ak, and Ak ∩k 6=j Aj = ∅. For every k, we can
write Ak as Ak = ×di=1[ak,i, bk,i). Let us cut every box Ak into smaller boxes by the
hyperplanes Hi,j := {x ∈ Rd : xi = aj,i} for every i ∈ [d] and j ∈ [r]. This way, we
get new boxes Ak,i,j (some of them may be empty) such that Ak = ·∪i∈[d],j∈[r]Ak,i,j,
and it is easy to see that Vol(Ak) =

∑
i∈[d],j∈[r] Vol(Ak,i,j) for every k ∈ [r], and

Vol(A) =
∑

k∈[r],i∈[d],j∈[r] Vol(Ak,i,j), from which the statement follows.

The idea of the above proof can be used to show that the product of additive set
functions on a semi-ring is again additive.

De�nition 3.45. For every i = 1, . . . , r, let Ai ⊆ P(Xi) be a set system, and
αi : Ai → [0,+∞] be a set function. The product ×ri=1αi : (×)ri=1Ai → [0,+∞] of
these set functions is de�ned as

(×ri=1αi) (A1 × . . .× Ar) := α1(A1) · . . . · αr(Ar), Ai ∈ Ai, i ∈ [r].

Example 3.46. For every d ∈ N, Vold = ×di=1 Vol1, i.e., the volume function Vold on
the d-dimensional boxes Box(Rd) is the d-fold product of the volume function Vol1
(on Box(R)) with itself.

Proposition 3.47. Let αi be a �nitely additive set function on a semi-ring Si ⊆
P(Xi) for every i ∈ [r]. Then ×ri=1αi is �nitely additive on (×)di=1 Si.

Proof. Let A1 × . . .× Ar = ·∪mi=1Ai,1 × . . .× Ai,r, where Ak, Ai,k ∈ Si for all k ∈ [r],
i ∈ [m]. By Exercise 2.28, for every k ∈ [r], there exist {Bj,k}mkj=1 ⊆ Sk such that
∪mi=1Ai,k = ·∪mkj=1Bj,k, and for every k ∈ [r], i ∈ [m], there exists a Ji,k ⊆ [mk] such

61



that Ai,k = ·∪j∈Ji,kBj,k. We can assume without loss of generality that all the above
sets are non-empty, since otherwise the claim is trivial. Then

Ai,1 × . . .× Ai,r = ×rk=1 ·∪j∈Ji,k Bj,k = ·∪j1∈Ji,1 . . . ·∪jr∈Ji,r Bj1,1 × . . .×Bjr,r

from which

(
×dk=1αk

)
(Ai,1 × . . .× Ai,r) =

d∏
k=1

αk
(
·∪j∈Ji,kBj,k

)
=

d∏
k=1

∑
j∈Ji,k

αk (Bj,k)

=
∑
j1∈Ji,1

. . .
∑
jr∈Ji,r

d∏
k=1

αk(Bjk,k). (3.32)

The assumption that the Ai,1 × . . . × Ai,r are disjoint for di�erent i's implies that
the index sequences Ji,1 × . . .× Ji,r are also disjoint for di�erent i's. Hence,

A1 × . . .× Ar = ·∪mi=1 ·∪j1∈Ji,1 . . . ·∪jr∈Ji,r Bj1,1 × . . .×Bjr,r

= ·∪m1
j1=1 . . . ·∪

mr
jr=1 B1,j1 × . . .×Br,jr

=
(
·∪m1
j1=1B1,j1

)
× . . .×

(
·∪mrjr=1Br,jr

)
.

From this,

(×rk=1αi) (A1 × . . .× Ar) =
r∏

k=1

αk
(
·∪Mjk=1Bk,jk

)
=

r∏
k=1

mk∑
jk=1

αi(Bk,jk)

=

m1∑
j1=1

. . .
mr∑
jr=1

α1(B1,j1) · . . . · αr(Br,jr)

=
m∑
i=1

∑
j1∈Ji,1

. . .
∑
jr∈Ji,r

d∏
k=1

αk(Bjk,k). (3.33)

Comparing (3.32) and (3.33), we get the assertion.

Remark 3.48. Combining Example 3.46 and Proposition 3.47 gives an alternative
proof of the additivity of the d-dimensional volume function on boxes, Proposition
3.44.

Proposition 3.49. The volume function Vol is σ-subadditive on Box(Rd).

Proof. Let A ∈ Box(Rd) and {An}n∈N ⊂ Box(Rd) be such that A ⊆ ∪n∈NAn. We
need to show that Vol(A) ≤

∑
n∈N Vol(An). Obviously, if

∑
n∈N Vol(An) = +∞ then

there is nothing to show, and hence for the rest we assume the contrary.
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For every ε > 0, we can �nd Bε ∈ Box(Rd) such that Aε ⊆ A, and

Vol(Aε) ≤ Vol(A) ≤ Vol(Aε) + ε. (3.34)

Moreover, for every n ∈ N, we can �nd An,ε ∈ Box(Rd) such that An ⊂ A◦n,ε, and

Vol(An) ≤ Vol(An,ε) < Vol(An) +
ε

2n
. (3.35)

Then we have Aε ⊆ ∪n∈NA◦n,ε, i.e., the open sets {A◦n,ε}n∈N form an open cover of

the compact set Aε. Thus, there exists a �nite subcover, i.e., n1, . . . , nr ∈ N such
that Aε ⊆ ∪ri=1A

◦
ni,ε
⊆ ∪ri=1Ani,ε. From this we obtain

Vol(A)− ε ≤ Vol(Aε) ≤
r∑
i=1

Vol(Ani,ε) ≤
∑
n∈N

Vol(An,ε) ≤
∑
n∈N

(
Vol(An) +

ε

2n

)
,

where the �rst inequality is due to (3.34), the second inequality is due to the �-
nite subadditivity of the volume function on Box(Rd) (Corollary 3.50), the third
inequality is trivial, and the last inequality is by (3.35). This gives

Vol(A)− ε ≤ ε+
∑
n∈N

Vol(An),

and since this holds for any ε > 0, the assertion follows.

Propositions 3.44, 3.49 and 3.43 yield immediately the following:

Corollary 3.50. The volume function Vol is a measure on the semi-ring Box(Rd)
of d-dimensional boxes.

3.5 Outer measures and the Carathéodory extension

Now, let us continue with our original problem of extending the volume function.
Since it adds no extra di�culty, we will follow an abstract general approach, of
which our original problem will be a special case. Hence, we will consider the general
problem of extending a set function on some set system to a measure on a σ-algebra
that contains the original set system.

Recall the de�nition of the Lebesgue outer measure in De�nition ??. The follow-
ing is a generalization of that concept:

De�nition 3.51. Let S ⊆ P(X ) be a set system, and α : S → [0,+∞] be a set
function (recall that ∅ ∈ S and α(∅) = 0 by de�nition). The outer measure generated
by α is the set function α∗ : P(X )→ [0,+∞] given by

α∗(A) := inf

{∑
n∈N

α(An) : (An)n∈N ⊆ S, n ∈ N, A ⊆ ∪n∈NAn,

}
, A ⊆ X .

(3.36)
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Remark 3.52. Note that the outer measure is de�ned for every subset of the basis
set X .

Example 3.53. The Lebesgue outer measure λ∗ given in De�nition ?? is the outer
measure (in the sense of De�nition 3.51) generated by the volume function λ on
S = Box(Rd).

Exercise 3.54. Let α be an additive set function on a semi-ring S ⊆ P(X ). Then

α∗(A) = inf

{∑
n∈N

α(An) : (An)n∈N ⊆ S, n ∈ N, An ∩n6=m Am = ∅, A ⊆ ·∪n∈NAn,

}
(3.37)

for all A ∈ P(X ), i.e., it is enough to consider disjoint covers in the de�nition of the
outer measure.

Solution: Hidden.

It is easy to see that any outer measure is monotone:

Exercise 3.55. Show that the outer measure α∗ corresponding to some set function
α has the monotonicity property A ⊆ B =⇒ α∗(A) ≤ α∗(B).

The outer measure in general need not be σ-additive or even �nitely additive
on any σ-algebra other than {∅,X}. However, it has the weaker property of σ-
subadditivity:

De�nition 3.56. A set function α is σ-subadditive on a set system S if

A ∈ S, An ∈ S, n ∈ N, A ⊆ ∪n∈NAn =⇒ α(A) ≤
∑
n∈N

α(An).

Proposition 3.57. Let α∗ be the outer measure corresponding to some set function
α on a set system S ⊆ P(X ). Then α∗ is σ-subadditive on P(X ).

Proof. Let A ⊆ X , An ⊆ X , n ∈ N, be such that A ⊆ ∪n∈NAn. We have to show
that α∗(A) ≤

∑
n∈N α

∗(An). It is obviously true if
∑

n∈N α
∗(An) = +∞, so for the

rest we assume the contrary. Then α∗(An) < +∞ for all n ∈ N. Hence, by de�nition,
for every ε > 0 there exist An,ε,k ∈ S, k ∈ N, such that An ⊆ ∪k∈NAn,ε,k, and∑

k∈N

α(An,ε,k) < α∗(An) +
ε

2n
.
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Then A ⊆ ∪n∈N ∪k∈N An,ε,k, and thus

α∗(A) ≤
∑
n,k∈N

α(An,ε,k) <
∑
n∈N

(
α∗(An) +

ε

2n

)
=
∑
n∈N

α∗(An) + ε.

Since the inequality between the leftmost and the rightmost terms in the above line
holds for all ε > 0, we get the desired inequality α∗(A) ≤

∑
n∈N α

∗(An).

The property of σ-subadditivity turns out to be so important in studying the
extension of set functions into measures that we give σ-subadditive set functions a
name.

De�nition 3.58. A set σ-subadditive set function β on some set system is called
an (abstract) outer measure or simply an outer measure.

Remark 3.59. Note that the extension process given in De�nition 3.51 is one way
of de�ning outer measures, but there are outer measures not given by this exten-
sion procedure. We use the terminology �abstract outer measure� when we want to
emphasize this.

Remark 3.60. Note that an (abstract) outer measure is automatically monotone.

Note that by de�nition, if α is a set function on a set system S then

α∗
∣∣
S ≤ α, i.e., ∀A ∈ S : α∗(A) ≤ α(A). (3.38)

(Indeed, this follows by taking the trivial cover A ⊆ A ∪ ∅ ∪ ∅ ∪ . . .) In general,
α∗
∣∣
S = α need not hold, i.e., α∗ need not be an extension of α. It is clear that if

we want α∗ to be an extension of α then they should have the same properties on
the original set system S. As it turns out, σ-subadditivity is the decisive property
in this respect:

Proposition 3.61. Let α be a set function on a set system S. Then α∗ is an
extension of α, i.e., α∗

∣∣
S = α, if and only if α is σ-subadditive on S.

Proof. Since α∗ is σ-subadditive on P(X ), it is also σ-subadditive on S, and hence
σ-subadditivity of α on S is a necessary condition for α∗ to be an extension of α.

Assume now that α is σ-subadditive on S and let A ∈ S. Then for any {An}n∈N ⊆
S such that A ⊆ ∪n∈NAn, we have α(A) ≤

∑
n∈N α(An). Taking the in�mum over

all such covers, we get α(A) ≤ α∗(A). Since the converse inequality is trivial (see
(3.38)), the assertion follows.

Next, we want to �nd a concept of measurability that will eventually lead to a
σ-additive extension of the volume function to a σ-algebra that contains Box(Rd).
The following de�nition may seem less intuitive at the �rst sight than the concept
of Jordan measurability, but it turns out to be the right one to achieve our goal.
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De�nition 3.62. Let α be a set function on a set system S ⊆ P(X ), and α∗ the
generated outer measure. We say that a set A ⊆ X is α∗-measurable, if

∀T ⊆ X : α∗(T ) = α∗(T \ A) + α∗(T ∩ A). (3.39)

We denote the set of α∗-measurable sets byM(α∗).
More generally, if β : P(X )→ [0,+∞] is an abstract outer measure, then we say

that A ⊆ X is β-measurable, if

∀T ⊆ X : β(T ) = β(T \ A) + β(T ∩ A).

We denote the set of β-measurable sets byM(β).

Remark 3.63. Note that we have now two di�erent concepts of measurability of
a set. In De�nition ??, it simply meant that the set is an element of a given σ-
algebra, without any reference to a measure or an outer measure. On the contrary,
in the above De�nition 3.62, there is no mentioning of a σ-algebra, and measurability
is de�ned with respect to an outer measure. It is important to keep in mind this
di�erence. The meaning in which measurability is applied to a set should always be
clear from the context.

Remark 3.64. Note that α∗(T ) ≤ α∗(T \ A) + α∗(T ∩ A) holds for any A, T ⊆ X
due to the σ-subadditivity of α∗ (Proposition 3.57), and hence (3.39) is equivalent
to

∀T ⊆ X : α∗(T ) ≥ α∗(T \ A) + α∗(T ∩ A). (3.40)

Remark 3.65. Note that we are looking for a σ-additive extension of α, and (3.39)
expresses a certain additivity criterion that, however, seems much weaker at the �rst
sight then the σ-additivity we are looking for.

On the other hand, it also seems stronger in the sense that it is required to hold
for every T ∈ P(X ), whereas we don't expect α to have a (σ-)additive extension to
the whole of P(X ). However, it turns out that it is enough to check (3.40) for sets
T in the original set system S.

Lemma 3.66. In the setting of De�nition 3.62, A ⊆ X is α∗-measurable if and only
if

∀B ∈ S : α(B) ≥ α∗(B \ A) + α∗(B ∩ A). (3.41)

Proof. Necessity: If A is α∗-measurable then we have α∗(B \ A) + α∗(B ∩ A) =
α∗(B) ≤ α(B) for any B ⊆ X (not only for B ∈ S), where the second inequality is
trivial from the de�nition of the outer measure (see (3.38)).
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To prove su�ciency, we have to show that (3.41) implies that α∗(T ) ≥ α∗(T \A)+
α∗(T ∩ A) for any T ⊆ X (see Remark 3.64). Note that this inequality is trivial if
α∗(T ) = +∞, and hence for the rest we assume the contrary. Then, by the de�nition
of α∗, for every ε > 0, there exist Bn,ε ∈ S, n ∈ N, such that T ⊆ ∪n∈NBn,ε, and∑

n∈N α(Bn,ε) < α∗(T ) + ε. Thus,

ε+ α∗(T ) >
∑
n∈N

α(Bn,ε) ≥
∑
n∈N

(α∗(Bn,ε \ A) + α∗(Bn,ε ∩ A))

≥ α∗(T \ A) + α∗(T ∩ A),

as required, where the second inequality follows from the assumption (3.41) applied
to each Bn,ε and A, the last inequality is due to the σ-subadditivity of α∗.

Remark 3.67. Note that the criterion (3.41) is not only a weakening of (3.39) in the
sense that we only require the inequality to hold for sets B in the original set system
S, but also that we replace α∗(B) with α(B) in the upper bound, and α(B)∗ ≤ α(B)
for any B ∈ S by de�nition.

Corollary 3.68. Let α be an additive set function on a semi-ring S. Then S ⊆
M(α∗), i.e., all elements of S are α∗-measurable.

Proof. Let A ∈ S. Then the semi-ring property implies that for every B ∈ S, we
have B ∩ A ∈ S, and B \ A = ·∪ri=1Ai for some pairwise disjoint A1, . . . , Ar ∈ S.
Then

α(B) = α(B ∩ A) +
r∑
i=1

α(Ai) ≥ α∗(B ∩ A) +
r∑
i=1

α∗(Ai)

≥ α∗(B ∩ A) + α∗( ·∪ri=1Ai),

where equality follows by the additivity of α, the second inequality is due to α ≥ α∗,
and the last inequality is due to the (σ-)subadditivity of α∗. Hence, by Lemma 3.66,
A is α∗-measurable.

Next, we verify that M(α∗) and α∗
∣∣
M(α∗)

have the desired properties, i.e., the

former is a σ-algebra, and the latter is a measure on it. This is true in somewhat
more generality, and we state it so:

Theorem 3.69. Let β : P(X ) → [0,+∞] be an abstract outer measure (i.e., a
σ-subadditive set function). Then the set of β-measurable sets

M(β) := {A ∈ P(X ) : ∀T ⊆ X : β(T ) = β(T \ A) + β(T ∩ A)}

is a σ-algebra, and β
∣∣
M(β)

is a measure.
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Proof. For any A ⊆ X , A ∩ ∅ = ∅ and A \ ∅ = A implies

β(A ∩ ∅) + β(A \ ∅) = β(A),

and thus ∅ ∈M(β). Likewise, A ∩ X = A and A \ X = ∅ yields

β(A ∩ X ) + β(A \ X ) = β(A),

and thus X ∈M(β).
Now let A ∈ M(β). Note that for any B ⊆ X , B \ (X \ A) = B ∩ A and

B ∩ (X \ A) = B \ A, and hence

β(B) = β(B \ A) + β(B ∩ A) = β(B ∩ (X \ A)) + β(B \ (X \ A)),

where the �rst equality is due to A ∈M(β). Hence, X \ A ∈M(β).
We prove thatM(β) is closed under countable unions in a series of steps. First,

we show that it is closed under �nite unions. Let A1, A2 ∈ M(β), and B ⊆ X
arbitrary. Then

β(B) = β(B \ A1) + β(B ∩ A1)

= β ((B \ A1) \ A2) + β ((B \ A1) ∩ A2) + β(B ∩ A1),

where the �rst equality is due to A1 ∈ M(β), and the second one is due to A2 ∈
M(β). Now, observe that (B \A1) \A2 = B \ (A1 ∪A2), and ((B \ A1) ∩ A2) ·∪ (B ∩
A1) = B ∩ (A1 ∪ A2). Using the subadditivity of β, we get that the above can be
further lower bounded as

β(B) ≥ β (B \ (A1 ∪ A2)) + β (B ∩ (A1 ∪ A2)) .

Since this is true for every B ⊆ X , and the converse inequality is trivial by subad-
ditivity, we get A1 ∩ A2 ∈M(β).

Next, we show that for any pairwise disjoint A1, . . . , Ar ∈M(β), and any T ⊆ X ,
we have

β(T ∩ ( ·∪ri=1Ai)) =
r∑
i=1

β(T ∩ Ai). (3.42)

Note that it is enough to prove this for r = 2, and then use iteration for larger r.
Moreover, we may assume that T ⊆ ·∪ri=1Ai, since otherwise we can replace T with
T ∩ ( ·∪ri=1Ai). Under these assumption, we have

β (T ∩ (A1 ·∪ A2)) = β(T ) = β(T \ A1) + β(T ∩ A1) = β(T ∩ A2) + β(T ∩ A1),
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where the second inequality is due to A1 ∈M(β), and the last one is due to T \A1 =
T ∩ A2.

Now we prove that M(β) is closed under countable unions. Indeed, let An ∈
M(β), n ∈ N. For every n ∈ N, let Ãn := An \

(
∪n−1
i=1 Ai

)
, so that the Ãi are pairwise

disjoint, and ∪n∈NAi = ·∪n∈NÃn. Let T ⊆ X be arbitrary. For every r ∈ N, we have

β(T ) = β
(
T \ (∪rn=1Ãn)

)
+ β

(
T ∩ (∪rn=1Ãn))

)
≥ β

(
T \ (∪+∞

n=1Ãn)
)

+ β
(
T ∩ (∪rn=1Ãn))

)
= β

(
T \ (∪+∞

n=1Ãn)
)

+
r∑

n=1

β (T ∩ An) ,

where in the �rst equality we used that M(β) is closed under �nite unions, and
this ∪rn=1Ãn ∈ M(β); the inequality is due to the monotonicity of β, and the last
equality follows by (3.42). Taking the limit r → +∞, we get

β(T ) ≥ β
(
T \ (∪+∞

n=1Ãn)
)

+
+∞∑
n=1

β
(
T ∩ Ãn

)
(3.43)

≥ β
(
T \ (∪+∞

n=1Ãn)
)

+ β
(
T ∩ (∪+∞

n=1Ãn)
)
,

where the last inequality follows by the σ-subadditivity of β, due to T ∩ (∪+∞
n=1Ãn) =

∪+∞
n=1(T ∩ Ãn).
Finally, we show that β is σ-additive onM(β). To this end, let An ∈M(β), n ∈

N, be pairwise disjoint sets. Writing T := ∪n∈NAn in (3.43), we get

β (∪n∈NAn) ≥
+∞∑
n=1

β (An) ,

and the converse inequality is trivial by the σ-subadditivity of β.

Combining the above, we arrive at the main result of this section:

Theorem 3.70. (Carathéodory extension theorem)
Let α be a measure on a semi-ring S, and α∗ the generated outer measure. Then
M(α∗) is a σ-algebra that contains S, and

α∗
∣∣∣
M(α∗)

is a measure, such that α∗
∣∣∣
S

= α.

That is, α∗ is an extension of α to a measure on the σ-algebraM(α∗).
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Now let us return to the special case where S = Box(Rd) is the semi-ring of boxes
in Rd, and α = Vol is the volume function.

De�nition 3.71. Measurable sets with respect to the Lebesgue outer measure Vol∗,
in the sense of De�nition 3.62, are called Lebesgue measurable. We use the nota-
tion Λ(Rd) := M(Vol∗) for the collection of Lebesgue measurable sets in Rd. The
Lebesgue outer measure restricted to Λ(Rd) is a measure by Theorem 3.69, that we
call the Lebesgue measure.

It is natural to ask how the set of Lebesgue measurable sets is related to the set
of boxes, and what properties Lebesgue measurable sets have. We will answer these
and various related questions in the next section.

3.6 Properties of the Carathéodory extension

De�nition 3.72. We say that a measure µ on a σ-algebra A ⊆ P(X ) is complete, if

A ∈ A and µ(A) = 0 =⇒ ∀B ⊆ A : B ∈ A,

i.e., any subset of a measurable set of measure zero is also measurable (and hence is
of measure 0).

Remark 3.73. Note that in the above de�nition, measurability refers to being an
element of a �xed σ-algebra.

Proposition 3.74. Let β : P(X ) → [0,+∞] be an abstract outer measure. Then
every A ⊆ X with β(A) = 0 is β-measurable. In particular, β

∣∣
M(β)

is a complete
measure.

Proof. Let β(A) = 0. Then for any T ⊆ X , monotonicity of β implies β(T \ A) ≤
β(T ), and β(T ∩ A) ≤ β(A) = 0. Hence,

β(T ) ≥ β(T \ A) + β(A),

i.e., A is measurable. From this, the rest of the statement follows.

As the following proposition shows, measurable sets in the Carathéodory ex-
tension of a measure on a semi-ring can be arbirarily well approximated by �nite
disjoint unions of elements of the semi-ring. In particular, it gives a generalization
of Exercises 2.53 and 2.55.

Proposition 3.75. Let µ be a measure on a semi-ring S ⊆ P(X ), and let A ⊆ P(X )
be such that µ∗(A) < +∞. Then A ∈M(µ∗) if and only if for any ε > 0 there exist
�nitely many disjoint elements Bε,1, . . . , Bε,nε ∈ S such that

µ∗(A4Bε) < ε, where Bε := ·∪nεk=1Bε,k. (3.44)
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Proof. �only if�: By Exercise 3.54, for any ε > 0, there exists a sequence of disjoint
elements Bε,k ∈ S, k ∈ N, such that

A ⊆ ·∪+∞
k=1Bε,k, and µ∗(A) ≤

+∞∑
k=1

µ∗(Bε,k) < µ∗(A) + ε.

Finiteness of the in�nite sum implies that there exists an nε such that
∑+∞

k=nε+1 µ
∗(Bε,k) <

ε. Now, with Bε := ·∪nεk=1Bε,k, we have

µ∗ (A \Bε) ≤ µ∗
(
·∪+∞
k=nε+1Bε,k

)
=

+∞∑
k=nε+1

µ∗(Bε,k) < ε,

and

µ∗ (Bε \ A) ≤ µ∗
(
·∪+∞
k=1Bε,k \ A

)
= µ∗

(
·∪+∞
k=1Bε,k

)
− µ∗(A)

=
+∞∑
k=1

µ∗(Bε,k)− µ∗(A) < ε.

In the equalities above, we used that A ∈ M(µ∗) and Bε,k ∈ M(µ∗), k ∈ N, and
that µ∗ is a measure onM(µ∗). Putting it together,

µ∗ ((A \Bε) ·∪ (Bε \ A)) = µ∗ (Bε \ A) + µ∗ (Bε \ A) ≤ 2ε.

Changing ε to ε/2 in the above argument yields the desired bound in (3.44).
�if�: By Lemma 3.66, it is su�cient to prove that (3.41) holds for any B ∈ S.

Let Bε,1, . . . , Bε,nε be as in the assumption. We have

B ∩ A = [B ∩ (A \Bε)]︸ ︷︷ ︸
⊆A\Bε

·∪ [B ∩ A ∩Bε]︸ ︷︷ ︸
⊆B∩Bε

B \ A ⊆ [B \Bε] ·∪ [B ∩ (Bε \ A)]︸ ︷︷ ︸
⊆Bε\A

,

whence

µ∗(B ∩ A) + µ∗(B \ A) ≤ µ∗(A \Bε)︸ ︷︷ ︸
<ε

+µ∗(B ∩Bε) + µ∗(B \Bε︸ ︷︷ ︸
= ·∪mi=1Ci

) + µ∗(Bε \ A)︸ ︷︷ ︸
<ε

< 2ε+ µ∗ ( ·∪nεk=1B ∩Bε,k) + µ∗ ( ·∪mi=1Ci)

= 2ε+ µ(B),

where C1, . . . , Cm are disjoint elements in S such that B \Bε = ·∪mi=1Ci; see Exercise
2.27. The �rst inequality above follows from the subadditivity and monotonicity of
µ∗, the second inequality is by assumption, and the equality in the end follows from
the fact that on S, µ is a measure, and µ∗ = µ. Since the above holds for all ε > 0,
we can conclude that µ∗(B ∩ A) + µ∗(B \ A) ≤ µ(B).
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It is easy to see that appoximation by �nitely many boxes in the above sense may
not be possible if µ(A) = +∞; a simple example is given by the volume function on
S = Box(R) and A := ·∪n∈N[2n, 2n+ 1). However, we still have the following:

Exercise 3.76. Let µ be a completely σ-�nite measure on a semi-ring S, and let
A ∈ M(µ∗). Show that for any ε > 0, there exist countably many disjoint boxes
(Bn)n∈N ⊆ S such that

A ⊆ ·∪n∈NBn, and µ∗ (( ·∪n∈NBn) \ A) < ε.

Solution: Hidden.

Further approximation properties are given by the following:

Lemma 3.77. Let µ be a measure on a semi-ring S.
1. For every A ⊆ X with µ∗(A) < +∞, there exists an Ā ∈ Sσδ such that

A ⊆ Ā, and µ∗(A) = µ∗(Ā).

If A ∈M(µ∗) then also µ∗(Ā \ A) = 0.

2. If µ is completely σ-�nite then for every measurable A ∈ M(µ∗), there exist
Ā ∈ Sσδ and Ã ∈ Sδσ such that

Ã ⊆ A ⊆ Ā, and µ∗(Ā \ Ã) = 0.

Proof. 1. By de�nition, for every ε > 0, there exist {Aε,n}n∈N ⊆ S such that
A ⊆ ∪n∈NAε,n, and

∑
n∈N µ(Aε,n) < µ∗(A) + ε. Then

A ⊆ Ā := ∩m∈N ∪n∈N A1/m,n, and

µ∗(Ā) ≤ µ∗
(
∪n∈NA1/m,n

)
≤
∑
n∈N

µ(A1/m,n) < µ∗(A) + 1/m, m ∈ N,

due to the monotonicity and the σ-subadditivity of µ∗. From this, µ∗(Ā) = µ∗(A).
Since Ā ∈ M(µ∗), if also A ∈ M(µ∗) then the additivity of µ∗ on M(µ∗) implies
µ∗(Ā \ A) = µ∗(Ā)− µ∗(A) = 0.

2. By assumption, we have a decomposition X = ·∪k∈NXk, where Xk ∈ S and
µ(Xk) < +∞ for all k. Let A ∈M(µ∗) so that also Ak := A ∩ Xk ∈M(µ∗). By the
same argument as in the previous point, for every k ∈ N, there exists an Āk ∈ Sσδ
such that µ∗(Āk \ Ak) = 0, and it is easy to see that we can take Āk such that
Āk ⊆ Xk. Let Ā := ·∪k∈NĀk; then

µ∗(Ā \ A) = µ∗
(
·∪k∈N(Āk \ Ak)

)
≤
∑
k∈N

µ∗(Āk \ Ak) = 0.
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By the above, we have B ∈ Sσδ such that X \ A ⊆ B and µ∗(B \ (X \ A)) = 0.
Let Ã := X \B; then

Ã = X \B ⊆ X \ (X \ A) = A, and

µ∗(A \ Ã) = µ∗ (A ∩B) = µ∗ (B \ (X \ A)) = 0.

Finally, µ∗(Ā \ Ã) ≤ µ∗(Ā \ A) + µ∗(A \ Ã) = 0.

Corollary 3.78. Let µ be a completely σ-�nite measure on a semi-ring S. Then for
every A ⊆ X ,

A ∈M(µ∗) ⇐⇒ ∃ Ã ∈ σ(S), and A0 with µ∗(A0) = 0 s.t. A = Ã ∪ A0.
(3.45)

Moreover, for any such decomposition, µ∗(Ã) ≤ µ∗(A) ≤ µ∗(Ã) + µ∗(A0) = µ∗(Ã)
yields µ∗(A) = µ∗(Ã).

Remark 3.79. Note that by possibly replacing A0 with A0 \ Ã, A0 can be chosen
to be disjoint from Ã in (3.45).

Theorem 3.80. Let µ be a measure on a semi-ring S, and ν be a measure on a
σ-algebra A such that σ(S) ⊆ A ⊆M(µ∗), and ν

∣∣
S = µ.

1. ν∗ ≤ µ∗, in particular, µ∗(A) = 0 =⇒ ν∗(A) = 0.

2. For every A ∈M(µ∗) ∩M(ν∗) with µ∗(A) < +∞, µ∗(A) = ν∗(A).

3. If µ is completely σ-�nite on S thenM(µ∗) =M(ν∗). In particular, ν = µ∗
∣∣
A.

Proof. 1. Let A ⊆ X . Since any countable S-cover of A is also a countable A-cover
of A, we get

ν∗(A) = inf

{∑
n∈N

µ(An) : A ⊆ ∪n∈NAn, {An}n∈N ⊆ A

}

≤ inf

{∑
n∈N

µ(An) : A ⊆ ∪n∈NAn, {An}n∈N ⊆ P

}
= µ∗(A).

2. Due to σ-additivity, µ∗ and ν∗ coincide on countable disjoint unions of elements
in S. Since any countable union of elements in S can be written as a disjoint union
(Lemma ??), we get that µ∗ and ν∗ coincide on Sσ. By Lemma 3.77, for any A ⊆ X
with µ∗(A) < +∞, there exists a decreasing sequence in Sσ, A1 ⊇ A2 ⊇ . . . ⊇ A
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such that µ∗(A) = µ∗(Ā), where Ā := ∩n∈NAn. By the above, ν∗(An) = µ∗(An) for
all n. Due to monotone continuity of measures,

µ∗(A) = µ∗(Ā) = lim
n→+∞

µ∗(An) = lim
n→+∞

ν∗(An) = ν∗(Ā).

Now, if A is µ∗-measurable then we also have µ∗(Ā \ A) = µ∗(Ā) − µ∗(A) = 0, and
thus also ν∗(Ā \ A) = 0, according to the previous point. Assume that A is also
ν∗-measurable. Then

µ∗(A) = µ∗(Ā \ (Ā \ A)) = µ∗(Ā)− µ∗(Ā \ A) = µ∗(Ā)

= ν∗(Ā) = ν∗(Ā)− ν∗(Ā \ A) = ν∗(A).

3. By assumption, there exists a decomposition X = ·∪k∈NXk with Xk ∈ S,
µ(Xk) < +∞ for all k. Let A ∈M(µ∗)∩M(ν∗) and for every k ∈ N, let Ak := A∩Xk.
Then Ak ∈ M(µ∗) ∩M(ν∗) and µ∗(Ak) < +∞ for all k, and hence by the previous
point, µ∗(A) =

∑
k∈N µ

∗(Ak) =
∑

k∈N ν
∗(Ak) = ν∗(A). That is, µ∗ and ν∗ coincide

onM(µ∗) ∩M(ν∗), and in particular, µ∗ and ν coincide on A.
Let A ⊆ X be arbitrary. We have seen that ν∗(A) ≤ µ∗(A); in particular,

if ν∗(A) = +∞ then ν∗(A) = µ∗(A). Assume next that ν∗(A) < +∞. Then
for every ε > 0 there exists a countable A-cover (Aε,n)n∈N ⊆ A such that A ⊆
∪n∈NAε,n and

∑
n∈N ν(Aε,n) < ν∗(A) + ε. By the above, µ∗(Aε,n) = ν(Aε,n) < +∞

for all n. Hence, there exist (Bε,n,k)k∈N ⊆ P such that Aε,n ⊆ ∪k∈NBε,n,k, and∑
k∈N µ(Bε,n,k) < µ∗(Aε,n) + ε/2n = ν(Aε,n) + ε/2n. Finally, A ⊆ ∪n∈N ∪k∈N Bε,n,k,

and µ∗(A) ≤
∑

n∈N
∑

k∈N µ(Bε,n,k) <
∑

n∈N (ν(Aε,n) + ε/2n) < ν∗(A) + 2ε. Since
this holds for all ε > 0, we get µ∗(A) ≤ ν∗(A). We have already established the
converse inequality, and thus we obtain µ∗ = ν∗ on S(X ).

Corollary 3.81. A completely σ-�nite measure on a semi-ring extends uniquely to
a σ-�nite measure on the σ-algebra generated by the semi-ring.

Corollary 3.82. The above theorem implies that �rst extending a completely σ-
�nite measure µ from a semi-ring S to any sub-σ-algebra of M(µ∗) using the
Carathéodory method, and then extending the so obtained measure again with the
Carathéodory method, we do not get anything new. Formally,(

µ∗
∣∣
A

)∗
= µ∗

for any σ-algebra A such that S ⊆ A ⊆M(µ∗).

3.7 Product measure

For set systems Ai on some sets Xi, and non-negative set functions µi on Ai, let us
use the notations

A1 (×) . . . (×)An := {A1 × . . .× An : Ai ∈ Ai, i ∈ [n]},
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and

µ1 × . . .× µn :A1 (×) . . . (×)An → [0,+∞], (3.46)

A1 × . . .× An 7→ µ1(A1) · . . . · µn(An). (3.47)

By Proposition 3.6, if all the Ai are semi-rings then A1 (×) . . . (×)An is a semi-ring
on X1 × . . .×Xn. Moreover, we have the following:

Proposition 3.83. In the above setting, if Ai is a semi-ring and µi is a pre-measure
on Ai for all i then µ1× . . .×µn is a pre-measure on the semi-ring A1 (×) . . . (×)An.

Proof. We need to prove that if

A1 × . . .× An = ·∪k∈N(A
(k)
1 × . . .× A(k)

n ), (3.48)

where Ai, A
(k)
i ∈ Ai for all i and k then

(µ1 × . . .× µn)(A1 × . . .× An) =
∑
k∈N

(µ1 × . . .× µn)(A
(k)
1 × . . .× A(k)

n ).

(3.49)

(3.48) is equivalent to

1A1×...×An =
∑
k∈N

1
A

(k)
1 ×...×A

(k)
n
,

which we can rewrite as

1A1(x1) · . . . · 1An(xn) =
∑
k∈N

1
A

(k)
1

(x1) · . . . · 1
A

(k)
n

)(xn), xi ∈ Xi, i ∈ [n].

Let µi := µ∗i
∣∣
M(µ∗i )

be the Carathéodory extension of µi. Integrating with respect to

µ1, and using the σ-additivity of the integral, we get that

µ1(A1) · 1A2(x2) · . . . · 1An(xn) =
∑
k∈N

µ1(A
(k)
1 ) · 1

A
(k)
2

(x2) · . . . · 1
A

(k)
n

)(xn),

for all xi ∈ Xi, i = 2, . . . , n, where we used that µ1(B) = µ1(B) for any B ∈ A1.
Repeating the same for i = 2, . . . , n, we get

µ1(A1) · . . . µn(An) =
∑
k∈N

µ1(A
(k)
1 ) · . . . µn(A(k)

n ),

which is exactly (3.49).
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By the general theory of the Carathéodory extension, Proposition 3.83 immedi-
ately yields the following

Corollary 3.84. Let µi be a pre-measure on a semi-ring Ai for all i = 1, . . . , n.
Then (µ1 × . . . × µn)∗ is a measure on the σ-algebra M ((µ1 × . . .× µn)∗), which
contains σ (A1 (×) . . . (×)An).

Assume now that we have measurable spaces (Xi,Ai) for all i = 1, . . . , n. Then
A1 (×) . . . (×)An is the collection of boxes in X1×. . .×Xn whose sides are measurable.
Note that A1 (×) . . . (×)An is not a σ-algebra in general, but it is always a semi-ring.
The product of the σ-algebras A1, . . . ,An is de�ned as the σ-algebra generated by
all the boxes with measurable sides, i.e.,

⊗i∈[n]Ai := A1 ⊗ . . .⊗An := σ (A1 (×) . . . (×)An) .

By de�nition, A1 ⊗ . . .⊗An is a σ-algebra on X1 × . . .×Xn, and hence

⊗i∈[n](Xi,Ai) := (×i∈[n]Xi,⊗i∈[n]Ai)

is a measurable space, that we call the product of the measurable spaces (Xi,Ai),
i = 1, . . . , n.

Assume now that there is also a measure µi given on all Ai, i.e., we have measure
spaces (Xi,Ai, µi) for all i = 1, . . . , n, and consider their product µ1 × . . . × µn as
de�ned in (3.46):

µ1 × . . .× µn :A1 (×) . . . (×)An → [0,+∞],

A1 × . . .× An 7→ µ1(A1) · . . . · µn(An).

By Proposition 3.83 and Corollary 3.84, (µ1×. . .×µn)∗ is a measure on the σ-algebra
M ((µ1 × . . .× µn)∗), which contains σ (A1 (×) . . . (×)An) = A1 ⊗ . . .⊗An.

De�nition 3.85. The measures

µ1⊗ . . .⊗µn := (µ1 × . . .× µn)∗
∣∣
M((µ1×...×µn)∗)

,

µ1 ⊗ . . .⊗ µn := (µ1 × . . .× µn)∗
∣∣
A1⊗...⊗An

= µ1⊗ . . .⊗µn
∣∣
A1⊗...⊗An

are called the complete product and the product of the measures µ1, . . . , µn, respec-
tively. Correspondingly,

⊗i∈[n](Xi,Ai, µi) :=
(
×i∈[n]Xi,M ((µ1 × . . .× µn)∗) ,⊗i∈[n] µi

)
,

⊗i∈[n](Xi,Ai, µi) :=
(
×i∈[n]Xi,A1 ⊗ . . .⊗An,⊗i∈[n]µi

)
are called the complete product and the product of the measure spaces (Xi,Ai, µi),
i ∈ [n], respectively.
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Remark 3.86. By the general properties of the Carathéodory extension, ⊗i∈[n](Xi,Ai, µi)
is always a complete measure space, even if none of the (Xi,Ai, µi) are complete.
On the other hand, ⊗i∈[n](Xi,Ai, µi) need not be complete in general, even if all
(Xi,Ai, µi) are complete. We will revisit this problem shortly in Proposition 3.91.

Our next goal is to show that the n-dimensional Lebesgue measure is the n-fold
complete product of the 1-dimensional Lebesgue measure with itself. This will be
an easy consequence of the following:

Lemma 3.87. For every i ∈ [n], let µi be a pre-measure on a semi-ring Si, let Ai be
a σ-algebra such that Si ⊆ Ai ⊆M(µ∗i ), and let µi := µ∗i

∣∣
M(µ∗i )

, µ̃i := µ∗i
∣∣
Ai
. Then

(µ1 × . . .× µn)∗ = (µ̃1 × . . .× µ̃n)∗ = (µ1 × . . .× µn)∗ .

Proof. The inequalities

(µ1 × . . .× µn)∗ ≤ (µ̃1 × . . .× µ̃n)∗ ≤ (µ1 × . . .× µn)∗ .

are obvious. The converse inequalities follow by an elementary but slightly tedious
argument, which we leave as an exercise.

Corollary 3.88. In the above setting, we have

µ1 × . . .× µn := (µ1 × . . .× µn)∗
∣∣
M((µ1×...×µn)∗)

= (µ̃1 × . . .× µ̃n)∗
∣∣
M((µ̃1×...×µ̃n)∗)

= µ̃1⊗ . . .⊗ µ̃n
= (µ1 × . . .× µn)∗

∣∣
M((µ1×...×µn)∗)

= µ1⊗ . . .⊗µn,

where the second equalities in each line are by de�nition, and the �rst equalities in
the second and the third lines are due to Lemma 3.87.

Example 3.89. Taking µi := λ1 to be the length function on Box(R), µ1×. . .×µn is
the volume function λn on the n-dimensional boxes Box(Rn) = Box(R) (×) . . . (×) T (R),
and µ1 × . . .× µn is, by de�nition, the n-dimensional Lebesgue measure λn on the
n-dimensional Lebesgue measurable sets Λ(Rn). By the above, it is equal to the
n-fold complete product of the 1-dimensional Lebesgue measure with itself. That is,

⊗i∈[n]

(
R,Λ(R), λ1

)
=
(
Rn,Λ(Rn), λn

)
.

Taking Ai = B(R), Corollary 3.88 tells that the n-fold complete product of the
1-dimensional Lebesgue on the Borel σ-algebra by itself is still the n-dimensional
Lebesgue measure on the Lebesgue-measurable sets, i.e.,

⊗i∈[n]

(
R,B(R), λ1

∣∣
B(R)

)
=
(
Rn,Λ(Rn), λn

)
.
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The above example of the Lebesgue measure can be generalized to Lebesgue-
Stieltjes measures. For this, it will be convenient to introduce the following notation.
For functions fi : Xi → K, let

f1 ⊗ . . .⊗ fn :X1 × . . .×Xn → K
(x1, . . . , xn) 7→ f1(x1) · . . . · fn(xn).

Note that, for instance,

1A1×...×An = 1A1 ⊗ . . .⊗ 1An .

Example 3.90. Let F1, . . . , Fn : R→ R be monotone increasing functions that are
continuous from the left at each point. Then F1⊗ . . . Fn is also continuous from the
left at each point. Moreover, we have

∆
(1)
[a1,b1) . . .∆

(1)
[a1,b1)(F1 ⊗ . . . Fn) = (F (b1)− F (a1)) · . . . · (F (bn)− F (an))

= λF1 ([a1, b1)) · . . . · λFn ([an, bn))

= (λF1 × . . .× λFn) ([a1, b1)× . . .× [an, bn))
(3.50)

for all a, b ∈ Rn; in particular, λF1⊗...Fn = λF1×. . .×λFn on Box(Rn) = Box(R) (×) . . . (×) T (R).
Since the RHS in (3.50) is non-negative for all a, b ∈ Rn, we can de�ne

λF1⊗...⊗Fn := λ∗F1⊗...⊗Fn

∣∣
M(λ∗F1⊗...⊗Fn) = (λF1 × . . .× λFn)∗

∣∣
M((λF1

×...×λFn)
∗
)

= λF1 ⊗ . . .⊗λFn ,

where the �rst equality is due to (3.50), and the second equality is due to Lemma
3.87. Again, we can rewrite this as

⊗i∈[n]

(
R,M(λ∗Fi), λFi

)
=
(
Rn,M

(
λ∗F1⊗...⊗Fn

)
, λF1⊗...⊗Fn

)
,

and we get the same if we restrict all λFi to the Borel σ-algebra:

⊗i∈[n]

(
R,B(R), λFi

∣∣
B(R)

)
=
(
Rn,M

(
λ∗F1⊗...⊗Fn

)
, λF1⊗...⊗Fn

)
.

Taking Fi = idR for all i yields Example 3.89 as a special case.

Next, we consider the uniqueness and the completeness of the product measure.

Proposition 3.91. Assume that µi is a σ-�nite measure on a σ-algebra Ai ⊆ P(Xi)
for all i = 1, . . . , n. Then

(i) µ1 ⊗ . . .⊗ µn is also σ-�nite, and it is the unique extension of µ1 × . . .× µn onto
A1 ⊗ . . .⊗An.
(ii) µ1 ⊗ . . .⊗ µn = µ1⊗ . . .⊗µn, where µ1 ⊗ . . .⊗ µn is the natural extension of
µ1 ⊗ . . .⊗ µn, which also coincides with its completion.
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Proof. (i) By assumption, there exist decompositions Xi = ·∪k∈NA(i)
k with A

(i)
k ∈ Ai

and µi

(
A

(i)
k

)
< +∞ for all i, k. Then

X1 × . . .×Xn = ·∪k1∈N . . . ·∪kn∈N A
(1)
k1
× . . .× A(n)

kn
,

and (µ1 × . . .× µn)
(
A

(1)
k1
× . . .× A(n)

kn

)
= µ1(A

(1)
k1

) · . . . · µn(A
(n)
kn

) < +∞. Thus,

µ1×. . .×µn is (completely) σ-�nite on the semi-ringA1 (×) . . . (×)An. The assertion
then follows from the general properties of the Carathéodory extension.

(ii) Since µ1× . . .×µn is (completely) σ-�nite on the semi-ring A1 (×) . . . (×)An,
we have, for all σ-algebraA such that σ(A1 (×) . . . (×)An) ⊆ A ⊆M ((µ1 × . . .× µn)∗)
that (

(µ1 × . . .× µn)∗
∣∣
A

)∗
= (µ1 × . . .× µn)∗ = (µ1 × . . .× µn)∗,

where the last equality is due to Lemma 3.87. Taking now A = A1 ⊗ . . . ⊗ An, we
get

(µ1 ⊗ . . .⊗ µn)∗ = (µ1 × . . .× µn)∗.

Taking the restriction of both sides ontoM ((µ1 × . . .× µn)∗) yields µ1 ⊗ . . .⊗ µn = µ1⊗ . . .⊗µn.
Since µ1⊗ . . .⊗µn is σ-�nite, its natural extension coincides with its completion.

Example 3.92. Let Fi : R → R be a monotone increasing and left continuous
function, and µi := λF1

∣∣
B(R)

for all i = 1, . . . , n. Note that µi = λFi , and hence

µ1 ⊗ . . .⊗ µn = λF1 ⊗ . . .⊗ λFn = λF1 ⊗ . . .⊗λFn = λF1⊗...⊗Fn .

3.8 Lp spaces

Proposition 3.93. Let (X , τ) be a locally compact topological space and µ be
a regular Borel measure on a σ-algebra A ⊇ B(τ). Then Cc(X , V ) is dense in
Lp(X ,A, µ;V ) for any separable Banach space V and any p ∈ [1,+∞).

Proof. For every f ∈ Lp(X ,A, µ;V ) there exists a sequence sn of simple measurable
functions such that limn→+∞ ‖f − sn‖p = 0, and all level sets of sn corresponding to
non-zero values have �nite measure. Hence, it is enough to show that the character-
istic function of any measurable set A ∈ A with �nite measure can be approximated
by arbitrary precision by continuous functions of compact support.

Due to regularity, for any ε > 0 there exist an open set G ⊇ A and a compact
set K ⊆ G such that µ(G \A) < ε, µ(G \K) < ε. By Proposition 1.19, there exists
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a continuous function f : X → [0, 1] of compact support such that f |K ≡ 1 and
f |X\G ≡ 0. Hence,

‖1A − f‖p ≤ ‖1A − 1G‖p + ‖1G − f‖p = µ(G \ A)1/p + µ(G \K)1/p < 2ε1/p.
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4 Functional Analysis

4.1 Vector spaces

We assume that the reader is familiar with the basics of linear algebra; however, we
summarize some of the most important notions below.

Recall that a vector space over the scalar �eld K = R or K = C is a set V with
a binary operation + : V × V → V (called addition), that is

• associative: (x+ y) + z = x+ (y + z), x, y, z ∈ V ;

• commutative: x+ y = y + x, x, y,∈ V ;

• there exists an element 0 ∈ V such that 0 + x = x+ 0 = x, x ∈ V ;

• any element x ∈ V has an inverse, denoted by −x such that x−x := x+(−x) =
0.

That is, V is an Abelian group with the addition, and the null element 0. Moreover,
there exists an operation

K× V → V, (λ, x) 7→ λx,

with the properties

• λ(ηx) = (λη)x, λ, η ∈ K, x ∈ V ;

• (λ+ η)x = λx+ ηx, λ, η ∈ K, x ∈ V ;

• λ(x+ y) = λx+ λy, λ ∈ K, x, y ∈ V .

Example 4.1. (General function space)
Let X be an arbitrary non-empty set, and de�ne

KX := {f : X → K function},

which is the set of all K-valued functions on X . This is a vector space with the
natural point-wise operations

(f + g)(x) := f(x) + g(x), (λf)(x) := λ · f(x), x ∈ X , λ ∈ K, f, g ∈ KX .

We will often consider two special cases; when X = [d] := {1, . . . , d}, then

Kd := K[d] = {x : [d]→ K} = {(x1, . . . , xd) : xi := x(i) ∈ K, i ∈ [d]}

is the usual vector space of d-tuples of real or complex numbers.
An �in�nite version� of the above is the sequence space

KN := {(x1, x2, . . .) : xi := x(i) ∈ K, i ∈ N}.
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De�nition 4.2. Let V be a vector space over K = R or C. For a �nite set of
vectors v1, . . . , vr ∈ V , and scalars λ1, . . . , λr, the expression

∑r
i=1 λivi is a linear

combination of the vectors with the given coe�cients.

De�nition 4.3. A subset A ⊆ V of a vector space V is a (linear) subspace if it is
closed under linear combinations. We say that a subspace A is a proper subspace if
A 6= {0} and A 6= V .

Remark 4.4. By a �subspace� we will always mean a linear subspace, often omitting
�linear�.

Remark 4.5. It is easy to see that for A being a subspace of V , it is su�cient that
for any x, y ∈ V , and any λ ∈ K, λx ∈ A, and x+ y ∈ A.

Example 4.6. The set of all continuous functions on an interval [a, b] ⊆ R, denoted
by

CK([a, b]) := {f ∈ K[a,b] : f continuous}

is easily seen to be a subspace of K[a,b]. To see this, we only have to verify that if
f, g are continuous on [a, b] then f + g is also continuous, and for any λ ∈ K, λf is
continuous.

It is easy to see that an arbitrary collection of linear subspaces of a vector space
V is again a linear subspace of V . In particular, for any set A ⊆ V ,

span(A) := ∩{W linear subspace in V, W ⊇ A}

is a linear subspace of V , which we call the subspace generated by A, the subspace
spanned by A, or simply the span of A.

Exercise 4.7. Show that for any subset A ⊆ V , span(A) is the collection of all
linear combinations of elements of A, i.e.,

span(A) =

{
n∑
i=1

λivi : λi ∈ K, vi ∈ A, i ∈ [n], n ∈ N

}
,

and that span(A) is the smallest subspace containing A.

De�nition 4.8. Let A be a subset in a vector space V .

• We say that A is a generating system for a subspace W ⊆ V if span(A) = W .
If span(A) = V then we say that A is a generating system for V , or simply
that it is a generating system.

82



• We say that A is linearly independent, if for any v1, . . . , vn ∈ A, λ1, . . . , λn ∈ K,

0 =
n∑
i=1

λivi =⇒ λ1 = . . . = λn = 0.

• We say that A is a basis in a subspace W in V , if it is linearly independent
and a generating system for W . We simply say that A is a basis if it is a basis
for V .

Remark 4.9. We will sometimes use �algebraic basis� for the above concept of a
basis, to distinguish it from, for instance, orthonormal bases in Hilbert spaces; see
Section ??.

Theorem 4.10. Any vector space has a basis, and the cardinality of any basis in
a given vector space is the same; this number is called the (algebraic) dimension of
the vector space.

The proof of the above theorem is beyond the scope of these notes. We only
mention that existence can be shown easily using the axiom of choice, and in fact,
the statement that every vector space has a basis is equivalent to the axiom of choice.

Example 4.11. For an arbitrary set X , and x ∈ X , let

δx := 1{x} : y 7→

{
1, y = x,

0, y 6= x

be the Dirac delta concentrated at the point x. It is easy to see that

{δx : x ∈ X} is linearly independent.

When X is �nite, it is also easy to see that it is a generating system, and hence a
basis. In fact, for X = [d], δi =: ei is just the familiar canonical basis vector, whose
components are all zero, except for the i-th component, which is 1.

On the contrary, if X is in�nite, then the Dirac deltas do not form a generating
system (and hence neither a basis); instead, we have

span ({δx : x ∈ X}) =
(
KX
)
f

:= {f : X → K : |{x ∈ X : f(x) 6= 0}| < +∞},

i.e., the subspace generated by the Dirac deltas is the proper subspace of functions
that are non-zero only at �nitely many points.

Exercise 4.12. Show that the following subsets are linearly independent, but do
not form a basis in the indicated vector spaces:
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(i) PK([a, b]) polynomials on [a, b] with K-valued coe�cients in V := CK([a, b]).

(ii) PK([a, b]) polynomials on [a, b] with K-valued coe�cients in V := CK([a, b]).

For vector spaces V ,W over the same �eld K = R or C, let Lin(V ;W ) denote the
set of linear operators from a vector space V to a vector space W . When V = W ,
we will also use the short-hand notation Lin(V ). Elements of Lin(V ;K) are called
linear functionals on V , and Lin(V ;K) is called the dual space of V , for which we
also use the notation

V ′ = Lin(V ;K).

More generally, we use the notation Linn(V1, . . . , Vn;W ) for the set of n-linear
maps from V1 × . . .× Vn to W ; i.e., if A ∈ Linn(V1, . . . , Vn;W ) then

A(v1, . . . , vi + ui, . . . , vn) = A(v1, . . . , vi, . . . , vn) + A(v1, . . . , ui, . . . , vn),

A(v1, . . . , λvi, . . . , vn) = λA(v1, . . . , vi, . . . , vn),

where v1, . . . , vn ∈ V, ui ∈ V , and λ ∈ C. The above lines should be interpreted
such that we only add a vector ui in the i-th position, and have vj in all the other
positions in the �rst line, and we only multiply the argument by λ in the i-th position
in the second line.

It is easy to see that Linn(V1, . . . , Vn;W ) forms a vector space with the usual
pointwise operations, i.e., if A,A1, A2 ∈ Linn(V1, . . . , Vn;W ) and λ ∈ C then

(A1 + A2)(v1, . . . , vn) := A1(v1, . . . , vn) + A2(v1, . . . , vn),

(λA)(v1, . . . , vn) := λ · A(v1, . . . , vn), vi ∈ Vi.

Lemma 4.13. Let {ei,j}j∈Ji be bases in Vi for every i = 1, . . . , n, and wj1,...,jn ∈
W , ji ∈ Ji, i ∈ [n] for some vector space W . Then there exists a unique Φ ∈
Linn(V1, . . . , Vn;W ) such that Φ(e1,ji , . . . , en,jn) = wj1,...,jn for all ji,∈ Jj, i ∈ [n].

Proof. Trivial, exercise.

De�nition 4.14. For a linear operator A ∈ Lin(V,W ), let

ker(A) := {v ∈ V : Av = 0} ⊆ V

be the kernel of A, and

ran(A) := {Av : v ∈ V } ⊆ W

be the range of A.
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Remark 4.15. We may also use the notations kerA and ranA, without brackets
around the operator.

Remark 4.16. The range of an operator is also often called its image, and denoted
by Im(A).

Exercise 4.17. Show that for A ∈ Lin(V,W ), ker(A) and ran(A) are subspaces in
V and W , respectively.

4.2 Normed spaces

De�nition 4.18. Let V be a vector space over K. A function ‖ ‖ : V → R+ is a
norm if it has the following properties:

• ‖x‖ ≥ 0, x ∈ V , and ‖x‖ = 0⇐⇒ x = 0 (strict positivity);

• ‖λx‖ = |λ| ‖x‖ , x ∈ H, λ ∈ K; (positive homogeneity);

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ , x, y ∈ H, (triangle inequality).

Exercise 4.19. Show that the following de�ne norms on Cd:

‖x‖∞ := max
1≤i≤d

|xi|;

‖x‖1 :=
n∑
i=1

|xi|.

De�nition 4.20. Let V1, . . . , Vn,W be normed spaces. The operator norm (or in-
duced norm) of an n-linear operator A ∈ Linn(V1, . . . , Vn;W ) is de�ned as

‖A‖ := inf{c > 0 : ‖A(v1, . . . , vn)‖ ≤ c ‖v1‖ · . . . · ‖vn‖ : vi ∈ Vi}
= sup {‖A(v1, . . . , vn)‖ : ‖vi‖ ≤ 1, vi ∈ Vi \ {0}}
= sup {‖A(v1, . . . , vn)‖ : ‖vi‖ = 1, vi ∈ Vi \ {0}}

= sup

{
‖A(v1, . . . , vn)‖
‖v1‖ · . . . · ‖vn‖

: vi ∈ Vi \ {0}
}
.

We say that A is bounded if ‖A‖ < +∞, and denote the set of bounded n-linear
operators from V1 × . . .× Vn to W by Bn(V1, . . . , Vn;W ).

In particular, for A ∈ Lin(V,W ) we have

‖A‖ = sup{‖A(v)‖ : ‖v‖ ≤ 1, v ∈ V } = sup

{
‖A(v)‖
‖v‖

: v ∈ V \ {0}
}
.

We denote the set of bounded linear operators from V to W by B(V,W ), and if
V = W , we use the short-hand notation B(V ).
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Exercise 4.21. (i) Show that De�nition 4.20 indeed de�nes a norm on Linn(V1, . . . , Vn;W ).

(ii) Show that Bn(V1, . . . , Vn;W ) is a linear subspace of Linn(V1, . . . , Vn;W ).

Exercise 4.22. Show that the operator norm is submultiplicative in the sense that
if (Vk, ‖.‖k) are normed spaces for k = 1, 2, 3, and A1 ∈ Lin(V1, V2), A2 ∈ Lin(V2, V3),
then

‖A2A1‖ ≤ ‖A2‖ ‖A1‖ .

4.3 Dense subspaces

Lemma 4.23. The function h de�ned by

h(x) :=
g(x)

g(x) + g(1− x)
, g(x) :=

{
e

1
x , x > 0,

0, x ≤ 0

is in�nitely many times di�erentiable on R, it is 0 when x ≤ 0, and it is 1 when
x ≥ 1.

Proof.

Theorem 4.24. For every d ∈ N and every 1 ≤ p < +∞, C∞c (Rd) is dense in
Lp(Rd).

Proof.

Next, we show that functions on a product space can often be well approximated
by functions that are the product of functions on the individual spaces. This will
be very useful, e.g., in constructing dense sets in Lp(Rd) with good properties from
dense sets in Lp(R).

Recall that the tensor product of functions fi ∈ KXi , i ∈ [n], is the n-variable
function

(f1⊗ . . .⊗ fn)(x1, . . . , xn) := f1(x1) · . . . · fn(xn), xi ∈ Xi, i ∈ [n].

For subspaces Vi ⊆ KXi , we de�ne their tensor product as

V1⊗ . . .⊗Vn := span{f1⊗ . . .⊗ fn : fi ∈ Vi, i ∈ [n]},

which is a subspace of KX1×...×Xn . Note that

×ni=1Vi 3 (f1, . . . , fn) 7→ f1⊗ . . .⊗ fn ∈ V1⊗ . . .⊗Vn is n-linear.
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Example 4.25. Note that the indicator function of a disjoint union is the sum of
the indicator functions:

1 ·∪ni=1Ai
=

n∑
i=1

1Ai .

Analogously, the indicator function of a Cartesian product of sets is the product of
the indicator functions: if Ai ⊆ Xi, i ∈ [n], then

1A1×...×An = ⊗ni=11Ai .

Recall that the d-dimensional Lebesgue measure is the d-fold product of the 1-
dimensional Lebesgue measure with itself, and more generally,

λd1+...+dn = ⊗ni=1λdi ;

see Sections 2.3 and 3.7. We are mainly interested in the following statements in
this setting, but we state them in higher generality as it requires no extra e�ort.

Lemma 4.26. Let (Xi,Ai, µi), i ∈ [n], be measure spaces and µ be a measure on
⊗ni=1Ai that factorizes to the product of the µi (see De�nition ??). Let fi, f̃i ∈ KXi ,
i ∈ [n], be measurable. Then

∀i : µi

(
{fi 6= f̃i}

)
= 0 =⇒ µ

(
{f1⊗ . . .⊗ fn 6= f̃1⊗ . . .⊗ f̃n}

)
= 0. (4.1)

Moreover, for any p ∈ [1,+∞],

‖f1⊗ . . .⊗ fn‖p =
n∏
i=1

‖fi‖p . (4.2)

Proof. (4.1) is immediate from

{f1⊗ . . .⊗ fn 6= f̃1⊗ . . .⊗ f̃n} ⊆ ∪nk=1

(
{fk 6= f̃k} ×

(
×j∈[n]\{k}Xj

))
,

and (4.2) follows immediately from Exercise ??.

Let [f ] denote the equivalence class of a function on a measure space (X ,A, µ)
w.r.t the relation f ∼ f̃ if µ({f 6= f̃}) = 0. Lemma 4.26 yields immediately the
following:

Corollary 4.27. In the setting of Lemma 4.26, for any p ∈ [1,+∞),

×ni=1L
p(Xi,Ai, µi) 3 ([f1], . . . , [fn]) 7→ [f1⊗ . . .⊗ fn]

is a well-de�ned map to Lp(×ni=1Xi,⊗ni=1Ai, µ) that is n-linear, and

‖[f1⊗ . . .⊗ fn]‖p =
n∏
i=1

‖[fi]‖p .
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As usual, we will omit the equivalence class sign, and simply write f ∈ Lp(X ,A, µ)
if [f ] ∈ Lp(X ,A, µ). With this convention, we de�ne

⊗ni=1L
p(Xi,Ai, µi) := span{f1⊗ . . .⊗ fn : fi ∈ Lp(Xi,Ai, µi)}.

Proposition 4.28. In the setting of Lemma 4.26,

⊗ni=1 L
p(Xi,Ai, µi) := ⊗ni=1L

p(Xi,Ai, µi) ⊆ Lp(×ni=1Xi,⊗ni=1Ai, µ).

If, moreover, all the µi are σ-�nite, and hence they have a well-de�ned product mea-
sure⊗di=1µi on⊗di=1Ai, then⊗di=1L

p(Xi,Ai, µi) is dense in Lp(×ni=1Xi,⊗ni=1Ai,⊗ni=1µi),
i.e.,

⊗ni=1 L
p(Xi,Ai, µi) = Lp(×ni=1Xi,⊗ni=1Ai,⊗ni=1µi).

In particular,

⊗ni=1 L
p(Rdi ,B(Rdi), λdi) = Lp(Rd1+...+dn ,B(Rd1+...+dn), λd1+...+dn).

Proof. We only need to show the σ-�nite case, as the rest is obvious from the previous
considerations. Let A ∈ ⊗ni=1Ai with ⊗ni=1µi(A) < +∞. By the de�nition of the
product measure and Exercise ??, for every ε > 0 there exist B1,k,ε× . . .×Bn,k,ε ∈
A1× . . .×An, k ∈ [nε], such that

ε > (⊗ni=1µi) (A4(B1,k,ε× . . .×Bn,k,ε))

=

∫ ∣∣1A − 1B1,k,ε×...×Bn,k,ε
∣∣p d(⊗ni=1µi) =

∫ ∣∣1A −⊗ni=11Bi,k,ε
∣∣p d(⊗ni=1µi),

and hence 1A ∈ ⊗ni=1 L
p(Rdi ,B(Rdi), λdi). Since the subspace spanned by the indi-

cator functions of measurable sets with �nite measure is dense in Lp, the statement
follows.

Corollary 4.29. Let (Xi,Ai, µi), i ∈ [n], be σ-�nite measure spaces. If for every
i ∈ [n], span{fi,j : j ∈ Ji} is dense in Lp(Xi,Ai, µi) then

span{fj := ⊗ni=1fi,ji : j ∈ ×ni=1Ji} is dense in Lp (×ni=1Xi,⊗ni=1Ai,⊗ni=1µi) .

4.4 Linear and multilinear operators

De�nition 4.30. Let X, Y be vector spaces. A map A : dom(A)(⊆ X) → Y is
called a linear map or linear operator if dom(A) is a linear subspace in X, and A
is preserves linear combinations, i.e., for any x1, . . . , xr ∈ dom(A), λ1, . . . , λn ∈ K,
r ∈ N,

A

(
r∑
i=1

λixi

)
=

r∑
i=1

λiA(xi).

When Y = K, a linear map ϕ : dom(ϕ)(⊆ X)→ K is called a linear functional.
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Remark 4.31. For a linear operator we often do not put a bracket around its
argument, i.e., we write Ax instead of A(x).

De�nition 4.32. For a linear operator A : dom(A)(⊆ X) → Y between vector
spaces X, Y , let

ker(A) := {x ∈ X :, Ax = 0} ⊆ X

be the kernel of A, and

ran(A) := {Ax : x ∈ X} ⊆ Y

be the range of A.

Remark 4.33. We may also use the notations kerA and ranA, without brackets
around the operator.

Remark 4.34. The range of an operator is also often called its image, and denoted
by Im(A).

Exercise 4.35. Show that for a linear operator A : dom(A)(⊆ X) → Y , ker(A)
and ran(A) are linear subspaces in X and Y , respectively.

Lemma 4.36. Let A : dom(A)(⊆ X) → Y be a linear operator between vector
spaces X, Y . The following are equivalent:

(i) A is injective, i.e., x1, x2 ∈ dom(A), Ax1 = Ax2 =⇒ x1 = x2.

(ii) kerA = {0}.

(iii) There exists a linear operator B : ran(A)→ X such that BA = Idom(A).

(iv) There exists a linear operator B : ran(A)→ X such that AB = Iran(A).

(v) There exists a unique linear operator A−1 : ran(A)→ X such that

A−1A = Idom(A), AA−1 = Iran(A).

De�nition 4.37. Let A : dom(A)(⊆ X) → Y be a linear operator between vector
spaces X, Y . We say that A is invertible if any (and hence all) of (i)�(v) in Lemma
4.36 hold, and we call A−1 the inverse of A.

De�nition 4.38. Let A : dom(A)(⊆ X) → Y be a map between sets X, Y . The
graph of A is

graph(A) := {(x,Ax) : x ∈ dom(A)} ⊆ X × Y.
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Remark 4.39. Clearly, if X, Y are vector spaces and A is linear then graph(A) is a
linear subspace of X × Y .

Exercise 4.40. Let X, Y be vector spaces,

V : X × Y → X × Y, V : (x, y) 7→ (y, x), x ∈ X, y ∈ Y.

Show that a linear operator A : dom(A)(⊆ X) → Y is invertible if and only if
V graph(A) is the graph of an operator, and in this case

V graph(A) = graph(A−1). (4.3)

Solution: Hidden.

4.5 Operator norm

De�nition 4.41. Let A : dom(A)(⊆ X)→ Y be a linear operator between normed
spaces X, Y . The norm of A is

‖A‖ := inf{M ≥: ‖Ax‖ ≤M ‖x‖ , x ∈ dom(A)}.

A is called bounded if ‖A‖ < +∞, and unbounded otherwise. (Note that the in�mum
of the empty set is +∞.)

Exercise 4.42. Let A : dom(A)(⊆ X) → Y be a linear operator between normed
spaces X, Y . Show that

‖A‖ = sup{‖Ax‖ : x ∈ dom(A), ‖x‖ ≤ 1}
= sup{‖Ax‖ : x ∈ dom(A), ‖x‖ = 1}

= sup

{
‖Ax‖
‖x‖

: x ∈ dom(A) \ {0}
}
.

Proposition 4.43. Let A : dom(A)(⊆ X) → Y be a linear operator between
normed spaces X, Y . The following are equivalent:

(i) A is continuous;

(ii) A is continuous at 0;

(iii) A is bounded.

Proof.
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De�nition 4.44. For normed spaces X, Y , let

B(X, Y ) := {A : X → Y everywhere de�ned bounded linear},

and

B(X) := B(X,X).

Example 4.45. Let (X ,A, µ) be a measure space, and f : (X ,A) → K be a
measurable function. The multiplication operator Mf may be de�nd on any of the
Lp(X ,A, µ) spaces as

dom(Mf ) := {g ∈ Lp(X ,A, µ) : fg ∈ Lp(X ,A, µ)}, Mfg := fg

for any g ∈ Lp(X ,A, µ). We have

‖Mf‖ = ‖f‖∞ ;

in particular, Mf is bounded if and only if f is essentially bounded.
Indeed...

Example 4.46. For x ∈ Rd, let πk(x) := xk, k ∈ [d], be the projection onto the k-th
component. It is easy to see that πk is a measurable function. The corresponding
multiplication operator

Qk := Mπk , (Qkf)(x) := xkf(x), f ∈ L2(Rd),

is called in quantum mechanics the k-th position operator of a particle moving in
Rd. According to the previous example, ‖Qk‖ = +∞, i.e., Qk is unbounded.

Exercise 4.47. Let f : Rd → C be a measurable locally integrable function, i.e., for
any compact set K ⊆ Rd,

∫
k
|f | dλ < +∞. Then f de�nes a linear functional 〈f | as

dom(〈f |) := C∞0 (Rd) ⊆ Lp(Rd), 〈f | g := 〈f, g〉 :=

∫
Rd
fg dλ, g ∈ C∞0 (Rd),

where p ∈ [1,+∞). Show that 〈f | is bounded if and only if f ∈ L
p−1
p (Rd).

(Hint: Use the Hölder inequality for the �if� part.)

For a function f : Rd → C, let

∂kf(x) :=
∂

∂xk
f(x) := lim

t→+∞

f(x+ t1{k})− f(x)

t
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if the limit exists; this is the k-th partial derivative of f at x. If f is locally integrable
and its d-th partial derivative exists at every point x ∈ Rd, and ∂df is continuous,
then for every g ∈ C∞0 (Rd),

〈f | ∂dg =

∫
Rd
f ∂dg dλ

=

∫
Rd−1

(∫
R
f(x1, . . . , xd)∂dg(x1, . . . , xd) dλ(xd)

)
dλ(x1, . . . , xd−1)

=

∫
Rd−1

[fg]+∞−∞︸ ︷︷ ︸
=0

−
∫
R
∂df(x1, . . . , xd)g(x1, . . . , xd) dλ(xd)

 dλ(x1, . . . , xd−1)

= −
∫
Rd
∂df(x1, . . . , xd)g(x1, . . . , xd) dλ(x1, . . . , xd)

= 〈−∂df | g.

Similarly, if the k-th partial derivative of f exists at every point x ∈ Rd, and ∂kf
is continuous, then 〈f | ∂kg = −〈∂kf | g for every g ∈ C∞0 (Rd). This motivates to
introduce the following:

De�nition 4.48. In the setting of Exercise 4.47, the linear functional

dom(∂kf) := C∞0 (Rd), ∂kf : g 7→ −
∫
Rd
f ∂kg dλ, g ∈ C∞0 (Rd),

is called the distributional derivative of f .

Example 4.49. The k-th momentum operator of a particle moving in Rd is de�ned
as

dom(Pk) := {f ∈ L2(Rd) : ∂kf ∈ L2(Rd)}, Pkf := −i∂kf.

Exercise 4.50. Show that dom(Pk) is dense, and Pk is unbounded, i.e., ‖Pk‖ = +∞.

Exercise 4.51. The evaluation functional at point x is de�ned as

dom(δx) := {f ∈ Lp(Rd) : f continuous at x}, δxf := f(x).

Show that for any x ∈ Rd, dom(δx) is dense, and δx is unbounded, i.e., ‖δx‖ = +∞,
for any p ∈ [1,+∞).
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4.6 Closed operators

The following relation between boundedness of the operator and closedness of its
graph is easy to see:

Lemma 4.52. Consider a linear operator A : dom(A)(⊆ X)→ Y between normed
spaces X, Y . If dom(A) is closed and A is bounded then graph(A) is closed.

Proof. Let (xn)n∈N ⊆ dom(A) be such that

xn −−−−→
n→+∞

x ∈ X, Axn −−−−→
n→+∞

y ∈ Y.

Closedness of dom(A) then implies x ∈ dom(A), and boundedness of A implies

Ax = lim
n→+∞

Axn = y.

Thus, (x, y) ∈ graph(A).

A highly non-trivial fact, called the closed graph theorem, is that if X and Y are
Banach spaces then the above statement can be extended to the following:

Theorem 4.53. (Closed graph theorem)
Let A : dom(A)(⊆ X)→ Y be a linear operator between Banach spaces X, Y . Any
two of the following properties imply the third:

(i) dom(A) is closed;

(ii) A is bounded;

(iii) graph(A) is closed.

Proof. We have seen in Lemma 4.52 that (i) and (ii) implies (iii). The implication
(ii)+(iii)=⇒(i) is easy, and we leave its proof to Exercise 4.54.

The implication (i)+(iii)=⇒(ii) is a consequence of the Baire category theorem,
and its proof is beyond the scope of these notes. We refer the interested reader
to [?, Theorem III.12].

Exercise 4.54. Prove the implication (ii)+(iii)=⇒(i) in Theorem 4.53.

According to the above theorem, having a closed graph is a weaker property
than being everywhere de�ned and bounded. Most operators that we encounter in
quantum physics are de�ned on a dense but not closed subspace, and they are not
bounded. However, they are self-adjoint, and, as we will see below, this implies
that their graphs are closed. Hence, it is exactly this weaker property of having a
closed graph that will be relevant for our investigations. Therefore, we introduce the
following:
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De�nition 4.55. Let A : dom(A)(⊆ X)→ Y be a linear operator between normed
spaces X and Y . We say that A is closed if graph(A) is closed.

We say that A is closable if graph(A) is the graph of an operator A, which we
call the closure of A.

Exercise 4.56. Show that A is closable if and only if it has a closed extension, and
its closure is the smallest such closed extension.

Exercise 4.57. Let A : dom(A)(⊆ X)→ Y be an injective linear operator between
normed spaces X, Y . Show that A is closable if and only if A−1 is closable, and in
this case A is invertible with

A
−1

= A−1. (4.4)

Solution: Hidden.

As it turns out, bounded operators into a Banach space are always closable:

Proposition 4.58. Let A : dom(A)(⊆ X)→ Y be a linear operator from a normed
space X into a Banach space Y . If A is bounded then it has a unique extension to
dom(A) with the same norm, and it is exactly the closure of A. Moreover,

dom(A) = dom(A).

Proof. Let x ∈ dom(A). Then there exists a sequence (xn)n∈N ⊆ dom(A) such that
limn xn = x. Boundedness of A implies that ‖Axn − Axm‖ ≤ ‖A‖ ‖xn − xm‖ → 0
as n,m → +∞, i.e., (Axn)n∈N is a Cauchy sequence in Y . Since Y is complete,
there exist a y ∈ Y such that y = limnAxn. It is easy to see that (i) this y does
not depend on the particular sequence (xn)n∈N converging to y, and hence we can
introduce the notation y =: Âx; (ii) the map x 7→ Âx is linear; (iii) if x ∈ dom(A)
then Âx = Ax. This proves that Â is an extension of A, dom(Â) = dom(A), and∥∥∥Â∥∥∥ = ‖A‖ is easy to verify. Since dom(Â) is closed and Â is bounded, Lemma 4.52

implies that Â is closed. Hence, A is closable and A ⊆ Â. Finally, if x ∈ dom(Â)
then, by the above, there exists a exists a sequence (xn)n∈N ⊆ dom(A) such that
limn xn = x and (Axn)n∈N is convergent, i.e., x ∈ dom(A). Thus, Â ⊆ A, and the
proof is complete.

Exercise 4.59. Let A : dom(A)(⊆ X) → Y be a closable linear operator between
normed spaces X, Y .

(i) Show that

dom(A) ⊆ dom(A), ran(A) ⊆ ran(A).
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(ii) Show that if X, Y are Banach spaces then

dom(A) = dom(A) ⇐⇒ A is bounded.

Exercise 4.60. Let A : dom(A)(⊆ X) → Y be a linear operator from a normed
space X into a Banach space Y . Show that if there exist positive constants m,M ∈
(0,+∞) such that

m ‖x‖ ≤ ‖Ax‖ ≤M ‖x‖ , x ∈ dom(A),

then A is closable, and

dom(A) = dom(A), ran(A) = ran(A), (4.5)

and m ‖x‖ ≤
∥∥Ax∥∥ ≤ M ‖x‖, x ∈ dom(A). Conclude that an isometric operator is

always closable and its closure is again an isometric operator.

Solution: Hidden.

4.7 Hilbert spaces

De�nition 4.61. Let V,W be vector spaces over the scalar �eld K = R or K = C.
We say that a map γ : V × V → W is a sesquilinear map if it is linear in its second
variable and conjugate linear in the �rst variable:

γ(y, c1x1 + c2x2) = c1γ(y, x1) + c2γ(y, x2), x1, x2, y ∈ V, c1, c2 ∈ K;

γ(c1y1 + c2y2, x) = c1γ(y1, x) + c2γ(y2, x), x, y1, y2 ∈ V, c1, c2 ∈ K.

When K = R, c = c for every c ∈ K, and conjugate linearity is the same as linearity,
so a sesquilinear map is simply a bilinear map.

Remark 4.62. In the Mathematics literature the convention is usually the opposite
to the above, i.e., a sesquilinear map is de�ned to be linear in its �rst, and conjugate
linear in its second variable. We follow the Physics convention, as it allows for the
use of the very convenient Dirac formalism (see later).

Exercise 4.63. Let V,W be complex vector spaces, and γ : V × V → W be a
sesquilinear map. Show that it satis�es the (complex) polarization identity

γ(x, y) =
1

4

4∑
k=1

ikγ(ikx+ y, ikx+ y), x, y ∈ V. (4.6)

Prove that if A : V → V is a linear operator then

γ(x,Ay) =
1

4

4∑
k=1

ikγ(ikx+ y, A(ikx+ y)), x, y ∈ V. (4.7)
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Solution: (4.6) follows by a straightforward computation. Note that γA(x, y) :=
γ(x,Ay) is again a sesquilinear from, and (4.7) is nothing else but the polarization
identity for γA.

Exercise 4.64. Let V,W be real vector spaces, and γ : V × V → W be a bilinear
map. Show that it satis�es the (real) polarization identity

1

4
[γ(x+ y, x+ y)− γ(x− y, x− y)] =

1

2
γ(x, y) +

1

2
γ(y, x).

Conclude that if γ is symmetric, i.e., γ(x, y) = γ(y, x), x, y ∈ V , then

γ(x, y) =
1

4
[γ(x+ y, x+ y)− γ(x− y, x− y)]

=
1∑

k=0

(−1)kγ((−1)kx+ y, (−1)kx+ y).

We will mainly be interested in the case where W = K:

De�nition 4.65. Let V be a vector space over K = R or K = C. A sesquilinear
map γ : V × V → K is called a sesquilinear form.

We say that a sesquilinear form γ : V × V → K is

• Hermitian, if γ(y, x) = γ(x, y), x, y ∈ V ;

• positive semi-de�nite, if γ(x, x) ∈ R≥0, x ∈ V ;

• positive de�nite, if γ(x, x) ∈ R>0, x ∈ V \ {0}.

When K = R, a sesquilinear form is also called a bilinear form.

Remark 4.66. Note that when K = R, a sesquilinear form γ : V × V → K is
Hermitian if and only if it is symmetric, i.e., γ(y, x) = γ(x, y), x, y ∈ V .

Remark 4.67. Note that for a sesquilinear form γ : V × V → K, γ(0, 0) = 0, and
hence for a positive de�nite sesquilinear form we have γ(x, x) ≥ 0, with equality if
and only if x = 0.

Exercise 4.68. Let γ : V × V → K be a positive semi-de�nite sesquilinear form.

(i) Prove that if K = C then γ is Hermitian.

(Hint: Use the polarization identity.)

Assume for the rest that γ is Hermitian also when K = R.
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(ii) Show that for any x, y ∈ V ,

γ(x+ y, x+ y) = γ(x, x) + 2Re γ(x, y) + γ(y, y).

(iii) Prove that γ satis�es the Cauchy-Schwarz inequality

|γ(x, y)|2 ≤ γ(x, x)γ(y, y), x, y ∈ V. (4.8)

(Hint: Use that γ(x+ ty, x+ ty) ≥ 0 for all t ∈ R.)

(iv) Prove that ‖x‖γ := γ(x, x)1/2, x ∈ V , de�nes a semi-norm on V , and it is a
norm if and only if γ is positive de�nite.

(Hint: Use the Cauchy-Schwarz inequality to prove the triangle inequality.)

Assume for the rest that γ is positive de�nite.

(v) Prove that the Cauchy-Schwarz inequality (4.8) holds with equality if and only
if x and y are linearly dependent, if and only if there exists a constant λ ∈ C
such that x = λy or y = λx.

(vi) Prove that for x ∈ V ,

x = 0 ⇐⇒ γ(x, y) = 0 ∀y ∈ V.

(vii) Prove that for two linear operators A,B : V → V ,

A = B ⇐⇒ γ(y, Ax) = γ(y,Bx) ∀x, y ∈ V
⇐⇒ γ(x,Ax) = γ(x,Bx) ∀x ∈ V.

Solution: Hidden.

De�nition 4.69. A positive semi-de�nite Hermitian sesquilinear form on a vector
space over K = R or K = C is called a (real or complex) inner product. We will
normally denote an inner product by 〈., .〉.

A pair (H, 〈., .〉), where 〈., .〉 is an inner product on the vector space H, is called
an inner product space. We will normally use the shorter terminology �H is an inner
product space�.

When H is a �nite-dimensional inner product space, it is also called a �nite-
dimensional Hilbert space (with respect to that inner product).

De�nition 4.70. LetH be an inner product space. We say that two vectors x, y ∈ H
are orthogonal, in notation, x ⊥ y, if 〈x, y〉 = 0.
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We may rewrite the �ndings of Exercises 4.63 and 4.68 as

• An inner product on H de�nes a norm on H by

‖x‖ :=
√
〈x, x〉, x ∈ H. (4.9)

• 〈x, y〉 =
1

4

4∑
k=1

ik
∥∥ikx+ y

∥∥2
, x, y ∈ H (when K = C),

〈x, y〉 =
1

4

1∑
k=0

(−1)k
∥∥(−1)kx+ y

∥∥2
, x, y ∈ H (when K = R),

(polarization)

• | 〈x, y〉 | ≤ ‖x‖ ‖y‖ with equality if and only if x, y are linearly dependent

(Cauchy-Schwarz)

• x = 0 ⇐⇒ x ⊥ y ∀y ∈ H.

• For A,B ∈ Lin(H): A = B ⇐⇒ 〈x,Ax〉 = 〈x,Bx〉 ∀x ∈ H.

The following is the canonical example of a �nite-dimensional Hilbert space:

Example 4.71. Let Cd = {z = (z1, . . . , zd) : zi ∈ C} denote the vector space of
d-tuples of complex numbers, with the usual coordinate-wise addition and multpli-
cation of scalars. Then

〈z, w〉 :=
d∑
i=1

z̄iwi, z, w ∈ Cd,

de�nes an inner product on Cd, with induced norm

‖z‖ =

√√√√ d∑
i=1

|zi|2.

These are the standard Euclidean inner product and norm on Cd.

Example 4.72. The following is a slightly more abstract version of the previous
example. For a �nite set Ω, let

HΩ := l2(Ω) := CΩ, 〈f, g〉 :=
∑
ω∈Ω

f(ω)g(ω), f, g ∈ l2(Ω).

That is, the Hilbert space associated to Ω is the space of complex-valued functions
on Ω with its standard inner product. The choice Ω := [d] gives back Example 4.71.
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Exercise 4.73. Let H be an inner product space and ‖.‖ be the induced norm.
Show that for any x, y ∈ H,

‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 ,

and conclude that the norm ‖.‖ satis�es the parallelogram identity :

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2) , x, y ∈ H. (4.10)

Conclude that if x, y ∈ H are unit vectors then∥∥∥∥x+ y

2

∥∥∥∥2

= 1− 1

4
‖x− y‖2 . (4.11)

Remark 4.74. John von Neumann showed that the parallelogram identity (4.10) is
also su�cient for a norm to be derived from an inner product.

Remark 4.75. A normed space (V, ‖.‖) is called uniformly convex if there exists a
function ε : [0, 2] → [0,+∞) such that ε(t) > 0 for t > 0, limε↘0 = 0 = ε(0), and
for any unit vectors x, y ∈ V ,∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− ε(‖x− y‖).

It is easy to see from (4.11) that any Hilbert space is uniformly convex.

Exercise 4.76. (i) Show that for any vector x in an inner product space H,

‖x‖ = sup{| 〈y, x〉 | : ‖y‖ ≤ 1, y ∈ H}.

(ii) Show that for any linear operator A ∈ Lin(H,K) between inner product spaces
H,K,

‖A‖ = sup{| 〈y, Ax〉 | : ‖x‖ , ‖y‖ ≤ 1, x ∈ H, y ∈ K}.

Score: 2+2=4 points.

De�nition 4.77. We say that a Hermitian positive semi-de�nite sesquilinear form
on a vector space V is a semi-inner product.

Note that every inner product is also a semi-inner product, by de�nition. A semi-
inner product (., .) that is not an inner product is di�erent from an inner product in
that (x, x) = 0 can happen even if x 6= 0, i.e., a non-zero vector may be orthogonal
to itself. The polarization identities, and (ii)�(iii) of Exercise 4.68 still hold for
semi-inner products.

As the following exercise shows, an inner product space can be obtained from a
semi-inner product space by factoring out the vectors that are orthogonal to them-
selves.
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Exercise 4.78. Let (., .) be a semi-inner product on a vector space V . De�ne

N := {x ∈ V : (x, x) = 0}.

Show that N is a subspace of V , and let H := V/N be the factor space. For every
v ∈ V , let [v] := {v + x : x ∈ N} denote the equivalence class of v. Show that

〈[v], [w]〉 := (v, w)

de�nes an inner product on H.

The concept of (semi-)inner product can be generalized to more than two vectors
in the following way:

De�nition 4.79. Let 〈., .〉 be a semi-inner product on H, and (vi)
r
i=1 be a sequence

of vectors in H. We de�ne the corresponding Gram matrix G ({vi}ri=1) as

G ({vi}ri=1) := {〈vi, vj〉}ri,j=1 .

Recall that a matrix A ∈ Cr×r is called positive semi-de�nite (PSD) if 0 ≤
〈x,Ax〉 =

∑r
i,j=1 xiAijxj for all x ∈ Cr, and positive de�nite if 0 < 〈x,Ax〉 for all

x ∈ Cr \ {0}.

Exercise 4.80. (i) Show that for any (vi)
r
i=1, the corresponding Gram matrix

G ({vi}ri=1) is positive semide�nite.

(ii) Show that if 〈., .〉 is an inner product then the Gram matrix G ({vi}ri=1) is
positive de�nite if and only if {vi}ri=1 is linearly independent. Conclude that
rkG ({vi}ri=1) = dim span{vi}ri=1.

Solution: Let Gk,l := G ({vi}ri=1)k,l = 〈vk, vl〉. For any c1, . . . , cr ∈ C,

r∑
k,l=1

ckGk,lcl =

〈
r∑

k=1

ckvk,
r∑
l=1

clvl

〉
=

∥∥∥∥∥
r∑

k=1

ckvk

∥∥∥∥∥
2

≥ 0,

showing the positive semide�nitess ofG. Moreover,
∑r

k,l=1 ckGk,lcl = 0⇐⇒‖
∑r

k=1 ckvk‖ =
0, from which the assertion about the positive de�niteness is immediate.

Now, let vi1 , . . . , vim , 1 ≤ i1 < . . . < im, be a basis for span{vi}ri=1. Then all the
columns of G can be expressed as linear combinations of the i1, . . . , im columns of G,
and hence rkG ≤ m. On the other hand, the submatrix G̃ := G({vik}mk=1) is positive
de�nite by the above considerations, and hence its columns are linearly independent.
This in turn yields that the i1, . . . , im columns of G are linearly independent, and
thus rkG ≥ m.

The converse of the above is also true, in the sense that every PSD matrix is the
Gram matrix of some sequence of vectors in a Hilbert space; see Exercise 4.277.
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Exercise 4.81. Prove the Cauchy-Schwarz inequality and its equality condition from
Exercise 4.80.

Solution: Let r := 2, v1 := x, v2 := y. Then

detG(x, y) = 〈x, x〉 〈y, y〉 − 〈x, y〉 〈y, x〉 = ‖x‖2 ‖y‖2 − | 〈x, y〉 |2.

Positive semi-de�niteness of the Gram matrix implies the non-negativity of the de-
terminant, which is equivalent to the Cauchy-Schwarz inequality. Moreover, the
determinant is zero if and only if rkG(x, y) < 2, which is equivalent to x and y being
linearly dependent, by Exercise 4.80.

De�nition 4.82. Let (H, 〈., .〉) be a semi-inner product space, and v1, . . . , vr ∈ H.
We say that u1, . . . , ur is a dual system to {vi}ri=1 if 〈uj, vi〉 = δi,j for all i, j ∈ [r].

Exercise 4.83. Let (H, 〈., .〉) be an inner product space, and v1, . . . , vr ∈ H.

(i) Show that a dual system exists for {vi}ri=1 if and only if {vi}ri=1 is linearly
independent, and in this case {ui}ri=1 is linearly independent, too. Moreover,
any dual system is of the form

uj = v̂j + v⊥j , where v̂j :=
r∑
i=1

(
G−1

)
ij
vi, and v⊥j ⊥ span{v1, . . . , vr}.

(ii) Show that the dual system is unique if and only if {vi}ri=1 is a basis in H.

(iii) Let {vi}ri=1 be a linearly independent system and {ui}ri=1 a dual system. Show
that

G ({ui}ri=1) ≥ G ({v̂i}ri=1) = G ({vi}ri=1)−1 ,

and equality holds in the �rst inequality if and only if span{u1, . . . , ur} =
span{v1, . . . , vr}.

Solution: Hidden.

4.8 The Dirac formalism

For a vector x ∈ H in an inner product space H, let

|x〉 : λ 7→ λx, λ ∈ C,
〈x| : y 7→ 〈x, y〉 , y ∈ H.

Then it is easy to see that

|x〉 ∈ Lin(K,H), 〈x| ∈ Lin(H,K) = H′;

in particular, 〈x| is a linear functional on H.
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Remark 4.84. In physics, the vector x is often identi�ed with the linear map |x〉.
This notation was introduced by P.A.M. Dirac. The vector 〈x| ∈ Lin(H;C) is called a
�bra� vector, while |x〉 ∈ Lin(C;H) is a �ket� vector, from parts of the word �bracket�.

It is also common to write a label instead of a vector in a ket; for instance, the
canonical basis of C2 is often denoted by

|0〉 :=

[
0
1

]
, |1〉 :=

[
1
0

]
,

where 0 and 1 are interpreted as the logical 0 and 1 (see Section ?? for details).
Clearly, the zero in |0〉 here is not the zero vector (since then we would have |0〉 = 0),
but a label.

Exercise 4.85. Let H,K,L be inner product spaces. Show that

(i) 〈λx1 + ηx2| = λ 〈x1|+ η 〈x2| , |λx1 + ηx2〉 = λ |x1〉+ η |x2〉
for any x1, x2 ∈ H, λ, η ∈ K.

(ii) ‖〈x|‖ = ‖|x〉‖ = ‖x‖, x ∈ H.

(iii) x 7→ |x〉 is a linear norm-preserving map from H into B(K,H), with inverse
V 7→ V 1.

(iv) x 7→ 〈x| is a conjugate linear norm-preserving map from H into H′ = B(H,K).

Norm-preserving linear or conjugate linear maps are called isometries ; we discuss
them in detail in Section 4.21. In particular, the norm-preserving property implies
that x 7→ 〈x| is injective. The Riesz representation theorem, which we prove in
Section ?? shows that it is also surjective, and hence x 7→ 〈x| gives a conjugate
linear isometric isomorphism between a Hilbert space H and its dual space H∗ of
continuous linear functionals.

Corollary 4.86. (Riesz representation theorem in �nite dimension)

If H is a �nite-dimensional inner product space then for any linear functional ϕ ∈
Lin(H,K), there exists a unique yϕ ∈ H such that

ϕ(x) = 〈yϕ, x〉 , x ∈ H.

Proof. This is just a restatement of the surjectivity of the map x 7→ 〈x|.

Remark 4.87. We will see a di�erent proof of the Riesz representation theorem for
�nite-dimensional Hilbert spaces in Proposition 4.100.

Remark 4.88. In fact, the statements in Proposition ?? and in Corollary 4.86 are
valid also in in�nite-dimensional Hilbert spaces.
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Next, we turn to the composition of operators de�ned by bra and ket vectors.
For any x, y ∈ H, the composition 〈x| ◦ |y〉 is a linear map on the one-dimensional
Hilbert space C, and hence it is given by the multiplication of a number. One can
easily see that this number is 〈x, y〉, i.e.,

〈x| ◦ |y〉 : λ 7→ λ 〈x, y〉 , λ ∈ C.

Hence, we use the identi�cation

〈x|y〉 := 〈x| |y〉 = 〈x| ◦ |y〉 ≡ 〈x, y〉 .

Remark 4.89. In the physics literature, the inner product 〈x, y〉 is usually denoted
by 〈x|y〉. We interpret this in terms of the above identi�cation.

Next, consider (possibly di�erent) inner product spaces H and K. For any x ∈ H
and y ∈ K,

|y〉〈x| := |y〉 ◦ 〈x| ∈ Lin(H,K), acts as |y〉〈x| : z 7→ 〈x, z〉 y, z ∈ H.

De�nition 4.90. The operator |y〉〈x| above is called a diad, or the diadic product
of y and x.

Exercise 4.91. (i) |x〉〈y| ◦ |z〉〈w| = 〈y, z〉 |x〉〈w|, w ∈ H, y, z ∈ K, x ∈ L.

(ii) ‖|y〉〈x|‖ = ‖x‖ · ‖y‖, x ∈ H, y ∈ K.

Remark 4.92. See Exercises ?? for further properties of the bra and ket vectors
and diadic products.

4.9 Orthonormal systems and projections

De�nition 4.93. Let H be an inner product space.

(i) A set of vectors {x1, . . . , xr} ⊆ H is an orthonormal system (ONS) if they are
pairwise orthogonal, and all of them have unit length, i.e.,

〈xi, xj〉 = δi,j =

{
1, i = j,

0, i 6= j,
i, j ∈ [r].

(ii) An orthonormal system {ei : i ∈ I} is called an orthonormal basis (ONB) for
a subspace K ⊆ H if span{ei : i ∈ I} is dense in K.
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Exercise 4.94. Let V be a �nite-dimensional vector space, and let {e1, . . . , ed} be
an algebraic basis in it. Show that the bilinear map

〈ei, ej〉 := δi,j :=

{
1, i = j,

0, i 6= j,
i, j ∈ [r],

can be uniquely extended to an inner product on V , with respect to which {e1, . . . , ed}
is an orthonormal basis.

Exercise 4.95. Let H be an inner product space.

(i) Let {e1, . . . , er} be an orthonormal system. Show that for any x ∈ H,

x−
r∑
i=1

〈ei, x〉 ei ⊥ ej, j = 1, . . . , r.

(ii) Let (xi)i∈I be a sequence of linearly independent vectors, where I = [d] for
some d ∈ N, or I = N. De�ne

v1 := x1, e1 := v1/ ‖v1‖ ,
v2 := x2 − 〈e1, x2〉 e1, e2 := v2/ ‖v2‖ ,
...

vk := xk −
k−1∑
i=1

〈ei, xk〉 ei, ek := vk/ ‖vk‖ ,

...

Show that (ei)∈I is an orthonormal system, and span{xi : i ∈ [k]} = span{ei :
i ∈ [k]} for every k ∈ I.

(iii) Conclude that in every �nite-dimensional inner product space H there exists
an ONB, and the cardinality of any ONB in H is equal to dimH.

De�nition 4.96. The procedure in Exercise 4.95 is called the Gram-Schmidt or-
thogonalization.

Exercise 4.97. Let H be an inner product space.

(i) Let {x1, . . . , xr} ⊆ H be such that the xi are pairwise orthogonal and non-zero.
Show that {x1, . . . , xr} is linearly independent.

Score: 3 points.
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(ii) Assume that H is �nite-dimensional. Show that any orthonormal basis is
also an algebraic basis of H (i.e., a maximal linearly independent set), and if
{e1, . . . , ed} is an ONB then every vector x ∈ H can be uniquely expanded in
the form

x = 〈e1, x〉 e1 + . . .+ 〈ed, x〉 ed, (4.12)

and

‖x‖2 =
d∑
i=1

| 〈ei, x〉 |2.

Remark 4.98. (4.12) is exactly the coordinate expansion of x in the basis {e1, . . . , ed}.

Example 4.99. For a �nite set Ω, consider l2(Ω) de�ned in Example 4.72. It is easy
to see that the characteristic functions 1{ω}, ω ∈ Ω, are easily seen to form an ONB
in this space that we call the canonical basis of l2(Ω).

Proposition 4.100. (Riesz representation theorem in �nite dimension)

LetH be a �nite-dimensional Hilbert space. For any linear functional ϕ ∈ Lin(H,K),
there exists a unique yϕ ∈ H such that

ϕ(x) = 〈yϕ, x〉 , x ∈ H.

Proof. Let (ei)
d
i=1 be an orthonormal basis in H. For any x ∈ H,

ϕ(x) = ϕ

(
d∑
i=1

〈ei, x〉 ei

)
=

d∑
i=1

〈ei, x〉ϕ(ei) = 〈yϕ, x〉 ,

if we de�ne

yϕ :=
d∑
i=1

ϕ(ei)ei,

showing the existence of yϕ. If y1, y2 ∈ H are such that 〈y1, x〉 = 〈y2, x〉 for all x ∈ H
then 0 = 〈y1 − y2, x〉 for all x ∈ H implies y1 = y2, showing the uniqueness of yϕ.

Exercise 4.101. Let E := {e1, . . . , ed1} and F := {f1, . . . , fd2} be orthonormal
bases in the �nite-dimensional Hilbert spaces H and K, respectively. Show that for
any A ∈ Lin(H,K), the (i, j)-entry of the matrix of A in the pair of bases (E,F ) is
〈fi, Aej〉.
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De�nition 4.102. Let H be an inner product space, and S ⊆ H be a subset in H.
We say that a vector y ∈ H is orthogonal (or perpendicular) to S, in notation y ⊥ S,
if it is orthogonal to every element of S, i.e., y ⊥ x ∀x ∈ S.

The set of vectors orthogonal to S is called the orthocomplement of S, and is
denoted by S⊥, i.e.,

S⊥ := {y ∈ H : 〈y, x〉 = 0 ∀x ∈ S}.

Exercise 4.103. Show that for any S ⊆ H,
(i) S⊥ is a subspace of H.

(ii) S⊥ = (span(S))⊥.

(iii) S ∩ S⊥ = {0}.
Score: 2+2+2=6 points.

Proposition 4.104. Let H be an inner product space, and H0 ⊆ H be a �nite-
dimensional subspace.

(i) For any x ∈ H, there exists a unique Px ∈ H0 such that x− Px ⊥ H0.

(ii) The map H 3 x 7→ Px is linear, and for any ONB (ei)
r
i=1 in H0,

P =
r∑
i=1

|ei〉〈ei| .

(iii) For any x ∈ H, Px is the unique closest element of H0 to x, i.e.,

‖x− Px‖ = inf{‖x− y‖ : y ∈ H0} =: d(x,H0),

and there are no other y ∈ H0 such that ‖x− y‖ = d(x,H0).

Proof. By Exercise 4.95, there exists an ONB in H0, and let (ei)
r
i=1 in H0 be any

such ONB. Let P :=
∑r

i=1 |ei〉〈ei|, so that for any x ∈ H, Px =
∑r

i=1 〈ei, x〉 ei. By
Exercise 4.95, x−Px ⊥ ei for all i ∈ [r], and hence x−Px ⊥ span({e1, . . . , er}) = H0,
by Exercise 4.103. Assume now that y ∈ H0 is such that x− y ⊥ H0; then

(x− y)− (x− Px)︸ ︷︷ ︸
∈H⊥0

= Px− y︸ ︷︷ ︸
∈H0

,

by which Px− y ∈ H0 ∩H⊥0 , and thus Px− y = 0, by Exercise 4.103. These prove
(i) and (ii).

For any y ∈ H0, we have

‖x− y‖2 = ‖x− Px+ Px− y‖2 = ‖x− Px‖2 + ‖Px− y‖2 ≥ ‖x− Px‖2 ,

where the second equality follows from x − Px ⊥ H0 3 Px − y. Equality holds in
the above inequality if and only if y = Px, proving (iii).
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4.10 Orthonormal bases

For every k ∈ N, let

ϕk(x) :=
1√
2π
eikx.

Note that ϕk is periodic with period 2π. Using the parametrization z = eix of the
one-dimensional torus T := {z ∈ C : |z| = 1}, we see that

ϕk(x) = zk.

For this reason, �nite linear combinations of the above functions, i.e., functions of
the form

n∑
k=−n

ckϕk ≡
n∑

k=−n

ck idkT

are called trigonometric polynomials. Obviously, the trigonometric polynomials form
a subspace in L2([−π, π]) (equivalently in L2(T)).

The following can be obtained by a straightforward computation:

Lemma 4.105. (ϕk)k∈Z is an ONS in L2([−π, π]) (equivalently in L2(T)).

Proof. Exercise.

As a consequence, for any f ∈ L2([−π, π]), the in�nite series

F(f) :=
∑
k∈Z

〈ϕk, f〉ϕk = lim
n→+∞

n∑
k=−n

〈ϕk, f〉ϕk

is convergent, and F(f) is the projection onto the closure of the space of trigono-
metric polynomials.

De�nition 4.106. We call F(f) the Fourier expansion of f , and the sequence
(〈ϕk, f〉)k∈Z ∈ l2(Z) its Fourier transform.

Our next aim is to show the following:

Theorem 4.107. The following equivalent statements are true:

(i) The functions (ϕk)k∈Z form on ONB in L2([−π, π]).

(ii) The subspace of trigonometric polynomials is dense in L2([−π, π]).

(iii) For any f ∈ L2([−π, π]), F(f) = f .
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(iv) F is a unitary from L2([−π, π]) to l2(Z).

Proof. In Proposition 4.108 below, we will show that the trigonometric polynomials
are dense in max-norm in the space of continuous periodic functions on [−π, π]. Note
that for any f ∈ L2([−π, π]),∥∥f − f1[−π+1/n,π+1/n]

∥∥2

2
=

∫
[−π,−π+1/n]∪[π−1/n,π]

|f |2 dλ→ 0

as n → +∞, due to the monotone convergence theorem. Hence, given ε > 0, we
can �nd n such that

∥∥f − f1[−π+1/n,π+1/n]

∥∥
2
< ε/3, and then, by Proposition ??, a

continuous function g such that g(−π) = g(π) = 0 and
∥∥f1[−π+1/n,π+1/n] − g

∥∥
2
<

ε/3. Finally, by Proposition 4.108, we can �nd a trigonometric polynomial h such
that

‖g − h‖2 =

(∫
[−π,π]

|g − h|2 dλ
)1/2

≤ (2π)1/2 ‖g − h‖∞ < ε/3.

Putting the above together, ‖f − h‖2 < ε. Thus, the trigonometric polynomials are
dense in L2([−π, π]).

Let us start preparing the proof of Proposition 4.108 by noting that the n-th
partial sum in the Fourier expansion can be expressed as

Fn(f)(x) :=

(
n∑

k=−n

〈ϕk, f〉ϕk

)
(x) =

n∑
k=−n

1√
2π
eikx

∫
[−π,π]

1√
2π
e−ikyf(y) dλ(y)

=

∫
[−π,π]

f(y)
1

2π

n∑
k=−n

eik(x−y)

︸ ︷︷ ︸
=:Dn(x−y)

dλ(y),

where Dn is the Dirichlet kernel. A simple summation of geometric terms yields

(2π)Dn(x) = e−inx
2n∑
k=0

eikx = e−inx
ei(2n+1)x−1

eix − 1

=
ei(n+1/2)x − e−i(n+1/2)x

eix/2 − e−ix/2
=

sin(n+ 1/2)x

sin(x/2)
,

whenever x 6= 0, and (2π)Dn(0) = 2n+ 1 = limx→0Dn(x).
As it turns out, Fn(f) does not converge in general to f in supremum norm, even

for a periodic continuous function. One might try to remedy this by looking at the
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Césaro sums

F̃N(f) :=
1

N

N−1∑
n=0

Fn(f)

in the hope that they do converge (which is indeed the case, as we will see). This
can be rewritten as

F̃N(f)(x) =

∫
[−π,π]

f(y)
1

N

N−1∑
n=0

Dn(x− y)︸ ︷︷ ︸
=:Fn(x−y)

dλ(y) =

∫
[−π,π]

f(x− u)FN(u) dλ(u),

where in the last step we assumed that f is a periodic continuous function, and x−u
is de�ned mod 2π. In the above, FN is the Fejér kernel, given by

FN(x) :=
1

N

N−1∑
n=0

Dn(x) =
1

N

∑N−1
n=0 e

i(n+1/2)x −
∑N−1

n=0 e
−i(n+1/2)x

eix/2 − e−ix/2

=
1

N

eix/2 e
iNx−1
eix−1

− e−ix/2 e−iNx−1
e−ix−1

eix/2 − e−ix/2

=
1

N

1

eix/2 − e−ix/2

(
eix/2

eiNx − 1

eix − 1
− e−ix/2 e

−iNx − 1

e−ix − 1︸ ︷︷ ︸
=eix/2 e

−iNx−1

1−eix

)

=
1

N

eix/2

eix/2 − e−ix/2︸ ︷︷ ︸
=1−e−ix

1

)(eix − 1)

(
eiNx − 1 + e−iNx − 1

)

=
1

N

2− 2 cosNx

2− cosx
=

1

N

sin2(Nx/2)

sin2(x/2)

when x 6= 0, and FN(0) = 2n+ 1 = limx→0 Fn(x).
It is clear from their de�nitions that∫

[−π,π]

Dn dλ = 1, and hence

∫
[−π,π]

Fn dλ = 1, n ∈ N. (4.13)

Moreover, note that for any 0 < δ < π there exists a cδ > 0 such that

x ∈ [−π, π] \ (−δ, δ) =⇒ sin2(x/2) > cδ =⇒ Fn(x) ≤ 1

ncδ
. (4.14)

Now we are in the position to prove the following:
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Proposition 4.108. For any f ∈ Cper([−π, π]),

lim
n→+∞

∥∥∥f − F̃n(f)
∥∥∥
∞

= 0.

In particular, the trigonometric polynomials are dense in (Cper([−π, π]), ‖.‖∞).

Proof. Let M := maxx∈[−π,π] |f(x)|. Note that f is uniformly continuous, and hence
for any ε > 0 there exists a δ > 0 such that |x− y| < δ (where the di�erence is again
mod 2π) implies |f(x)− f(y)| < ε. With such an ε and δ, we have∣∣∣F̃n(f)(x)− f(x)

∣∣∣ =

∣∣∣∣∫
[−π,π]

f(x− y)Fn(y) dλ(y)− f(x)

∫
[−π,π]

Fn(y) dλ(y)

∣∣∣∣
=

∣∣∣∣∫
[−π,π]

(f(x− y)− f(x))Fn(y) dλ(y)

∣∣∣∣
≤
∫

[−π,π]

|f(x− y)− f(x)|Fn(y) dλ(y)

=

∫
(−δ,δ)

|f(x− y)− f(x)|︸ ︷︷ ︸
≤ε

Fn(y) dλ(y)

+

∫
[−π,π]\(−δ,δ)

|f(x− y)− f(x)|︸ ︷︷ ︸
≤2M

Fn(y) dλ(y)

≤ ε+
4Mπ

ncδ
−−−−→
n→+∞

ε,

where we used (4.13) and (4.14). Note that the upper bounds are uniform in x, and

hence we obtain that for large enough n,
∥∥∥F̃n(f)− f

∥∥∥
∞
< 2ε.

Finally, we obtain that multi-variable trigonometric polynomials are dense in the
L2 space over closed boxes.

Proposition 4.109. For every j ∈ [n], let [ai, bi] ⊆ R be a non-degenerate compact
interval, and

ϕj,k(x) :=
1√

bi − ai
, x ∈ [aj, bj], k ∈ Z.

Then ϕk := ⊗nj=1ϕj,kj , k ∈ Zn, is an ONB in L2 (×ni=1[ai, bi]).

Proof. It follows by a simple change of variables in the integrals that for every j,
(ϕj,k)k∈Z is an ONB in L2([a− j, bj]), and hence the assertion follows from Corollary
4.29.
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Lemma 4.110. Assume that H1 and H2 are Hilbert spaces which contain ONBs
of the same cardinality, i.e., there exist ONBs (ek,j)j∈J in Hk, k = 1, 2. Then there
exists a unique unitary operator U : H1 → H2 such that it maps the �rst ONB into
the second one, i.e., Ue1,j = e2,j, j ∈ J .

Proof. Let Hk,0 denote the subspace spanned by {ek,j}j∈J , which is the set of (nec-
essarily �nite) linear combinations of {ek,j}j∈J . Then U0ψ :=

∑
j∈J 〈e1,j, ψ〉 e2,j,

ψ ∈ H1,0, is a well-de�ned linear operator with domU0 = H1,0, ranU0 = H2,0.
Moreover, it is obviously isometric, and hence, by Exercise 4.60, U0 is an isometric
operator with domU0 = H1,0 = H1, and ranU0 = H2,0 = H2, and thus U0 is a
unitary with the required property.

Corollary 4.111. If (ej)j∈J is an ONB in some Hilbert space H then there exists
a unique unitary U : H → l2(J) such that Uej = 1{j}, j ∈ J . In particular, H is
isomorphic to l2(J).

Proof. Immediate from Lemma 4.110.

Note that the unitary in Corollary 4.111 maps every vector in H into a function
on J , as

(Uψ)(j) = 〈ej, ψ〉 .

That is, U can be considered as the coordinate expansion in the given basis.

4.11 The adjoint of operators

Let H,K be Hilbert spaces and A : dom(A)(⊆ H)→ K be a linear operator. Let

dom(A∗) := {y ∈ K : x 7→ 〈y, Ax〉 is bounded}

By Proposition 4.58, if y ∈ dom(A∗) then x 7→ 〈y, Ax〉 has a unique extension to
a bounded linear functional on dom(A), and by the Riesz representation theorem,
there exists a unique representing vector A∗y ∈ dom(A) such that

〈A∗y, x〉 = 〈y, Ax〉 , x ∈ dom(A), y ∈ dom(A∗).

It is clear that dom(A∗) is a linear subspace, and it is easy to see that the uniqueness
of the representing vector implies that A∗ is a linear on dom(A∗), i.e., A∗ is a linear
operator.

De�nition 4.112. Let A : dom(A)(⊆ H)→ K be a linear operator. The operator
A∗ de�ned above is called the adjoint of A.

111



Exercise 4.113. Show that dom(A∗) is a linear subspace, on which A∗ is a linear
operator.

Remark 4.114. It is immediate from the de�nition that

ranA∗ ⊆ domA,

and

(ranA)⊥ ⊆ domA∗; in fact, (ranA)⊥ ⊆ kerA∗.

Vice versa, if y ∈ kerA∗ then 0 = 〈A∗y, x〉 = 〈y, Ax〉 for every x ∈ dom(A), i.e.,
y ⊥ ranA. Thus,

(ranA)⊥ = kerA∗, i.e., K = ranA⊕ kerA∗. (4.15)

Remark 4.115. It is easy to see that

‖A∗y‖ = sup{| 〈y, Ax〉 | : x ∈ dom(A), ‖x‖ ≤ 1},

and hence

‖A∗‖ = sup{‖A∗y‖ : y ∈ dom(A∗), ‖y‖ ≤ 1}
= sup{| 〈y, Ax〉 | : x ∈ dom(A), ‖x‖ ≤ 1, y ∈ dom(A∗), ‖y‖ ≤ 1}
= sup {sup{| 〈y, Ax〉 | : y ∈ dom(A∗), ‖y‖ ≤ 1} : x ∈ dom(A), ‖x‖ ≤ 1, }
≤ sup {‖Ax‖ : x ∈ dom(A), ‖x‖ ≤ 1, }
= ‖A‖ .

Moreover, if A is bounded then dom(A∗) = K, and the inequality above holds as an
equality. That is,

A is bounded =⇒ dom(A∗) = K, ‖A∗‖ = ‖A‖ =⇒ A∗ ∈ B(K,H).

In general, A∗ need not be bounded, but it is easy to see that if A is densely
de�ned then A∗ is closed. Moreover, A∗ need not be densely de�ned even if A was;
in fact, it is densely de�ned if and only if A is closable.

To prove these, we will need the following simple lemma:

Lemma 4.116. Let U : H⊕K → H⊕K be de�ned by

U(x, y) := (−y, x).

Then U is a unitary, and

(U graph(A))⊥ = graph(A∗)⊕
(
domA∗ ⊕ (domA)⊥

)
⊇ graph(A∗).
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Proof. For (y, z) ∈ K ⊕H, we have

(y, z) ⊥ U graph(A)

⇐⇒ ∀ x ∈ domA : 0 = 〈(y, z), (−Ax, x)〉 = −〈y, Ax〉+ 〈z, x〉
⇐⇒ ∀ x ∈ domA : 〈y, Ax〉 = 〈z, x〉
⇐⇒ y ∈ domA∗, A∗y − z ⊥ domA

⇐⇒ y ∈ domA∗, ∃ w ∈ (domA)⊥ : z = A∗y + w

Proposition 4.117. Let A : dom(A)(⊆ H)→ K be a densely de�ned linear opera-
tor between Hilbert spaces H and K. The following hold:

(i) A∗ is closed.

(ii) A is closable if and only if A∗ is densely de�ned, and in this case

A = A∗∗, A
∗

= A∗.

Proof. (i) By assumption, (domA)⊥ = {0}, and hence, by Lemma 4.116,

graph(A∗) = (U graph(A))⊥ ,

which, as the orthocomplement of a subspace, is closed.

(ii) See [?, Theorem VIII.1].

Corollary 4.118. For a linear operator, A : dom(A)(⊆ H)→ K,

A is densely de�ned and closed =⇒ A∗∗ = A.

In particular, this holds whenever A ∈ B(H).

De�nition 4.119. A linear operator A : dom(A)(⊆ H)→ H is

• normal, if A∗A = AA∗;

• self-adjoint, if A = A∗.

Obviously, a self-adjoint operator is also normal.

Exercise 4.120. (i) Let K ⊆ H be a closed subspace and PK the orthogonal
projection onto it. Show that PK is self-adjoint, and P 2

K = PK.
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(ii) Vice versa, show that if P ∈ B(H) is such that

P 2 = P = P ∗ then ranP is closed, and P = PranP .

De�nition 4.121. Any operator B(H) satisfying P 2 = P = P ∗ is called a projection.

Exercise 4.122. Let V : domV (⊆ H)→ K. Show that the following are equivalent:

(i) V is an isometry, i.e., ‖V x‖ = ‖x‖, x ∈ domV .

(ii) V preserves the inner product, i.e., 〈V y, V x〉 = 〈y, x〉, x, y ∈ domV .

(iii) V ∗V = IdomV .

Proposition 4.123. Let (X ,A, µ) be a measure space and f : (X ,A) → C be a
measurable function. Then

M∗
f = Mf .

In particular, Mf is closed, and it is self-adjoint if and only if f is real-valued µ-a.e.

Proof.

Exercise 4.124. Let (X ,A, µ) be a measure space.

(i) Show that for any measurable functions f, g : (X ,A)→ C,

MfMg = Mfg = MgMf .

(ii) Conclude that

M∗
fMf = M|f |2 = M∗

fMf ,

and thus Mf is normal.

4.12 The spectral theorem

The following is easy to see:

Exercise 4.125. Let A : domA(⊆ H)→ H be a linear operator and U : H → K be
a unitary. Then A is normal/self-adjoint/projection/unitary if and only if UAU∗ :
U domA(⊆ K)→ K has the same property.

Exercise 4.125 and .... yield immediately the following:
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Corollary 4.126. Let (X ,A, µ) be a measure space, f : (X ,A)→ C be a measur-
able function, and U : L2(X ,A, µ) → H be a unitary. Then UMfU

∗ is a normal
operator on H.

It is a highly non-trivial fact that the implication in Corollary 4.126 holds also
in the opposite direction. More precisely, we have the following:

Theorem 4.127. (Spectral theorem, multiplication operator form)
Let A : domA(⊆ H) → H be a linear operator. A is normal if and only if there
exists a measure space (X ,A, µ), a measurable function f : (X ,A) → C, and a
unitary operator U : L2(X ,A, µ)→ H, such that

A = UMfU
∗.

The proof of this theorem is beyond the scope of an introductory course; we
refer the interested reader to [?]. We only mention that one standard way is to
�rst prove it for bounded normal operators, and then use the Cayley transform
to obtain the spectral theorem for not necessarily bounded self-adjoint operators,
which is su�cient for the purposes of quantum physics (we won't need the spectral
theorem for unbounded normal operators that are not self-adjoint). We will discuss
the Cayley transform in detail in Section 4.15.

4.13 Unitary groups and generators

As a further important application of the functional calculus, we discuss the Schrödinger
equation in quantum mechanics. The dynamics of a closed quantum system is usually
speci�ed by the Schrödinger equation

d

dt
ψ(t) =

−i
~
Ĥψ(t), (4.16)

where ψ(t) is the state vector of the system at time t, and Ĥ is the Hamilton operator
of the system, a self-adjoint (but often unbounded) operator that is considered to be
the energy observable. In the most general case, the Hamilton operator may itself
depend on t, but here we only consider the time-independent case. For simplicity
of notation, we absorb the constant ~ in the Hamilton operator, i.e., rede�ne it as
Ĥ → Ĥ/~. A formal solution of the above di�erential equation may be given by

ψ(t) = e−iĤtψ(0), (4.17)

and another formal computation yields that U(t) = e−iĤt is a unitary operator for
every t ∈ R. It is, however, far from obvious how to make mathematically precise
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sense of the expression in (4.17). Indeed, a naive approach may be to de�ne it as
the sum of the in�nite series

+∞∑
n=0

(−it)n

n!
Ĥnψ(0). (4.18)

This works �ne as long as Ĥ is bounded, in which case it is easy to see that the series
U(t) :=

∑+∞
n=0

(−it)n
n!

Ĥn even converges in operator norm, and d
dt
U(t) = −iĤU(t),

where the implicit limit in the derivative can again be taken in the operator norm;
in particular, ψ(t) = U(t)ψ is a solution of the Schrödinger equation (4.16).

The case of an unbounded Ĥ is considerably more complicated. Indeed, it is
not too di�cult to see that in this case, D(Ĥ) ) D(Ĥ2) ) . . ., and hence Ĥnψ(0)
need not be de�ned, not to mention the convergence of the series in (4.18), even if
ψ(0) ∈ D(Ĥ), and hence the Schrödinger equation (4.16) itself makes sense. One
way to save the situation can be to �nd a dense subspace in ∩+∞

n=0D(Ĥn) for which the
sum in (4.18) makes sense and converges, in which case it is also not too di�cult to
see that it is a solution of the Schödinger equation (4.16); these are called analytical
vectors for Ĥ. However, this is a strictly smaller subspace than D(Ĥ), on which the
Schrödinger equation is well-de�ned, not to mention the fact that if the solution is
indeed given by unitary operators then those are everywhere de�ned, simply by the
de�nition of unitarity.

Instead, we may use functional calculus to obtain the following:

Theorem 4.128. Let H ∈ PVM(H,R) be a real-valued PVM, and Ĥ be the corre-
sponding operator. For every t ∈ R, let ϕt(x) := e−itx, x ∈ R.

(i) U(t) := e−itĤ := ϕt(H) is a unitary for every t ∈ R, and U(0) = I.

(ii) U(t+ s) = U(t)U(s) for every t, s ∈ R, i.e., (U(t))t∈R is a one-parameter group
of unitaries.

(iii) limt→t0 U(t)ψ = U(t0)ψ for any t0 ∈ R, and ψ ∈ H.

(iv) The following are equivalent:

a) ψ ∈ D(Ĥ).

b) For every t ∈ R,

∃ d
dt
U(t)ψ := lim

s→t

U(s)− U(t)

s− t
ψ = U(t)(−iĤ)ψ = (−iĤ)U(t)ψ.

c) The limit lims→0
U(s)−I

s
ψ exists.
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(v) For any ψ ∈ D(Ĥ),

Ĥψ = i lim
s→0

U(s)− I
s

ψ.

Proof. Since |ϕt(x)| = 1 for all x ∈ R, U(t) is a unitary according to Exercise 5.66,
proving (i). We have ϕt+s = ϕtϕs, and thus U(t + s) = ϕt+s(Ĥ) = ϕt(Ĥ)ϕs(Ĥ)
according to Proposition 5.58; equality holds because ϕt is bounded. This proves
(ii). We have

‖U(t)ψ − U(t0)ψ‖2 =
∥∥∥(ϕt − ϕt0)(Ĥ)ψ

∥∥∥2

=

∫
|ϕt − ϕt0|2 dPψ −−−−→

n→+∞
0,

where the �rst equality is again due to Proposition 5.58, and the convergence follows
from the Lebesgue dominated convergence theorem, as limt→t0 ϕt = ϕt0 pointwise,
and |ϕt − ϕt0| ≤ 2, which is an integrable dominating function. This proves (iii).

To prove (iv), assume �rst that ψ ∈ D(Ĥ). For every x ∈ R, lims→t
ϕs(x)−ϕt(x)

s−t =

−ixe−itx. Moreover,∣∣∣∣ϕs(x)− ϕt(x)

s− t
+ ixϕt(x)

∣∣∣∣ =
∣∣e−itx∣∣ ∣∣∣∣e−i(s−t)x − 1

s− t
+ ix

∣∣∣∣ ≤ 2|x|,

where we used that |eiy − 1| ≤ |y|, y ∈ R. Thus,∥∥∥∥U(s)− U(t)

s− t
ψ + (iĤ)U(t)ψ

∥∥∥∥2

=

∫ ∣∣∣∣ϕs − ϕts− t
+ i(idR ϕt)

∣∣∣∣2 dPψ −−−−→n→+∞
0,

by the Lebesgue dominated convergence theorem, since the integrand goes to zero
pointwise, and 4 id2

R is an integrable dominating function. This proves a)=⇒b), and
b)=⇒c) is trivial.

Let us now de�ne

D(A) :=

{
ψ ∈ H : ∃ lim

s→0

U(s)− I
s

ψ

}
, Aψ := i lim

s→0

U(s)− I
s

ψ, ψ ∈ D(A).

By a)=⇒c), Ĥ ⊆ A. Moreover, for any ψ1, ψ2 ∈ D(A),

〈ψ1, Aψ2〉 = lim
s→0

1

s
〈ψ1, i(U(s)− I)ψ2〉 = lim

s→0

i

s
〈(U(s)− I)∗ψ1, ψ2〉

= lim
s→0

i

s
〈(U(−s)− I)ψ1, ψ2〉 = i 〈iAψ1, ψ2〉 = 〈Aψ1, ψ2〉 ,

i.e., A is symmetric. Since Ĥ is self-adjoint by Exercise 5.66, and self-adjoint op-
erators are maximally symmetric, we see that A = Ĥ, from which c)=⇒a) follows
immediately, and we also get (v).
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Remark 4.129. Theorem 4.128 suggests to take the unitary group U(t) = ϕt(Ĥ) as
the fundamental object describing the time evolution of a quantum system instead
of the Schrödinger equation, leading to the following postulate:

If the initial state of the system at time 0 is ψ(0) then the state
of the system at time t is ψ(t) = U(t)ψ(0), where U(t) := ϕt(Ĥ),
and the Schrödinger equation (4.16) holds for every t ∈ R whenever
ψ(0) ∈ D(Ĥ).

De�nition 4.130. A collection of unitary operators (U(t))t∈R ⊆ B(H) is called a
one-parameter group of unitaries, or a unitary group for short, if U(t+s) = U(t)U(s)
for every t, s ∈ R. This means that t 7→ U(t) is a unitary representation of the
commutative group (R,+) on H.

A unitary group is called strongly continuous, if limt→0 U(t)ψ = ψ for every
ψ ∈ H, and norm continuous if limt→0 ‖U(t)− I‖ = 0.

Theorem 4.128 can be reversed in the following precise sense:

Theorem 4.131. (Stone - von Neumann)

Let (U(t))t∈R be a strongly continuous unitary group, and de�ne

D(Ĥ) :=

{
ψ ∈ H : ∃ lim

t→0

1

t
(U(t)ψ − ψ)

}
,

Ĥψ := lim
t→0

−i
t

(U(t)ψ − ψ), ψ ∈ D(Ĥ).

Then D(Ĥ) is a dense subspace, and Ĥ is a self-adjoint operator on it. Moreover,

U(t) = eitĤ , t ∈ R, where the latter is de�ned by functional calculus using the
spectral PVM H of Ĥ, as in Theorem 4.128.

We omit the rather non-trivial proof, and refer to Theorem VIII.8 in [?] instead.

Theorems 4.128 and 4.131 give a one-to-one correspondence between self-adjoint
operators (equivalently, real-valued PVMs) and strongly continuous unitary groups
on a given Hilbert space. As the following two exercises show, bounded self-adjoint
operators correspond exactly to norm continuous unitary groups under this corre-
spondence.

Exercise 4.132. Let Ĥ be an unbounded self-adjoint operator, with corresponding
spectral PVM H, and (U(t))t∈R be the generated unitary group, as de�ned in Theo-
rems 4.128. Show that there exists a sequence (tn)n∈N ⊆ R such that limn→+∞ tn = 0,
and a sequence (ψn)n∈N of unit vectors in H, such that

lim
n→+∞

‖U(tn)ψn − ψn‖ = 2. (4.19)

Conclude that the unitary group is not norm continuous.
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Solution: Note that for any t ∈ R and ψ ∈ H,

‖U(t)ψ − ψ‖2 = ‖U(t)ψ‖2 + ‖ψ‖2 − 〈U(t)ψ, ψ〉 − 〈ψ,U(t)ψ〉

= 2 ‖ψ‖2 −
∫

(eitx + e−itx) dPψ(x) = 2 ‖ψ‖2 − 2

∫
cos(tx) dPψ(x).

Clearly,∣∣∣∣∫ cos(tx) dPψ(x)

∣∣∣∣ ≤ ∫ |cos(tx)|︸ ︷︷ ︸
≤1

dPψ(x) ≤ 1 · Pψ(R) = ‖ψ‖2 ,

by which ‖U(t)ψ − ψ‖ ≤ 2 for any unit vector ψ.
By assumption, there exists a sequence (xn)n∈N ⊆ suppH such that limn→+∞ |xn| =

+∞. For every n ∈ N, let tn := π/xn. By assumption, Pn := P ((xn−1, xn+1)) 6= 0,
and thus we can choose a unit vector ψn ∈ ranPn for every n ∈ N. Then suppPψn ⊆
(xn − 1, xn + 1), and thus∫

cos(tnx) dPψn(x) =

∫
(xn−1,xn+1)

cos(tnx) dPψn(x)

≤ cos(π − 1/xn)Pψn((xn − 1, xn + 1))︸ ︷︷ ︸
=‖Pnψn‖2=1

−−−−→
n→+∞

−1,

where the inequality holds for all large enough n. Thus, lim infn→+∞ ‖U(tn)ψn − ψn‖2 ≥
4 ‖ψn‖2 = 4, completing the proof.

By (4.19), lim infn→+∞ ‖U(tn)− I‖ ≥ 2, and hence U is not norm continuous.

Exercise 4.133. Let Ĥ ∈ B(H)sa be a bounded self-adjoint operator on H.
(i) Show that for every t ∈ R, the series

U(t) :=
+∞∑
n=0

1

n!
(−itĤ)n

is absolute convergent, and de�nes a unitary operator.

(ii) Let H be the spectral PVM of Ĥ. Show that U(t) = ϕt(H), t ∈ R, with the
notations of Theorem 4.128.

(Hint: Use Corollary 5.60.)

(iii) Show that for any t ∈ R,

lim
s→t

U(s)− U(t)

s− t
= −iĤU(t) = −iU(t)Ĥ,

where the limit is in the operator norm. That is, t 7→ U(t) is norm di�erentiable
at any t ∈ R, and its derivative is (−iĤ)U(t).
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(iv) Conclude that

Ĥ = lim
t→0

−i
t

(U(t)− I),

where the limit is again in the operator norm.

4.14 Symmetric operators

Lemma 4.134. For a linear operator A : dom(A)(⊆ H)→ H,

〈y, Ax〉 = 〈Ay, x〉 , x, y ∈ dom(A) ⇐⇒ A ⊆ A∗. (4.20)

Proof. Trivial.

De�nition 4.135. An operator satisfying either (and hence both) properties in
(4.20) is called symmetric.

Corollary 4.136. (i) The adjoint of a densely de�ned symmeric operator is densely
de�ned.

(ii) A densely de�ned symmetric operator is closable, and its closure is again sym-
metric.

Proof. (i) and the �rst assertion in (ii) are immediate from the de�ntion and Propo-
sition 4.117. To see the second assertion in (ii), let x, y ∈ dom(A), so that there
exist sequences (xn)n∈N ⊆ dom(A), (yn)n∈N ⊆ dom(A), such that

lim
n
xn = x, lim

n
yn = y, lim

n
Axn = Ax, lim

n
Ayn = Ay.

Then 〈
y, Ax

〉
= lim

n
〈yn, Axn〉 = lim

n
〈Ayn, xn〉 =

〈
A, x

〉
,

showing that A is indeed symmetric.

It is clear from the de�nition that self-adjoint operators are symmetric, but not
the other way around.

Lemma 4.137. Let A : dom(A)(⊆ H) → H be a symmetric operator. For any
λ ∈ C with Imλ 6= 0, A+ λI is injective, and its inverse is bounded. Moreover,(

ker(A∗ + λI)
)⊥

= ran(A+ λI) = ran(A+ λI). (4.21)

120



Proof. We have

‖(A+ λI)x‖2 = ‖Ax+ (Reλ)x‖2 + | Imλ|2 ‖x‖2 ≥ | Imλ|2 ‖x‖2 ,

from which the injectivity of A + λI is immediate, and ‖(A+ λ)−1‖ ≤ | Imλ|−1,
showing the boundedness of (A+ λ)−1. According to Proposition 4.58, boundedness
of (A+ λI)−1 implies that it has a unique extension onto the closure of its domain,
and it is given by

(A+ λI)−1 =
(
A+ λI

)−1
= (A+ λI)−1, (4.22)

where the �rst equality is due to Exercise 4.57, and the second equality follows from
Exercise ??. Finally,

ran(A+ λI) = dom(A+ λI)−1 = dom((A+ λI)−1)

= dom
(
(A+ λI)−1

)
= ran(A+ λI),

where the �rst equality is by de�nition, the second equality is due to Proposition 4.58,
the third equality is due to (4.22), and the last equality is again by de�nition.

Corollary 4.138. Every eigenvalue of a symmetric operator is real.

Proof. According to Lemma 4.137, A − λI is injective when Imλ 6= 0, from which
the assertion follows immediately.

Proposition 4.139. For a symmetric operator A : dom(A)(⊆ H)→ H, the follow-
ing are equivalent:

(i) A is essentially self-adjoint.

(ii) For any λ ∈ C \ R, ker(A∗ + λI) = {0}.

(iii) For some λ ∈ C \ R, ker(A∗ + λI) = {0} = ker(A∗ + λI).

(iv) For any λ ∈ C \ R, ran(A+ λI) = H.

(v) For some λ ∈ C \ R, ran(A+ λI) = H = ran(A+ λI).

Proof. (i)=⇒(ii): By assumption, (A∗)∗ = A = (A)∗ = A∗, where the �rst and the
last equality hold for any closable operator. In particular, A∗ is symmetric, and (ii)
follows immediately from Lemma 4.137.

(ii)⇐⇒(iv) and (iii)⇐⇒(v) are immediate from Lemma ??, and (ii)=⇒(iii) and
(iv)=⇒(v) are obvious.

(v)=⇒(i): Symmetry means that A ⊆ A∗ and thus A ⊆ A∗ = (A)∗. Hence, we
only have to prove that A∗ ⊆ A. By assumption, H = ran(A+ λI) = ran(A + λI),
where the second equality is due to (4.21). Hence, for any y ∈ dom(A∗) there exists
an x ∈ dom(A) such that (A∗ + λI)y = (A + λI)x = (A∗ + λI)x, where the last
equality is due to A ⊆ A∗. Hence, y − x ∈ ker(A∗ + λI) = ran(A + λI)⊥ = {0}, by
which y = x ∈ dom(A).
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4.15 The Cayley transform

An essentially self-adjoint operator has exactly one self-adoint extension. In general,
however, a symmetric operators may have multiple self-adjoint extensions, or no
self-adjoint extension at all. A useful tool in studying self-adoint extensions is the
Cayley transform that establishes an order-preserving bijection between symmetric
operators and isometries with no �xed point, under which self-adjoint operators cor-
respond to unitaries. Using the Cayley transform is also the easiest way to obtain the
spectral theorem of unbounded self-adjoint operators from that of bounded normal
operators.

Lemma 4.140. Let A : dom(A)(⊆ H)→ H be a symmetric operator.

(i) V (A)+ and V (A)−, de�ned as

V (A)± : graph(A)→ ran(A± iI), V (A)±(x,Ax) := Ax± ix, x ∈ domA,

are isometric bijections.

(ii) A symmetric operatorB is an extension of A if and only if V (B)+ (resp. V (B)−)
is an extension of V (A)+ (resp. V (A)−).

(iii) We have

V (A)± = V (A)±, and ran(A± iI) = ran(A± iI).

Proof. (i) Immediate from

‖Ax± ix‖2 = ‖Ax‖2 + ‖x‖2 = ‖(x,Ax)‖2 .

(ii) Trivial.

(iii) Clearly, V (A)+ is an isometric bijection from graph(A) = graph(A) onto
ran(A+ iI) (see Exercise 4.60). If x ∈ dom(A) then there exists a sequence
(xn)n∈N ⊆ dom(A) such that limn(xn, Axn) = (x,Ax). Hence,

V (A)+(x,Ax) = lim
n
V (A)+(xn, Axn) = lim

n
(Axn + ixn) = Ax+ ix

= V (A)+(x,Ax).

Thus, V (A)+ coincides with V (A)+ on graph(A), which is dense in graph(A) =
graph(A), and hence V (A)+ = V (A)+. In particular, ran(A+ iI) = ranV (A)+ =
ran(V (A)+) = ran(A+ iI). The proof for V (A)− goes the same way.
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De�nition 4.141. Let A : dom(A)(⊆ H) → H be a symmetric operator. The
operator

κ(A) := V (A)−1
− V (A)+ = (A− iI)(A+ iI)−1

is called the Cayley transform of A.

Proposition 4.142. (i) The Cayley transform is a bijection between

SH := {A : dom(A)(⊆ H)→ H symmetric} and

IH := {W : domW (⊆ H)→ H isometry, ker(I −W ) = {0}},

with inverse

κ−1(W ) = i(I +W )(I −W )−1, W ∈ IH.

(ii) For A,B ∈ SH,

A ⊆ B ⇐⇒ κ(A) ⊆ κ(B).

(iii) For any A ∈ SH,

κ(A) = κ(A).

Proof. (i)

4.16 Analytic vectors

De�nition 4.143. For a linear operator A : domA(⊆ H)→ H, let

dom∞A := ∩n∈N domAn,

and for every ψ ∈ dom∞A, let

RA(ψ) :=

(
lim sup
n→+∞

n

√
‖Anψ‖
n!

)−1

,

with the convention 1/0 := +∞, 1/ +∞ := 0. We say that ψ is an analytic vector
for A, if RA(ψ) > 0, and denote the set of analytic vectors for A by C∞(A).

Remark 4.144. For every ψ ∈ C∞(A), RA(ψ) is the supremum of all numbers
R > 0 such that

+∞∑
n=0

(zA)n

n!
ψ is absolutely and unformly convergent on |z| ≤ R.
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Lemma 4.145. For every ψ, ψ1, ψ2 ∈ dom∞(A) and λ ∈ C \ {0},

(i) RA(λψ) = RA(ψ),

(ii) RA(ψ1 + ψ2) ≥
(
RA(ψ1)−1 +RA(ψ2)−1

)−1 ≥ min{RA(ψ1), RA(ψ2)},
(iii) RA(Aψ) = RA(ψ).

Proof. The �rst property is obvious. The second one follows immediately from

n

√
‖An(ψ1 + ψ2)‖

n!
≤ n

√
‖Anψ1‖
n!

+
‖Anψ2‖
n!

≤ n

√
‖Anψ1‖
n!

+
n

√
‖Anψ2‖
n!

.

The third one follows as

RA(Aψ)−1 = lim sup
n→+∞

n

√
‖An+1ψ‖

n!
= lim sup

n→+∞

n

√
‖An+1ψ‖
(n+ 1)!

(n+ 1)

= lim
n→+∞

n
√
n+ 1 + exp

(
lim sup
n→+∞

n+ 1

n
log

n+1

√
‖An+1ψ‖

n!

)
= RA(ψ)−1.

De�nition 4.146. For a linear operator A : domA(⊆ H) → H and any ψ ∈
∩n∈N domAn, let

ΩA(ψ) := {ψ,Aψ,A2ψ, . . .}

be the orbit of ψ under the action of A.

Lemma 4.145 yields immediately the following:

Lemma 4.147. Let A : domA(⊆ H)→ H be a linear operator.

(i) C∞(A) is a subspace.

(ii) For any ψ ∈ C∞(A),

RA(φ) ≥ RA(ψ), φ ∈ span ΩA(ψ).

In particular, span ΩA(ψ) ⊆ C∞(A).

Lemma 4.148. Let A : domA(⊆ H)→ H be a symmetric operator. If ψ ∈ C∞(A)
then A

∣∣
span ΩA(ψ)

is essentially self-adjoint as an operator on Hψ := span ΩA(ψ).
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Proof. Let Aψ := A
∣∣
span ΩA(ψ)

. Note that for any (an)n∈N ⊆ C such that only �nitely

many an 6= 0,∥∥∥∥∥∑
n

anA
nψ

∥∥∥∥∥
2

=
∑
n∈N

|an|2 ‖Anψ‖2 +
∑
n6=m

anam 〈Anψ,Amψ〉︸ ︷︷ ︸
=〈Amψ,Anψ〉

=
∑
n∈N

|an|2 ‖Anψ‖2 +
∑
n6=m

anam 〈Anψ,Amψ〉

=

∥∥∥∥∥∑
n

anAnψ

∥∥∥∥∥
2

=

∥∥∥∥∥∑
n

anA
nψ

∥∥∥∥∥
2

,

where 〈Anψ,Amψ〉 = 〈Amψ,Anψ〉 due to the symmetry of A. This shows that

C : span ΩA(ψ)→ span ΩA(ψ), C

(∑
n

anA
nψ

)
:=
∑
n

anA
nψ

is a well-de�ned conjugate linear isometry, and it is easy to see that AψC = CAψ.

Hence, by Lemma ??, Aψ has a self-adjoint extension Âψ. The proof will be complete
if we show that this is the only self-adjoint extension of Aψ, for which it is su�cient

to show that the unitary group (eitÂψ)t∈R is uniquely determined by Aψ.
Let φ ∈ span ΩA(ψ). If |t| < RA(ψ) then∫

R
e|t||x| dP

Âψ
φ (x) =

+∞∑
n=0

|t|n

n!

∫
R
|x|n dP Âψ

φ (x)

≤
+∞∑
n=0

|t|n

n!

(∫
R
|x|2n dP Âψ

φ (x)

)1/2

︸ ︷︷ ︸
=‖Ânψφ‖=‖Anφ‖

(∫
R

1 dP
Âψ
φ (x)

)1/2

︸ ︷︷ ︸
=‖φ‖

≤ ‖φ‖
+∞∑
n=0

‖Anφ‖
n!
|t|n < +∞, (4.23)

where the �rst equality is due to the monotone convergence theorem, the �rst in-
equality is due to the Cauchy-Schwarz inequality, and the last inequality is due to
Lemma 4.147. Thus, for |t| < RA(ψ),〈

φ, eitÂψφ
〉

=

∫
R
eitx dP

Âψ
φ (x) =

∫
R

∑
n∈N

(itx)n

n!
dP

Âψ
φ (x)

=
∑
n∈N

(it)n

n!

∫
R
xn dP

Âψ
φ (x)︸ ︷︷ ︸

=〈φ,Ânψφ〉=〈φ,Anφ〉

=
∑
n∈N

(it)n

n!
〈φ,Anφ〉 ,
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where the third equality follows by the Lebesgue dominated convergence theorem
due to (4.23). Now, if Ãψ is any other self-adjoint extension of Aψ then by applying
the exact same argument to it, we get that〈

φ, eitÂψφ
〉

=
∑
n∈N

(it)n

n!
〈φ,Anφ〉 =

〈
φ, eitÃψφ

〉
, |t| < RA(ψ), φ ∈ span ΩA(ψ).

Since eitÂψ and eitÃψ are bounded, the same holds for every φ ∈ Hψ, and thus

eitÂψ = eitÃψ for |t| < RA(ψ). Therefore, by Theorem 4.128, Âψ = Ãψ.

Theorem 4.149. (Nelson)
If A : domA(⊆ H)→ H is a symmetric operator such that C∞(A) is dense then A
is essentially self-adjoint.

Proof. By Proposition 4.139, it is su�cient to prove that ran(A± iI) are dense. Let
η ∈ H be arbitrary. By assumption, for every ε > 0 there exists an ψε ∈ C∞(A)
such that ‖η − ψε‖ < ε. By Lemma 4.148, Aψε is essentially self-adjoint, and hence,
again by Proposition 4.139, ran(Aψε ± iI) is dense in Hψε . Thus, there exists a
φε ∈ dom(Aψε) = span ΩA(ψε) ⊆ dom(A) such that ε > ‖ψε − (Aψε + iI)φε‖ =
‖ψε − (A+ iI)φε‖, and hence ‖η − (A+ iI)φε‖ < 2ε. This shows the density of
ran(A+ iI), and the density of ran(A− iI) follows the same way.

4.17 The adjoint of bounded operators

Proposition 4.150. Let H,K be Hilbert spaces, and let A ∈ B(H,K) be a bounded
linear operator. There exists a unique operator A∗ ∈ B(K,H) such that

〈A∗y, x〉 = 〈y, Ax〉 , x ∈ H, y ∈ K.

Proof. For every y ∈ K, the map

x 7→ 〈y, Ax〉

is a linear functional on H. By the Riesz representation theorem (see Proposition
4.100), there exists a unique vector, which we denote by A∗y, such that

〈y, Ax〉 = 〈A∗y, x〉 , x ∈ H.

It is easy to see that the uniqueness implies that the map y 7→ A∗y is a linear
map from K to H. Boundedness is automatic when either of the Hilbert spaces is
�nite-dimensional, and it follows from Exercise 4.152 below in the general case.

De�nition 4.151. For A ∈ Lin(H,K), the map A∗ ∈ Lin(K,H) is called the adjoint
of A.
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Exercise 4.152. Show that for any A ∈ Lin(H,K),

‖A‖ = ‖A∗‖ , and ‖A∗A‖ = ‖A‖2 .

(Hint: Use Exercise 4.76 and Exercise 4.22.)

Score: 3+3=6 points.
Solution: We only prove the last assertion. It is obvious that ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ =
‖A‖2. For the converse, note that for any x ∈ H,

‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A∗Ax〉 ≤ ‖x‖ ‖A∗Ax‖ ≤ ‖x‖2 ‖A∗A‖ .

Taking the supremum over all x in the unit sphere of H, we get ‖A‖2 ≤ ‖A∗A‖.

Exercise 4.153. (i) Show that A 7→ A∗ is a conjugate linear map from B(H,K)
to B(K,H), i.e.,

(A+B)∗ = A∗ +B∗, (λA)∗ = λ̄A∗, A,B ∈ Lin(H,K), λ ∈ C.

(ii) Show that the adjoint reverses the product, i.e., for any B ∈ B(H,K) and
A ∈ B(K,L),

(AB)∗ = B∗A∗.

(iii) Show that taking the adjoint is an involution, i.e., for any A ∈ B(H,K),

(A∗)∗ = A.

Score: 2+2+2=6 points.

Exercise 4.154. Show that if Aij := 〈ei, Aej〉 are the matrix elements of an A ∈
Lin(H) in an ONB {ei}di=1 then the matrix elements of A∗ in the same basis are
given by (A∗)ij = Āij. That is, the matrix of the adjoint is the entry-wise conjugate
of the transpose of the matrix of A.

De�nition 4.155. We de�ne the adjoint A∗ of a square matrix A ∈ Cd×d as (A∗)ij :=
Āji, i.e., it is the entry-wise conjugate of the transpose of A.

The following exercise shows that it is justi�ed to denote the adjoint of a matrix
by the same notation as the adjoint of an operator.
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Exercise 4.156. Let ei = 1{i}, i = 1, . . . , d be the canonical basis of Cd. Show that
every matrix A ∈ Cd×d de�nes a linear operator on H := Cd (also denoted by A),
given by

Ax :=
d∑
i=1

(
d∑
j=1

Aijxi

)
ei.

Show that the adjoint of this operator is the operator corresponding (in the above
way) to the adjoint of the matrix A.

Exercise 4.157. Let H,K,L1,L2 be Hilbert spaces.

(i) Show that for any x ∈ H,

〈x|∗ = |x〉 , |x〉∗ = 〈x| ,

where the inner product on the scalar �eld is the canonical 〈λ, η〉 := λ̄η, λ, η ∈
K.

(ii) Show that for any x ∈ H, y ∈ K,

|y〉〈x|∗ = |x〉〈y| .

(iii) Show that for any x ∈ H, y ∈ K, and any A ∈ B(L1,H), B ∈ B(K,L2),

B |y〉〈x|A = |By〉〈A∗x| .

Score: 3+2+2=7 points.

Exercise 4.158. Let A ∈ B(H) and K be a subspace of H. Show that if K is
invariant under A, i.e., AK ⊆ K, then K⊥ is invariant under A∗.

Exercise 4.159. Let H,K be Hilbert spaces and A ∈ B(H,K).

(i) Show that

kerA = ker(A∗A). (4.24)

(Hint: Consider ‖Ax‖2.)

(ii) Show that for any A ∈ B(H,K),

(ranA)⊥ := {y ∈ K : 〈y, z〉 = 0, ∀z ∈ ranA} = kerA∗. (4.25)

Conclude that (ranA∗)⊥ = kerA.
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Score: 3+3=6 points.

Solution:

(i) We have ‖Ax‖∗ = 〈Ax,Ax〉 = 〈x,A∗Ax〉, and hence if x ∈ ker(A∗A) then
x ∈ kerA. In the opposite direction, if x ∈ kerA then A∗Ax = A∗0 = 0, and
hence x ∈ ker(A∗A).

(ii) We have y ∈ (ranA)⊥ ⇐⇒ 0 = 〈y, Ax〉 = 〈A∗y, x〉 for all x ∈ H, which is
equivalent to A∗y = 0, i.e., y ∈ kerA∗.

Remark 4.160. The relation in (4.25) may also be expressed as

H = ranA∗ ⊕ kerA, K = ranA⊕ kerA∗. (4.26)

De�nition 4.161. We say that a bounded linear map A ∈ B(H) is

• normal, if A∗A = AA∗;

• self-adjoint, if A∗ = A.

Obviously, every self-adjoint operator is normal.

Recall that the adjoint of a matrix A ∈ K[m]×[n] is de�ned as (A∗)ij := Aji. A
matrix A ∈ K[n]×[n] is called self-adjoint if Aji = Aij, and it is called normal if
AA∗ = A∗A. When K = R, the adjoint of a matrix coincides with its transpose, and
a self-adjoint matrix is also called symmetric.

It is easy to see that the self-adjointness/normality of an operator and of a matrix
are in the expected relation:

Exercise 4.162. Let A ∈ K[d]×[d] be a matrix. Show that it is normal/self-adjoint
if and only if it is normal/self-adjoint as a linear operator on Kd.

Exercise 4.163. Show that for an A ∈ B(H), the following are equivalent:

(i) A is normal/self-adjoint.

(ii) The matrix of A in any ONB is normal/self-adjoint.

(iii) The matrix of A in some ONB is normal/self-adjoint.

Exercise 4.164. Show an example of an operator A ∈ B(H) that is a) not normal;
b) normal but not self-adjoint; c) self-adjoint.

(Hint: Consider operators of the form |y〉〈x|.)

Score: 6 points.
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Exercise 4.165. (i) Show that for an operator A ∈ B(H),

A is normal ⇐⇒ ‖Ax‖ = ‖A∗x‖ , x ∈ H.

(ii) Conclude that if A is normal then

kerA = kerA∗A = kerAA∗ = kerA∗.

(iii) Show that if A ∈ B(H) is normal then

(ranA)⊥ = kerA, and ranA = ranA∗. (4.27)

Score: 2+2+4=8 points.

Remark 4.166. Combining (4.27) with (4.26) yields that for a normal operator
A ∈ B(H),

H = ranA⊕ kerA = ranA∗ ⊕ kerA∗.

By the (4.26), for any linear operator A ∈ B(H) on a �nite-dimensional Hilbert
space, there exists an ONB e1, . . . , er, er+1, . . . , ed, such that ei ∈ ranA∗, i = 1, . . . , r,
and ei ∈ kerA, i = r + 1, . . . , d. Hence, the matrix of A in this ONB is of the form

A =
A11 012

A21 022 ,

where A11 ∈ B(ranA∗, ranA∗), A21 ∈ B(ranA∗, kerA) may be arbitrary operators,
and 012 ∈ B(kerA, ranA∗), 022 ∈ B(kerA, ranA∗) are the 0-operators between the
respective spaces. By (4.27), if A is normal, then ranA = ranA∗. Since ranA is
clearly invariant under A, we get that the matrix of A in an ONB as above is of the
form

A =
A11 012

021 022 .

That is, A acts non-trivially only on ranA, and exactly there. This motivates to
introduce the following:

De�nition 4.167. Let A ∈ B(H) be a normal operator. The support of A is de�ned
as

suppA := ranA = (kerA)⊥.
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It is clear that B(H)sa is closed under the adjoint, and under real linear combi-
nations, i.e., it is a real vector space w.r.t. the usual pointwise operations on linear
operators. However, it is not closed under the operator product:

Exercise 4.168. Show that the product of two self-adjoint operators is self-adjoint
if and only if the two operators commute.

Score: 2 points.

Exercise 4.169. Let A ∈ B(H). Show that A is self-adjoint if and only if 〈x,Ax〉 ∈
R for every x ∈ H.

Score: 5 points.
Solution: We have

〈x,A∗x〉 = 〈Ax, x〉 = 〈x,Ax〉, x ∈ H. (4.28)

Thus,

A = A∗ ⇐⇒ 〈x,Ax〉 = 〈x,A∗x〉
⇐⇒ 〈x,Ax〉 = 〈x,Ax〉 ⇐⇒ 〈x,Ax〉 ∈ R,

where the �rst equivalence is due to Exercise 4.63, and the second is due to (4.28).

It is easy to see that any operatorA ∈ Lin(H) can be decomposed asA = A1+iA2,
where A1 and A2 are self-adjoint; indeed

A =
A+ A∗

2
+ i

A− A∗

2i
. (4.29)

Exercise 4.170. Show that the above decomposition is unique, i.e., if A = A1 + iA2

is a decomposition of A such that A1, A2 are self-adjoint then A1 = A+A∗

2
and A2 =

A−A∗
2i

.

Exercise 4.171. Show that A ∈ B(H) is normal if and only if there exist two
commuting self-adjoint operators A1, A2 ∈ B(H) such that A = A1 + iA2.

4.18 The Fourier transform

De�nition 4.172. For every n ∈ N, the n-th Hermite polynomial is de�ned by

Hn(x) := (−1)nex
2 dn

dxn
e−x

2

. (4.30)
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A straightforward computation shows that

H0(x) ≡ 1, H1(x) = 2x, H2(x) = 4x2 − 2.

Di�erentiating (4.30) yields that for every n ∈ N,

H ′n(x) = 2xHn(x)−Hn+1(x). (4.31)

This in turn immediately implies the following:

Lemma 4.173. (i) For every n ∈ N, Hn is a degree n polynomial in which the
coe�cient of xn is 2n.

(ii) The Hermite polynomials are linearly independent, and for every n ∈ N,

span{Hk : k = 0, . . . , n} = span{xk : k = 1, . . . , n},

where x0 := 1.

Proof. (i) Clearly, the statement is true for n = 0. Since Hn+1(x) = 2xHn(x) −
H ′n(x) by (4.31), the assertion follows by induction on n.

(ii) Immediate from the previous point.

Let us now de�ne the normalized Hermite functions

H̃n(x) :=
(
2nn!
√
π
)−1/2

e−x
2/2Hn(x), x ∈ R, n ∈ N.

Proposition 4.174. The normalized Hermite functions form an ONB in L2(R).

Proof. Let n ≥ m. Then∫
R
e−x

2/2Hn(x)e−x
2/2Hm(x) dλ(x) =

∫
R
e−x

2

Hn(x)Hm(x) dλ(x)

=

∫
R
(−1)n

(
dn

dxn
e−x

2

)
Hm(x) dλ(x)

=

∫
R
e−x

2 dn

dxn
Hm(x) dλ(x)

=

{
0, n 6= m,

2nn!
∫
R e
−x2

dλ(x), n = m,

where the third equality follows by partial integration, and the last equality follows
from (i) of Lemma 4.173. This yields that the normalized Hermite functions form
an ONS.
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Assume now that some f ∈ L2(R) is orthogonal to all the Hermite functions. By
(ii) of Lemma 4.173, this is equivalent to∫

R
e−x

2/2xnf(x) dλ(x) = 0, n ∈ N. (4.32)

This implies that for every z ∈ C,

F (z) :=

∫
R
ezxe−x

2/2f(x) dλ(x) =
+∞∑
n=0

zn

n!

∫
R
e−x

2/2xnf(x) dλ(x) = 0,

where the �rst equality follows by the Lebesgue dominated convergence theorem,
and the second equality by (4.32). Substituting z = −it, t ∈ R, yields that the
Foruier transform of e− id2 /2f is zero, and hence f = 0.

Exercise 4.175. (i) Let f(x) := e−x
2
. Show that for every n = 1, 2, . . .,

f (n+1)(x) = −2xf (n)(x)− 2nf (n−1)(x),

and conclude that

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

(Hint: Use induction.)

(ii) Show that for any n = 1, 2, . . .,

H ′n(x) = 2nHn−1(x).

Solution: Hidden.

(i)

4.19 Positive semi-de�nite operators and the PSD order

De�nition 4.176. We say that an operator A ∈ B(H) is positive semide�nite (or
simply positive) if

〈x,Ax〉 ≥ 0, x ∈ H.

We say that A is positive de�nite, or strictly positive, if

〈x,Ax〉 > 0, x ∈ H \ {0}.

We denote positivity of an operator A as A ≥ 0, and strict positivity as A > 0. We
denote the set of positive operators on H by B(H)≥0, and the set of strictly positive
operators by B(H)>0.
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Exercise 4.177. Show that if A ∈ B(H)≥0 andX ∈ B(K,H) thenX∗AX ∈ B(K)≥0.

Exercise 4.178. Show that every positive operator is self-adjoint. (Hint: Use Ex-
ercise 4.169.)

Solution: If A is positive then, by de�nition, 〈x,Ax〉 ∈ R+ for every x ∈ H, and
hence, by Exercise 4.169, A is self-adjoint.

Exercise 4.179. Let B ∈ B(H)≥0 be a positive semi-de�nite operator.

(i) Show that

〈x, y〉B := 〈x,By〉 , x, y ∈ H,

de�nes a semi-inner product on H, and it is an inner product if and only if B
is positive de�nite.

(ii) Prove that for any x, y ∈ H,

| 〈x,By〉 |2 ≤ 〈x,Bx〉 〈y,By〉 . (4.33)

(iii) Prove that if B > 0 then for any x, y ∈ H,

| 〈x, y〉 |2 ≤ 〈x,Bx〉
〈
y,B−1y

〉
. (4.34)

Score: 4+2+2=8 points.
Solution:

(i) The sesquilinearity of 〈., .〉B is trivial from the sesquilinearity of the original
inner product and the linearity of B. We have

〈x, y〉B = 〈x,By〉 = 〈By, x〉 = 〈y,Bx〉 = 〈y, x〉B , x, y ∈ H,

due to the self-adjointness of B. Finally,

〈x, x〉B = 〈x,Bx〉 ≥ 0 with equality if and only if x = 0,

due to the positive semide�niteness and the strict positive de�niteness of B,
respectively.

(ii) The inequality in (4.33) is simply the Cauchy-Schwarz inequality for the inner
product 〈., .〉B.

(iii) Simply replace y with B−1y in (4.33).
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Exercise 4.180. Show that the set of positive semi-de�nite operators on a Hilbert
space H forms a convex cone, i.e.,

A,B ∈ B(H)≥0 =⇒ A+B ∈ B(H)≥0,

A ∈ B(H)≥0, λ ∈ R≥0 =⇒ λA ∈ B(H)≥0.

Exercise 4.181. Show that B(H)≥0 is a pointed cone, i.e.,

if A ∈ B(H)≥0 and − A ∈ B(H)≥0 then A = 0,

or equivalently,

B(H)≥0 ∩ −B(H)≥0 = {0}.

Exercise 4.182. Show that the relation

A ≥ B if A−B ∈ B(H)≥0

de�nes a partial order on B(H), which we call the positive semide�nite order. When
we want to emphasize which order we mean, we use the notation A ≥PSD B.

Remark 4.183. Note that the restriction of a partial order on a set X to a subset
X0 ⊆ X gives a partial order on X0. In particular, we may restrict the PSD order
to any observable algebra A ⊆ B(H). Also, it is common to consider the PSD order
only on B(H)sa, the self-adjoint operators on H.

Exercise 4.184. Show that if A ∈ B(H)sa and B ≥PSD A then B is also self-adjoint.

Exercise 4.185. Show that the PSD order is compatible with the vector space
structure of B(H) in the sense that for any A,B ∈ B(H),

A ≤ B =⇒ λA ≤ λB, λ ∈ R≥0,

A ≤ B =⇒ A+ C ≤ B + C, C ∈ B(H).

Remark 4.186. See Section ?? for a more general treatment of convex cones, par-
tially ordered vector spaces, and related notions.

Exercise 4.187. Show that if dimH > 1 then the PSD order is not a complete order
on B(H)sa, i.e., there exist self-adjoint operators A,B ∈ B(H)sa such that neither
A ≥ B nor A ≤ B holds.
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Remark 4.188. The above is more generally true for the self-adjoint part of any
von Neumann algebra A on a �nite-dimensional Hilbert space H with dimH ≥ 2,
such that A 6= CI; see Section 4.27 for the de�nition of a von Neumann algebra.

Exercise 4.189. (i) Show that the cone B(H)≥0 is self-dual, i.e., for any A ∈
B(H),

A ∈ B(H)≥0 ⇐⇒ TrAB ≥ 0 ∀B ∈ B(H)≥0.

Solution: Hidden.

Remark 4.190. See Section ?? for the general notion of duality in ordered vector
spaces.

Exercise 4.191. Let A,B ∈ B(H)>0 be strictly positive de�nite operators on a
Hilbert space H. Prove that

A ≥ B ⇐⇒ 〈x,Ax〉
〈
y,B−1y

〉
≥ | 〈x, y〉 |2, x, y ∈ H.

Solution: Hidden.

Remark 4.192. Note that (4.34) can be written as〈
x⊗ y, (B ⊗B−1)x⊗ y

〉
≥ 〈x⊗ y, Fx⊗ y〉 , x, y ∈ H,

i.e., B⊗B−1−F is block-positive, where F is the �ip operator de�ned by Fx⊗y :=
y ⊗ x, x, y ∈ H. Does this o�er any useful insight into (4.34)?

4.20 Projections

De�nition 4.193. An operator P on a Hilbert space H is a projection if

P ∗ = P = P 2.

Remark 4.194. Sometimes an operator P such that P 2 = P is also called a pro-
jection, and if it is, moreover, self-adjoint, then it is called an orthogonal projection.
In our terminology introduced in De�nition 4.193, which is commonly used in the
theory of Hilbert spaces, a projection is always self-adjoint.

Exercise 4.195. (i) Prove that every projection is PSD.

(ii) Show that if P is a projection then I −P is a projection as well, and hence, in
particular, I − P ≥ 0, i.e., 0 ≤ P ≤ I.
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(iii) Let P be a projection. Show that ‖Px‖ ≤ ‖x‖ for all x ∈ H, and

x ∈ ranP ⇐⇒ Px = x ⇐⇒ ‖Px‖ = ‖x‖ . (4.35)

Conclude that

a) The support of P is its �xed point set.

b) ranP = ker(I − P ), kerP = ran(I − P ), and

H = ranP ⊕ ran(I − P ), (4.36)

i.e., I − P is the projection onto the orthocomplement of ranP .

c) For all x ∈ H, ‖x‖2 = ‖Px‖2 + ‖(I − P )x‖2.

d) If P 6= 0 then ‖P‖ = 1.

(iv) Let P,Q ∈ B(H) be projections. Show that

P ≤ Q ⇐⇒ ranP ⊆ ranQ ⇐⇒ PQ = QP = P.

Solution: Hidden.

Exercise 4.196. Show that for any vector v ∈ H, |v〉〈v| is positive, and it is a
projection if and only if ‖v‖ = 1.

Solution: Hidden.

Exercise 4.197. (i) Show that if P and Q are projections then

P +Q is a projection ⇐⇒ QP = PQ = 0 ⇐⇒ ranP ⊥ ranQ.

Show that if any (and hence all) of the above holds then P+Q is the projection
onto span{ranP, ranQ}.

(ii) Let P1, . . . , Pr be non-zero projections on a Hilbert space H. Show that

P1 + . . .+ Pr ≤ I ⇐⇒ PiPj = 0, ∀i 6= j,

i.e., the projections are pairwise orthogonal.

Score: 6+6=12 points.
Solution: Hidden.

(i) Obviously, (P +Q)∗ = P +Q, and (P +Q)2 = P 2 +PQ+QP +Q2 = P +Q+
PQ+QP . Hence, P+Q is a projection if and only if PQ+QP = 0. Multiplying
by P from both sides, we get 0 = PQP = (PQ)(QP ) = (QP )∗(QP ), and hence
QP = 0. Taking the adjoint, we get PQ = 0. Conversely, if PQ = QP = 0
then (P +Q)2 = (P +Q), and hence P +Q is a projection.
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(ii) Assume that there exist i 6= j such that PiPj 6= 0. By the previous part, this
means that there exists an x ∈ ranPi such that x /∈ kerPj, i.e., 0 < ‖Pjx‖2 =
〈Pjx, Pjx〉 = 〈x, Pjx〉. We can assume without loss of generality that ‖x‖ = 1,
and hence we get

1 = ‖x‖2 = 〈x, Ix〉 =

〈
x,
∑
k

Pkx

〉
=
∑
k

〈x, Pkx〉 ≥ 〈x, Pix〉+ 〈x, Pjx〉

= 1 + 〈x, Pjx〉 > 1,

a contradiction.

Exercise 4.198. Let P,Q be projections. Show that

PQ is a projection ⇐⇒ PQ = QP,

and that in this case PQ is the projection onto ranP ∩ ranQ.

Score: 6 points.

In general, a �nite set of self-adjoint operators does not have a smallest upper
bound or largest lower bound among the self-adjoint operators w.r.t. the PSD order-
ing; see Section 4.30. The situation is di�erent if we restrict to the set of projections,
as Exercise 4.200 shows.

De�nition 4.199. For two projections P,Q, let P ∨ Q be the projection onto
span{ranP ∪ ranQ}, and P ∧Q be the projection onto ranP ∩ ranQ.

Exercise 4.200. Show that P ∨ Q is the smallest upper bound, and P ∧ Q is the
largest lower bound, to {P,Q} in the PSD ordering.

4.21 Isometries and unitaries

In this section we discuss how Hilbert spaces, or, more generally, subspaces of Hilbert
spaces can be identi�ed. Recall that vector spaces are isomorphic if there exists a
bijective linear map (an isomorphism) between them. It is well known that two
vector spaces are isomorphic if and only if they have the same dimension. Moreover,
isomoprhisms are exactly those linear maps that map a basis of one space into a
basis of the other space.

De�nition 4.201. We say that two Hilbert spaces H,K is isomorphic if there exists
a bijective linear map U : H → K that preserves the inner product, i.e.,

〈Ux, Uy〉 = 〈x, y〉 .

Any such map U is called a unitary.
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When we want to stress that H and K can be identi�ed as Hilbert spaces, and
not only as vector spaces, i.e., there exists a unitary from H to K, then we say that
H and K are isometrically isomorphic. Part of the reason for this terminology is
that, as we can see in the next exercise, a linear map preserves the inner product if
and only if it preserves the norm. Norm-preserving linear maps are called isometries:

De�nition 4.202. An operator V ∈ Lin(H,K) is an isometry if

‖V x‖ = ‖x‖ , x ∈ H.

Exercise 4.203. Let V ∈ Lin(H,K). Show that the following are equivalent:

(i) V is an isometry.

(ii) V preserves the inner product, i.e.,

〈V x, V y〉 = 〈x, y〉 , x, y ∈ H.

(iii) V maps every orthonormal system in H into an orthonormal system in K.

(iv) There exists an orthonormal basis in H that V maps into an orthonormal
system in K.

(v) V ∗V = I.

Note that an isometry is always injective. In particular, if there exists an isometry
from H to K, then necessarily dimH ≤ dimK. It is easy to see that the converse is
also true.

Exercise 4.204. Show that there exists an isometry from H to K if and only if
dimH ≤ dimK.

Exercise 4.205. Give an explicit isometry from C2 to C3.

Exercise 4.206. Show that for any Hilbert space H,

H 3 v 7→ |v〉 ∈ B(C,H), B(C,H) 3 V 7→ V 1 ∈ H

are linear maps that are inverses of each other, and thus they give explicit iso-
morphisms from H to B(C,H) and back, under which unit vectors correspond to
isometries.

Exercise 4.207. Show that the map H 3 x 7→ |x〉 ∈ B(K,H) gives a one-to-one
correspondence between unit vectors in H and isometries from K to H. (See also
Exercise 4.85).
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By de�nition, isometries are di�erent from unitaries in that they need not be
surjective. In fact, isometries identify a Hilbert space with a subspace of a Hilbert
space, and any isometry V from H to K is a unitary from H to ranV . An isometry is
a unitary if and only if it is surjective (and hence bijective), that can be summiraized
concisely the following way:

Exercise 4.208. Show that for a linear map U : H → K we have

U is a unitary ⇐⇒ U∗U = I and UU∗ = I.

Conclude that every unitary is a normal operator, and for a unitary U ,

U∗ = U−1.

Exercise 4.209. Show that if V : H → K is an isometry, and dimH = dimK, then
V is also a unitary.

As for vector spaces, we see that two �nite-dimensional Hilbert spaces can be
identi�ed if and only their dimensions are the same.

Exercise 4.210. Let H,K be �nite-dimensional Hilbert spaces. Show that there
exists a unitary U : H → K if and only if dimH = dimK. Conclude that every
d-dimensional Hilbert space is isometrically isomorphic to Cd, where the latter is
equipped with its standard inner product 〈x, y〉 :=

∑d
k=1 x̄kyk, x, y ∈ Cd.

We have seen above that an isometry V : H → K identi�es H with a subspace of
K. It is useful to further generalize this concept, and introduce a name for operators
that identify a subspace in their domain with a subspace in their target space.

De�nition 4.211. A linear map V : H → K is a partial isometry if it is an isometry
on (kerV )⊥, i.e.,

‖V x‖ = ‖x‖ , x ∈ (kerV )⊥.

Lemma 4.212. For a V ∈ B(H,K), the following are equivalent:

(i) V is a partial isometry.

(ii) V ∗V is the projection onto (kerV )⊥.

(iii) V ∗V is a projection.

(iv) V ∗ is a partial isometry.

(v) V V ∗ is the projection onto ranV .
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(vi) V V ∗ is a projection.

(vii) There exist orthonormal systems (ei)
r
i=1 in H and (fi)

r
i=1 in K such that

V =
r∑
i=1

|fi〉〈ei| . (4.37)

Proof. (i)=⇒ (ii) Assume that V is an isometry on (kerV )⊥, and let P be the
projection onto (kerV )⊥. Then for every x ∈ H we have

〈x, V ∗V x〉 = 〈V x, V x〉 = 〈V Px, V Px〉 = ‖V Px‖2 = ‖Px‖2 = 〈Px, Px〉 = 〈x, Px〉 ,

where the fourth identity follows by assumption (i). Hence, by Exercise ??, V ∗V =
P .

(ii)=⇒ (iii) Trivial.
(iii)=⇒ (i) Assume that V ∗V is a projection, and let x ∈ ker(V )⊥. Note that

kerV = kerV ∗V = ran(V ∗V )⊥ (in fact, for any operator V ), and hence x ∈ ranV ∗V .
Since V ∗V is a projection, this means that x = V ∗V x. Thus,

‖V x‖2 = 〈V x, V x〉 = 〈x, V ∗V x〉 = 〈x, x〉 = ‖x‖2 ,

i.e., V is indeed an isometry on ker(V )⊥, proving (i).
Now the equivalences (iv)⇐⇒(v)⇐⇒(vi) follow by replacing V with V ∗ in the

above.
(ii)=⇒ (vi) Obviously, V V ∗ is self-adjoint, and we have (V V ∗)(V V ∗) = V (V ∗V )V ∗ =

V P(kerV )⊥V
∗ = V V ∗. (v)=⇒ (iii) Follows the same way by replacing V with V ∗.

(vii)=⇒ (iii) Obviously, V ∗V =
∑r

i,j=1 |ej〉〈fj| |fi〉〈ei| =
∑r

i,j=1 δi,j |ej〉〈ei| =∑r
i=1 |ei〉〈ei| is a projection.
(i)=⇒ (vii) Let (ei)

r
i=1 be an ONB in (kerV )⊥. Since V is an isometry on (kerV )⊥,

fi := V ei, i = 1, . . . , r is an ONS in K according to Exercise 4.203, and we have
(4.37).

Remark 4.213. We may write �V : H0 → K0 partial isometry� to mean that V is
a partial isometry with kerV = H⊥0 and ranV = K0.

Remark 4.214. By (4.37) above, V is a partial isometry if and only if all of its
non-zero singular values are equal to 1; cf. Corollary 4.362.

Exercise 4.215. Let {xi}i∈I ⊆ H and {yi}i∈I ⊆ K. Show that the following are
equivalent:

(i) There exists a partial isometry V : span{xi}i∈I → span{yi}i∈I such that V xi =
yi, i ∈ I.
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(ii) 〈xi, xj〉 = 〈yi, yj〉 for all i, j ∈ I.
(iii) G({xi}i∈Ĩ) = G({yi}i∈Ĩ), for any �nite subset Ĩ ⊆ I, where G stands for the
Gram matrix.

Show that if I is �nite then the above is further equivalent toG({xi}i∈I) = G({yi}i∈I).

(Hint: Check that the map V (
∑

i cixi) :=
∑

i ciyi is a well-de�ned partial isometry
under condition (ii).)

Solution: Hidden.

4.22 The trace and the Hilbert-Schmidt inner product

Exercise 4.216. Let A ∈ Lin(H) be a linear operator one a Hilbert space H, and
let {e1, . . . , ed} and {f1, . . . , fd} be two orthonormal bases in H. Show that

d∑
i=1

〈ei, Aei〉 =
d∑
i=1

〈fi, Afi〉 .

Solution:
d∑
i=1

〈ei, Aei〉 =
d∑
i=1

〈
ei, A

(
d∑

k=1

|fk〉〈fk|

)
ei

〉

=
d∑

k=1

d∑
i=1

〈ei, Afk〉 〈fk, ei〉

=
d∑

k=1

d∑
i=1

〈fk, ei〉 〈ei, Afk〉

=
d∑

k=1

〈
fk,

(
d∑
i=1

|ei〉〈ei|

)
Afk

〉

=
d∑

k=1

〈fk, Afk〉 .

De�nition 4.217. Let A ∈ Lin(H). The trace of A (in notation, TrA) is de�ned as

TrA :=
d∑
i=1

〈ei, Aei〉 , (4.38)

where {e1, . . . , ed} is an arbitrary orthonormal basis in H. According to Exercise
4.216, the value of the sum in (4.38) is independent of the choice of the orthonormal
basis.
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Exercise 4.218. Show the following properties of the trace:

(i) Linearity:

Tr(A+B) = TrA+ TrB, TrλA = λTrA, A,B ∈ Lin(H), λ ∈ C.

(ii) Cyclic property:

TrAB = TrBA, A ∈ Lin(H,K),B ∈ Lin(K,H).

(iii) Self-adjointness:

TrA∗ = TrA, A ∈ Lin(H).

Score: 2+2+2=6 points.
Solution: Straightforward computation.

Exercise 4.219. Let A ∈ B(H)+ be a PSD operator.

(i) Prove that TrA ≥ 0.

(ii) Let e1, . . . , ed be an ONB in H. Prove that if 〈ei, Aei〉 = 0 for some i then
〈ej, Aei〉 = 0 and 〈ei, Aej〉 = 0 for all j, i.e., if a diagonal element of the matrix
of A in the given ONB is zero then the corresponding row and column are zero
as well.

(Hint: Use Exercise 4.179.)

(iii) Prove that if all diagonal elements of A in an ONB are zero then A = 0.

(iv) Prove that TrA = 0 ⇐⇒ A = 0.

Score: 1+3+1+2=7 points.
Solution:

(i) We have TrA =
∑d

i=1 〈ei, Aei〉, where e1, . . . , ed is any ONB, and A ≥ 0 implies
〈ei, Aei〉 ≥ 0 for all i by de�nition.

(ii) By Exercise 4.179, γA(x, y) := 〈x,Ay〉 is a PSD hermitian sesquilinear form.
By the Cauchy-Schwarz inequality for this form,

0 ≤ | 〈ej, Aei〉 | = |γA(ej, ei)| ≤ γA(ej, ej)
1/2γA(ei, ei)

1/2

= 〈ej, Aej〉 〈ej, Aei〉 .

Thus, if 〈ei, Aei〉 = 0 then 〈ej, Aei〉 = 0 for every j. The other assertion follows
the same way.
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(iii) Immediate from the previous point.

(iv) The direction A = 0 =⇒ TrA = 0 is obvious from the trace being a linear
functional. In the converse direction, note that 〈ei, Aei〉 ≥ 0 for all i, and
hence 0 = TrA =

∑d
i=1 〈ei, Aei〉 implies 〈ei, Aei〉 = 0 for all i, and the assertion

follows from the previous point.

De�nition 4.220. Let A ⊆ B(H) be a ∗-subalgebra. We say that a linear functional
ϕ ∈ Lin(A,K) is positive, in notation ϕ ≥ 0, if

A ≥ 0 =⇒ ϕ(A) ≥ 0.

We say that a positive linear functional ϕ is faithful, if ϕ(A) = 0 for an A ∈ B(H)+

implies that A = 0.

Remark 4.221. By Exercise 4.219, the trace is a faithful positive functional on
B(H).

Recall that for A,B ∈ B(H), we write A ≤ B if B − A is PSD.

Exercise 4.222. Show that if ϕ is a positive linear functional on B(H) then it is
monotone, i.e., for any A,B ∈ B(H),

A ≤ B =⇒ ϕ(A) ≤ ϕ(B).

Conclude that the trace is monotone, i.e.,

A ≤ B =⇒ TrA ≤ TrB.

Score: 3 points.
Solution: We have

A ≤ B ⇐⇒ 0 ≤ B − A =⇒ 0 ≤ ϕ(B − A) = ϕ(B)− ϕ(A),

where both the equivalence and the implication are by de�nition, and the last equal-
ity is by the linearity of ϕ. The assertion about the trace follows from this, as it is
a positive linear functional by Exercise 4.219.

Lemma 4.223. Let H,K be �nite-dimensional Hilbert spaces. Then

〈A,B〉HS := TrA∗B, A,B ∈ Lin(H,K),

de�nes an inner product on Lin(H,K), that we call the Hilbert-Schmidt inner product.
Its induced norm is given by

‖A‖2
HS = TrA∗A, A ∈ Lin(H,K). (4.39)
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Proof. Sesquilinearity of 〈., .〉HS is obvious from the de�nition, and we have

〈B,A〉HS = TrB∗A = Tr(A∗B)∗ = TrA∗B = 〈A,B〉HS ,

showing the hermiticity of 〈., .〉HS. Given a basis {ei}d1
i=1, we have

‖A‖2
HS = 〈A,A〉HS =

d1∑
i=1

〈ei, A∗Aei〉 =

d1∑
i=1

‖Aei‖2 ,

which is obviously non-negative, and equal to zero if and only if Aei = 0 for all
i = 1, . . . , d1, which is equivalent to A being zero. This proves that 〈., .〉HS is indeed
an inner product, and hence (4.39) de�nes a norm.

Corollary 4.224. Since 〈., .〉HS is an inner product, it satis�es the Cauchy-Schwarz
inequality, i.e.,

|TrA∗B| ≤ (TrA∗A)
1
2 (TrB∗B)

1
2 , A,B ∈ Lin(H,K).

Exercise 4.225. Show that for any A,B ∈ B(H,K),

〈A,B〉HS = 〈A∗, B∗〉HS .

Solution: Hidden.

Exercise 4.226. Let {ei}d1
i=1, {fj}

d2
j=1 be orthonormal bases in the �nite-dimensional

Hilbert spaces H and K, respectively.

(i) Show that

{Eij := |fi〉 〈ej|}d2, d1

i=1,j=1 is an orthonormal basis in (Lin(H,K), 〈., .〉HS).

(Hint: Use Exercise 4.157.)

(ii) Show that the expansion coe�cients of an A ∈ Lin(H,K) in the above ONB
coincide with the usual matrix elements of A in the given pair of bases, i.e.,

〈Eij, A〉HS = 〈fi, Aej〉 , i ∈ [d2], j ∈ [d1].

(iii) Conclude that every A ∈ Lin(H,K) can be uniquely expanded as

A =

d2∑
i=1

d1∑
j=1

〈fi, Aej〉 |fi〉 〈ej| .
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(iv) Show that for any A,B ∈ Lin(H,K),

〈A,B〉HS =

d1∑
i=1

d2∑
j=1

〈fj, Aei〉 〈fj, Bei〉 ,

i.e., the Hilbert-Schmidt inner product coincides with the standard inner prod-
uct on C[d1]×[d2] when operators in Lin(H,K) are represented as matrices in the
given bases.

Score: 2+2+2+2=8 points.
Solution:

(i) We have

〈Eij, Ekl〉HS = Tr(|fi〉 〈ej|)∗ |fk〉 〈el| = Tr |ej〉 〈fi| |fk〉 〈el| = δi,k Tr |ej〉 〈el|
= δi,k 〈el, ej〉 = δi,kδj,l = δ(i,j),(k,l),

and hence the matrix units form an ONS. Since their number is d1d2 =
dim Lin(H,K), they form an ONB. Now, for any A ∈ Lin(H,K), we have

〈Eij, A〉HS = Tr(|fi〉 〈ej|)∗A = Tr |ej〉 〈fi|A = 〈fi, Aej〉 ,

which is exactly the (i, j) entry of the matrix of A in the given pair of ONBs.

(ii) Immediate from the previous point.

(iii) Immediate from the previous point.

An alternative proof can be given as follows. Expanding the trace in the basis
{ei}d1

i=1,, and inserting an identity of the form IK =
∑d2

j=1 |fj〉〈fj|, we get

〈A,B〉HS =

d1∑
i=1

〈ei, A∗Bei〉 =

d1∑
i=1

〈ei|A∗
(

d2∑
j=1

|fj〉〈fj|

)
B |ei〉

=

d1∑
i=1

d2∑
j=1

〈ei, A∗fj〉 〈fj, Bei〉 =

d1∑
i=1

d2∑
j=1

〈fj, Aei〉 〈fj, Bei〉

De�nition 4.227. The set of operators {|fj〉 〈ei|}d1, d2

i=1,j=1 in Exercise 4.226 is called

the set of matrix units corresponding to the ONB pair {ei}d1
i=1, {fj}

d2
j=1.

Exercise 4.228. (i) Let e1, . . . , ed be an ONB in a �nite-dimensional Hilbert
space H, and Eij := |ei〉 〈ej| be the corresponding set of matrix units. Show
that for all i, j, k, l ∈ [d],

E∗ij = Eji, EijEkl = δj,kEil. (4.40)
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(ii) Let H be a �nite-dimensional Hilbert space, and Eij ∈ Lin(H), i, j ∈ [d], be a
set of operators satisfying (4.40). Show that either all Eij = 0, or there exists
an ONS {ei,a : i ∈ [d], a ∈ [m]} for some m ∈ N, such that

Eij =
m∑
a=1

|ei,a〉 〈ej,a| , i, j ∈ [d]. (4.41)

While in the view of Exercise 4.226, a set of matrix units may seem like a very
natural ONB in the space of operators, in quantum information theory, it is often
bene�cial to work with di�erent families of ONBs. When H = K, a very important
ONB for Lin(H) can be constructed from any ONB e0, . . . , ed−1 ofH, in the following
way. De�ne

Xek := ek+1(mod d), Zek := ei
2π
d
kek, k = 0, . . . , d− 1.

(Recall that for m,n ∈ N, a = b (mod d) if and only if a− b is an integer multiple of
d.)

De�nition 4.229. For any ONB e0, . . . , ed−1 in a �nite-dimensional Hilbert space
H, the corresponding discrete Weyl unitaries are de�ned as

Wa,b := XaZb, a, b = 0, . . . , d− 1.

Exercise 4.230. Let Wa,b := XaZb, a, b ∈ {0, . . . , d − 1}, be the discrete Weyl
operators corresponding to some ONB e0, . . . , ed−1 in a �nite-dimensional Hilbert
space H.

(i) Show that Wa,b is a unitary for every a, b.

(ii) Show that ZX = ei
2π
d XZ, and the following relations hold:

W0,0 = I, W ∗
a,b = ei

2π
d
abW−a,−b, TrWa,b = dδa,0δb,0.

(iii) Show that X,Z and Wa,b, a, b ∈ {0, . . . , d− 1}, are unitaries, and{
1√
d
Wa,b : a, b ∈ {0, . . . , d− 1}

}
forms an orthonormal basis in Lin(H) with respect to the Hilbert-Schmidt
inner product.

(iv) Prove that

1

d2

d−1∑
a,b=0

Wa,bAW
∗
a,b = I

TrA

d
, A ∈ Lin(H). (4.42)

147



Score: 4+7+3+4=18 points.

Solution:

(i) Obviously, W0,0 = I is a unitary. We have

〈fl, Xfk〉 = 〈fl, fk+1〉 = δl,k+1 = δl−1,k = 〈fl−1, fk〉 , k, l ∈ {0, . . . , d− 1},

where everything is again modulo d. Hence, X∗fl = fl−1 ∀l, i.e., X∗ = X−1;
in particular, X is a unitary. For Z we get

〈fl, Zfk〉 =
〈
fl, e

i 2π
d fk

〉
= ei

2π
d 〈fl, fk〉 =

〈
e−i

2π
d fl, fk

〉
, k, l ∈ {0, . . . , d− 1},

and hence Z∗ = Z−1, i.e., Z is a unitary. Since the product of unitaries is
again a unitary, according to Exercise ??, Wa,b = XaZb is a unitary for every
a, b ∈ {0, . . . , d− 1}.

(ii) By de�nition,

ZXfk = Zfk+1 = ei
2π
d

(k+1)fk+1 = Xei
2π
d

(k+1)fk = ei
2π
d XZfk,

where we used that ei
2π
d
k = ei

2π
d
l exactly when k = l (mod d).

Using now the unitarity of X and Z, and the commutation relation ZX =
ei

2π
d XZ,

W ∗
a,b = (XaZb)∗ = (Z∗)b(X∗)a = Zd−bXd−a = ei

2π
d

(d−a)(d−b)Xd−aZd−b

= ei
2π
d
abX−aZ−b = ei

2π
d
abW−a,−b.

It is obvious that TrW0,0 = Tr I = d. Assume now that (a, b) 6= (0, 0). Then

TrWa,b =
d−1∑
k=0

〈
fk, X

aZbfk
〉

=
d−1∑
k=0

ei
2π
d
bk 〈fk, fk+a〉 .

If a 6= 0 then the above expression is 0, as all terms 〈fk, fk+a〉 = 0. If a = 0
then, since b 6= 0 by assumption,

TrWa,b =
d−1∑
k=0

ei
2π
d
bk =

ei
2π
d
bd − 1

ei
2π
d
b − 1

= 0.
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(iii) We have

Wa,bWm,n = XaZbXmZn = ei
2π
d
mbXa+mZb+n,

and hence

〈Wa,b,Wm,n〉HS = TrW ∗
a,bWm,n = Tr ei

2π
d
abW−a,−bWm,n

= ei
2π
d
abe−i

2π
d
mb TrWm−a,n−b = dδa,mδb,n,

where we used TrWa,b = δa,0δb,0d from the previous point. Thus,〈
1√
d
Wa,b,

1√
d
Wm,n

〉
HS

= δ(a,b),(m,n),

showing that
{

1√
d
Wa,b : a, b ∈ {0, . . . , d− 1}

}
is an orthonormal system in

Lin(H). Since its cardinality is d2 = dim Lin(H), it is an ONB.

(iv) Since the relation in (4.42) is linear, it is enough to check it on an orthonormal
basis for Lin(H); we choose {|fi〉〈fj|}di,j=1. Then

d−1∑
a,b=0

Wa,b |fk〉〈fl|W ∗
a,b

=
d−1∑
a,b=0

|Wa,bfk〉〈Wa,bfl| =
d−1∑
a,b=0

ei
2π
d
bke−i

2π
d
bl |fk+a〉〈fl+a|

=
d−1∑
a=0

|fk+a〉〈fl+a|
d−1∑
b=0

ei
2π
d
b(k−l) =

d−1∑
a=0

|fk+a〉〈fl+a| dδk,l

= dδk,l

d−1∑
a=0

|fk+a〉〈fk+a| = dδk,lI = dI Tr |fk〉〈fl| ,

which is exactly what we wanted to prove.

Exercise 4.231. De�ne the Pauli matrices as

σ0 := I, σ1 :=

[
0 1
1 0

]
σ2 :=

[
0 −i
i 0

]
σ1 :=

[
1 0
0 −1

]
Show that

(
1√
2
σk

)3

k=0
forms on ONB in B(C2).

Score: 6 points.
Solution: Straightforward computation.
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Exercise 4.232. Let Lin(H,K) be equipped with the Hilbert-Schmidt inner prod-
uct, and for every A ∈ Lin(K) and B ∈ Lin(H), de�ne the left multiplication LA
and the right multiplication RB as

LA : X 7→ AX, RB : X 7→ XB, X ∈ Lin(H,K).

Show the following:

(i) LA1 = LA2 ⇐⇒ A1 = A2 and RB1 = RB2 ⇐⇒ B1 = B2.

(ii) (LA)∗ = LA∗ , (RB)∗ = RB∗ .

(iii) LA is normal/unitary/self-adjoint/positive/projection if and only if so is A,
and the same holds for RB and B.

(iv) If A is normal with spectral PVM PA then LA is normal with spectral PVM
PLA = LPA . Formulate and prove the same statement for RB.

(v) Let K = H, and for positive de�nite A,B ∈ Lin(H), de�ne the relative modular
operator

∆A/B := LARB−1 .

Show that ∆A/B is a positive operator on Lin(H), and �nd its spectral decom-
position.

Exercise 4.233. Let ϕ ∈ Lin(Lin(H),C) be a linear functional on Lin(H). Show
that there exists a unique ϕ̂ ∈ Lin(H) such that

ϕ(X) = Tr ϕ̂X, X ∈ Lin(H).

Moreover,

‖ϕ‖ = ‖ϕ̂‖1 ,

and the following hold:

(i) ϕ̂ is self-adjoint ⇐⇒ ϕ(X∗) = ϕ(X), X ∈ Lin(H).

(ii) ϕ̂ ≥ 0 ⇐⇒ ϕ ≥ 0, i.e., ϕ(X) ≥ 0 ∀X ∈ Lin(H)+.

(iii) Tr ϕ̂ = 1 ⇐⇒ ϕ(I) = 1.
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Prove that ϕ↔ ϕ̂ gives an identi�cation of the set of positive linear functionals
on Lin(H) that take the value 1 on the identity I, and the set of density operators
on H.

Show that if ϕ(X∗) = ϕ(X) for all X ∈ Lin(H) then there exist positive linear
functionals ϕ1 and ϕ2 such that ϕ = ϕ1 − ϕ2.

(Hint: Use the results of Sections 4.11, 4.32 and 4.19.)

Solution: Hidden.

Remark 4.234. Let (X ,F) be a measurable space, and T be a positive measure on
F . Every bounded measurable function f ∈ L∞(X ,F , T ) de�nes a multiplication
operator

Mf : g 7→ fg, g ∈ L2(X ,F , T ),

which is a bounded linear operator on L2(X ,F , T ). Note that the set of multiplica-
tion operators forms a vector space, and given any probability measure µ on F , it
de�nes a linear functional

ϕµ(Mf ) :=

∫
f dµ

on {Mf : f ∈ L∞(X ,F , T )}, which is nothing else than the expectation value of f
w.r.t. µ. This linear functional is positive, i.e., if f ≥ 0 T -almost everywhere then
ϕµ(f) ≥ 0, and it is normalized, i.e., ϕµ(I) = ϕµ(M1) = 1, where 1 denotes the
constant 1 function.

Now, if µ is absolutely continuous w.r.t. T then, by the Radon-Nikodym theorem,
there exists a T -integrable function µ̂ such that

ϕµ(Mf ) =

∫
f dµ =

∫
µ̂f dT.

for all bounded measurable f . This µ̂ is called the density function of µ (w.r.t. T ).
When X is �nite, and T is the counting measure, we have L2(X ,F , µ) = CX with its
canonical inner product, the multiplication operators can be represented by matrices
that are diagonal in the canonical basis {ex}x∈X of CX , and µ̂ is simply the function
µ̂(x) := µ(x), x ∈ X . The linear functional ϕµ can be extended to a positive linear
functional on Lin(CX ) by ϕµ(A) :=

∑
x∈X µ(x) 〈ex, Aex〉, and we have

ϕµ(A) =
∑
x∈X

µ(x) 〈ex, Aex〉 =
∑
x∈X

〈ex,Mµ̂Aex〉 = 〈Mµ̂, A〉HS .

Hence, Mµ̂ = ϕ̂µ, i.e., the density operator of ϕµ is the multiplication by the density
function of µ. This is the origin of the terminology �density operator�.
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4.23 The spectral decomposition

Recall that a number a ∈ K is an eigen-value of A ∈ Lin(V ), where V is a vector
space over K, if there exists a non-zero vector v ∈ V such that

Av = av.

Any such vector v is called an eigen-vector of A, corresponding to the eigen-value
a. The subspace spanned by the eigen-vectors corresponding to the same eigen-
value a ∈ A is called the eigen-subspace corresponding to a. The dimension of the
eigen-subspace corresponding to an eigen-value a is called the multiplicity of the
eigen-value.

De�nition 4.235. The spectrum of A, denoted as spec(A), is the set of eigen-values
of A.

If there exists a basis (vi)
d
i=1 of V consisting of eigen-vectors of A, called an eigen-

basis of A, then A can be diagonalized in this basis, i.e., its matrix in its eigen-basis
is of the form

A =

a1

. . .

ad

 ,
where in the diagonal we have the eigen-values of A. Note that not every operator

has an eigen-basis; a canonical example is A =

[
1 1
0 1

]
.

In the Hilbert space setting we are interested in the operators have an orthonor-
mal eigen-basis. As the following theorem shows, these are exactly the normal
operators.

Theorem 4.236. For every normal operator A on a �nite-dimensional complex
Hilbert space, there exists an orthonormal basis of H that consists of eigenvectors
of A.

Proof. We prove by induction on the dimension of the Hilbert space. The assertion
is trivial when dimH = 1, and assume that it is true in every Hilbert space of
dimension at most d. Let H be a Hilbert space of dimension d + 1 and let A be a
normal operator on H. Let p(z) := det(zI − A) be the characteristic polynomial of
A. Since the complex �eld is algebraically closed, there exists at least one complex
root of p. Let z0 be such a root; then 0 = p(z0) = det(z0I − A) and hence there
exists a non-zero vector e0 such that (z0I − A)e0 = 0, i.e., e0 is an eigenvector of A
with eigenvalue z0. We can assume without loss of generality that ‖e0‖ = 1.
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Obviously, the subspace Ce0 is invariant under A. Using now that z0I − A is
normal, we have (z̄0I − A∗)x = 0, due to Exercise 4.165; in particular, Ce0 is also
invariant under A∗. Thus, by Exercise 4.158, the orthocomplement {e0}⊥ is also
invariant under both A and A∗. The decomposition H = Ce0 ⊕ {e0}⊥ yields the
decomposition of A as

A =

[
z0 0

0 Ã

]
,

where Ã is the restriction of A onto {e0}⊥. One can easily see that Ã is again normal
and hence, by the induction hypothesis, there exists an orthonormal basis in {e0}⊥
that consists of the eigenvectors of Ã; let them be e1, . . . , ed. Thus, {e0, e1, . . . , ed}
is the required basis of H.

Corollary 4.237. Let A be a normal operator on a �nite-dimensional complex
Hilbert space H. Then A can be written in the form

A =
dimH∑
k=1

ak |ek〉〈ek| , (4.43)

where e1, . . . , edimH are eigenvectors of A that form an orthonormal basis for H, and
a1, . . . , adimH are the corresponding eigenvalues.

Proof. By Theorem 4.236, there exists an orthonormal basis of H that consists of
eigenvectors of A; let us denote it by e1, . . . , ed, and the corresponding eigenvalues
by a1, . . . , ad. We can expand any vector x ∈ H as x =

∑d
k=1 〈ek, x〉 ek, and thus

Ax =
d∑

k=1

〈ek, x〉 Aek︸︷︷︸
=akek

=
d∑

k=1

akek 〈e,x〉 =

(
d∑

k=1

ak |ek〉〈ek|

)
x.

Since this holds for every x ∈ H, we have the equality A =
∑d

k=1 ak |ek〉〈ek|.

De�nition 4.238. A decomposition as in (4.43) is called a eigen-decomposition of
A.

Remark 4.239. It is important to note that Theorem 4.236 is only valid in complex
Hilbert spaces. Indeed, it is easy to see that

Aϑ :=

[
cosϑ − sinϑ
sinϑ cosϑ

]
,

where ϑ is a real number, does not have any real eigen-values unless ϑ = kπ for some
k ∈ Z.
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Hence, for the rest of this section we assume that the Hilbert space is com-

plex, unless otherwise stated.

Remark 4.240. An eigen-decomposition may not be unique; indeed, we have I =∑d
i=1 |ei〉〈ei| for any ONB (ei)

d
i=1. More generally, if an eigenvalue a ∈ spec(A) has a

multiplicity at least two, then we have an in�nite freedom of choosing an ONB in the
corresponding eigen-subspace, and hence in�nitely many di�erent decompositions of
the form (4.43). Note also that a further, trivial ambiguity arises from the fact that
if ei is an element of an orthonormal eigen-basis of A then it can be replaced with
ẽi := λei, where |λ| = 1, and |ei〉〈ei| = |ẽi〉〈ẽi|.

The ambiguities pointed out in Remark 4.240 can be removed by using the
spectral decomposition instead of an eigen-decomposition. Consider any eigen-
decomposition of A as in (4.43), and for any a ∈ C, let

PA(a) :=
∑
i: ai=a

|ei〉〈ei| .

If a is an eigen-value, then this is nothing else than the projection onto the eigen-
subspace corresponding to a (see Proposition 4.104). If a is not an eigen-value then,
by the de�nition of an empty sum, this is the zero operator, which is also a projection,
onto the zero-dimensional subspace {0}. With this notation, the eigen-decomposition
(4.43) can be rewritten as

A =
d∑
i=1

ai |ai〉〈ai| =
∑

a∈spec(A)

a
∑
i: ai=a

|ei〉〈ei|︸ ︷︷ ︸
=PA(a)

=
∑

a∈spec(A)

aPA(a). (4.44)

De�nition 4.241. The expression in (4.44) is called the spectral decomposition of
A.

Remark 4.242. Note that (4.44) can also be written as

A =
∑
a∈C

aPA(a),

since PA(a) = 0 when a /∈ spec(A).

De�nition 4.243. For a normal operator A ∈ B(H), and any H ⊆ C, let

PA(H) :=
∑
a∈H

PA(a). (4.45)

This is called the spectral projection of A corresponding to the set H.
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Remark 4.244. Note that the sum in (4.45) is well-de�ned, as at most �nitely
many PA(a) 6= 0. That PA(H) is indeed a projection follows by Exercise 4.197.
Indeed, PA(H) is the projection onto the subspace spanned by the eigenvectors
corresponding to all the eigenvalues of A that fall in H. Finally, note that we have

PA({a}) = PA(a), a ∈ C.

Example 4.245. Recall that the support of a normal operator A ∈ B(H) is de�ned
as suppA := ranA = (kerA)⊥. Using the above notations, the projection PsuppA

onto the support of A is given by

PsuppA =
∑

a∈spec(A)\{0}

PA(a) = PA(spec(A) \ {0}) = PA(C \ {0}).

Restated slightly di�erently, the spectral decomposition shows that any normal
operator is the linear combination of pairwise orthogonal projections. It is easy to
see that the converse is also true:

Exercise 4.246. (i) Show that A ∈ B(H) is normal if and only if there exist
pairwise orthogonal projections (Pi)

r
i=1 such that

r∑
i=1

Pi = I, and A =
r∑
i=1

aiPi (4.46)

with some numbers a1, . . . , ar ∈ C.

(ii) Show that for any decomposition of A as in (4.46), spec(A) = {ai}i∈[r], and

PA(a) =
∑
i: ai=a

Pi, a ∈ C.

Exercise 4.247. Show that PA(.) is σ-additive, i.e., for any countable collection
{Bi}i of pairwise disjoint subsets of C, we have

PA (∪iBi) =
∑
i

PA(Bi).

The above example shows that PA(.) is a so-called projective valued measure
(PVM), that we call the spectral PVM of A. See Section ?? for more details.

De�nition 4.248. We de�ne the support of PA, denoted as suppPA, as the smallest
closed subset H ⊆ C such that PA(H) = I.
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Exercise 4.249. Show that

suppPA = {λ ∈ C : PA({λ}) 6= 0} = spec(A).

Exercise 4.250. Let H be a �nite-dimensional Hilbert space, and A ∈ B(H). Show
that

(i) A is self-adjoint if and only if A is normal and spec(A) = suppPA ⊆ R.

(ii) A is positive if and only if A is normal and spec(A) = suppPA ⊆ R+.

(iii) A is a projection if and only if A is normal and spec(A) = suppPA ⊆ {0, 1}.

(iv) A is unitary if and only if A is normal and spec(A) = suppPA is a subset of
the complex unit circle.

Exercise 4.251. Show that for a normal operator A ∈ B(H),

‖A‖ = max{|a| : a ∈ spec(A)} = max{| 〈x,Ax〉 | : x ∈ H, ‖x‖ = 1}.

Show that if A is self-adjoint then

λmin(A) = min{〈x,Ax〉 : x ∈ H, ‖x‖ = 1},
λmax(A) = max{〈x,Ax〉 : x ∈ H, ‖x‖ = 1},

where λmin(A) and λmax(A) denote the minimal and the maximal eigen-values of A,
respectively.

Score: 4+4=8 points.

De�nition 4.252. For an operator A ∈ B(H),

W (A) := {〈ψ,Aψ〉 : ψ ∈ H, ‖ψ‖ = 1}

is called the numerical range of A.

Exercise 4.253. (i) Show that for an arbitrary operator A ∈ B(H),

spec(A) ⊆ W (A).

(ii) Show that for a normal operator A ∈ B(H),

W (A) ⊆ conv(spec(A)).
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(iii) Use the Hausdor�-Toeplitz theorem below to conclude that for a normal oper-
ator A ∈ B(H),

W (A) = conv(spec(A)).

Solution: Hidden.

Theorem 4.254. (Hausdor�-Toeplitz) The numerical range of any operator A ∈
B(H) is convex.

Exercise 4.255. Show that the Gram matrix G ({ui}ri=1) ∈ Kr×r and the opera-
tor

∑r
i=1 |ui〉〈ui| ∈ B(H) have the same strictly positive eigenvalues, counted with

multiplicities. (Hint: consider the vector ψ :=
∑r

i=1 ei ⊗ ui ∈ Cr ⊗H, and take the
partial traces of |ψ〉〈ψ|.)

Solution: Hidden.

4.24 Functional calculus

Any operator A ∈ B(H) can be substituted into a polynomial p = c0 +
∑n

k=1 ck idk

as

p(A) := c0I +
n∑
k=1

ckA
k.

This is called the polynomial functional calculus. It has some nice algebraic proper-
ties, e.g., linearity and multiplicativity:

(λp+ ηq)(A) = λp(A) + ηq(A), (pq)(A) = p(A)q(A).

It can be extended to the larger class of functions that are analytic on the spectrum
of A; for instance, the exponential of any operator A can be de�ned as eA := I +∑+∞

n=1A
n/n!.

For normal operators, a more general concept of functional calculus can be de�ned
with the help of the spectral decompositoin, in which we can take f(A) for any
function f that is de�ned at least on the spectrum of A.

De�nition 4.256. Let A be a normal operator with spectral PVM PA. For any
function f : D → C such that spec(A) ⊆ D ⊆ C, we de�ne f(A) as

f(A) :=
∑

a∈spec(A)

f(a)PA(a).
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Exercise 4.257. (Algebraic properties of the functional calculus)

Let A ∈ B(H) be a normal operator. Show the following properties of the functional
calculus as a map Cspec(A) → B(H). Below f, g ∈ Cspec(A), and λ, η ∈ C.

(i) Linearity:

(λf + ηg)(A) = λf(A) + ηg(A).

(ii) Multiplicativity:

(fg)(A) = f(A)g(A).

(iii) Adjoint-preserving:

f(A) = f(A)∗,

where f is the pointwise conjugate of f .

(iv) Unitality:

1(A) = I,

where 1 is the constant 1 function.

(v) Show that id(A) = A, and for any polynomial p(z) = c0 +
∑n

k=1 ckz
k, we have

p(A) = c0I +
n∑
k=1

ckA
k,

where Ak is de�ned as the k-fold product A·. . .·A. That is, we get an extension
of the polynomial functional calculus.

(vi) Show that

‖f(A)‖ = max
a∈spec(A)

|f(a)| =: ‖f‖∞ .

Conclude that if a sequence fk, k ∈ N, converges to f in supremum norm on
the spectrum of A then fk(A) converges to f(A) in the operator norm (and
hence in any other norm on Lin(H).

Exercise 4.258. Let A ∈ B(H) be a normal operator. Show that for any function
f de�ned on some subset containing spec(A), there exists a polynomial p(z) =∑n

k=0 ckzk of degree at most | spec(A)| − 1 such that f(A) = p(A).
(Hint: Consider the Lagrange interpolation polynomials.)
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Exercise 4.259. (Isometric invariance of the functional calculus)
Let A ∈ B(H) be a normal operator, and f : D → C be a function such that
spec(A) ∪ {0} ⊆ D ⊆ C. Show that for any partial isometry V : H → K such that
ranA ⊆ (kerV )⊥, we have

f(V AV ∗) = V f(A)V ∗ + f(0)(I − V V ∗).

Conclude that if f(0) = 0 or V is surjective then f(V AV ∗) = V f(A)V ∗.

Solution: Hidden.

Exercise 4.260. (Spectral mapping theorem)
Let A be a normal operator, and f be a complex-valued function de�ned on spec(A).
Show that f(A) is normal, with spectrum and spectral PVM

spec(f(A)) = f(specA), P f(A)(B) = PA ({λ ∈ C : f(λ) ∈ B}) , B ⊆ C.

Conclude that

(i) f(A) is self-adjoint ⇐⇒ f(specA) ⊆ R;

(ii) f(A) is positive ⇐⇒ f(specA) ⊆ R+;

(iii) f(A) is a projection ⇐⇒ f(specA) ⊆ {0, 1};

(iv) f(A) is a unitary ⇐⇒ f(specA) is a subset of the complex unit circle.

We have de�ned the functions of a normal operator using its spectral decompo-
sition. It is easy that the spectral projections can also be obtained by functional
calculus.

Exercise 4.261. Let A ∈ B(H) be a normal operator, with spectral PVM PA. For
every M ⊆ C, let 1M denote the indicator function of M , i.e.,

1M(z) :=

{
1, z ∈M,

0, z /∈M.

Show that for every M ⊆ C,

1M(A) =
∑
a∈M

P (ai) = PA(M)

is the spectral projection of A corresponding to M .
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Exercise 4.262. Let A ∈ Lin(H) be a normal operator. Show that the projection
P onto the support of A is its spectral projection corresponding to C \ {0}, i.e.,

P = 1C\{0}(A) =
∑

a∈spec(a): a6=0

PA(a).

Exercise 4.263. Let A,B ∈ Lin(H) be normal operators. Show that the following
are equivalent:

(i) AB = BA.

(ii) p(A)q(B) = q(B)p(A) for any polynomials p, q.

(iii) f(A)g(B) = g(B)f(A) for any functions f, g de�ned on spec(A) and spec(B),
respectively.

(iv) PA(X)PB(Y ) = PB(Y )PA(X) for any X, Y ⊆ C.

(v) PA(a)PB(b) = PB(b)PA(a) for any a ∈ spec(A), b ∈ spec(B).

(vi) There exists an orthonormal basis in which the matrices of both A and B are
diagonal.

(Hint: Use Exercise 4.198, and prove thatH = ⊕a∈spec(A), b∈spec(B) ran(PA(a)PB(b)).)

Score: 12 points.

When A ∈ B(H) is self-adjoint, we introduce the notation

{A ≥ c} := 1[c,+∞)(A) = PA ([c,+∞))

for the spectral projection of A corresponding to the set [c,+∞). We introduce the
notations

{A > c} , {A ≤ c} , {a ≤ A ≤ b} , etc.

by an obvious modi�cation of the above de�nition.

Exercise 4.264. Show that for any self-adjoint A ∈ B(H)sa and any a, b ∈ R,

a{a ≤ A ≤ b} ≤ {a ≤ A ≤ b}A = A{a ≤ A ≤ b} ≤ b{a ≤ A ≤ b}.

Score: 3 points.

For a self-adjoint A, the projections

{A > 0} :=
∑

a∈spec(A): a>0

PA(a), {A < 0} :=
∑

a∈spec(A): a<0

PA(a)

are of particular interest. These the projections onto the subspace spanned by the
eigenvectors corresponding to the stricly positive/strictly negative eigenvalues of A,
respectively.

160



De�nition 4.265. For a self-adjoint operator A ∈ B(H)sa, let

A+ :=
∑

a∈spec(A): a>0

aPA(a), A− :=
∑

a∈spec(A): a<0

(−a)PA(a),

be the positive and the negative part of A, respectively.

Exercise 4.266. Let A ∈ B(H)sa be self-adjoint. Show that

A+ = A{A ≥ 0} = id+(A) ≥ 0

A− = −A{A ≤ 0} = id−(A) ≥ 0,

where id+(t) := max{t, 0}, id−(t) := −min{t, 0}, t ∈ R. Show also that

A+A− = 0, A = A+ − A−, |A| = A+ + A−,

and conclude that

A+ =
|A|+ A

2
, A− =

|A| − A
2

.

Score: 8 points.
As we have seen in Section 4.11, any operator A ∈ Lin(H) can be uniquely

decomposed as A = A1 + iA2, where A1 and A2 are self-adjoint; indeed, we have

A =
A+ A∗

2
+ i

A− A∗

2i
.

As we have seen in Exercise 4.266, the spectral decomposition (alternatively, the
functional calculus) allows us to further decompose self-adjoint operators as the
di�erence of two positive operators. Hence, we get the following:

Corollary 4.267. Any operator A ∈ Lin(H) can be decomposed as a linear combi-
nation of at most four PSD operators.

An important application of the functional calculus is that every PSD operator
has a unique PSD square root. Indeed, if A ∈ B(H)+ then it admits a spectral
decomposition A =

∑
a∈spec(A) aP

A(a), where a ≥ 0 for all a ∈ spec(A), and hence
we may de�ne

√
A := A1/2 :=

∑
a∈spec(A)

√
aPA(a).

It is straightforward to verify that
√
A

2
= A.
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Exercise 4.268. Let A ∈ B(H). Show that the following are equivalent:

(i) A is PSD.

(ii) There exists a PSD operator B ∈ B(H) such that A = B2.

(iii) There exists a self-adjoint operator B ∈ B(H) such that A = B2.

(iv) There exists an operator B ∈ B(H,K), for some Hilbert space K, such that
A = B∗B.

Moreover, the operator B in (ii) and in (iii) are unique, and equal to
√
A.

More generally, we may de�ne arbitrary complex powers of a PSD operator A as

Az :=
∑

a∈spec(A), a>0

azPA(a),

where az := ez ln a. Note that we only consider the strictly positive eigenvalues in the
above de�nition, and ln a is the usual real natural logarithm of the positive number
a. In particular, we have

A0 =
∑
a>0

PA(a),

which is nothing but the projection onto the support of A, and

A−1 =
∑
a>0

a−1PA(a)

is the generalized inverse, which satis�es

A−1A = AA−1 = A0.

Exercise 4.269. Let A ∈ B(H)≥0 be a PSD operator. Show that for any z, w ∈ C,

Az+w = AzAw.

Show that

A0 = lim
t↘0

At.
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Remark 4.270. Note that we may de�ne the absolute value of any normal operator
A via functional calculus as

|A| =
∑

a∈spec(A)

|a|PA(a).

For a general (not necessarily normal) operator this is not possible, as A does not
admit a spectral decomposition. However, we may still use functional calculus (more
precisely, the existence of a PSD square root) to de�ne the absolute value of an
arbitrary operator A as |A| :=

√
A∗A. We come back to this important concept in

Section 4.31.

Lemma 4.271. Let A ∈ B(H)sa be such that 0 ≤ T ≤ βI for some real number β,
and let V ⊆ H. Then we have the following equivalences:

〈v, Tv〉 = β ‖v‖2 ∀v ∈ span(V) (4.47)

⇐⇒ 〈v, Tv〉 = β ‖v‖2 ∀v ∈ V (4.48)

⇐⇒ Tv = βv ∀v ∈ span(V) (4.49)

⇐⇒ Pspan(V) ≤ P T (β) (4.50)

⇐⇒ βPspan(V) ≤ T, (4.51)

and

〈v, Tv〉 = 0 ∀v ∈ V (4.52)

⇐⇒ Tv = 0 ∀v ∈ span(V) (4.53)

⇐⇒ T 0 ≤ I − Pspan(V ) (4.54)

⇐⇒ T ≤ β(I − Pspan(V )). (4.55)

Proof. The implication (4.47)=⇒(4.48) is obvious. Assume (4.48); then

〈v, Tv〉 = β ‖v‖2 = 〈v, βIv〉 ∀v ∈ V

⇐⇒ 0 = 〈v, (βI − T )v〉 =
∥∥(βI − T )1/2v

∥∥2 ∀v ∈ V
⇐⇒ (βI − T )v = 0 ∀v ∈ V , (4.56)

which yields (4.49) by linearity. The equivalence (4.49)⇐⇒(4.50) is obvious, and
(4.50)=⇒(4.51) follows by βP T (β) ≤ βP T (β)+

∑
0<t<β tP

T (t) = T . Finally, assume

(4.51); then for all v ∈ V , β ‖v‖2 =
〈
v, βPspan(V)v

〉
≤ 〈v, Tv〉 ≤ 〈v, βIv〉 = β ‖v‖2,

i.e., (4.47) holds.

For the second set of equivalences, we have 〈v, Tv〉 =
∥∥T 1/2v

∥∥2
, and hence

T 1/2v = 0 ⇐⇒ Tv = 0, which yields (4.52)⇐⇒(4.53). Moreover, (4.53) is equiva-
lent to ranPspan(V) ⊆ kerT ⇐⇒ Pspan(V ) ≤ (I − T 0)⇐⇒ I − Pspan(V) ≥ T 0, which is
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(4.54). If (4.54) holds then T ≤ βT 0 ≤ β(I−Pspan(V)) follows immediately, while the
latter condition yields 0 ≤ 〈v, Tv〉 ≤ β

〈
v, (I − Pspan(V))v

〉
= 0 for all v ∈ span(V),

showing the implications (4.54)=⇒(4.55)=⇒(4.52).

Lemma 4.272. Let A, T ∈ B(H)sa such that 0 ≤ T ≤ I. Then

−TrA− ≤ TrAT ≤ TrA+,

and the �rst inequality holds with equality if and only if {A < 0} ≤ T ≤ {A ≤ 0},
and the second inequality holds with equality if and only if {A > 0} ≤ T ≤ {A ≥ 0}.

Proof. Let A =
∑d

i=1 ai |ei〉〈ei| be an eigen-decomposition of A. Then

TrAT =
∑
i: ai>0

ai 〈ei, T ei〉 −
∑
i: ai<0

(−ai) 〈ei, T ei〉 ≤
∑
i: ai>0

ai = TrA+. (4.57)

The rest of the statement follows immediately using Lemma ?? with β = 1.

Corollary 4.273. For a self-adjoint operator A ∈ B(H)+,

TrA− = min{TrAT : 0 ≤ T ≤ I} = TrA+ ≤ max{TrAT : 0 ≤ X ≤ I} = TrA+,

Exercise 4.274. Consider the operators A1, A2 ∈ Lin(C2), which are given by their
matrices in the standard orthonormal basis of C2 as

A1 :=

[
1 −i
i 1

]
, A2 :=

[
−2 −i
i −2

]
.

For k = 1, 2, compute

(Ak)+, (Ak)−, |Ak|, sin(Ak), eAk , A2015.

Solution: Hidden.

Exercise 4.275. (Continuity of the functional calculus)
Let A,B ∈ Lin(H). Show that

(i) For every n ∈ N \ {0},

An+1 −Bn+1 =
1

2

[
(A−B)(An +Bn) + (An +Bn)(A−B)

+ A(An−1 −Bn−1)B +B(An−1 −Bn−1)A
]
, (4.58)

with the convention A0 := B0 := I.
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(ii) Let ‖.‖ be any norm on Lin(H) that is submultiplicative, i.e., ‖XY ‖ ≤ ‖X‖ ‖Y ‖ , X, Y ∈
Lin(H). Use mathematical induction and (4.58) to prove

‖An −Bn‖ ≤ ‖A−B‖
n−1∑
k=0

‖A‖k ‖B‖n−1−k (4.59)

for every n ∈ N \ {0}. Note that if ‖A‖ 6= ‖B‖ then the above formula can be
rewritten as

‖An −Bn‖
‖A−B‖

≤ ‖A‖
n − ‖B‖n

‖A‖ − ‖B‖
.

(iii) Show that if limk→∞ ‖Ak − A‖ = 0 then limk→∞A
n
k = An for any �xed power

n ∈ N.

(iv) Let A and Ak, k ∈ N, be self-adjoint operators such that limk→∞ ‖Ak − A‖ = 0.
Let f be a continuous function on [−‖A‖ − 1, ‖A‖+ 1]. Show that

lim
k→∞
‖f(Ak)− f(A)‖ = 0.

Solution: Hidden.

Exercise 4.276. Show that if M ∈ B(H) is such that 0 ≤M ≤ I then M2 ≤M .

Solution: Hidden.

Exercise 4.277. (Every PSD matrix is a Gram matrix) Let A ∈ Cd×d be PSD.
Show that in any Hilbert space K with dimK ≥ rkA, there exist vectors v1, . . . , vd
such that A = G({vi}di=1).

Solution: Hidden.

Exercise 4.278. (i) Let A ∈ B(H)sa be a self-adjoint operator. Show that I− iA
is invertible, and

U :=
I + iA

I − iA
:= κ(A) (4.60)

is a unitary operator such that −1 /∈ spec(U). Show that if ‖A‖ < 1 then

κ(A) = I + 2
+∞∑
n=1

(iA)n, (4.61)

and all eigenvalues of κ(A) have positive real parts.
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(ii) Let U ∈ B(H) be a unitary operator such that −1 /∈ spec(U), and de�ne

A := i
I − U
I + U

:= κ−1(U). (4.62)

Show that A is self-adjoint, and ‖A‖ < 1 if and only if Reu > 0 for all
u ∈ spec(U).

(iii) Show that for a unitary operator U , Reu > 0 for all u ∈ spec(U) if and only
if ‖I − U‖ <

√
2.

(iv) Show that the maps in (4.60) and (4.62) are inverses of each other, and they
give a bijection between the set of self-adjoint operators B(H)sa and the set of
unitary operators on H with −1 not in their spectra.

(v) Show that any unitary operator U such that ‖I − U‖ <
√

2 can be expanded
as

U = I + 2
+∞∑
n=1

(
iκ−1(U)

)n
.

Solution: Hidden.

Remark 4.279. In functional analysis, the Cayley transform of a self-adjoint oper-
ator A is de�ned as

κ̃(A) :=
A− iI
A+ iI

= −I + iA

I − iA
= −κ(A),

i.e., κ(A) de�ned in (4.60) is minus one times the Cayley transform of A. The inverse
of the Cayley transformation κ̃ is given by

κ̃−1(U) = i
I + U

I − U
=

(
−iI − U
I + U

)−1

= −
(
κ−1(U)

)−1
,

where the �rst identity works when U ∈ ran κ̃, i.e., 1 /∈ spec(U), and for the second
identity to hold, one has to assume that −1 /∈ spec(U), i.e., U ∈ ranκ. The ad-
vantage of κ to the Cayley transform is that the former yields a series expansion of
unitaries close enough to I, where the latter close enough to −I.

4.25 Trace-class operators

Recall that for a linear operator on a �nite-dimensional Hilbert space, its trace was
de�ned as the sum of its diagonal elements in an orthonormal basis, and this quan-
tity was independent of the basis chosen. If we want to de�ne the trace of a bounded

166



operator on an in�nite-dimensional Hilbert space in the same way then we run into
some problems. Indeed, let H be separable, {en}n∈N be an ONB in H, and let A be

diagonal in this ONB with Aen = (−1)n

n
en. Then the series

∑+∞
n=1 〈en, Aen〉 is conver-

gent, but not absolutely convergent, and hence, by the Riemann series theorem, for
any c ∈ R, there exists a bijection κ : N→ N such that

∑+∞
n=1

〈
eκ(n), Aeκ(n)

〉
= c, and

one can also �nd a κ such that the previous sum does not converge. Hence, whether
or not the sum

∑+∞
n=1 〈en, Aen〉 converges for a given operator A ∈ B(H), and its

value, may depend on the orthonormal basis {en}n∈N. Our goal in this section is to
characterize those operators for which this is not the case, and hence their trace can
be unambigously de�ned. Our �rst observation shows that this is the case for any
positive semi-de�nite operator, if we allow the trace to be +∞.

Proposition 4.280. Let H be separable Hilbert space and A ∈ B(H) be positive
semi-de�nite. Then for any two ONBs {en}n∈N and {fn}n∈N in H,

TrA :=
+∞∑
n=1

〈en, Aen〉 =
+∞∑
n=1

〈fn, Afn〉 .

The quantity TrA ∈ [0,+∞] is the trace of A.

Proof.

De�nition 4.281. For any A ∈ B(H), let

‖A‖1 := Tr |A|

be its trace-norm. We say that A ∈ B(H) is trace-class if ‖A‖1 = Tr |A| < +∞. We
denote the set of trace-class operators on H by S1(H).

Next we show that ‖ ‖1 is a norm on the set of trace-class operators. To make it
more easily distinguishable (and for other reasons that will become clear later) we
will denote the usual operator norm of an A ∈ B(H) by ‖A‖∞.

Lemma 4.282. For any A,B ∈ B(H) and λ ∈ C, we have

(i) ‖λA‖1 = |λ| ‖A‖1.

(ii) ‖A‖1 ≥ ‖A‖∞ ≥ 0, and ‖A‖1 = 0⇐⇒ A = 0.

(iii) ‖A+B‖1 ≤ ‖A‖1 + ‖B‖1.

In particular, ‖ ‖1 is a norm on S1(H). Moreover,

(iv) ‖ ‖1 is unitarily invariant, i.e., for any unitaries U, V , ‖UAV ‖1 = ‖A‖1.
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(v) ‖A‖1 = ‖A∗‖1.

(vi) ‖AB‖1 ≤ ‖A‖∞ ‖B‖1, ‖AB‖1 ≤ ‖A‖1 ‖B‖+∞.

Proof. The �rst two assertion is trivial. For the second, note �rst that ‖|A|‖2 =
‖|A|2‖ = ‖A∗A‖ = ‖A‖2. For every ε > 0, let xε ∈ H be a unit vector such that

〈xε, |A|xε〉 > −ε+ sup{〈x, |A|x〉 : ‖x‖ = 1} = ‖|A|‖ − ε = ‖A‖ − ε.

Then ‖A‖ − ε ≤ Tr |A|, from which the assertion follows.
The triangle inequality follows by polar decomposition (see Reed-Simon).

Note that A is trace-class if and only if |A| is trace-class, by de�nition. Let P |A|

be the spectral PVM of |A|. If there existed an ε > 0 such that ranP |A|([ε,+∞)) is
in�nite-dimensional then we could take an ONS {en}n∈N ⊆ ranP |A|([ε,+∞)), and
thus we would have

Tr |A| ≥
∑
n∈N

〈en, |A|en〉 ≥
∑
n∈N

ε = +∞,

a contradiction. Hence, we see that for every ε > 0, ranP |A|([ε,+∞)) is �nite-
dimensional, and therefore we can �nd an ONB {en}n∈N in H such that

|A| =
∑
n∈N

an |en〉〈en| , where
∑
n∈N

an = Tr |A| < +∞,

where the convergence of the �rst sum is in ‖ ‖1.

Lemma 4.283. For any A ∈ B(H) and any ONB {en}n∈N,∑
n∈N

| 〈en, Aen〉 | ≤ Tr |A|.

Proof. Let A = U |A| be the polar decomposition of A. Then

| 〈en, Aen〉 | = | 〈en, U |A|en〉 | = |
〈
|A|1/2U∗en, |A|1/2en

〉
| ≤

∥∥|A|1/2U∗en∥∥∥∥|A|1/2en∥∥
=
〈
|A|1/2U∗en, |A|1/2U∗en

〉1/2 〈|A|1/2en, |A|1/2en〉
= 〈en, U |A|U∗en〉1/2 〈en, |A|en〉1/2 .

Thus, by the Cauchy-Schwarz inequality,

∑
n∈N

| 〈en, Aen〉 ≤

(∑
n∈N

〈en, U |A|U∗en〉

)1/2(∑
n∈N

〈en, |A|en〉

)1/2

= (TrU |A|U∗)1/2 (Tr |A|)1/2 = Tr |A| < +∞.
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Proposition 4.284. Let A ∈ B(H). T.f.a.e.:

(i) For any ONB {en}n∈N,
∑+∞

n=1 〈en, Aen〉 is convergent, and the value of the sum
is independent of the ONB.

(ii) For any ONB {en}n∈N,
∑+∞

n=1 〈en, Aen〉 is convergent.

(iii) For any ONB {en}n∈N,
∑+∞

n=1 | 〈en, Aen〉 | < +∞.

(iv) A is trace-class.

(v) A can be approximated in trace-norm by �nite-rank operators.

(vi) There exist orthonormal systems {fn}n∈N, {gn}n∈N, and (an)n∈N ⊆ [0,+∞),∑
n∈N an < +∞

A =
+∞∑
n=1

an |gn〉〈fn| ,

where the sum is convergent in trace-norm.

(vii) The previous statement holds with convergence in the weak operator topology.

Proof. (ii)⇐⇒ (iii) due to the Riemann series theorem. First, note that |〈en, (A+ A∗)/2en〉| ≤
| 〈en, Aen〉 |, and similarly, |〈en, (A− A∗)/(2i)en〉| ≤ | 〈en, Aen〉 |. Hence, we can as-
sume without loss of generality that A is self-adjoint.

+∞∑
n=1

| 〈en, Aen〉 |

4.26 Uniformly convex spaces

As we have seen, the norm is a continuous function with respect to the topology
induced by itself, or put more simply, for any sequence (xn)n∈N in a normed space,

‖xn − x‖ → 0 =⇒ ‖xn‖ → ‖x‖ .

The converse implication is obviously not true in general, but there are many im-
portant normed spaces in which a statement holds that looks at least formally like
a weak converse of the above implication; see, e.g., (4.67) below. Moreover� if the
RHS above is appended by the weak convergence of the sequence then the implica-
tion does indeed become two-way. A su�cient condition for these is the so-called
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uniform convexity of the space, which we will de�ne below. All Hilbert spaces are
uniformly convex, and uniformly convex Banach spaces possess many properties of
Hilbert spaces, proving which is slightly di�erent from, but not too much more dif-
�cult than in the Hilbert space case.

De�nition 4.285. We say that a normed space X is uniformly convex (or that its
norm is uniformly convex), if

∀ ε > 0 ∃ δ > 0 : ∀x, y ∈ X, ‖x‖ = ‖y‖ = 1,

‖x− y‖ ≥ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ. (4.63)

Geometrically, for unit vectors that are not too close to each other, the midpoint
of their connecting line segment cannot be too far from the origin; moreover, this is
quanti�ed uniformly on the unit sphere (i.e., δ only depends on ε, and not on x and
y).

Remark 4.286. For unit vectors x, y, ‖x− y‖ ≤ ‖x‖+‖y‖ ≤ 2, and hence condition
4.63 only needs to be veri�ed for ε ∈ (0, 2].

Remark 4.287. Note that the choice ε := 2 yields that

‖x0‖ = 1 = ‖x‖ , ‖x− x0‖ = 2 =⇒ x = −x0, (4.64)

i.e., the only unit vector x of distance 2 from a unit vector x0 is its antipodal −x0.
In yet another geometric picture, the radius 2 sphere drawn around a unit vector x0

only intersects the unit sphere with origin 0 at −x0. The proof of (4.64) is simple:

‖x− x0‖ = 2 =⇒
∥∥∥∥x− x0

2

∥∥∥∥ 6< 1− δ ∀δ > 0

=⇒ ‖x+ x0‖ < ε ∀ε ∈ (0, 2] =⇒ x = −x0,

where in the second implication we used the contrapositive of the implication in
(4.63) with y = −x0.

Remark 4.288. Yet another geometric picture behind uniform convexity is that
the unit sphere has to be �curved�, i.e., if x, y are two distinct elements of the unit
sphere then the midpoint of the line segment connecting them is not on the unit
sphere (but inside the open unit ball).

The above geometric pictures can used to solve the following:

Exercise 4.289. Let (X ,A, µ) be a measure space.
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(i) Show that if there exist two disjoint sets A,B ∈ A of positive measure then
L∞(X ,A, µ) is not uniformly convex.

(ii) Show that if there exist two disjoint sets A,B ∈ A of �nite positive measure
then L1(X ,A, µ) is not uniformly convex.

Solution: Hidden.

Remark 4.290. It is instructive to draw a picture of the unit spheres of l∞([2]) and
of l1([2]), and study the relation of (−1, 1), (1, 1) in the �rst, and of (−1, 0), (0, 1)
in the second case.

Example 4.291. By the parallelogram identity, if a norm is induced by an inner
product then∥∥∥∥x+ y

2

∥∥∥∥ =

(
1

2

∥∥x2
∥∥+

1

2
‖y‖2 −

∥∥∥∥x− y2

∥∥∥∥2
)1/2 ∣∣∣∣∣

‖x‖=‖y‖=1

=

(
1− 1

4
‖x− y‖2

)1/2

.

This implies immediately that any inner product space is uniformly convex; indeed
one may choose δ := 1−

√
1− ε2/4 in (4.63).

As it turns out, the parallelogram identity can be extended to Lp spaces in the
weaker form of an inequality:

Lemma 4.292. (Clarkson's inequalities)
Let (X ,A, µ) be a measure space and f, g : X → K be measurable functions on

X . Then∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g2

∥∥∥∥p
p

≤ 1

2
‖f‖pp +

1

2
‖g‖pp , p ∈ [2,+∞), (4.65)∥∥∥∥f + g

2

∥∥∥∥q
p

+

∥∥∥∥f − g2

∥∥∥∥q
p

≤
(

1

2
‖f‖pp +

1

2
‖g‖pp

)1/(p−1)

, p ∈ (1, 2], (4.66)

where in the second inequality, q = p/(p− 1) is the Hölder conjugate of p.

Proof. We only prove (4.65). Note that for any a, b ∈ K,∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p ≤
(∣∣∣∣a+ b

2

∣∣∣∣2 +

∣∣∣∣a− b2

∣∣∣∣2
)p/2

=

(
1

2
|a|2 +

1

2
|b|2
)p/2

≤ 1

2
|a|p +

1

2
|b|p,

where the �rst inequality follows from the fact that id
p/2
R≥0

is convex and takes the
value 0 at 0, and therefore it is also super-additive. The second inequality follows
from the convexity of id

p/2
R≥0

. Replacing a and b with f(x) and g(x), and integrating

over x ∈ X yields (4.65).
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Clarkson's inequalities immediately imply the following:

Corollary 4.293. For any measure space (X ,A, µ), and any p ∈ (1,+∞), Lp(X ,A, µ)
is uniformly convex.

Let us now move to the study of the general properties of uniformly convex
spaces. We start with the following:

Lemma 4.294. Let (xn)n∈N and (yn)n∈N be sequences of unit vectors in a uniformly
convex space. Then

lim
n,m→+∞

∥∥∥∥xn + ym
2

∥∥∥∥ = 1 =⇒ lim
n,m→+∞

‖xn − ym‖ = 0.

Proof. Assume the contrary, i.e., that there exists some ε > 0 such that for every
N ∈ N there exist n,m ∈ N for which ‖xn − ym‖ ≥ ε. Let δ > 0 be the con-
stant corresponding to ε in the de�nition of uniform convexity; then for all such
n,m, as above,

∥∥xn+ym
2

∥∥ < 1 − δ. This, however, contradicts the assumption that
limn,m→+∞

∥∥xn+ym
2

∥∥ = 1.

The following are easy consequences of Lemma 4.294:

Exercise 4.295. (i) Let (xn)n∈N and (yn)n∈N be sequences in a uniformly convex
space. Show that

lim
n→+∞

‖xn‖ = lim
n→+∞

‖yn‖ =
1

2
lim

n,m→+∞
‖xn + ym‖ =⇒ lim

n,m→∞
‖xn − ym‖ = 0.

(ii) Let (xn)n∈N be a sequence in a uniformly convex Banach space. Show that

lim
n→+∞

‖xn‖ =
1

2
lim

n,m→+∞
‖xn + xm‖ =⇒ ∃ x : lim

n→+∞
‖xn − x‖ = 0.

(iii) Let x and xn, n ∈ N, be elements of a uniformly convex space. Show that

‖xn‖ → ‖x‖ , ‖xn + x‖ → ‖x+ x‖ = 2 ‖x‖ =⇒ ‖xn − x‖ → 0. (4.67)

Solution: Hidden.

Theorem 4.296. Let C be a non-empty closed convex set in a uniformly convex
Banach space X. For any point x ∈ X, there exists a unique closest element to x in
C.
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Proof. Let d := d(x,C) = infc∈C ‖x− c‖. By the closedness of C, d = 0 ⇐⇒ x ∈ C,
and in this case x itself is the unique closest point. Hence, for the rest we assume
that d > 0. By the de�nition of the in�mum, there exists a sequence (cn)n∈N ⊆ C
such that ‖x− cn‖ → d. Then for any ε > 0 and any n,m large enough,

d+ ε ≥ 1

2
‖x− cn‖+

1

2
‖x− cm‖ ≥

∥∥∥∥1

2
(x− cn) +

1

2
(x− cm)

∥∥∥∥ =

∥∥∥∥x− cn + cm
2

∥∥∥∥ ≥ d,

where the �rst inequality is by the assumption ‖x− cn‖ → d, the second inequality
is by the triangle inequality, and the last inequality follows from (cn + cm)/2 ∈ C
due to the convexity of C. Thus,

lim
n,m→+∞

∥∥∥∥1

2
(x− cn) +

1

2
(x− cm)

∥∥∥∥ = d =⇒ 0 = lim
n,m→+∞

‖x− cn − (x− cm)‖

= lim
n,m→+∞

‖cn − cm‖ ,

where the implication is due to Exercise 4.295. Thus, (cn)n∈N is a Cauchy sequence,
and completeness of the space yields that it has a limit c. Moreover, since, C is
closed, c ∈ C. Finally, ‖x− c‖ = limn→+∞ ‖x− cn‖ = d.

Assume now that there exist c, c̃ ∈ C, such that ‖x− c‖ = ‖x− c̃‖ = d(x,C) = d.
If c 6= c̃ then there exists some ε > 0 such that

∥∥x−c
d
− x−c̃

d

∥∥ = 1
d
‖c− c̃‖ > ε. By

uniform convexity, for this ε > 0 there exists a δ > 0 such that
∥∥1

2
x−c
d

+ 1
2
x−c̃
d

∥∥ < 1−δ,
or equivalently,

∥∥x− c+c̃
2

∥∥ < (1 − δ)d. Since (c + c̃)/2 ∈ C, this contradicts the
de�nition of d.

Exercise 4.297. Let X be a �nite-dimensional normed space. Show that for any
x ∈ X and any closed convex set C ⊆ X, there exists a point c ∈ C such that
‖x− c‖ = d(x,C). Show an example where the closest point is not unique.

Solution: Hidden.

Another property in which uniformly convex spaces are like inner product spaces
is the following characterization of weak convergence:

Proposition 4.298. Let X be a uniformly convex space, and (xn)n∈N ⊆ X be a
sequence. Then

lim
n→+∞

‖xn − x‖ = 0 ⇐⇒

{
∀ϕ ∈ X∗ : limn→+∞ ϕ(xn) = ϕ(x) (i.e., xn

w−→ x),

limn→+∞ ‖xn‖ = ‖x‖ .

Proof. The implication =⇒ is obvious, and hence we only have to prove the converse
implication. For that, we have

2 ‖x‖ = ‖x+ x‖ ≤ lim inf
n→+∞

‖xn + x‖ ≤ ‖x‖+ lim
n→+∞

‖xn‖ = 2 ‖x‖ ,
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where the �rst inequality follows from xn
w−→ x. Hence, limn→+∞ ‖xn − x‖ = 0,

according to Exercise 4.295.

Exercise 4.299. Let X be a set equipped with the counting measure on P(X ).
Show that the equivalence in Proposition 4.298 holds in lp(X ) for every p ∈ [1,+∞).
More precisely,

lim
n→+∞

‖fn − f‖p = 0 ⇐⇒

{
∀ g ∈ lq(X ) : limn→+∞

∑
x∈X g(x)fn(x) =

∑
x∈X g(x)f(x),

limn→+∞ ‖fn‖p = ‖f‖p ,

⇐⇒

{
∀x ∈ X : limn→+∞ fn(x) = f(x),

limn→+∞ ‖fn‖p = ‖f‖p .

(Hint: Use the Lebesgue dominated convergence theorem.)

Remark 4.300. Note that the in the above exercise, l1(X ) is not uniformly convex,
yet the equivalence still holds.

4.27 Operator algebras

De�nition 4.301. Let H be a �nite-dimensional Hilbert space.

• We say that a subset A ⊆ B(H) is an operator algebra on H if it is a linear
subspace of B(H) that is closed under the operator product, i.e.,

A,B ∈ A =⇒ λA+ ηB ∈ A, λ, η ∈ K, AB ∈ A.

• An algebra on H is called a ∗-algebra, if it is also closed under the adjoint, i.e.,
A ∈ A =⇒ A∗ ∈ A.

• A ∗-algebra on H that contains IH is called a von Neumann algebra on H.
Example 4.302.

(i) A = B(H) is clearly a von Neumann algebra on H, and it is the largest one.

(ii) A = CI := {λI : λ ∈ C} is also a von Neumann algebra on H, and it is clearly
the smallest one, as any von Neumann algebra has to contain all constant
multiples of the identity by de�nition.

(iii) Let (ei)
d
i=1 be an ONB in H, and A be all the diagonal operators in this ONB,

i.e.,

A :=

{
d∑
i=1

ai |ei〉〈ei| : (ai)i∈[d] ∈ Cd
}

= span{|ei〉〈ei| : i ∈ [d]}.

It is easy to see that A is a von Neumann algebra, that we call a diagonal von
Neumann algebra.
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(iv) More generally, let (Pi)
r
i=1 be pairwise orthogonal projections such that

∑r
i=1 Pi =

I. Then

A :=

{
r∑
i=1

aiPi : (ai)i∈[r] ∈ Cr
}

= span{Pi : i ∈ [d]}

is a von Neumann algebra.

All the above examples are special cases of the following:

Example 4.303. Let E := {ek,l,i : k = 1, . . . , r, l = 1, . . . ,mk, i = 1, . . . , dk} be an
ONS in H. Then

A := spanC{|ek,l,i〉 〈ek,l,j| : k = 1, . . . , r, l = 1, . . . ,mk, i, j = 1, . . . , dk}

=

{
r∑

k=1

mk∑
l=1

dk∑
i,j=1

ak,i,j |ek,l,i〉 〈ek,l,j| : ak,i,j ∈ C

}

is easily seen to be a ∗-algebra on H, and it is a von Neumann algebra if and only if
E is an ONB.

Written in matrix formalism, A is the collection of all block-diagonal operators
in a given ONS, where the number of di�erent types of blocks is r, each block is a
dk × dk matrix, which appears with a multiplicity mk. For instance,

A :=





a11 a12 0 0 0 0 0 0
a21 a22 0 0 0 0 0 0
0 0 a11 a12 0 0 0 0
0 0 a21 a22 0 0 0 0
0 0 0 0 b 0 0 0
0 0 0 0 0 b 0 0
0 0 0 0 0 0 b 0
0 0 0 0 0 0 0 0


: aij, b ∈ C


(4.68)

is a ∗-algebra in B(C8), where the ONS consists of the �rst 7 canonical basis vectors
of C8, and we have r = 2, d1 = 2, m1 = 2 and d2 = 1, m2 = 3. This is not a von
Neumann algebra, as the bottom right entry of each element of A is 0, and hence
I /∈ A. If we modify the above example by allowing an arbitrary number in the
bottom right entry then we get a von Neumann algebra.

As it turns out, the above example gives the most general ∗-algebra on a �nite-
dimensional Hilbert space:
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Theorem 4.304. LetH be a �nite-dimensional Hilbert space. A subsetA ⊆ B(H) is
a ∗-algebra if and only if there exists an ONS {ek,l,i : k = 1, . . . , r, l = 1, . . . ,mk, i =
1, . . . , dk} such that

A = spanC{|ek,l,i〉 〈ek,l,j| : k = 1, . . . , r, l = 1, . . . ,mk, i, j = 1, . . . , dk}

=

{
r∑

k=1

mk∑
l=1

dk∑
i,j=1

ak,i,j |ek,l,i〉 〈ek,l,j| : ak,i,j ∈ C

}
.

It is a von Neumann algebra if and only if the ONS is an ONB.

Proof. We have discussed the �if� direction in Example 4.303. We omit the proof of
the �only if� direction, as we will not need it in the rest. We direct the interested
reader to [].

Remark 4.305. Using tensor products (see Section ??), the above structure theorem
can be rewritten in the following way: For any ∗-algebra A on a �nite-dimensional
Hilbert space H, there exist natural numbers r, (dk)

r
k=1, (mk)

r
k=1, and an isometry

V : ⊕rk=1Cmk ⊗ Cdk → H s.t. A = V
[
⊕rk=1ICmk ⊗ B(Cdk)

]
V ∗.

When A is a von Neumann algebra (i.e., it contains I), then the above V is a unitary.

De�nition 4.306. Let Ai ⊆ B(Hi) be von Neumann algebras. A map α : A1 → A2

is called a von Neumann algebra morphism if it is

• linear

• multiplicative: α(AB) = α(A)α(B), A,B ∈ A1;

• adjoint-preserving: α(A∗) = (α(A))∗, A ∈ A1;

• unital: α(IH1) = IH2

A bijective von Neumann algebra morphism is called a von Neumann algebra isomor-
phism. An injective von Neumann algebra morphism is also called a representation
of A.

The structure theorem 4.304 immediately yields the following:

Theorem 4.307. Let A ⊆ B(H) be a von Neumann algebra on a �nite-dimensional
Hilbert space H. Then A is isomorphic to the direct sum of full matrix algebras, i.e.,
there exist natural number r, d1, . . . , dr, and a von Neumann algebra isomorphism

α : A → ⊕rk=1B(Hk),

where dimHi = di.
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Proof. An explicit isomorphism can be obtained by simply removing the multiplici-
ties. In detail, consider an ONB as in Theorem 4.304, de�ne Hk := span{ek,1,i : i ∈
[dk]}, and

α : A =
r∑

k=1

mk∑
l=1

dk∑
i,j=1

ak,i,j |ek,l,i〉 〈ek,l,j| 7→
r⊕

k=1

dk∑
i,j=1

ak,i,j |ek,1,i〉 〈ek,1,j| ,

where on the RHS we consider ek,1,i as an element of Hk. It is easy to see that this
is a von Neumann algebra isomorphism.

Remark 4.308. Alternatively, using the tensor product form of the structure theo-
rem in Remark 4.305, an isomorphism as in the statement of Theorem 4.307 can be
given as

α : V [⊕rk=1ICmk ⊗ Ak]V ∗ 7→ ⊕rk=1Ak.

Example 4.309. Consider the von Neumann algebra

A :=





a11 a12 0 0 0 0 0
a21 a22 0 0 0 0 0
0 0 a11 a12 0 0 0
0 0 a21 a22 0 0 0
0 0 0 0 b 0 0
0 0 0 0 0 b 0
0 0 0 0 0 0 b


: aij, b ∈ C


Then its image under the isomorphism given in Theorem 4.307 is

α(A) =


 a11 a12 0
a21 a22 0
0 0 b

 : ai,j, b ∈ C

 .

De�nition 4.310. Any representation of a von Neumann algebra A as in Theorem
4.307 is called a minimal representation of A.

Remark 4.311. It is not too di�cult to see that the dimensions d1, . . . , dr in The-
orem 4.307 are uniquely determined by A, and hence the minimal representation is
essentially unique.

De�nition 4.312. We say that a von Neumann algebra A on a �nite-dimensional
Hilbert space is multiplicity-free, if in its representation as in Theorem 4.304, all
multiplicities mk = 1.
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Exercise 4.313. Show that a von Neumann algebra A on a �nite-dimensional
Hilbert space H is multiplicity-free if and only if there exist pairwise orthogonal
projections P1, . . . , Pr on H, with

∑r
k=1 Pk = I, such that

A =

{
A ∈ B(H) : A =

r∑
k=1

PkAPk

}
,

i.e., A is the collection of all operators on H that are block-diagonal according to
the decomposition H = ⊕rk=1 ranPk.

There is a more abstract notion of a ∗-algebra, which, however, we will not use
here. We only mention that complex-valued functions on a �nite set can be naturally
considered as a von Neumann algebra, as we show in Example 4.314, (which is
essentially a reformulation of example (iii) in Example 4.302) and Remark 4.315.
This identi�cation of a function algebra with an operator algebra is very useful in
treating classical and quantum models in the same formalism.

Example 4.314. For a �nite set Ω, consider HΩ := l2(Ω) de�ned in Example 4.72,
and recall that δω = 1{ω}, ω ∈ Ω, is an ONB in HΩ.

To every function f ∈ CΩ, we assign an operator on l2(Ω), called the multiplica-
tion operator corresponding to f , de�ned as

Mf : g 7→ fg, g ∈ l2(Ω).

Note that

Mf 1{ω} = f(ω)1{ω}, x ∈ Ω,

and hence Mf is diagonal in the canonical basis. Putting it in a di�erent way, if we
order the elements of Ω in some way, so that Ω = {ω1, . . . , ωd}, then the matrix of
Mf in the ONB {ei := 1{ωi}}di=1 is

f(ω1)
f(ω2)

. . .

f(ωd)

 , with zeroes outside the diagonal.

Vice versa, every operator F that is diagonal in this basis de�nes a function f(ωi) :=〈
1{i}, F1{i}

〉
, i ∈ [d], such that the corresponding multiplication operator is exactly

F . Hence,

AΩ := {Mf : f ∈ CΩ} = {A ∈ B(l2(Ω) : A is diagonal in the canonical basis},

and the latter is a von Neumann algebra by Example 4.302 (iii).
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Remark 4.315. It is easy to see that

‖f‖∞ := max
ω∈Ω
|f(ω)|

is a norm on CΩ, called the supremum norm, and we use the notation l∞(Ω) for the
function space CΩ equipped with ‖.‖∞.

Clearly, l∞(Ω) is an algebra with the usual point-wise linear operations and prod-
uct of functions, the constant one function 1 is a multiplicative unit in it, and we
can de�ne an adjoint operation on it by f ∗ := f , the point-wise conjugate of the
function.

Moreover, is easy to see that

Mλf+ηg = λMf + ηMg, Mfg = MfMg, M1 = I, Mf = M∗
f , ‖Mf‖ = ‖f‖∞ .

Thus, according to the above, f 7→ Mf is an algebra morphism that preserves the
adjoint and the unit, and also the norm, and therefore we may identify the function
algebra l∞(Ω) with AΩ in Example 4.314.

It is easy to see that if (Ai)i∈I are von Neumann algebras on H then so is
∩i∈IAi. In particular, for any B ⊆ B(H), there exists a smallest von Neumann
algebra containing B, given as

vN(B) := ∩{A ⊆ B(H) : A is a von Neumann algebra, and A ⊇ B}.

This is called the von Neumann algebra generated by B. For a single operator A ∈
B(H), we use the notation

vN(A) := vN({A}) = ∩{A ⊆ B(H) : A is a von Neumann algebra, and A 3 A}.

Exercise 4.316. Let A ∈ B(H) be a normal operator.

(i) Show that if A is a von Neumann algebra containing A then f(A) ∈ A for any
function de�ned at least on spec(A). Conclude that every spectral projection
of A is in A.
(Hint: Use the Lagrange interpolation polynomials.)

(ii) Show that

vN(A) =

 ∑
a∈spec(A)

λ(a)PA(a) : λ ∈ Cspec(A)

 = span{PA(a) : a ∈ spec(A)}.

(Hint: Use Example (iv).)
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(iii) Show that the functional calculus for A gives a von Neumann algebra isomor-
phism between l∞(spec(A)) ≡ Aspec(A) and vN(A).

(Hint: Use Exercise 4.257.)

Score: 3+5=8 points.

Exercise 4.317. (i) Let H be a �nite-dimensional Hilbert space and A ⊆ B(H)
be an algebra, i.e., a linear subspace that is closed under the multiplication of
operators, and assume that it contains I. Show that if A ∈ A is normal, then
for any complex-valued function f de�ned on spec(A), f(A) ∈ A. Conclude
that all spectral projections of A are in A, and that A∗ ∈ A (even tough we
did not assume that A is closed under the adjoint).

(ii) Let A :=

{[
a b
0 c

]
: a, b, c ∈ C

}
⊆ B(C2). Show that A is a unital algebra but

not a ∗-algebra. Describe all the projections and all the normal elements in A.

Solution: Hidden.

De�nition 4.318. For a von Neumann algebra A ⊆ B(H)+, let

• Asa := {A ∈ A : A = A∗} be the set of self-adjoint elements in A.

• A+ := A≥0 := {A ∈ A : A ≥ 0} be the set of PSD elements in A.

• A++ := A>0 := {A ∈ A : A > 0} be the set of positive de�nite elements in A.

• A[0,I] := {A ∈ A : 0 ≤ A ≤ I} be the set of tests in A.

• S(A) := {% ∈ A+ : Tr % = 1} be the set of density operators, or states in A.

Exercise 4.319. Let A ⊆ B(H) be a von Neumann algebra. Show that

Asa = spanRA+ = spanRA[0,I] = spanR S(A), (4.69)

A = spanCAsa = spanCA+ = spanCA[0,I] = spanC S(A). (4.70)

Show that if A is multiplicity-free then we also have

Asa = spanR{|ψ〉〈ψ| ∈ A : ‖ψ‖ = 1},
A = spanC{|ψ〉〈ψ| ∈ A : ‖ψ‖ = 1}.

(Hint: Use Corollary 4.267.)
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Score: 10 points.
According to the above exercise, any linear relation about the elements of a von

Neumann algebra can be proved by proving it for every PSD operator, every density
operator, etc. in A. For instance, we have

A ⊥ A ⇐⇒ Tr %A = 0 ∀% ∈ S(A).

Exercise 4.320. Let A ⊆ B(H) be a von Neumann algebra on a �nite-dimensional
Hilbert space H, and let X ∈ A. Show the following:

(i) X ∈ Asa ⇐⇒ ∀A ∈ Asa : TrXA ∈ R.

⇐⇒ ∀A ∈ A≥0 : TrXA ∈ R.

(ii) X ∈ A≥0 ⇐⇒ ∀A ∈ A≥0 : TrXA ∈ R≥0.

(Hint: Use the previous point and the spectral decomposition.)

Solution: Hidden.

Remark 4.321. (ii) of Exercise 4.320 shows that the positive cone in a von Neumann
algebra is self-dual; see also Exercise 4.189 and Section ??.

4.28 Super-operators: Basic notions

De�nition 4.322. A linear map that maps operators on a Hilbert space into opera-
tors on a (possibly di�erent) Hilbert space is called a super-operator. More precisely,
if A1 ⊆ B(H1) and A2 ⊆ B(H2) are von Neumann algebras then any element of
B(A1,A2) is called a super-operator.

Remark 4.323. Note that any von Neumann algebra on a �nite-dimensional Hilbert
space is itself a �nite-dimensional Hilbert space w.r.t. Hilbert-Schmidt inner product.
In particular, any super-operator Φ : A1 → A2 admits an adjoint Φ∗ : A2 → A1,
determined by the relation

〈A2,Φ(A1)〉HS = 〈Φ∗(A2), A1〉 , A1 ∈ A1, A2 ∈ A2.

De�nition 4.324. We say that a super-operator Φ ∈ B(A1,A2) is

• positive, or positivity-preserving (in notation: Φ ≥ 0), if

A ∈ (A1)≥0 =⇒ Φ(A) ∈ (A2)≥0;

• unital, if

Φ(IH1) = IH2 ;
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• trace-preserving, if

Tr Φ(A) = TrA, A ∈ A1.

Remark 4.325. It is important to note that we have two di�erent notions of positiv-
ity for super-operators, that are also denoted the same way: the one de�ned above,
and positive semi-de�niteness when the von Neumann algebra A is considered as
a �nite-dimensional Hilbert space w.r.t. the Hilbert-Schmidt inner product. Note,
however, that these two notions of positivity are unrelated. First of all, positive
semi-de�niteness may only be de�ned when the super-operator maps the algebra A
into itself, while for the concept of a positivity-preserving super-operators, there is
no such restriction. However, even when A = B, the two concepts of positivity are
unrelated; see Exercise 4.329 below.

Unless otherwise stated, �positivity� for a super-operator Φ, and correspondingly,
the notation Φ ≥ 0, will always mean the positivity-preserving property de�ned
above, as that is the concept that is interesting for super-operators. If we nevertheless
want to stress that we mean �positivity� in the sense of De�nition 4.324, we might
use the term �positivity-preserving�.

Exercise 4.326. Let Ai ∈ B(Hi), i = 1, 2 be von Neumann algebras on the �nite-
dimensional Hilbert spaces Hi, and let Φ ∈ B(A1,A2). Show that

(i) Φ ≥ 0 ⇐⇒ Φ∗ ≥ 0

(ii) Φ is trace-preserving ⇐⇒ Φ∗ is unital.

(iii) Φ is unital ⇐⇒ Φ∗ is trace-preserving.

Exercise 4.327. Let α : A1 → A2 be a von Neumann algebra morphism.

(i) Show that α is positive and unital, and conclude that α∗ is positive and trace-
preserving.

(ii) Show that for anyM ∈ POVM(A1,X ), α(M) := (α(Mx))x∈X ∈ POVM(A2,X ),
and for any % ∈ S(A2), α∗(%) ∈ S(A1).

Exercise 4.328. Let Lin(H,K) be equipped with the Hilbert-Schmidt inner prod-
uct, and for every A ∈ Lin(K) and B ∈ Lin(H), de�ne the left multiplication LA
and the right multiplication RB as

LA : X 7→ AX, RB : X 7→ XB, X ∈ Lin(H,K).

Show the following:
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(i) LA1 = LA2 ⇐⇒ A1 = A2 and RB1 = RB2 ⇐⇒ B1 = B2.

(ii) (LA)∗ = LA∗ , (RB)∗ = RB∗ .

(iii) LA is normal/unitary/self-adjoint/positive/projection if and only if so is A,
and the same holds for RB and B.

(iv) If A is normal with spectral PVM PA then LA is normal with spectral PVM
PLA = LPA . Formulate and prove the same statement for RB.

(v) Let K = H, and for positive de�nite A,B ∈ Lin(H), de�ne the relative modular
operator

∆A/B := LARB−1 .

Show that ∆A/B is a positive operator on Lin(H), and �nd its spectral decom-
position.

Exercise 4.329. Let dimH ≥ 2. Show examples of linear maps from B(H) to
B(H) that are positive semi-de�nite but not positivity-preserving, and the other
way around. (See De�nition ?? and Remark 4.325.)

Solution: Hidden.

4.29 Positive operators revisited

Recall that an operator A ∈ Lin(H) is positive semide�nite (or simply positive), if
〈x,Ax〉 ≥ 0 for all x ∈ H (see Section 4.19).

By the functional calculus (Section 4.24), we can substitute positive operators
into any complex-valued function that is de�ned on the positive half-line [0,+∞).
Moreover, we will use the following convention throughout the text: for a positive
operator A, we de�ne all its real powers on its support only. That is, if P (.) is the
spectral PVM of a positive operator A ∈ Lin(H)+ then for every r ∈ R we de�ne

Ar :=
∑
a>0

arP (a). (4.71)

In particular,

A0 =
∑
a>0

P (a)

is the support projection of A, i.e., it is the projection onto the support of A, where

suppA := (kerA)⊥ = ranA.
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Another important special case is A−1, that stands for the generalized inverse of A,
satisfying

A−1A = AA−1 = A0.

Exercise 4.330. Show that for any A ∈ Lin(H)+,

A0 = lim
t↘0

At.

Exercise 4.331. (i) Let A ∈ B(H)+ be a PSD operator. Show that for any
x ∈ H,

Ax = 0 ⇐⇒ 〈x,Ax〉 = 0 ⇐⇒ A1/2x = 0.

(ii) Let A1, . . . , Ar ∈ B(H)+ be PSD operators. Show that

ker(A1 + . . .+ Ar) = ∩ri=1 kerAi, (4.72)

supp(A1 + . . .+ Ar) = span{∪ri=1 suppAi}. (4.73)

(iii) Conclude that if A =
∑r

i=1 |vi〉〈vi| then

suppA = span{vi : i = 1, . . . , r}.

Score: 2+8+2=12 points.
Solution:

(i) If Ax = 0 then 0 = 〈x,Ax〉 =
〈
A1/2x,A1/2x

〉
=
∥∥A1/2x

∥∥2
, and hence A1/2x = 0.

Conversely, if A1/2x = 0 then 0 = A1/2(A1/2x) = Ax.

(ii) By the previous point,

x ∈ ker(A1 + . . .+ Ar)

⇐⇒ 0 = 〈x, (A1 + . . .+ Ar)x〉 = 〈x,A1x〉+ . . .+ 〈x,Arx〉
⇐⇒ 〈x,Aix〉 = 0 ∀i ⇐⇒ x ∈ ker(Ai) ∀i,

showing (4.72). From this we have

supp(A1 + . . .+ Ar) = (ker(A1 + . . .+ Ar))
⊥

= (∩ri=1 ker(Ai))
⊥ ⊇ (ker(Ai))

⊥ = supp(Ai)

for all i, and hence supp(A1 + . . .+Ar) ⊇ ∪ri=1 supp(Ai). Since supp(A1 + . . .+
Ar) is a subspace, this also implies supp(A1 + . . .+Ar) ⊇ span{∪ri=1 supp(Ai)}.
In the converse direction, if y ∈ supp(A1 + . . .+Ar) = ran(A1 + . . .+Ar) then
there exists an x ∈ H such that y = (A1 + . . . + Ar)x = A1x + . . . + Arx ∈
span{∪ri=1 supp(Ai)}.
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(iii) Immediate from the previous point, as ran(|v〉〈v|) = Cv.

Exercise 4.332. (i) Show that for any A ∈ B(H)+ and c ∈ (0,+∞), (cA)0 = A0.

(ii) Show that for A,B ∈ B(H)+,

A ≤ B =⇒ suppA ⊆ suppB ⇐⇒ A0 ≤ B0.

(iii) Show that if A ∈ B(H)+ is PSD and P is a projection such that cA ≤ P for
some c ∈ (0,+∞) then AP = PA = A.

(iv) Show that if A ∈ B(H) is self-adjoint and PsuppA is the projection onto its
support then

−‖A‖PsuppA ≤ λmin(A)PsuppA ≤ A ≤ λmax(A)PsuppA ≤ ‖A‖PsuppA,

where λmin(A) and λmax(A) are the minimal and the maximal non-zero eigen-
values of A, respectively, when A 6= 0, and both are set to be 0 when A = 0.

(v) Show that if A ∈ B(H)+ is PSD and P is a projection then

P = A0 ⇐⇒ ∃c, d ∈ (0,+∞) s.t. cP ≤ A ≤ dP.

(vi) Show that if B ∈ B(H) is self-adjoint and M ∈ B(H)+ is PSD are such that
suppB ⊆ suppM then there exists an ε0 ∈ (0,+∞) such that M ± εB ≥ 0 for
all ε ∈ [0, ε0).

Solution: Hidden.

Exercise 4.333. Let A,M ∈ Lin(H)+ be PSD operators such that M ≤ I. Show
that TrAM ≤ TrA, and the following are equivalent:

(i) TrAM = TrA.

(ii) suppA ⊆ {x ∈ H : Mx = x}, i.e., the support of A is in the �xed-point space
of M .

(iii) PM(1) ≥ A0, where PM(1) is the spectral projection of M corresponding to
the eigenvalue 1.

Solution: Hidden.

Exercise 4.334. Show that for an operator A ∈ Lin(H), the following are equivalent:

(i) A is PSD.
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(ii) There exists a PSD B ∈ Lin(H) such that A = B2.

(iii) There exists a self-adjoint B ∈ Lin(H) such that A = B2.

(iv) There exists a B ∈ Lin(H) such that A = B∗B.

(v) There exist B1, . . . , Br ∈ Lin(H) with some r ∈ N such that A =
∑r

k=1 B
∗
kBk.

Remark 4.335. It is this last characterization above how positivity is de�ned in
more abstract settings (e.g., for C∗-algebras).

Exercise 4.336. Show that the product of two PSD operators is PSD if and only
if they commute.

Solution: Hidden.

De�nition 4.337. Let C be a cone in a Hilbert space H. The dual cone of C is
de�ned as

Ĉ := {y ∈ H : 〈y, x〉 ≥ 0 ∀x ∈ C}.

We say that a cone C is self-dual if Ĉ = C.

Exercise 4.338. Show that for any A ∈ Lin(H),

A ∈ Lin(H)+ ⇐⇒ 〈B,A〉HS = TrBA ≥ 0, B ∈ Lin(H)+.

This property is called the self-duality of the cone Lin(H)+.

Solution: Hidden.

Exercise 4.339. Let A,B ∈ B(H)+ be PSD operators. Show that the following are
equivalent:

(i) A ⊥HS B, i.e., 〈A,B〉HS = 0.

(ii) TrAB = 0.

(iii) AB = 0.

(iv) ranA ⊥ ranB.

(v) A0B0 = 0.

(vi) PA(a) ⊥ PB(b) for all a ∈ spec(A) \ {0} and b ∈ spec(B) \ {0}.
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(vii) Any of (i)�(iv) holds for f(A) and g(B) in place of A and B where f and
g are arbitrary functions that contain spec(A) and spec(B) in their domains,
respectively, and take the value 0 at 0 if they are de�ned there.

(viii) Any of (i)�(iv) holds for f(A) and g(B) in place of A and B where f and g are
some functions as in (vii), and take strictly positive values on spec(A) \ {0}
and spec(B) \ {0}, respectively.

Score: 12 points.
Solution: (i)⇐⇒(ii) by the de�nition of the Hilbert-Schmidt inner product, and
AB = 0⇐⇒ ranB ⊆ kerA = (ranA)⊥, due to Exercise 4.165, implying (iii)⇐⇒(iv).
The implication (iii)=⇒(ii) is trivial.

The implication (ii)=⇒(iii) can be proved as follows. Let A =
∑d

i=1 ai |ei〉〈ei|
and B =

∑d
j=1 bj |fj〉〈fj| be eigen-decompositions of A and B, respectively. Assume

0 = TrAB = Tr
∑
i: ai 6=0

∑
j: bj 6=0

aibj |ei〉〈ei| |fj〉〈fj| =
∑
i: ai 6=0

∑
j: bj 6=0

aibj| 〈ei, fj〉 |2.

Then ei ⊥ fj for all i, j such that ai, bj > 0, which is equivalent to ranA ⊥ ranB.

De�nition 4.340. Let A,B ∈ Lin(H)+ be PSD operators. If any (and hence all) of
the conditions in Exercise 4.339 are satis�ed then we say that A and B are orthogonal
to each other.

Example 4.341. Let A,B ∈ Lin(H)+ be non-zero PSD operators. Show that the
following are equivalent:

(i) A and B are not orthogonal.

(ii) There exists an eigenvector ψ ofA with non-zero eigenvalue such that 〈ψ,Bψ〉 >
0.

(iii) There exists a vector ψ such that 〈ψ,Aψ〉 > 0, 〈ψ,Bψ〉 > 0.

Exercise 4.342. Let A,B ∈ Lin(H)+ be PSD operators. Show that the following
are equivalent:

(i) suppA ∩ suppB = {0}.

(ii) If C ∈ Lin(H)+ is such that C ≤ A and C ≤ B then C = 0.
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4.30 More on the PSD order

Recall that for A,B ∈ B(H), A ≤ B means that B − A ≥ 0, i.e., 〈x, (B − A)x〉 ≥ 0
for all x ∈ H. This is called the positive semide�nite (PSD) order on self-adjoint
operators, and we will use the notation A ≤PSD B when we want to emphasize this.

This order is the extension of the pointwise ordering of real-valued functions on
a �nite set Ω, de�ned as f ≤ g if f(ω) ≤ g(ω) for all ω ∈ Ω, in the following sense:
If (|ω〉)ω∈Ω is an ONB in H then

∑
ω f(ω) |ω〉〈ω| ≤PSD

∑
ω g(ω) |ω〉〈ω| if and only if

f ≤ g pointwise.
Obviously, for any �nite set of functions f1, . . . , fr ∈ RΩ, there is a unique smallest

upper bound (maximum) and a unique largest lower bound (minimum), given as

(max
i
fi)(ω) = max

i
fi(ω), (min

i
fi)(ω) = min

i
fi(ω), ω ∈ Ω,

respectively. This means that RΩ with the pointwise order has the lattice property:

De�nition 4.343. A partial order on a set has the lattice property if any �nite
subset has a (unique) smallest upper bound and a largest lower bound.

The following exercise shows that B(H)sa is not a lattice w.r.t the PSD order,
i.e., a �nite set of self-adjoint operator need not have a maximum or a minimum
in general. Surprisingly, this can happen even in the most extreme case, i.e., when
the set consists of two commuting operators. This may �rst seem to contradict the
above considerations about functions and diagonal operators. The resolution of this
apparent contradiction is that (in the case of the maximum) the set of upper bounds
is de�ned among all self-adjoint operators, not only among those diagonal in the
same basis, and, as a result, the upper bounds may not be comparable.

Exercise 4.344. Let A1 :=

[
1 0
0 2

]
and A2 :=

[
2 0
0 1

]
. Show that

U(A1, A2) := {Y ∈ B(H) : A1 ≤ Y, A2 ≤ Y },

has no minimum. (Hint: Find an explicit parametrization of U(A1, A2).)

Solution: Hidden.

However, as the following theorem shows, it is possible to de�ne a maximum
(minimum) for any �nite set of operators by using a hybrid ordering: the set of
upper (lower) bounds is de�ned w.r.t. the PSD order, while the minimal (maximal)
element among the upper (lower) bounds is chosen according to the trace order.

The latter is de�ned as A ≤Tr B if TrA ≤ TrB. Note that this is not a partial
order but a preorder, as it is not antisymmetric; indeed, TrA ≤ TrB and TrA ≥ TrB
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only implies TrA = TrB and not A = B. The trace order makes B(H)sa a preordered
vectors space, as A ≤Tr B clearly implies that λA ≤Tr λA for any λ > 0, and
A + C ≤Tr B + C for any C ∈ B(H)sa. (See section ?? for more detailes on these
notions.) In fact, the same would hold if we extended the trace order to all (not just
self-adjoint) operators.

The trace maximum of a �nite set of PSD operators plays an important role in
quantum state disrcimination; see Section ?? for details.

The proof of the following theorem uses Lemma 4.349, which we give after the
theorem, for convenience.

Theorem 4.345. Let A ⊆ B(H) be an observable algebra, and {A1, . . . , Ar} ⊂ Asa

be a non-empty �nite set of self-adjoint operators.

(i) In the set of (PSD) upper bounds U(A1, . . . , Ar) := {Y ∈ A : Y ≥PSD A1, . . . , Ar}
there is a unique element with minimal trace, which we denote by maxTr{A1, . . . , Ar}.

(ii) In the set of (PSD) lower bounds L(A1, . . . , Ar) := {Y ∈ A : Y ≤PSD A1, . . . , Ar}
there is a unique element with maximal trace, which we denote by minTr{A1, . . . , Ar}.

Proof. We only prove (i) as the proof of (ii) is completely similar (alternatively, can
be obtained by replacing all Ai with −Ai).

Note that U(A1 + cI, . . . , Ar + cI) = U(A1, . . . , Ar) + cI, and the trace is lin-
ear, so we can assume without loss of generality that all Ai are PSD. Let m :=
inf{TrY : Y ≥ A1, . . . , Ar} and m′ > m. Then inf{TrY : Y ≥ A1, . . . , Ar} =
inf U ′(A1, . . . , Ar), where U ′(A1, . . . , Ar) := {TrY : Y ≥ A1, . . . , Ar, ‖Y ‖1 = TrY ≤
m′} is a compact set. Continuity of the trace then guarantees the existence of a
Y ∈ U(A1, . . . , Ar) with minimal trace.

Let us assume that there are two distinct elements Y1 and Y2 in U(A1, . . . , Ar)
with minimal trace. Let Y = (Y1 +Y2)/2 and ∆ = (Y1−Y2)/2. Then Y1 = Y +∆ and
Y2 = Y −∆, and Y1, Y2 ≥ Ai implies Y − Ai ≥ ±∆. Hence, by Lemma 4.349, there
exists a constant ci > 0 such that Ym − Ai ≥ ci|∆| for every i = 1, . . . , r. Taking
c := mini ci, we have Y − c|∆| ≥ Ai, i = 1, . . . , r. Thus, Y − c|∆| ∈ U(A1, . . . , Ar),
but Tr(Y − c|∆|) = TrY − cTr |∆| < TrY = TrYi, i = 1, 2, contradicting our
original assumption.

Remark 4.346. Note that the trace minimum and maximum does not depend on the
algebraA, in the following sense. LetA = {A ∈ B(H) :

∑r
k=1 PKAPk = A} for some

projections Pk with
∑r

k=1 Pk = I. If we take, for instance, the upper bounds in the
whole of B(H) instead of just A, then we may get a larger set, and thus the minimum
of the trace functional on this larger set is at most as large as over the set of upper
bounds in A. However, if Y is any upper bound in B(H), i.e., Ai ≤ Y for all i, then
Ai =

∑r
k=1 PkAiPk ≤

∑r
k=1 PkY Pk ∈ A, and Tr

∑r
k=1 PkY Pk = TrA. Hence, for any

upper bound in B(H), there is an upper bound in A with the same trace. Uniqueness
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of the upper bound with minimal trace then yields maxTr{A1, . . . , Ar} ∈ A. In
particular, if A is a diagonal algebra then the trace maximum is just diagonal-wise
maximum of the operators, i.e., the same as when we identify the operators with
functions. Analogous considerations apply to minTr{A1, . . . , Ar}.
Remark 4.347. Note that in general maxTr{A1, . . . , Ar} /∈ {A1, . . . , Ar}, not even
for commuting operators and similarly for minTr{A1, . . . , Ar}.
Exercise 4.348. Show that maxTr{A1, . . . , Ar} ∈ {A1, . . . , Ar} if and only if there
exists a j ∈ [r] such that Aj ≥ Ai for all i ∈ [r]. State and prove the analogous
statement for the trace minimum.

Solution: Hidden.

Lemma 4.349. Let D,T ∈ B(H) be self-adjoint operators such that D ≥ ±T . Then
there exists a positive constant c ∈ (0,+∞) such that D ≥ c|T |.
Proof. First, D ≥ ±T implies D ≥ (T + (−T ))/2 = 0, i.e., D is PSD. Let H1

denote the support of D, and decompose H as H = H1⊕H2. Then D and T can be

written in the corresponding block forms as D =

[
D11 0
0 0

]
and T =

[
T11 T12

T ∗12 T22

]
, and

positive semide�niteness of D±T implies 0 ≥ T22 ≥ 0. Using again that D+T ≥ 0,
we �nally obtain that T12 = 0, too.

The smallest eigenvalue of T11 is λ :=
∥∥T−1

11

∥∥−1
, which is strictly larger than 0,

and hence we have |T11| ≤ ‖T‖ I ≤ (‖T‖ /λ)D11. Thus, the assertion holds with
c := ‖T‖ /λ.

Note that for diagonal D and T , D ≥ ±T implies D ≥ |T |. As the following
exercise shows, this is no longer true for operators, and hence c < 1 in Lemma 4.349
in general. On the other hand, D ≥ ±T implies D ≥Tr |T |.

Recall that for a self-adjoint operator X, {X ≥ c} stands for the spectral projec-
tion PX([c,+∞)).

Exercise 4.350. Let A,B ∈ B(H)sa be self-adjoint operators such that

A ≥ B and A ≥ −B.

(i) Show that

{B ≥ 0}A{B ≥ 0}+ {B < 0}A{B < 0} ≥ |B|, (4.74)

and hence

TrA ≥ Tr |B|, i.e., A ≥Tr |B|. (4.75)

(ii) Show examples of A,B as above for which A � |B|.
Solution: Hidden.
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4.31 Polar decomposition and the singular value decomposi-

tion

We have seen in Section 4.23 that every normal operator has a particularly simple
form, as it can be decomposed as a linear combination of projections. We have
also seen (Exercise 4.246) that normality is also necessary for such a decomposition.
There are, however, decompositions that work for any linear operator on a Hilbert
space. The following Theorem 4.355 shows that any operator can be decomposed as
a positive operator (its absolute value) followed by a partial isometry; this is called
the polar decomposition. This turns out to be a very useful technical tool in many
computations with operators; see, e.g., Section 4.32 on the trace-norm. Moreover,
the polar decomposition combined with the spectral decomposition yields a canonical
form of Hilbert space operators, called the singular value decomposition, that is an
extension of the spectral decomposition to non-normal operators.

First, as a motivation, note that any complex number a ∈ C can be decomposed
as a = v|a|, where |a| ∈ R+ and |v| = 1, and this decomposition to the product of a
non-negative number and a complex number of modulus one is unique unless a = 0.
Next, consider a normal operator A ∈ B(H), with an eigen-decomposition

A =
d∑
i=1

ai |ei〉〈ei| =
d∑
i=1

vi|ai| |ei〉〈ei| =

(
d∑
i=1

vi |ei〉〈ei|

)(
d∑
i=1

|ai| |ei〉〈ei|

)
= V |A|,

or in matrix form,

A =


v1

v2

. . .

vd


︸ ︷︷ ︸

V


|a1|

|a2|
. . .

|ad|


︸ ︷︷ ︸

|A|

.

Here, V need not be unique if ai = 0 for some i, but we can always choose it to be
a partial isometry by setting vi = 0 when ai = 0, or to a unitary by setting |vi| = 1
for all i.

To generalize this decomposition to arbitrary linear operators, we �rst need to
de�ne the absolute value:

De�nition 4.351. For A ∈ B(H,K), let

|A| :=
√
A∗A. (4.76)

Remark 4.352. Note that |A| ∈ B(H), i.e., A and |A| act on the same Hilbert
space H, but if K 6= H then they map into di�erent Hilbert spaces.
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Note that for normal operators we already have a notion of absolute value via
functional calculus, and it is easy to see that the two de�nitions coincide:

Exercise 4.353. Let A ∈ B(H) be a normal operator with spectral decomposition
A =

∑
a∈spec(A) aP

A(a). Show that
√
A∗A =

∑
a∈spec(A) |a|PA(a).

Of course, there may be other ways to extend the absolute value from normal to
general operators. The above de�nition is further motivated by the following:

Exercise 4.354. Let A ∈ B(H,K). Show that

‖|A|x‖ = ‖Ax‖ , x ∈ H, (4.77)

and if B ∈ B(H)+ is such that ‖Bx‖ = ‖Ax‖, x ∈ H, then B = |A|. Conclude that

‖A‖ = ‖|A|‖ , ker |A| = kerA, ran |A| = (kerA)⊥ = ranA∗. (4.78)

Solution: Hidden.
Now we can generalize the above decomposition of normal operators to arbitrary

linear operators, possibly mapping between di�erent Hilbert spaces:

Theorem 4.355. (Polar decomposition) Let A ∈ B(H,K). There exists a partial
isometry V ∈ B(H,K) such that

A = V |A| and V ∗V = |A|0 = Pran |A|. (4.79)

Moreover, the pair (V, |A|) is unique in the sense that if S is a positive semide�nite
operator and Ṽ is a partial isometry such that A = Ṽ S and (Ṽ )∗Ṽ = S0 then
S = |A| and Ṽ = V .

Proof. Let us de�ne V x := 0 on ker |A| and V |A|x := Ax on ran |A|. Note that if
|A|x1 = |A|x2 then ‖Ax1 − Ax2‖ = ‖A(x1 − x2)‖ = ‖|A|(x1 − x2)‖ = 0 by (4.77),
and hence V is well-de�ned. It is clear that V is linear on ker |A| and also on ran |A|,
and hence it de�nes a linear map on the whole of H by V (y1 + y2) := V y1 + V y2,
y1 ∈ ker |A|, y2 ∈ ran |A|. Moreover, (4.77) also implies that V is isometric on
(kerV )⊥ = ran |A|, completing the proof of existence.

To see uniqueness, let A = Ṽ S be a decomposition with the given properties.
Then A∗A = S∗(Ṽ )∗Ṽ S = S|S|0S = S2, and hence, S = |A|. As Ṽ is 0 on the
orthocomplement of (ran |A|)⊥, we have V = A|A|−1 = Ṽ |A||A|−1 = Ṽ |A|0 = Ṽ .

De�nition 4.356. The unique partial isometry in (4.79) is called the polar isometry
of A. (Note that it is only an isometry on ran |A|.)
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Remark 4.357. For the partial isometry in (4.79) we have

V ∗V = |A|0 = Pran |A| = PranA∗ and V V ∗ = PranV = PranA.

Moreover,

kerV = ker |A| = kerA.

Remark 4.358. The above proof works for operators between in�nite-dimensional
spaces as well, with the following slight modi�cation. Since H = ker |A| ⊕ ran |A|,
we need to invoke the boundedness of V on ran |A| to see that it uniquely extends
to ran |A|, and the extension is automatically an isometry, and then proceed as in
the proof of Theorem 4.355.

Remark 4.359. Note that (in the �nite-dimensional case) we can express V as
V := A|A|−1, where the inverse stands for the generalized inverse, and it may be
veri�ed by a direct computation that this is a partial isometry with the required
properties. Indeed, V ∗V = |A|−1A∗A|A|−1 = |A|0 is a projection, and hence V is a
partial isometry by Lemma 4.212, and we have V |A| = A|A|0. Hence, we have to
show that A|A|0 = A, or equivalently, that A(I − |A|0) = 0. This is indeed true, as
for any x ∈ H,∥∥A(I − |A|0)x

∥∥2
=
〈
A(I − |A|0)x,A(I − |A|0)x

〉
=
〈
A∗A(I − |A|0)x, (I − |A|0)x

〉
,

and A∗A(I − |A|0) = |A|2(I − |A|0) = 0.

Remark 4.360. Since V ∗V = |A|0, V is an isometry if and only if {0} = ker |A| =
kerA, i.e., if A is invertible. If A ∈ B(H) and dimK ≥ dimH then V can be modi�ed
on kerV to an isometry, and if dimK = dimH < +∞ then it can be modi�ed to a
unitary U such that A = U |A|. Note, however, that this unitary is not unique if A
is not invertible.

A few important consequences of Theorem 4.355 can be easily deduced as follows.
Let A ∈ B(H,K), and A = V |A| be its polar decomposition as in (4.79). Then

V ∗A = V ∗V |A| = Pran |A||A| = |A|

i.e., the polar decomposition can be �inverted� in the above form, and it is often in
this form that we use the polar decomposition.

Next, observe that (4.79) yields

A∗ = |A|V ∗, (4.80)
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and hence

(A∗)∗A∗ = AA∗ = (V |A|)(|A|V ∗) = V |A|V ∗V |A|V ∗ = (V |A|V ∗)2,

from which

|A∗| =
√
AA∗ = V |A|V ∗, (4.81)

where the �rst identity is due to the de�nition (4.76). Multiplying (4.81) from the
left by V ∗, we get

V ∗|A∗| = V ∗V |A|V ∗ = Pran |A||A|V ∗ = |A|V ∗ = A∗ (4.82)

where the last identity follows from (4.80). Since

(V ∗)∗V ∗ = V V ∗ = PranA = P(kerA∗)⊥ = P(ker |A∗|)⊥ = Pran |A∗|,

we see that V ∗ is the polar isometry of A∗, and thus (4.82), gives the polar decom-
position of A∗, i.e., A∗ = V ∗|A∗|. That is, the polar decomposition of A (i.e., its
absolute value and its polar isometry) then we can obtain the polar decomposition
of A∗.

Exercise 4.361. Show that any element in the (operator norm) unit ball of B(H,K)
can be written as the equal weight convex combination of
a) two isometries, if dimH ≤ dimK;
b) two unitaries, if dimH = dimK;
c) two surjective partial isometries, if dimH ≥ dimK.
(Hint: Use polar decomposition, and apply the functions f±(t) := t±

√
1− t2 to the

absolute value.)

Solution: Hidden.

Combining the polar decomposition and the spectral decomposition of PSD op-
erators yields a decomposition for arbitrary operators, called the singular value de-
composition.

Corollary 4.362. (Singular value decomposition) For any linear operator A ∈
B(H,K) between �nite-dimensional Hilbert spaces, there exist orthonormal systems
{e1, . . . , er}, {f1, . . . , fr} in H and K, respectively, and positive numbers s1, . . . , sr,
such that

A =
r∑

k=1

sk |fk〉〈ek| . (4.83)
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Proof. Since |A| is normal, Corollary 4.237 yields that |A| can be written as |A| =∑r
k=1 sk |ek〉〈ek|, where {e1, . . . , er} is an orthonormal system and s1, . . . , sr are pos-

itive numbers. Let V be the isometry from the polar decomposition theorem. Since
it is an isometry on (kerA)⊥ = (ker |A|)⊥ = span{e1, . . . , er}, we can see that
fk := V ek, k = 1, . . . , r, is again an orthonormal system, and

A = V |A| = V

r∑
k=1

sk |ek〉〈ek| =
r∑

k=1

skV |ek〉〈ek| =
r∑

k=1

sk |fk〉〈ek| .

De�nition 4.363. We call any triple (S, F,E) a singular value decomposition of an
operator A ∈ B(H,K) if S = (s1, . . . , sr) ⊆ [0,+∞)r, F = (f1, . . . , fr) is an ONS in
K, E = (e1, . . . , er) is an ONS in H, and

A =
r∑

k=1

sk |fk〉〈ek| .

For simplicity, we will write that �A =
∑r

k=1 sk |fk〉〈ek| is a singular value decompo-
sition of A� (even though it is mathematically not completely precise).

By Corollary 4.362, every linear operator between �nite-dimensional Hilbert
spaces has a singular value decomposition. As it turns out, the set of non-zero
sk, counted with multiplicities, is the same in any such decomposition, while the
corresponding ONSs need not be unique.

Exercise 4.364. Let A ∈ B(H,K) and assume that A can be written as

A =
m∑
k=1

sk |fk〉 〈ek| ,

where (sk)
r
k=1 ∈ [0,+∞)m, (ek)

m
k=1 is an ONS in H and (fk)

m
k=1 is an ONS in K.

Show that rk(A) = #{k : sk > 0}, the non-zero sk counted with multiplicities give
exactly the non-zero eigenvalues of |A|, counted with multiplicities, and

ranA = span{ek : sk > 0}, (kerA)⊥ = span{fk : sk > 0}.

There are di�erent conventions to de�ne the singular values of an operator A ∈
B(H,K).

De�nition 4.365. LetA ∈ B(H,K). Then the sequence of singular values s1(A), . . . , sr(A)
might mean any of the following:

• The non-zero eigenvalues of |A|, counted with multiplicities, ordered in any
way; in this case r = rk(A).
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• The same as above, appended with zeros so that r = min{dimH, dimK}.

• All the eigenvalues of |A|, counted with multiplicites, ordered in any way; in
this case, r = dimH.

• Any of the above, with the singular values ordered in decreasing order.

Remark 4.366. With any of the above conventions, the sequence of non-zero sin-
gular values is well-de�ned up to the ordering of the singular values, and the set
of (non-zero) singular values is the same as the set of (non-zero) eigenvalues of |A|,
without multiplicities.

The di�erent conventions above may be convenient in di�erent problems, while
in most cases it is irrelevant which convention is used. We will always emphasize
when we work with a particular convention.

Note that the number of non-zero eigenvalues (counted with multiplicities) is
always well-de�ned, but it has the disadvantage that with this convention, di�erent
operators mapping between the same spaces could have a di�erent number of singular
values.

In Exercise 4.367 it is natural to choose r = rk(A) or r = min{dimH, dimK}, so
that the number of singular values is the same for A and for A∗, and both conventions
work equally well. On the other hand, in Exercise 4.368 it is more convenient to
choose r = min{dimH, dimK}, so that we take into account part of the kernel of A
as well.

Exercise 4.367. Show that the non-zero eigenvalues of |A| and |A∗|, counted with
multiplicities, are the same, and hence the non-zero singular values of A and A∗ are
the same. Show that A =

∑r
k=1 sk |fk〉 〈ek| is a singular value decomposition of A if

and only if A∗ =
∑r

k=1 sk |ek〉 〈fk| is a singular value decomposition of A∗.

Exercise 4.368. Let us count the number of singular values with multiplicities as
min{dimH, dimK}. Show that a non-negative number s ∈ [0,+∞) is a singular
value of A if and only if there exist non-zero vectors x ∈ H and y ∈ K such that

Ax = sy, A∗y = sx. (4.84)

Show that the same characterization may not hold with the convention where the
number of singular values (with multiplicities) is de�ned to be dimH.

Solution: Hidden.

Obviosuly, ifA ∈ B(H) is normal, then any eigen-decompositionA =
∑r

k=1 ak |ek〉〈ek|
as in (4.43) is a singular value decomposition. One might think that for normal op-
erators (at least with non-degenerate eigenvalues), any singular-value decomposition

A =
∑r′

k=1 a
′
k |f ′k〉〈e′k| is an eigen-decomposition, i.e., f ′k = e′k. This, however, is not

the case.
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Exercise 4.369. Let |0〉 , |1〉 be an ONS in a Hilbert space H, and let

X := |1〉〈0|+ |0〉〈1| . (4.85)

Find the unique eigen-decomposition of X and compare with (4.85).

Exercise 4.370. Find the polar decomposition and all singular value decompositions

of A :=

[
0 1
0 0

]
.

Exercise 4.371. Let P,Q be projections and PQ =
∑r

i=1 λi |ei〉〈fi| be a singular
value decomposition of PQ.

(i) Show that Pei = ei, Pfi = λiei, Qfi = fi, Qei = λifi.

(ii) Show that 〈ei, fj〉 = λiδi,j.

(iii) Show that the projections P0 := P−
∑r

i=1 |ei〉〈ei|, Pi := Pspan{ei,fi}, i = 1, . . . , r,

and Pr+1 := Q−
∑r

i=1 |fi〉〈fi| are pairwise orthogonal, and
∑r+1

k=0 Pk = P ∨Q.

(iv) Show that P0 ⊥ Q and Pr+1 ⊥ P .

(v) Assume that we make the PVM measurement (Pk)
r+1
k=0 on a system which is

either in state % or in state σ, where %0 = P and σ0 = Q. Show that if the
outcome is 0 then we know that the system was in state %, and the post-
measurement state has support P0; if the outcome is 1 then we know that the
system was in state σ, and the post-measurement state has support Q0; if the
outcome is k ∈ [r] then the post-measurement state is |ek〉〈ek| if the original
state was %, and |fk〉〈fk| if the original state was σ.

Solution: Hidden.

4.32 Schatten p-norms and the trace norm

De�nition 4.372. For A ∈ B(H,K) and p ∈ [1,+∞), we de�ne the Schatten p-norm
(or simply p-norm) of A as

‖A‖p := (Tr |A|p)1/p =

(
r∑
i=1

si(A)p

)1/p

,

where s1(A), . . . , sr(A) are the singular values of A. For p = 1,

‖A‖1 = Tr |A| =
r∑
i=1

si(A)

is called the trace-norm of A.

197



Remark 4.373. The case p = 2 yields the Hilbert-Schmidt norm

‖A‖2 := (Tr |A|2)1/2 = (TrA∗A)1/2 = 〈A,A〉1/2HS .

Exercise 4.374. Let A ∈ B(H,K). Show that p 7→ ‖A‖p is monotone decreasing in
p, and

‖A‖∞ := lim
p→+∞

‖A‖p = inf
p∈[1,+∞)

‖A‖p = max
i∈[r]

si(A),

where the (si(A))ri=1 are the singular values of A. Show that ‖A‖∞ is exactly the
operator norm of A.

Solution: Hidden.

Exercise 4.375. Show that for any A ∈ B(H,K), and any p, q ∈ [1,+∞], p < q,

‖A‖q ≤ ‖A‖p ≤ ‖A‖q (Tr |A|0)1− p
q ≤ ‖A‖q (dimH)1− p

q .

(Hint: Use the Hölder inequality for real vectors.)

We have already seen that the operator norm ‖.‖∞ and the Hilbert-Schmidt norm
give norms on B(H,K). It is clear that all Schatten norms are strictly positive and
positive homogeneous, i.e.,

‖A‖p ≥ 0 ‖λA‖p = |λ| ‖A‖p , λ ∈ C,
= 0 ⇐⇒ A = 0

so one only needs to prove the triangle inequality to show that the Schatten norms
are indeed norms. This can be obtained from the following inequality:

Theorem 4.376. Let Ai ∈ B(Hi−1,Hi), i = 1, . . . , n, and let r, p1, . . . , pn ∈ (0,+∞)
so that 1

p1
+ . . .+ 1

pn
= 1

r
. Then

‖An · . . . · A1‖r ≤ ‖An‖pn · . . . · ‖A1‖p1
.

The proof of the above inequality is quite involved, and we only do it in the
following special case:

Lemma 4.377. Let A ∈ B(H,K). Then,

‖AB‖1 ≤ ‖B‖∞ ‖A‖1 , B ∈ B(L,H), ‖BA‖1 ≤ ‖B‖∞ ‖A‖1 , B ∈ B(K,L).

Moreover,

‖A‖1 = max{|TrBA| : B ∈ B(K,H), ‖B‖∞ ≤ 1}
= max{|TrV A| : V ∈ B(K,H), is a partial isometry}. (4.86)
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Proof. Let A =
∑r

k=1 sk |fk〉〈ek| be a singular-value decomposition of A and let
AB = V |AB| be the polar decomposition of AB. Then |AB| = V ∗AB and hence,

‖AB‖1 = Tr |AB| = TrV ∗AB = TrBV ∗A = Tr
r∑

k=1

sk |BV ∗fk〉〈ek|

=
r∑

k=1

sk 〈ek, BV ∗fk〉 ≤
(

max
k
| 〈ek, BV ∗fk〉 |

) r∑
k=1

sk ≤ ‖BV ∗‖Tr |A|

≤ ‖B‖∞ ‖A‖1

The inequality ‖BA‖1 ≤ ‖B‖∞ ‖A‖1 follows the same way.
As a consequence,

‖A‖1 ≥ sup{|TrBA| : B ∈ B(K,H), ‖B‖∞ ≤ 1}
≥ sup{|TrV A| : V ∈∈ B(K,H) is a partial isometry}

where the second inequality is obvious. On the other hand, by choosing V from the
polar decomposition A = V |A|, we see that both suprema are attained at V ∗ and
are equal to Tr |A| = ‖A‖1.

Proposition 4.378. ‖ ‖1 de�nes a norm on B(H), which we call the trace-norm.

Proof. The properties ‖A‖1 ≥ 0 and ‖λA‖1 = |λ| ‖A‖1 , λ ∈ C, are obvious. If
A =

∑r
k=1 sk |fk〉〈ek| is a singular-value decomposition of A then ‖A‖1 =

∑r
k=1 sk,

hence if ‖A‖1 = 0 then A = 0. Finally, let A,B ∈ B(H,K) and let A+B = V |A+B|
be the polar decomposition of A+B. Then

‖A+B‖1 = Tr |A+B| = |TrV ∗(A+B)| ≤ |TrV ∗A|+ |TrV ∗B| ≤ ‖A‖1 +‖B‖1 ,

where the last inequality is due to (4.86).

Corollary 4.379. For any �nite-dimensional Hilbert space H,

T (A , B) :=
1

2
‖A−B‖1

de�nes a metric on B(H), which we call the trace-norm distance on B(H).

Exercise 4.380. Let A,B ∈ B(H) be such that TrA = TrB. Show that

1

2
‖A−B‖1 = max

0≤T≤I
TrT (A−B),

and the equality is reached for any T such that {A−B > 0} ≤ T ≤ {A−B ≥ 0}.
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Since the trace-norm distance comes from a norm, it obviously satis�es the follow-
ing joint convexity property: if A1, . . . , Ar, B1, . . . , Br ∈ Lin(H) and p1, . . . , pr ≥ 0
are such that p1 + . . .+ pr = 1 then

T

(
r∑
i=1

piAi,

r∑
i=1

piBi

)
≤

r∑
i=1

piT (Ai, Bi).

Exercise 4.381. Show that

|TrA| ≤ Tr |A|, Tr |A| = Tr |A∗|.

Solution: Hidden.

Proposition 4.382. Let {p1, . . . , pr} and {q1, . . . , qr} be probability distributions
and {A1, . . . , Ar} and {B1, . . . , Br} be operators on B(H). Then,

T

(
r∑

k=1

pkAk ,
r∑

k=1

qkBk

)
≤ min{(max

k
‖Bk‖)T (p , q) +

r∑
k=1

pkT (Ak , Bk) ,

(max
k
‖Ak‖)T (p , q) +

r∑
k=1

qkT (Ak , Bk)}.

(4.87)

In particular,

T

(
r∑

k=1

pkAk ,
r∑

k=1

pkBk

)
≤

r∑
k=1

pkT (Ak , Bk) . (4.88)

Proof. We have

T

(
r∑

k=1

pkAk ,

r∑
k=1

qkBk

)
=

∥∥∥∥∥
r∑

k=1

pkAk −
r∑

k=1

qkBk

∥∥∥∥∥
1

=

∥∥∥∥∥
r∑

k=1

pk(Ak −Bk)−
r∑

k=1

(qk − pk)Bk

∥∥∥∥∥
1

≤
r∑

k=1

pk ‖Ak −Bk‖1 + max
k
‖Bk‖

r∑
k=1

|qk − pk|,

and T (
∑r

k=1 pkAk ,
∑r

k=1 qkBk) ≤ (maxk ‖Ak‖)T (p , q)+
∑r

k=1 qkT (Ak , Bk) follows
the same way. The choice pk := qk, k = 1, . . . , r yields (4.88).
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We refer to inequality (4.87) as the strong convexity of the trace-norm distance,
and inequality (4.88) as the joint convexity of the trace-norm distance.

Exercise 4.383. Let A,B ∈ B(H) be such that TrA = TrB. Show that

1

2
‖A−B‖1 = max

0≤T≤I
TrT (A−B),

and the equality is reached for any T such that {A−B > 0} ≤ T ≤ {A−B ≥ 0}.
Show that if we also have A,B ≥ 0 then

1

2
‖A−B‖1 ≤ TrA−max{λmin(A), λmin(B)}. (4.89)

As a consequence,

TrA+ TrB

2
− 1

2
‖A−B‖1 ≥ max{λmin(A), λmin(B)}.

Proof. We have

0 = Tr(A−B) = Tr(A−B)+ − Tr(A−B)−,

from which

Tr |A−B| = Tr(A−B)+ + Tr(A−B)− = 2 Tr(A−B)+ = 2 max
0≤T≤I

TrT (A−B).

Assume now that A,B ≥ 0. Since B ≥ λmin(B)I, we have A−B ≤ A−λmin(B)I,
and hence,

Tr(A−B){A−B ≥ 0} ≤ TrA{A−B ≥ 0} − λmin(B) Tr{A−B ≥ 0}.

Note that Tr(A−B) = 0 yields that either A = B, or {A−B ≥ 0} 6= 0. In the �rst
case, the inequality in (4.89) is obvious. In the second case, Tr{A − B ≥ 0} ≥ 1,
and hence we can continue the above inequality as

Tr(A−B){A−B ≥ 0} ≤ TrA− λmin(B) = TrB − λmin(B).

Switching the role of A and B, we �nally get (4.89).

Exercise 4.384. Show that if A,B ∈ B(H)+ then

min
0≤T≤I

{TrTA+ Tr(I − T )B} =
TrA+ TrB

2
− 1

2
‖A−B‖1 .

Conclude that

TrA+ TrB

2
− 1

2
‖A−B‖1 ≥ min{λmin(A), λmin(B)} dimH. (4.90)
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Proof. We have

TrTA+ Tr(I − T )B = TrB − TrT (A−B) ≥ TrB − Tr(A−B)+

= TrB − 1

2
Tr(A−B)− 1

2
Tr |A−B| = TrA+ TrB

2
− 1

2
‖A−B‖1 ,

and equality holds for T = {A−B ≥ 0}. Let λmin := min{λmin(A), λmin(B)}. Then
A ≥ λminI and B ≥ λminI yields that

TrTA+ Tr(I − T )B ≥ λmin TrT + λmin Tr(I − T ) = λmin dimH,

and we arrive at (4.90)

Exercise 4.385. Let x, y ∈ H. Express the eigenvalues of |x〉〈x|−|y〉〈y|, and express
‖|x〉〈x| − |y〉〈y|‖p, 1 ≤ p ≤ +∞, in terms of ‖x‖, ‖y‖ and 〈x, y〉. In particular, show
that

‖|x〉〈x| − |y〉〈y|‖1 =

√
(‖x‖2 + ‖y‖2)− 4| 〈x, y〉 |2.

Show that if ψ1, ψ2 are state vectors in some Hilbert space then

‖|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖1 = 2
√

1− | 〈ψ1, ψ2〉 |2 = 2

√
1− F (|ψ1〉〈ψ1| , |ψ2〉〈ψ2|)2.

(Hint: Use that if x, y 6= 0 then the problem is essentially 2-dimensional, and use
Gram-Schmidt orthogonalization.)

Solution: Hidden.

Exercise 4.386. Show that if A,B ∈ B(H)+ then

min
0≤T≤I

{TrTA+ Tr(I − T )B} =
TrA+ TrB

2
− 1

2
‖A−B‖1 .

Solution: Hidden.
We use the convention 0p := 0, p ∈ R \ {0}. Accordingly, powers of a positive

semide�nite operator are only taken on its support, and de�ned to be zero on the
orthocomplement of the support.

Lemma 4.387. Let A,B ∈ B(H)+. Then

TrAαB1−α ≤ (TrA)α(TrB)1−α, α ∈ [0, 1], (4.91)

and if A0 ≤ B0 then

TrAαB1−α ≥ (TrA)α(TrB)1−α, α ∈ (1,+∞). (4.92)
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Proof. Let A =
∑

a aPa and B =
∑

b bQb be the spectral decompositions of A and
B, respectively, and let c(a, b) := aTrPaQb, d(a, b) := bTrPaQb. Then

TrAαB1−α =
∑
a,b

aαb1−α TrPaQb =
∑
a,b

c(a, b)αd(a, b)1−α.

Let α ∈ (0, 1) and p := 1/α, q = 1/(1 − α), such that 1/p + 1/q = 1. Hölder's
inequality then yields

∑
a,b

c(a, b)αd(a, b)1−α ≤

(∑
a,b

(c(a, b)α)p

)1/p(∑
a,b

(d(a, b)α)q

)1/q

=

(∑
a,b

c(a, b)

)α(∑
a,b

d(a, b)

)1−α

= (TrA)α(TrB)1−α,

proving (4.91) for α ∈ (0, 1), and the cases α = 0 and α = 1 are trivial.
Let α ∈ (1,+∞), and p := 1/α, q = 1/(1 − α), such that 1/p + 1/q = 1. Note

that p > 0, q < 0, and A0 ≤ B0 implies that if d(a, b) = 0 for some a, b then also
c(a, b) = 0. Hence, the reverse Hölder inequality yields that

∑
a,b

c(a, b)αd(a, b)1−α ≥

(∑
a,b

(c(a, b)α)p

)1/p(∑
a,b

(d(a, b)α)q

)1/q

= (TrA)α(TrB)1−α,

proving (4.92).

Remark 4.388. Lemma 4.387 is a special case of the generalized log-sum inequality
for (classical) f -divergences.

Remark 4.389. Inequality (4.92) does not hold in general without the support
condition. For instance, if A,B are orthogonal and both non-zero then TrAαB1−α =
0 but (TrA)α(TrB)1−α > 0.

Proposition 4.390. For any C ∈ B(H)+ and p ∈ R \ {0}, we have

‖C‖p := (TrCp)
1
p =


sup

σ∈S(H)

TrCσ1− 1
p , p ∈ [1,+∞),

inf
σ∈S(H), C0≤σ0

TrCσ1− 1
p , p ∈ (0, 1),

inf
σ∈S(H), C0≥σ0

TrCσ1− 1
p , p ∈ (−∞, 0).

Moreover, all the optimizations can be restricted to σ0 = C0.
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Proof. Let p ∈ [1,+∞), α := 1/p ∈ (0, 1), and A := Cp = C1/α. Then for any
B ∈ B(H)+, (4.91) yields

TrCB1−α = TrAαB1−α ≤ (TrA)α(TrB)1−α = (TrCp)
1
p (TrB)1−α, (4.93)

and hence,

(TrCp)
1
p ≥ TrC(B/TrB)1−α = TrC(B/TrB)1− 1

p . (4.94)

This yields that

(TrCp)
1
p ≥ sup

σ∈S(H)

TrCσ1− 1
p ,

and equality holds with the choice σ := Cp/TrCp.
Next, let p ∈ (0, 1), α := 1/p ∈ (1,+∞), and A := Cp = C1/α. Then for any

B ∈ B(H)+ such that A0 ≤ B0, the inequalities in (4.93) and (4.94) hold in the
opposite direction, due to (4.92), and hence

(TrCp)
1
p ≤ inf

σ∈S(H)
TrCσ1− 1

p .

Equality can again be attained by σ := Cp/TrCp.
Finally, let p ∈ (−∞, 0), α := 1− 1/p ∈ (1,+∞), and B := Cp = C1/(1−α). Then

for any A ∈ B(H)+ such that A0 ≤ C0 = B0, we have

TrAαC = TrAαB1−α ≥ (TrA)α(TrB)1−α = (TrA)α (TrCp)
1
p ,

and hence,

(TrCp)
1
p ≤ TrC(A/TrA)α = TrC(A/TrA)1− 1

p .

This yields

(TrCp)
1
p ≤ inf

σ∈S(H), C0≥σ0
TrCσ1− 1

p ,

and equality can be attained by choosing σ := C1/(1−α)/TrC1/(1−α).

It is easy to obtain another variational formula for TrCp from Proposition 4.390:

Proposition 4.391. For any C ∈ B(H)+ and p ∈ R \ {0}, we have

TrCp =


sup

X∈B(H)+

{
pTrCX1− 1

p − (p− 1) TrX
}
, p ∈ [1,+∞),

inf
X∈B(H)+, C0≤X0

{
pTrCX1− 1

p − (p− 1) TrX
}
, p ∈ (0, 1),

sup
X∈B(H)+, C0≥X0

{
pTrCX1− 1

p − (p− 1) TrX
}
, p ∈ (−∞, 0).

Moreover, all the optimizations can be restricted to σ0 = C0.
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Proof. We give the proof of the case p ∈ [1,+∞); the proof for the other cases are
completely similar. Then

sup
X∈B(H)+

{
pTrCX1− 1

p − (p− 1) TrX
}

= sup
σ∈S(H)

sup
λ>0

f(λ),

where

f(λ) := pλ1− 1
p TrCσ1− 1

p − (p− 1)λ

is concave. We have f ′(λ) = (p− 1)λ−
1
p TrCσ1− 1

p − (p− 1), which is zero if and only

if λ = λp = (TrCσ1− 1
p )p, and

f(λp) = p(TrCσ1− 1
p )p−1 TrCσ1− 1

p − (p− 1)(TrCσ1− 1
p )p = (TrCσ1− 1

p )p.

Hence,

sup
σ∈S(H)

sup
λ>0

f(λ) = sup
σ∈S(H)

(TrCσ1− 1
p )p = TrCp,

where the last identity is due to Proposition 4.390.

For any linear map Φ : B(H)→ B(K), let

‖Φ‖p/q := sup{‖Φ(A)‖p : ‖A‖q ≤ 1}.

We have the following:

Proposition 4.392. For any linear map Φ : B(H)→ B(K),

‖Φ‖1/1 ≤ ‖Φ
∗‖∞/∞ .

Proof. Let A ∈ B(H) and let Φ(A) = V |Φ(A)| be its polar decomposition. Then,

‖Φ(A)‖1 = TrV ∗Φ(A) = Tr Φ∗(V ∗)A ≤ ‖Φ∗(V ∗)‖∞ ‖A‖1 ≤ ‖Φ
∗‖∞/∞ ‖A‖1 .

Corollary 4.393. Let Φ : B(H) → B(K) be a positive and trace-preserving map.
Then

‖Φ(A)‖1 ≤ ‖A‖1 , A ∈ B(H).

Proof. By the Russo-Dye theorem, ‖Φ‖∞/∞ = 1 and hence the assertion follows from
Proposition 4.392.
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Let Φ : B(H) → B(K) be a linear map. The norm of Φ induced by the trace
norm is given by

‖Φ‖1/1 := sup{‖Φ(X)‖1 : ‖X‖1 ≤ 1}. (4.95)

Lemma 4.394. Let Φ : B(H)→ B(K) be a linear map. Then

‖Φ‖1/1 = sup{‖Φ(|x〉〈x|)‖1 : ‖x‖ = 1}.

Proof. Let X ∈ B(H) be such that ‖X‖1 ≤ 1, and let X =
∑r

i=1 λi |fi〉〈ei| be a
singular value decomposition. Since 0 ≤ λi and

∑r
i=1 λi ≤ 1, we have

‖Φ(X)‖1 =

∥∥∥∥∥
r∑
i=1

λiΦ(|fi〉〈ei|)

∥∥∥∥∥
1

≤
r∑
i=1

λi ‖Φ(|fi〉〈ei|)‖1 ≤ max
1≤i≤r

‖Φ(|fi〉〈ei|)‖1 .

Hence, in the optimization in (4.95), it is enough to consider operators of rank 1.
Obviously, we can also restrict to operators with unit trace norm. Now, let X be a
rank 1 operator with unit trace norm; then there are unit vectors x, y ∈ H such that
X = |y〉〈x| = 1

4

∑3
k=0 i

k
∣∣x+ iky

〉〈
x+ iky

∣∣. Hence,
‖Φ(X)‖1 ≤

1

4

3∑
k=0

∥∥Φ(
∣∣x+ iky

〉〈
x+ iky

∣∣)∥∥ ≤ max
0≤k≤3

∥∥Φ(
∣∣x+ iky

〉〈
x+ iky

∣∣)∥∥ ,
which proves the assertion.

Corollary 4.395. Let Φ : B(H)→ B(K) be a positive trace-preserving map. Then
‖Φ‖1/1 = 1.

Proof. Obvious from Lemma 4.394

De�nition 4.396. Let Φ : B(H)→ B(K) be a linear map. For each n ∈ N, de�ne

‖Φ‖(n)
1/1 := ‖idn⊗Φ‖1/1 ,

where idn is the identity map on B(Hn) for some n-dimensional Hilbert space Hn

(obviously, the value of ‖Φ‖(n)
1/1 does not depend on the choice of Hn). It is easy to

see that ‖(.)‖(n)
1/1 is a norm on B(B(H),B(K)) for every N ∈ N.

The diamond norm of Φ is de�ned as

‖Φ‖� := sup
n∈N
‖Φ‖(n)

1/1 .

Note that ‖Φ‖� might be in�nite for a general linear map.
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4.33 Anti-linear operators

De�nition 4.397. Let H,K be �nite-dimensional Hilbert spaces. A map A : H →
K is anti-linear (or conjugate linear) if it is

(i) additive: A(x+ y) = Ax+ Ay, x, y ∈ H, and

(ii) conjugate homogeneous: A(λx) = λAx, x ∈ H, λ ∈ C.

The adjoint of an anti-linear operator is de�ned somewhat di�erently from the
adjoint of a linear operator:

Lemma 4.398. Let A : H → K be an anti-linear operator. There exists a unique
anti-linear operator A∗ : K → H such that

〈y, Ax〉 = 〈x,A∗y〉 , x ∈ H, y ∈ K. (4.96)

Proof. For every y ∈ K, the map x 7→ 〈Ax, y〉 is a linear functional on a �nite-
dimensional Hilbert space. Hence, by the Riesz representation theorem (Exercise
??), there exists a unique vector in H, that we denote by A∗y, such that

〈A∗y, x〉 = 〈Ax, y〉 .

Taking the conjugate of both sides yields (4.96). Anti-linearity of the map y 7→ A∗y
follows from the uniqueness of A∗y; we leave it as an exercise.

Recall that for linear operators, the map A 7→ A∗ is a conjugate linear involution.
For anti-linear maps, we have the following:

Exercise 4.399. Show that for anti-linear operators, the map A 7→ A∗ is a linear
involution, i.e.,

(A+B)∗ = A∗ +B∗, (λA)∗ = λA∗,

and

(A∗)∗ = A

for any anti-linear operators A,B on the same Hilbert space, and any λ ∈ C.

Solution: Hidden.

Recall that for linear operators A1, . . . , An such that the product A1 · . . . ·An
makes sense, we have the identity

(A1 · . . . ·An)∗ = A∗n · . . . ·A∗1. (4.97)

This identity is still true for any mixed product of linear and anti-linear operators:
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Exercise 4.400. Show that (4.97) is true for any product of linear and anti-linear
operators.

Solution: Hidden.

Exercise 4.401. Show that for an anti-linear operator J : H → K, the following
are equivalent:

(i) J∗J = I

(ii) ‖Jx‖2 = ‖x‖2, x ∈ H.

(iii) 〈Jx, Jy〉 = 〈y, x〉, x, y ∈ H.

Solution: Hidden.

De�nition 4.402. An anti-linear operator J : H → K, satisfying any (and hence
all) of the above (i)�(iii), is called an anti-isometry. Obviously, anti-isometries are
injective. A surjective anti-isometry is called an anti-unitary.

Exercise 4.403. Show that an anti-linear operator J : H → K is an anti-unitary if
and only if

J∗J = IH and JJ∗ = IK.

One has to be careful with manipulations involving anti-linear operators, as the
following examples show:

Exercise 4.404. Show that the identities

|Ax〉 = A |x〉 , 〈Ax| = 〈x|A∗

do not hold for an anti-linear operator A and a vector x, unless Ax = 0. On the
other hand, if A and B are both anti-linear operators then

B |y〉〈x|A = |By〉〈A∗x| (4.98)

for every x, y for which the above expression makes sense.

Solution: Hidden.

The trace of an anti-linear operator cannot be de�ned in a basis-independent
way, as the following example shows:
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Example 4.405. Let e1, . . . , ed be a basis in a Hilbert space H, and let A be the
unique anti-linear extension of the map ek 7→ ek, i.e.,

Ax :=
d∑

k=1

〈ek, x〉ek.

De�ne ẽk := iek, where i =
√
−1 is the imaginary unit. Then

d∑
k=1

〈ek, Aek〉 =
d∑

k=1

1 = d,

d∑
k=1

〈ẽk, Aẽk〉 =
d∑

k=1

〈iek, A(iek)〉 =
d∑

k=1

〈iek, (−i)Aek〉 = −
d∑

k=1

〈ek, Aek〉 = −d.

4.34 The conjugate Hilbert space

Let H be a complex Hilbert space. We will introduce new algebraic operations and
a new inner product on H with which it again becomes a Hilbert space. We will call
this Hilbert space the conjugate Hilbert space of H and we will denote it by H. We
will use the notation x for a vector x ∈ H when we consider it as an element of H
instead of H. Note that H = H as sets and x = x for every x ∈ H.

The addition in H is the same as in H, i.e., x+ y = x+ y for all x, y ∈ H. For a
scalar λ ∈ C and a vector x ∈ H, we de�ne their new product as

λx := λx = λx.

(Verify that this is indeed a vector space!) Moreover, we de�ne an inner product on
H as

〈x, y〉H := 〈y, x〉H = 〈x, y〉H.

(We will usually omit the subscripts H and H). One can easily see that H with
this inner product is indeed a Hilbert space, and, moreover, that x 7→ 〈x| yields a
natural isomorphism between H and the dual of H. In particular, H and H are also
isomorphic as Hilbert spaces. Obviously, if {ei}i∈I is a basis for H then {ei}i∈I is a
basis for H. Note that

(H) = H.

Note that if A is a linear operator from H to K then A is also linear when
considered as an operator from H to K; we will denote this operator as A. Indeed,

A(x+y) = A(x+y) = Ax+Ay = Ax+Ay, A(λx) = A(λx) = λAx = λAx = λAx.
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Exercise 4.406. Show that:

(i) The assignment A 7→ A is antilinear, i.e.,

A+B = A+B, λA = λA,

for all A,B ∈ B(H,K) and λ ∈ C.

(ii) For every A ∈ B(H,K),

A∗ = (A)∗.

(iii) For every A ∈ B(H,K), x ∈ H and y ∈ K,〈
y, Ax

〉
= 〈y, Ax〉, and, in particular, TrHA = TrHA.

(iv) For every x ∈ H, y ∈ K,

|y〉〈x| = |y〉〈x| .

In particular,

A =
∑
ij

〈fj, Aei〉 |fj〉〈ei| =
∑
ij

〈fj, Aei〉
∣∣fj〉〈ei| = ∑

ij

〈
f j, Aei

〉 ∣∣f j〉〈ei|
Now, if H is a Hilbert space then B(H) is also a Hilbert space when equipped

with the Hilbert-Schmidt inner product 〈A,B〉HS := TrA∗B, A,B ∈ B(H). As we
have seen above, every A ∈ B(H) can be considered as a bounded linear operator A

on H, and the identity λA = λA holds. Moroever, by Exercise 4.406,〈
A,B

〉
HS

= TrHA
∗
B = TrH (A∗)B = TrHA

∗B = TrHA∗B = 〈A,B〉HS.

Hence, B(H) can be naturally identi�ed with B(H).

4.35 Distances on operators

The following is one possible way to symmetrize it.

De�nition 4.407. Hilbert's projective metric dH is de�ned on B(H)+ × B(H)+ as

dH(%‖σ) :=

{
D∗∞(%‖σ) +D∗∞(σ‖%), %, σ 6= 0,

0, % = σ = 0.

Exercise 4.408. Show that dH is constant on rays, i.e., dH(λ%‖ησ) = dH(%‖σ)
for any λ, η ∈ (0,+∞). In particular, dH(%‖σ) = 0 if and only if % = λσ for some
λ ∈ (0,+∞). Show that dH de�nes a metric on the rays of positive de�nite operators,
the points of which are of the form [%] := {λ% : λ ∈ (0,+∞)}, % ∈ B(H)++.
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5 Quantum probabilistic models

5.1 Quantum states and measurements

Now we turn to the mathematical description of quantum probabilistic models of
physical phenomena. Any such model is uniquely speci�ed by a Hilbert space H,
that we call the Hilbert space of the system that we want to model. The possible
states of the system in such a model are given by all density operators on the Hilbert
space:

De�nition 5.1. An operator % ∈ B(H) is a density operator, or a state if it is
positive semi-de�nite, and has unit trace:

% ≥ 0, Tr % = 1.

We denote the set of density operators on H by S(H), and call it the state space of
the Hilbert space H.

It is clear that if %1, . . . , %r ∈ S(H) are states, and p1, . . . , pr is a probability
distribution, then

r∑
i=1

pi%i ≥ 0, and Tr
r∑
i=1

pi%i =
r∑
i=1

pi Tr %i︸︷︷︸
=1

= 1,

i.e.,
∑r

i=1 pi%i is again a state. Thus, we have the following:

Proposition 5.2. For any Hilbert space H, the state space S(H) is a convex set.

Example 5.3. It is easy to see that if ψ ∈ H is a unit vector then |ψ〉〈ψ|, the
projection onto Cψ, is a density operator. Such a density operator is called a vector
state or pure state.

By Example 5.3 and Proposition 5.2, if |ψ1〉〈ψ1| , . . . , |ψn〉〈ψn| are pure states,
and p1, . . . , pr is a probability distribution, then

% :=
n∑
i=1

pi |ψi〉〈ψi|

is again a state. As it turns out, any state can be given in such a form, if we also
allow limits:

Theorem 5.4. For any density operator % ∈ S(H), there exists an ONB (ej)j∈J and
a probability distribution (pj)j∈J such that

% =
∑
j∈J

pj |ej〉〈ej| . (5.99)
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Note that (5.99) implies immediately that the ej are eigen-vectors of %, with cor-
responding eigenvalues pj. Thus, (5.99) gives an eigen-decomposition of %. When
the Hilbert space is �nite-dimensional, the above theorem follows immediately from
the eigen-decomposition theorem for self-adjoint (or, more generally, normal) matri-
ces. The in�nite-dimensional case can be seen as a generalization of it, but its proof
is beyond the scope of these notes. One thing that should be clari�ed, though, is
the precise meaning of the in�nite sum in (5.99) when the Hilbert space is in�nite-
dimensional. In this case we may choose J = N, and interpret (5.99) as

% =
+∞∑
j=1

pj |ej〉〈ej| := lim
n→+∞

n∑
j=1

pj |ej〉〈ej| .

Here, the sum is clearly absolute convergent in operator norm, as

+∞∑
j=1

‖pj |ej〉〈ej|‖ =
+∞∑
j=1

pj ‖|ej〉〈ej|‖ =
+∞∑
j=1

pj = 1 < +∞.

In fact, it is also convergent in the stronger trace-norm, by the same computation:

+∞∑
j=1

‖pj |ej〉〈ej|‖1 =
+∞∑
j=1

pj ‖|ej〉〈ej|‖1 =
+∞∑
j=1

pj = 1 < +∞.

Next, we give the mathematical description of measurements in a quantum model:

De�nition 5.5. Let H be a Hilbert-space and (X ,A) be a measurable space. We
say that M : A → B(H)+ is a positive operator-valued measure (POVM), if for any
sequence (An)n∈N ⊆ A of pairwise disjoint A-measurable sets (i.e., An∩n 6=mAm = ∅),
and any ψ ∈ H,

〈ψ,M ( ·∪n∈NAn)ψ〉 =
+∞∑
n=1

〈ψ,M(An)ψ〉 , (σ-additivity) (5.100)

and

M(X ) = I (normalization) (5.101)

We denote the set of such POVMs by POVM(H,X ,A).

De�nition 5.6. We say that a POVM P ∈ POVM(H,X ,A) is projective, or that
it is a projection-valued measure (PVM), if P (A) is a projection for all A ∈ A, i.e.,
P (A)∗ = P (A) = P (A)2. We denote the set of all such PVMs by PVM(H,X ,A).

PVMs are also called sharp measurements.
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Remark 5.7. In standard quantum mechanics, one usually only works with projec-
tive measurements, i.e., PVMs, while general POVMs play an important role in the
mathematical description of open quantum systems, and in quantum information
theory. In the introductory treatment of the subject in the present notes, we will
also mainly restrict our attention to projective measurements, while we formulate
some basic statements for general POVMs when it does not mean any extra e�ort.

Remark 5.8. A POVM describes a measurement in which the possible outcomes
are elements of the set X . This may be {up, down} when measuring the spin of
an electron along some axis, but most often the measurement outcomes are real
numbers, or vectors with real components, e.g., when measuring the position of
a particle moving in space. For mathematical convenience, we may also consider
measurements with complex outcomes. Unless otherwise stated, we will always use
the Borel σ-algebra in all these cases, and use the short-hand notation

POVM(H,Kn) instead of POVM(H,Kn,B(Kn)),

whereK = R or C, and similarly PVM(H,K) instead of PVM(H,K,B(K)). We call a
POVM M ∈ POVM(H,K) a real-valued or a complex-valued POVM/measurement,
depending on whether K = R or C.

Finally, we need to specify how a state % ∈ S(H) and a measurement M ∈
POVM(H,X ,A) give rise to the measurement statistics. This is given by

P%,M(A) := Tr %M(A), A ∈ A, (5.102)

and is called the Born rule in quantum mechanics.

One obvious thing to verify is that (5.102) does indeed de�ne a probability
measure on (X , A). Let us introduce for any vector ψ ∈ H and POVM M ∈
POVM(H,X ,A) the set function

Mψ(.) := 〈ψ,M(.)ψ〉 (5.103)

on A. Then

Mψ(A) = 〈ψ,M(A)ψ〉 ≥ 0, A ∈ A,

by the assumption that M(A) is positive semi-de�nite. Moreover, the σ-additivity
condition (5.100) expresses exactly thatMψ is a (positive) measure on the measurable
space (X ,A). Finally, the normalization condition (5.101) is equivalent to

Mψ(X ) = ‖ψ‖2 ,
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i.e., Mψ is a �nite measure, and it is a probability measure if and only if ‖ψ‖ = 1.
Now, if % = |ψ〉〈ψ| is a pure state then

Pψ,M(A) := P|ψ〉〈ψ|,M(A) = Tr |ψ〉〈ψ|M(A) = 〈ψ,M(A)ψ〉 = Mψ(A),

i.e., the probability measure assigned by the Born rule to % and M is exactly Mψ,
which, as we have seen above, is indeed a probability distribution. For a general
density operator %, we have a spectral decomposition % =

∑
j∈J pj |ej〉〈ej|, and

P%,M(A) = Tr %M(A) =
∑
j∈J

pj Tr |ej〉〈ej|M(A)︸ ︷︷ ︸
=〈ej ,M(A)ej〉

=
∑
j∈J

pjMej(A)︸ ︷︷ ︸
=:M%(A)

,

and it is straightforward to verify that M% is a probability measure on A.

Remark 5.9. There is one very important thing to note about the terminology here.
Recall that in a classical model (Ω,F), states of the system are given by probability
distributions on F , and a sharp measurement is represented by a measurable function
f : (Ω,F) → (X ,A) (also called a random variable), that transforms any state of
the system into a probability distribution on the outcome space (X ,A), the image
of a state % ∈ S(Ω,F) being P%,f := f∗% = % ◦ f−1.

By the above, the mathematical object used to describe a measurement in a quan-
tum model is called a positive operator-valued measure, and its de�ning properties
are indeed the same as what we used in the de�nition of a scalar-valued measure;
in fact, if the Hilbert space is 1-dimensional then a POVM M ∈ POVM(C,X ,A) is
nothing else than a probability measure on A, and every probability measure on A
is a POVM. The similarities go even further: one can de�ne a notion of integral of
complex-valued measurable functions w.r.t. (projective) POVMs, as we will see in
Section 5.2.

Nevertheless, one should keep in mind that, in comparison with classical models,
POVMs play the role of the random variables, and not the role of the measures.
Indeed, we can view any POVMM as a transformation of the states of the quantum
system into probability distributions on the outcome space, under which the image
of a state % is P%,M(.) := Tr %M(.).

Hence, we have the following correspondence between classical and quantum
models:
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classical quantum

de�ning object (Ω,F) measurable space H Hilbert space

states probability distributions on F density operators on H

real-valued sharp
measurements

real-valued measurable func-
tions on X real-valued PVMs

outcome probabili-
ties

P%,f (.) = (% ◦ f−1)(.) P%,M(.) = Tr %M(.)

Example 5.10. (Position measurement of a 1D particle)
In quantum mechanics, a particle moving freely along a line is modeled by the

Hilbert space H = L2(R,B(R), λ), where B(R) is the Borel σ-algebra on R, and λ is
the Lebesgue-measure. For any Borel set A ∈ B(R), let

Q(A) := M1A : f 7→ 1Af, f ∈ L2(R,B(R), λ).

be the multiplication operator by the characteristic function of A. Then Q(R) =
M1R = I, and for any ψ ∈ L2(R,B(R), λ),

Qψ(A) = 〈ψ,M(A)ψ〉 =

∫
R
ψ(x)1A(x)ψ(x) dx =

∫
A

|ψ(x)|2 dx.

Thus, for any sequence (An)n∈N of pairwise disjoint Borel sets,

+∞∑
n=1

Qψ(An) = lim
n→+∞

N∑
n=1

Qψ(An) = lim
n→+∞

∫
R
|ψ(x)|2

N∑
n=1

1An(x) dx

=

∫
R
|ψ(x)|2

+∞∑
n=1

1An(x) dx =

∫
R
|ψ(x)|21 ·∪n∈NAn(x) dx

= Qψ

(
·∪+∞
n=1An

)
,

where the third equality follows from the monotone convergence theorem. Hence,
the σ-additivity condition (5.100) is satis�ed, and therefore Q is a POVM in H with
outcome space (R,B(R)). Moreover, Q(A)2 = M2

1A
= M12

A
= M1A = Q(A) implies

that it is a projective POVM.
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By the above, if the system is in a pure state % = |ψ〉〈ψ|, where ψ is called the
wave function of the system in quantum mechanics, the probability that the position
of the particle is between some numbers a and b is given by

Qψ([a, b]) =

∫
[a,b]

|ψ(x)|2 dx,

a familiar formula from quantum mechanics.

Example 5.11. In more generality, for any measure space (X ,A,µ), we may consider
the multiplication PVM M ∈ PVM(L2(X ,A, µ),X ,A) as M(A) := M1A , where the
latter is the multiplication operator with the characteristic function of A ∈ A. For
any ψ ∈ L2(X ,A, µ),

Mψ(A) = 〈ψ,M(A)ψ〉 =

∫
X
ψ1Aψ dµ =

∫
A

|ψ|2 dµ = (|ψ|2µ)(A),

and the same argument as in the previous example yields that M is a PVM.

Example 5.12. Gibbs states of a harmonic oscillator.

Example 5.13. Spin measurement.

As we have seen in Example 5.12, the only measurement outcomes that we may
obtain with non-zero probability in any state % are of the form ~ω(n+ 1/2) for some
n ∈ N. This example motivates to introduce the following useful concept:

De�nition 5.14. Consider a real- or complex-valued POVM M ∈ POVM(H,K),
where K = R or C. A point z ∈ K is in the support of M if for any ε > 0,
M({w ∈ K : |w − z| < ε}) 6= 0. The collection of all such points is the support of
M , denoted by suppM .

A POVM is �nitely supported if | suppM | < +∞.

Example 5.15. The support of the position measurement in Example 5.10 is R,
the support of the energy measurement in Example 5.12 is {~ω(n + 1/2) : n ∈
N}. We may also consider the spin measurement in Example 5.13 as a real-valued
measurement with support {±1}; in particular, it is �nitely supported.

Exercise 5.16. Show that the support is the smallest closed set K ⊆ K such that
M(K) = I, or equivalently, the complement of the largest open set G ⊆ K with
M(G) = 0. Show that for any A ∈ B(K),

M(A) = M(A ∩ suppM).
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Exercise 5.17. Show that M is �nitely supported if and only if there exists a �nite
set S ⊆ K such that M({x}) 6= 0 for all x ∈ S, and

∑
x∈SM({x}) = I. Show that

in this case S = suppM , and for any A ∈ B(K),

M(A) =
∑
x∈S∩A

M({x}).

Vice versa, show that any �nite collection of PSD operators (Mx)x∈S, where S ⊆ K
is a �nite set, and

∑
x∈SMx = I, de�nes a POVM M via

M(A) :=
∑
x∈A

Mx,

and suppM ⊆ S.

Remark 5.18. Alternatively, we may de�ne a �nite-outcome real or complex mea-
surement as a collection of operators (Mx)x∈K, such that |{x ∈ K : Mx 6= 0}| < +∞,
and

∑
x∈KMx = I. Here, the sum is well-de�ned as only �nitely many terms are

non-zero.

Imagine now that we are not interested in the outcomes of some measurement
M ∈ POVM(H,X ,A) directly, but in some function f of the measurement outcomes,
where f : (X ,A) → (Y ,B) is a measurable function into another measurable space
(Y ,B). The measurement statistics of this function of the measurement outcomes in
any state % ∈ S(H) of the system is then given by

Tr %M ({x ∈ X : f(x) ∈ B}) = Tr %(M ◦ f−1)(B) = P%,M◦f−1(B), B ∈ B.

It is straightforward to verify that M ◦ f−1 is again a POVM, and we make the
following

De�nition 5.19. In the above setting, the POVM

f∗M := M ◦ f−1 ∈ POVM(H,Y ,B)

is called the classical post-processing of the POVM M by the function f .

Remark 5.20. Alternatively, we say that f∗M is �the f of the POVM M �; e.g., if
M is real-valued, and f = id2

R : x 7→ x2, x ∈ R, then we say that (id2
R)∗M is the

square of the POVM M . Note that this is di�erent from taking the square of the
measurement operators, i.e., M(A)2, A ∈ A. For one thing, this is a set function
on a di�erent σ-algebra unless (X ,A) = (Y ,B), and, moreover, it is not a POVM
unless M is projective.

In yet another terminology, f∗M is called the push-forward of the POVM M by
the function f .
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Example 5.21. Imagine that in the setting of Example 5.10, we are not interested in
the position of the particle, but only in its distance from the origin, i.e., the absolute
value of its position. This can be described by choosing f(.) = |.|, and POVM

(Q ◦ |.|−1)(A) = Q ((A ∩ R+) ·∪ (−(A ∩ R+))) = M1(A∩R+) ·∪(−(A∩R+))

= Q(A ∩ R+) +M(−(A ∩ R+)) = M1A∩R+
+M1−(A∩R+)

,

where −(A ∩ R+) := {−x : x ∈ A ∩ R+}. Hence, for any wave function ψ, the
probability of �nding the particle in a Borel set A ∈ B(R),

P|ψ〉〈ψ|,Q◦|.|−1(A) =

∫
A∩R+

|ψ(x)|2 dx+

∫
−(A∩R+)

|ψ(x)|2 dx

=

∫
A∩R+

(|ψ(x)|2 + |ψ(−x)|2) dx.

Example 5.22. As a generalization of the previous example, we may consider the
multiplication PVM M ∈ POVM(L2(X ,A, µ),X ,A), M(A) := M1A , A ∈ A, from
Example 5.11. For any measurable function f : (X ,A)→ K,

(f∗M)(B) = M(f−1(B)) = M1f−1(B)
, B ∈ B.

Hence, for any ψ ∈ L2(X ,A, µ),

P|ψ〉〈ψ|,f∗M(B) =

∫
f−1(B)

|ψ(x)|2 dµ(x).

We close this section with some general observations about POVMs.

Remark 5.23. Note that σ-additivity implies, by choosing An = ∅ for all n ∈ N,
that

〈ψ,M(∅)ψ〉 =
+∞∑
n=1

〈ψ,M(∅)ψ〉 ,

whence 〈ψ,M(∅)ψ〉 = 0. Since this holds for all ψ ∈ H, we have
M(∅) = 0.

This in turn shows that σ-additivity implies �nite additivity: If A1, . . . , Am ∈ A,
are pairwise disjoint, then

〈ψ,M(A1 ·∪ . . . ·∪ Am)ψ〉 =
〈
ψ,M

(
(A1 ·∪ . . . ·∪ Am) ∪

(
∪+∞
n=m+1∅

))
ψ
〉

=
m∑
n=1

〈ψ,M(An)ψ〉+
+∞∑

n=m+1

〈ψ,M(∅〉ψ︸ ︷︷ ︸
=0

=
m∑
n=1

〈ψ,M(An)ψ〉 =

〈
ψ,

(
m∑
n=1

M(An)

)
ψ

〉
.
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Since this holds for every ψ ∈ H, we �nally see (due to the polarization identity)
that

M(A1 ·∪ . . . ·∪ Am) = M(A1) + . . .+M(Am).

In particular, for any A ∈ A,

I = M(X ) = M(A ·∪ (X \ A)) = M(A) +M(X \ A),

and hence

M(X \ A) = I −M(A).

It follows immediately that a PVMM is monotone, in the sense that if A,B ∈ A
and A ⊇ B then

M(A) = M((A \B) ·∪B) = M(A \B) +M(B) ≥M(B).

Remark 5.24. Note that if (An)n∈N ⊆ A of pairwise disjoint A-measurable sets
then SN :=

∑N
n=1 M(An) is a monotone increasing sequence of PSD operators that

is bounded as

N∑
n=1

M(An) = M(X )−M
(
X \ ∪Nn=1An

)
≤M(X ) = I.

Hence, it is convergent in the strong, and therefore also in the weak, operator topolo-
gies, and (5.100) tells that

M ( ·∪n∈NAn) = (wo)
+∞∑
n=1

M(An) = (so)
+∞∑
n=1

M(An),

where the latter can be equivalently written as

M ( ·∪n∈NAn)ψ =
+∞∑
n=1

M(An)ψ, ψ ∈ H, (5.104)

with the sum on the RHS converging in the norm of the Hilbert space.
It is easy to see that SN does not converge in operator norm in general. Indeed,

if M is a projective POVM and M(An) 6= 0 for all n ∈ N, then M( ·∪n∈NAn) −
M( ·∪Nn=1An) is a non-zero projection, and thus∥∥M( ·∪n∈NAn)−M( ·∪Nn=1An)

∥∥ = 1.

Such an example is easily constructed e.g., by taking the position measurement
M = Q from example 5.10, and An = [n, n+ 1), n ∈ N.
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The following property of the distribution Mψ will be important later:

Exercise 5.25. Show the following parallelogram rule for the distributions induced
by a POVM M ∈ POVM(H,X ,A): For any ψ1, ψ2 ∈ H,

Mψ1+ψ2 +Mψ1−ψ2 = 2Mψ1 + 2Mψ2 . (5.105)

Conclude that

Mψ1+ψ2 ≤ 2Mψ1 + 2Mψ2 . (5.106)

(Both (5.105) and (5.106) should be interpreted by substitution of an arbitrary A ∈
A.
Solution:

By de�nition, for any A ∈ A,

Mψ1±ψ2(A) = 〈ψ1 + ψ2,M(A)(ψ1 + ψ2)〉
= 〈ψ1,M(A)ψ1〉︸ ︷︷ ︸

=Mψ1
(A)

+ 〈ψ2,M(A)ψ2〉︸ ︷︷ ︸
=Mψ2

(A)

±〈ψ1,M(A)ψ2〉 ± 〈ψ2,M(A)ψ1〉 ,

from which (5.105) follows immediately. (5.106) is obvious from (5.105), asMψ1−ψ2(A) ≥
0 for all A ∈ A.
Remark 5.26. As a generalization of (5.103), we may de�ne for any two vectors
ψ1, ψ2 ∈ H,

Mψ1,ψ2(.) := 〈ψ1,M(.)ψ2〉 . (5.107)

The polarization formula implies that for any sequence (An)n∈N ⊆ A of pairwise
disjoint A-measurable sets,

Mψ1,ψ2 ( ·∪n∈NAn) = 〈ψ1,M ( ·∪n∈NAn)ψ2〉

=
1

4

3∑
k=0

ik
〈
ikψ1 + ψ2,M ( ·∪n∈NAn) (ikψ1 + ψ2)

〉
=

1

4

3∑
k=0

ik
+∞∑
n=1

〈
ikψ1 + ψ2,M (An) (ikψ1 + ψ2)

〉
=

+∞∑
n=1

1

4

3∑
k=0

ik
〈
ikψ1 + ψ2,M (An) (ikψ1 + ψ2)

〉
=

+∞∑
n=1

〈ψ1,M(An)ψ2〉

=
+∞∑
n=1

Mψ1,ψ2(An),
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i.e., Mψ1,ψ2 is a complex measure, and

Mψ1,ψ2 =
1

4

3∑
k=0

ikMikψ1+ψ2
,

where we used the short-hand notation

Mψ,ψ := Mψ.

Exercise 5.27. Show that for any ψ1, ψ2 ∈ H and λ, η ∈ C,

Mλψ1,ηψ2 = ληMψ1,ψ2 .

Conclude that for any ψ ∈ H and λ ∈ C,

Mλψ = |λ|2Mψ. (5.108)

The following simple characterization of projective POVMs and its consequences
will play an important role later.

Lemma 5.28. Let P ∈ POVM(H,X ,A) be a POVM. The following are equivalent:

(i) P is projective.

(ii) P (A) ⊥ P (B) for every A,B ∈ A such that A ∩B = ∅.

(iii) P (A) ⊥ P (X \ A) for every A ∈ A.

Proof. (i) (i)=⇒(ii): Assume that P (A) 6⊥ P (B), i.e., that there exists a non-
zero vector ψ ∈ ranP (A) such that P (B)ψ 6= 0, and hence 0 < ‖P (B)ψ‖2 =
〈P (B)ψ, P (B)ψ〉 = 〈ψ, P (B)ψ〉, where we used the projectivity of P in the
last step. We have P (A) + P (B) = I − P (X \ (A ∪B)) ≤ I, and hence

‖ψ‖2 = 〈ψ, Iψ〉 ≥ 〈ψ, P (A)ψ〉︸ ︷︷ ︸
=‖ψ‖2

+ 〈ψ, P (B)ψ〉︸ ︷︷ ︸
>0

> ‖ψ‖2 ,

a contradiction.

(ii)=⇒(iii) is trivial.

(iii)=⇒(i): We have I = P (A) + P (X \ A), and hence

I = I2 = P (A)2 + P (X \ A)2 + P (A)P (X \ A)︸ ︷︷ ︸
=0

+P (X \ A)P (A)︸ ︷︷ ︸
=0

.
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Therefore,

0 = I − I = P (A) + P (X \ A)−
(
P (A)2 + P (X \ A)2

)
=
[
P (A)− P (A)2

]︸ ︷︷ ︸
≥0

+
[
P (X \ A)− P (X \ A)2

]︸ ︷︷ ︸
≥0

≥ 0,

whence P (A)− P (A)2 = 0.

Exercise 5.29. Let P ∈ PVM(H,X ,A) be a PVM. Show that for any A,B ∈ A,

P (A ∩B) = P (A)P (B), (5.109)

P (A ∪B) = P (A) + P (B)− P (A)P (B). (5.110)

(Hint: Use Lemma 5.28.)

Solution:
We have P (A) = P (A \B) + P (A ∩B), and P (B) = P (B \A) + P (A ∩B), and

hence

P (A)P (B) = P (A \B)P (B \ A)︸ ︷︷ ︸
=0

+P (A \B)P (A ∩B)︸ ︷︷ ︸
=0

+P (A ∩B)P (B \ A)︸ ︷︷ ︸
=0

+P (A ∩B)2

= P (A ∩B),

where the nullity of the products follow from the respective sets being disjoint,
according to Lemma 5.28. This proves (5.109), and (5.110) follows as

P (A ∪B) = P (A \ (A ∩B)) + P (B \ (A ∩B)) + P (A ∩B)

= P (A)− P (A ∩B) + P (B)− P (A ∩B) + P (A ∩B)

= P (A) + P (B)− P (A ∩B) = P (A) + P (B)− P (A)P (B),

where in the last step we used (5.109).

The intersection property (5.109) yields immediately the following:

Lemma 5.30. For any A ∈ A and ψ ∈ H,

PP (A)ψ = Pψ
∣∣
A
, i.e., PP (A)ψ(B) = Pψ(A ∩B), B ∈ A.

Proof.

PP (A)ψ(B) = 〈P (A)ψ, P (B)P (A)ψ〉 = 〈ψ, P (B)P (A)P (B)ψ〉
= 〈ψ, P (A ∩B)ψ〉 = Pψ(A ∩B),

where the last equality follows from (5.109).
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Remark 5.31. The multiplicativity property (5.109) might seem quite surprising
�rst, when compared to scalar-valued probability measures. Note, however, that
scalar-valued probability measures correspond to POVMs on the one-dimensional
Hilbert space C, and projectivity of such a probability measure µmeans that µ(A)2 =
µ(A), and hence µ(A) = 0 or µ(A) = 1 for all A ∈ A. In particular, if all singletons
{x}, x ∈ X , are measurable, then a probability measure µ on A is projective if and
only if it is a Dirac measure µ = δx concentrated at some point x0, in which case
δx0(A ∩B) = δx0(A)δx0(B) holds trivially.

Thus, projective measures are very simple when the Hilbert space is 1-dimensional,
and it is only in higher dimensions that we get a rich theory of projective measures.

5.2 Observables as operators

Let us consider a real-valued measurement on a Hilbert space H, described by some
POVM M ∈ POVM(H,R). Then we may de�ne the expectation value of the mea-
surement outcomes in a state % as

E%(M) :=

∫
R
x dM%(x) =

∫
R
xTr %M(dx),

provided that the integral exists. Linearity of the trace then suggests to rewrite this
as

E%(M) = Tr %

(∫
R
xM(dx)

)
= Tr %M̂,

where we introduce the formal operator

M̂ :=

∫
R
xM(dx). (5.111)

In particular, for a pure state |ψ〉〈ψ| this would give

E|ψ〉〈ψ|,M =
〈
ψ, M̂ψ

〉
, (5.112)

the familiar formula from quantum mechanics for the expectation value of a physical
observable described by a (self-adjoint) operator M̂ .

Our goal in this section is to give a precise mathematical meaning to the formal
expression in (5.111), and thereby make the connection between the formalism in-
troduced in Section 5.1, and the usual formalism of standard physics textbooks on
quantum mechanics.

We start with the simple but instructive example of a �nite-outcome real mea-
surement M ∈ POVM(H,R), given by (Mx)x∈R, where Mx ∈ B(H)+ for all x ∈ X ,
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Mx = 0 for all but �nitely many x ∈ R, and
∑

x∈RMx = I. Given a state % ∈ S(H),
the expectation value of the measurement outcomes in the state % is then given by

E%(M) =
∑
x∈R

xP%,M(x) =
∑
x∈R

xTr %Mx = Tr %
∑
x∈R

xMx = Tr %M̂, (5.113)

where

M̂ :=
∑
x∈R

xMx (5.114)

is a bounded self-adjoint operator on H, i.e., M̂ ∈ B(H)sa.
Next, we consider the variance of the outcomes of a �nite-outcome real-valued

measurement M in a state %, given by

V%(M) :=
∑
x∈R

(x− E%(M))2 P%,M(x) =
∑
x∈R

x2 PM,%(x)− (E%(M))2

=
∑
x∈R

x2 Tr %Mx − (E%(M))2 = Tr %
∑
x∈R

x2Mx −
(

Tr %M̂
)2

.

We can also consider higher moments, de�ned for all k ∈ N as

mk(%,M) :=
∑
x∈R

xk P%,M(x) = Tr %
∑
x∈R

xkMx.

Now we can make the following observation: If M is projective then MxMy = 0

for all x 6= y, and hence M̂2 =
∑

x∈R x
2Mx. Thus,

V%(M) = Tr %M̂2 − (Tr %M̂)2. (5.115)

For a pure state % = |ψ〉〈ψ|, we get

V|ψ〉〈ψ|(M) =
〈
ψ, M̂2ψ

〉
−
〈
ψ, M̂ψ

〉2

, (5.116)

again a familiar expression from standard quantum mechanics. More generally, for
all k ∈ N,

mk(%,M) = Tr %M̂k. (5.117)

That is, all moments, and hence, the complete measurement statistics of M in any
state % is completely determined by the self-adjoint operator M̂ . In fact, we can
uniquely recover the original PVM M from M̂ , as the following exercise shows:
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Exercise 5.32. Let M = (Mx)x∈R ∈ PVM(H,R) be a �nite-outcome real-valued

projective measurement, and M̂ :=
∑

x∈R xMx. Show that

Mx 6= 0 ⇐⇒ x is an eigenvalue of M̂,

and for all such x, Mx is the projection onto the eigen-subspace corresponding to x.

Remark 5.33. It is easy to see that if M is not projective then its measurement
statistics cannot be recovered from a single operator M̃ in the sense that (5.117)
would hold. In fact, the requirement that

E|ψ〉〈ψ|(M) = Tr |ψ〉〈ψ| M̂ =
〈
ψ, M̂ψ

〉
holds for every unit vector ψ ∈ H speci�es M̂ uniquely, and if M is not projective
then there always exists a pure state ψ such that (5.116) does not hold. For this
reason, we will restrict our considerations to projective measurements for the rest.

Motivated by the above observations, we introduce the following notion:

De�nition 5.34. We say that an operator T ∈ B(H) is simple if there exist �nitely
many projections P1, . . . , Pr such that

∑r
k=1 Pk = I, and complex numbers z1, . . . , zr,

such that T =
∑r

k=1 zkPk.

The following exercise establishes a bijection between �nite-outcome complex-
valued projective measurements and simple operators.

Exercise 5.35. Let T ∈ B(H). Show that the following are equivalent:

(i) T is simple.

(ii) There exists a �nite-outcome complex-valued PVMM = (Mx)x∈X ∈ PVMf (H,C)
such that

T = M̂ :=
∑
z∈C

zMz.

(iii) T is normal, it has �nitely many distinct eigenvalues z1, . . . , zr, and the projec-
tions Pk onto the eigen-subspaces corresponding to the zk satisfy

∑r
k=1 Pk = I.

Show that the map M 7→ M̂ gives a bijection between �nitely supported complex
PVMs and simple operators on H, under which real PVMs correspond to self-adjoint
operators.
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Now we move on to the case of general projective measurements. Our main goal
is to make sense of the integral (5.111), and to establish the one-to-one correspon-
dence between real-valued PVMs and self-adjoint operators that we may anticipate
based on the bijection between �nitely supported real PVMs and simple self-adjoint
operators.

We will start with the more general task of de�ning an operator
∫
f dP for any

PVM P ∈ PVM(H,X ,A), and measurable function f : (X ,A) → C. We will
follow the same approach as in measure theory, �rst de�ning the integral for simple
functions, and then extend it to more general measurable functions by approximating
arguments.

For the rest of the section, we �x a PVM P ∈ PVM(H,X ,A), and always work
with this �xed PVM, unless otherwise stated.

For a measurable set A ∈ A, let us introduce the notations∫
1A dP := P (1A) := P (A).

Recall that a measurable function f : (X ,A) → C is simple if there exist pair-
wise disjoint measurable sets A1, . . . , Am ∈ A, An ∩n6=m Am = ∅, and constants
c1, . . . , cm ∈ C, such that f =

∑m
k=1 ck1Ak . For any such function, we de�ne∫

f dP := P (f) :=
m∑
k=1

ckP (Ak),

and call it the integral of f w.r.t. P . The following properties are easy to verify:

Exercise 5.36. Show that if f, g are simple measurable functions, and λ, η ∈ C,
then

• P (λf + ηg) = λP (f) + ηP (g) (linearity)

• P (fg) = P (f)P (g) (multiplicativity)

• P (f) = P (f)∗

• f ≥ 0 ⇐⇒ P (f) ≥ 0 (positivity)

• ‖P (f)ψ‖2 =

∫
|f |2 dPψ = ‖f‖2

L2(Pψ).

Remark 5.37. The set of simple measurable functionsMsymp(X ,A,C) is a ∗-algebra
with the usual pointwise operations. The �rst three properties in Exercise 5.36 can
be summarized as saying that the map f 7→ P (f) is a ∗-algebra morphism.
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Remark 5.38. The multiplicativity property∫
fg dP = P (fg) = P (f)P (g) =

∫
f dP

∫
g dP

might seem surprising when compared to the usual integral theory of functions
w.r.t. scalar-valued measures, where it does not hold in general. As we have al-
ready pointed out in Remark 5.31, the resolution of this apparent contradiction is
that scalar-valued probability measures correspond to POVMs on a one-dimensional
Hilbert space, and in this case the PVMs are exactly the Dirac measures (if all
singletons are measurable), for which the integral is multiplicative:∫

fg dδx0 = (fg)(x0) = f(x0)g(x0) =

∫
f dδx0

∫
g dδx0 .

Lemma 5.39. For a measurable function f : (X ,A)→ C, the following are equiv-
alent:

(i) f ∈ L2(X ,A, Pψ), i.e.,

∫
|f |2 dPψ < +∞.

(ii) For any sequence (fn)n∈N of simple measurable functions such that fn → f
pointwise, and |fn| ≤ |f |, n ∈ N, the sequence (P (fn)ψ)n∈N is convergent.

(iii) For some sequence (fn)n∈N of simple measurable functions such that fn → f
pointwise, and |f1| ≤ |f2| ≤ . . . ≤ |f |, the sequence (P (fn)ψ)n∈N is convergent.

Moreover, if any (and hence all) of the above holds, then

P (f)ψ := lim
n→+∞

P (fn)ψ (5.118)

is the same for any sequence (fn)n∈N as in (ii) or in (iii), and

‖P (f)ψ‖2 =

∫
|f |2 dPψ = ‖f‖L2(Pψ) . (5.119)

Proof. (i)=⇒(ii): We have

‖P (fn)ψ − P (fm)ψ‖2 = ‖P (fn − fm)ψ‖2 =

∫
|fn − fm|2 dPψ −−−−−→

n,m→+∞
0,

where the �rst two equalities follow from the properties established in Exercise 5.36,
and in the last step we used the Lebesgue dominated convergence theorem, which is
applicable as 4|f |2 is an integrable dominating function, since |fn − fm|2 ≤ (|fn| +
|fm|)2 ≤ (2|f |)2 = 4|f |2. Thus, the sequence (P (fn)ψ)n∈N is Cauchy, and hence it is
convergent.
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(ii)=⇒(iii) is trivial.
(iii)=⇒(i): Let P (f)ψ := limn→+∞ P (fn)ψ. Then

lim
n→+∞

‖P (fn)ψ‖2 = ‖P (f)ψ‖2

=

lim
n→+∞

∫
|fn|2 dPψ =

∫
|f |2 dPψ,

(5.120)

where the last equality follows by the monotone convergence theorem. Thus,
∫
|f |2 dPψ =

‖P (f)ψ‖2 < +∞.
The independence of the limit of the approximating sequence follows as if (fn)n∈N

and (f̃n)n∈N are two approximating sequences as in (ii), then f̂2n−1 := fn, f̂2n := f̃n,
n ∈ N, is again an approximating sequence as in (ii), and both (P (fn)ψ)n∈N, and
(P (f̃n)ψ)n∈N are subsequences of (P (f̂n)ψ)n∈N, and therefore they have to have the
same limits. Finally, (5.119) is immediate from (5.120).

De�nition 5.40. For a measurable function f : (X ,A)→ C, we de�ne

D(P (f)) := {ψ ∈ H : f ∈ L2(Pψ)}, and P (f) : D(P (f))→ H,

where P (f)ψ is de�ned for any ψ ∈ D(P (f)) as in (5.118). We call P (f) the integral
of f w.r.t P , and denote it also as∫

f dP := P (f).

Proposition 5.41. For any measurable function f : (X ,A) → C, D(P (f)) is a
dense subspace, and P (f) is a linear operator on it.

Proof. For every n ∈ N, let An := {n − 1 ≤ |f | < n} ∈ A, and BN := ·∪Nn=1An =
{0 ≤ |f | < N}. Then ·∪+∞

n=1An = X , and thus, for any ψ ∈ H,

ψN := P (BN)ψ =
N∑
n=1

P (An)ψ −−−−→
n→+∞

P (X )ψ = ψ, (5.121)

according to (5.104). For any N ∈ N, we have∫
X
|f |2 dPψN =

∫
X
|f |2 dPψ

∣∣
Bn

=

∫
BN

|f |2 dPψ ≤
∫
BN

N2 dPψ = N2 < +∞,

where we used Lemma 5.30 in the �rst equality, and hence ψN ∈ D(P (f)). Thus,
by (5.121), any vector ψ ∈ H can be approximated in norm by vectors in D(P (f)),
i.e., D(P (f)) is dense.
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If ψ ∈ D(P (f)) and λ ∈ C then by (5.108),∫
|f |2 dPλψ = |λ|2

∫
|f |2 dPψ < +∞,

and hence λψ ∈ D(P (f)). If ψ1, ψ2 ∈ D(P (f)) then∫
|f |2 dPψ1+ψ2 ≤ 2

∫
|f |2 d(Pψ1 + Pψ2) = 2

∫
|f |2 dPψ1 + 2

∫
|f |2 dPψ2 < +∞,

where the inequality is due to (5.106), and thus ψ1 + ψ2 ∈ D(P (f)). Therefore,
D(P(f)) is a linear subspace of H.

Finally, if (fn)n∈N is any sequence of functions as in Lemma 5.39, then for any
ψ1, ψ2 ∈ D(P (f)),

P (f)(ψ1 + ψ2) = lim
n→+∞

P (fn)(ψ1 + ψ2) = lim
n→+∞

P (fn)ψ1 + lim
n→+∞

P (fn)ψ2

= P (f)ψ1 + P (f)ψ2,

and P (f)(λψ) = λP (f)ψ follows similarly for any ψ ∈ D(P (f)) and λ ∈ C.
De�nition 5.42. For a PVM P ∈ PVM(H,X ,A), the map f 7→ P (f) on the ∗-
algebra of complex-valued measurable functions on (X ,A) is called the functional
calculus for P .

We will explore the properties of this calculus a bit later, but before that, let us
brie�y return to the problem of assigning an operator to a real (or, more generally,
complex) valued PVM, as outlined at the beginning of this section.

We start with the following:

Proposition 5.43. For any measurable function f : (X ,A) → C, and any ψ ∈
D(P (f)), we have f ∈ L1(Pψ), and

〈ψ, P (f)ψ〉 =

∫
f dPψ. (5.122)

Proof. Since Pψ is a �nite measure, L2(Pψ) ⊆ L1(Pψ) due to the Cauchy-Schwarz
inequality:∫

|f | dPψ =

∫
|f | · 1 dPψ ≤

(∫
|f |2 dPψ

)1/2(∫
1 dPψ

)1/2

︸ ︷︷ ︸
=‖ψ‖

< +∞.

Note that if f is simple then it is bounded, and hence in L2(Pψ). Moreover, if f is a
characteristic function then (5.122) is just the de�nition of Pψ, from which (5.122)
follows immediately for simple functions. For a general f ∈ L2(Pψ), we may choose
a sequence (fn)n∈N of simple measurable functions with |fn| ≤ |fn+1|, n ∈ N, and
obtain (5.122) by the monotone convergence theorem.
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The above can also be generalized to expectations w.r.t. density operators, as
follows:

Exercise 5.44. Let f : (X ,A) → C be measurable, and % be a density operator
with a decomposition % =

∑
j∈J pj |ψj〉〈ψj|, where J is �nite or J = N, (pj)j∈J is a

probability distribution, and for each j ∈ J , ‖ψj‖ = 1 and ψj ∈ D(P (f)). Show that

Tr %P (f) =

∫
f dP%. (5.123)

De�nition 5.45. Let P ∈ PVM(H,K) be a real- or complex-valued PVM. We de�ne
the operator corresponding to P as

P̂ := P (idK) =

∫
idK dP.

By Proposition 5.43, we have

E|ψ〉〈ψ|(P ) :=

∫
K

idK dPψ =
〈
ψ, P̂ψ

〉
, ψ ∈ D(P̂ ), (5.124)

as required in (5.112).

Remark 5.46. Note that (5.124) holds for every ψ ∈ D(P̂ ), and this is the maximal

set of vectors for which the expression
〈
ψ, P̂ψ

〉
makes sense. However, it may

happen that ψ /∈ D(P (f)), i.e., f /∈ L2(X ,A, Pψ), but f ∈ L1(X ,A, Pψ), and hence∫
K idK dPψ is well-de�ned and �nite. In this case, the expectation value E|ψ〉〈ψ|(P )

exists and is �nite, but it cannot be expressed in the form
〈
ψ, P̂ψ

〉
.

The next question is whether (5.124) can be extended for higher moments, i.e.,
if ∫

K
idmK dPψ =

〈
ψ, P̂mψ

〉
, m ∈ N. (5.125)

To this end, we introduce the following:

De�nition 5.47. Let P ∈ PVM(H,K) be a real- or complex-valued PVM. For any
measurable function f : K→ C, we de�ne the function f of P̂ as

f(P̂ ) := P (f) =

∫
f dP.
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With this de�nition, we have〈
ψ, f(P̂ )ψ

〉
= 〈ψ, P (f)ψ〉 =

∫
f dPψ,

according to Proposition 5.43. In particular,〈
ψ, (idmK )(P̂ )ψ

〉
= 〈ψ, P (idmK ))ψ〉 =

∫
idmK dPψ, ψ ∈ D(P (idmK )). (5.126)

To see that this indeed yields (5.125), we need to verify that (idmK )(P̂ ) = P̂m, m ∈ N,
i.e., that the functional calculus introduced in De�nition 5.47 is compatible with the
conventional de�nition of taking powers of an operator. We will show in Corollary
5.60 that this is true, and hence P̂ is indeed the operator that we set out to de�ne
at the beginning of the section. Note, however, that, similarly to the case of the
expectation value discussed in Remark 5.46, (5.125) will hold only for ψ ∈ D(P̂m),
which may be strictly smaller than the set of states ψ for which the m-th moment
is well-de�ned and �nite.

Before proceeding further in this direction, let us address another very natural
question, namely, whether the functional calculus introduced in De�nition 5.47 is
compatible with the concept of a function of a POVM introduced in De�nition 5.19.

We start with the following:

Lemma 5.48. Let (X ,A) and (Y ,B) be measurable spaces, P ∈ PVM(H,X ,A),
g : (X ,A)→ (Y ,B) measurable, and f : (Y ,B)→ C measurable. Then

P (f ◦ g) =

∫
X

(f ◦ g) dP =

∫
Y
f d(P ◦ g−1) =

∫
Y
f dg∗P = (g∗P )(f) = f(ĝ∗P ).

(5.127)

Proof. All the equalities are by de�nition, except for the second one. If f = 1A for
some A ∈ A then 1A ◦g = 1g−1(A) yields

∫
X (f ◦g) dP = P (g−1(A)) = (P ◦g−1)(A) =∫

Y 1A d(P ◦ g−1). From this, the assertion follows immediately when f is a simple
measurable functions. Now, let (fn)n∈N be a sequence of simple measurable functions
such that |fn| ≤ |f |, n ∈ N. This implies that (fn ◦ g)n∈N is a sequence of simple
measurable functions such that |fn ◦ g| ≤ |f ◦ g|, n ∈ N. By Lemma 5.39,

ψ ∈ D(P (f ◦ g))⇐⇒ ∃ lim
n→+∞

P (fn ◦ g)︸ ︷︷ ︸
=(g∗P )(fn)

ψ

⇐⇒ ∃ lim
n→+∞

(g∗P )(fn)ψ ⇐⇒ ψ ∈ D((g∗P )(fn)),

and if ψ is as above then

P (f ◦ g)ψ = lim
n→+∞

P (fn ◦ g)ψ = lim
n→+∞

(g∗P )(fn)ψ = (g∗P )(fn)ψ.
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Remark 5.49. We may call the second equality in (5.127) a change of variables
formula for the integral w.r.t. projection-valued measures.

Applying Lemma 5.48 with g = idK yields the following:

Corollary 5.50. For any real- or complex-valued PVM P ∈ PVM(H,K), and any
measurable function f : K→ C,

f(P̂ ) = f̂∗P .

That is, the functional calculus introduced in De�nition 5.47 is compatible with
De�nition 5.19 in the sense that a function of the operator corresponding to a PVM
is the operator corresponding to the function of the PVM.

Remark 5.51. Recall that a measurable functional calculus can be very easily de-
�ned for multiplication operators: If g : (X ,A)→ K is measurable, and f : K→ C
is measurable, then

f(Mg) := Mf◦g

has all the good algebraic properties that we may expect from a functional calculus.
Similarly, we may de�ne a measurable functional calculus for all operators that

can be written in the form P (g) for some PVM P ∈ PVM(H,X ,A) and measurable
function g : (X ,A)→ K, by

f(P (g)) := P (f ◦ g) (5.128)

for any measurable f : K→ C. By lemma 5.48,

P (g) = ĝ∗P , and thus f(P (g)) = f
(
ĝ∗P

)
.

That is, the operators that can be written in the form P (g) for a PVM on a general
measurable space (X ,A) and some complex-valued measurable function g, are ex-
actly the operators that can be written in the form Q̂ for a real- or complex-valued
PVM Q, and thus the functional calculus de�ned in (5.128) is the same as the one
de�ned in De�nition 5.47.

We will give some important illustrations of the concepts introduced in De�nition
5.45 in Examples 5.11 and 5.68.

Let us now return to the investigation of the properties of the functional calculus
f 7→ P (f). We start with noting that in general, P (f) does not need to be everywhere
de�ned or bounded. As we will see below, these hold if and only if f is bounded
P -almost everywhere, a concept that we introduce next.
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Similarly to ordinary measures, we may de�ne the (P,∞)-norm of a measurable
function f : (X ,A)→ C as

‖f‖P,∞ := inf{C > 0 : P ({x ∈ X : |f(x)| > C}) = 0}
= sup{C ≥ 0 : P ({x ∈ X : |f(x)| ≥ C}) 6= 0}.

We say that f is P -bounded, if ‖f‖P,∞ < +∞. We denote the set of P -bounded
measurable functions by

L∞P := {f : (X ,A)→ C measurable : ‖f‖P,∞ < +∞}.

Exercise 5.52. Show that

‖f‖P,∞ = sup
ψ∈H
‖f‖Pψ ,∞ . (5.129)

Solution: Clearly, if P ({x ∈ X : |f(x)| > C}) = 0 for some C > 0 then

Pψ({x ∈ X : |f(x)| > C}) = 〈ψ, P ({x ∈ X : |f(x)| > C})ψ〉 = 0

for any ψ ∈ H, and thus supψ∈H ‖f‖Pψ ≤ ‖f‖P,∞. Conversely, if P ({x ∈ X :

|f(x)| ≥ C}) 6= 0 for some C > 0 then there exists some ψ 6= 0 such that

0 < 〈ψ, P ({x ∈ X : |f(x)| ≥ C})ψ〉 = Pψ({x ∈ X : |f(x)| ≥ C}),

and taking the supremum over all such C yields ‖f‖P,∞ ≤ ‖f‖Pψ .

Exercise 5.53. Show that L∞P is a vector space.

Proposition 5.54.

‖P (f)‖ = ‖f‖P,∞ .

In particular, P (f) is a bounded operator if and only if the function f is P -bounded,
in which case P (f) is also everywhere de�ned.

Proof. Let ψ ∈ H be an arbitrary vector. Then∫
|f |2 dPψ ≤

∫
‖f‖2

Pψ ,∞ dPψ = ‖f‖2
Pψ ,∞ Pψ(X ) ≤ ‖f‖2

P,∞ ‖ψ‖
2 < +∞,

where the second inequality is due to (5.129). Thus, ψ ∈ D(P(f)) for every ψ ∈ H,
and ‖P (f)ψ‖2 =

∫
|f |2 dPψ ≤ ‖f‖P,∞ ‖ψ‖

2 according to (5.119), whence ‖P (f)‖ ≤
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‖f‖P,∞. Conversely, if C ≥ 0 is such that PC := ({x ∈ X : |f(x)| ≥ C}) 6= 0 then
there exists a 0 6= ψ ∈ ranPC , and

‖P (f)ψ‖2 = ‖P (f)PCψ‖2 =

∫
X
|f |2 dPPCψ =

∫
{|f |≥C}

|f |2 dPψ

≥ C2Pψ({|f | ≥ C}) = C2 〈ψ, PCψ〉 = C2 ‖ψ‖2 ,

where the third equality is due to Lemma 5.30. Thus, ‖P (f)‖ ≥ C. Taking the
supremum over all such C yields ‖P (f)‖ ≥ ‖f‖P,∞.

Now we are ready to state and prove the fundamental algebraic properties of the
functional calculus for PVMs:

Proposition 5.55. Let f, g : (X ,A)→ C be measurable.

(i) P (λf) = λP (f) for any λ ∈ C \ {0}, and P (0 · f) = 0 ∈ B(H).

(ii) P (f) + P (g) ⊆ P (f + g),

and equality holds if at least one of the functions is P -bounded.

(iii) P (f)P (g) ⊆ P (fg), and D(P (f)P (g)) = D(P (g)) ∩ D(P (fg)).

In particular, P (f)P (g) = P (fg)⇐⇒D(P (g))∩D(P (fg)) = D(P (fg)), which
holds when f is P -bounded.

(iv) P (f)∗ = P (f).

(v) P (f)∗P (f) = P (|f |2) = P (f)P (f)∗.

Proof. (i) Trivial.

(ii) We have |f + g|2 ≤ (|f | + |g|)2 = |f |2 + |g|2 + 2|f ||g| ≤ 2(|f |2 + |g|2), where
the last inequality follows from the inequality between the geometric and the
square mean. Thus, if ψ ∈ D(P (f) ∩ P (g)) = D(P (f) + P (g)) then∫

|f + g|2 dPψ ≤ 2

∫
|f |2 dPψ + 2

∫
|g|2 dPψ < +∞,

and hence ψ ∈ D(P (f + g)). If (fn)n∈N and (gn)n∈N are approximating se-
quences of simple normal functions as in Lemma 5.39 then P (fn + gn) =
P (fn) + P (gn) by Exercise 5.36, and P (fn + gn)ψ = P (fn)ψ + P (gn)ψ fol-
lows by taking the limit in n.
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Assume now that f is P -bounded, so that D(P (f)) = H, and thus D(P (f) +
P (g)) = D(P (g)). Let ψ ∈ D(P (f + g)). Then |g|2 = |g+ f − f |2 ≤ (|g+ f |+
|f |)2 ≤ 2(|g + f |2 + |f |2) yields∫

|g|2 dPψ ≤
∫
|f + g|2 dPψ︸ ︷︷ ︸
≤+∞

+

∫
|f |2 dP︸ ︷︷ ︸

≤‖f‖2P,∞‖ψ‖
2

< +∞,

and hence ψ ∈ D(P (g)). This implies that D(P (f) + P (g)) = D(P (g)) ⊇
D(P (f + g)), and hence, by the above P (f) + P (g) = P (f + g).

(iii) Let (fn)n∈N, (gn)n∈N be sequences of bounded measurable functions converging
pointwise to f, g, respectively, such that |fn| ≤ |fn+1|, |gn| ≤ |gn+1|, n ∈ N.
Note that P (fngm) = P (fn)P (gm) by Exercise 5.36. Let ψ ∈ D(P (g)). Then
limm→+∞ P (gm)ψ = P (g)ψ by Lemma 5.39, and

P (fn)P (g)ψ = lim
m→+∞

P (fn)P (gm)ψ = lim
m→+∞

P (fngm)ψ = P (fng)ψ,

(5.130)

where the �rst equality follows from the fact that P (fn) is bounded, and
the last equality follows from Lemma 5.39 by the fact that

∫
|fng|2 dPψ ≤

‖fn‖2
∞
∫
|g|2 dPψ < +∞, and hence ψ ∈ D(P (fng)). (One may also argue by

noting that fngm converges pointwise to fng as m→ +∞, and |fngm| ≤ |fng|.)
Therefore,∫

|fng|2 dPψ = ‖P (fng)ψ‖2 = ‖P (fn)P (g)ψ‖2 =

∫
|fn|2 dPP (g)ψ.

This yields, by the monotone convergence theorem, that∫
|fg|2 dPψ = lim

n→+∞

∫
|fng|2 dPψ = lim

n→+∞

∫
|fn|2 dPP (g)ψ =

∫
|f |2 dPP (g)ψ.

Thus, by Lemma 5.39, ψ ∈ D(P (fg))⇐⇒ P (g)ψ ∈ D(P (f)). Finally, if either
(and hence both) of these holds, then

P (fg)ψ = lim
n→+∞

P (fng)ψ = lim
n→+∞

P (fn)P (g)ψ = P (f)P (g)ψ, (5.131)

where the �rst equality is due to the fact that ψ ∈ D(P (fg)), he second equality
follows from (5.130), and the third equality follows from P (g)ψ ∈ D(P (f)).
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(iv) Let ψ1, ψ2 ∈ D(P (f)) = D(P (f)), and let (fn)n∈N is a sequence of bounded
measurable functions converging to f , respectively, such that |fn| ≤ |fn+1|,
n ∈ N. Then

〈ψ1, P (f)ψ2〉 = lim
n→+∞

〈ψ1, P (fn)ψ2〉 = lim
n→+∞

〈
P (fn)ψ1, ψ2

〉
=
〈
P (f)ψ1, ψ2

〉
,

where the second equality is due to Exercise 5.36. Thus, P (f) ⊆ P (f)∗. If f is
bounded then P (f) is everywhere de�ned, according to Proposition 5.54, and
in this case P (f) = P (f)∗.

Now, let ψ ∈ D(P (f)∗), and gn := 1{|f |≤n}, n ∈ N. Then

D(P (f)P (gn)) = D(P (gn))︸ ︷︷ ︸
=H

∩D(P (fgn))︸ ︷︷ ︸
=H

= H =⇒ P (f)P (gn) = P (fgn),

where we used that gn and fgn are bounded, and the implication follows from
the previous point. Thus,

P (gn)P (f)∗ = P (gn)∗P (f)∗ ⊆ [P (f)P (gn)]∗ = P (fgn)∗ = P (fgn) = P (fgn),

where in the �rst equality we used that gn is bounded, and in the third equality
we used that fgn is bounded. Hence,∫

|gn|2 dPP (f)∗ψ = ‖P (gn)∗P (f)∗ψ‖2 =
∥∥P (fgn)ψ

∥∥2
=

∫
|fgn|2 dPψ.

Thus,

+∞ > ‖P (f)∗ψ‖2 =

∫
1X dPP (f)∗ψ = lim

n→+∞

∫
|gn|2 dPP (f)∗ψ

= lim
n→+∞

∫
|fgn|2 dPψ =

∫
|f |2 dPψ,

where the second and the last equality follow by the monotone convergence
theorem. Thus, ψ ∈ D(P (f)) = D(P (f)), and therefore P (f)∗ = P (f).

(v) Note that ψ ∈ D(P (|f |2) ⇐⇒
∫
|f |4 dPψ < +∞, and in this case,∫

|f |2 dPψ =

∫
|f |2 · 1 dPψ ≤

(∫
|f |4 dPψ

)1/2(∫
1 dPψ

)1/2

< +∞,

due to the Cauchy-Schwarz inequality, so ψ ∈ D(P (f)). Thus, D(P (f)P (f)) =
D(P (|f |2) ∩ D(P (f)) = D(P (|f |2), and similarly, D(P (f)P (f)) = D(P (|f |2),
which implies

P (f)∗P (f) = P (f)P (f) = P (ff) = P (|f |2) = P (ff) = P (f)P (f)∗.
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Proposition 5.54 and the linearity established in Proposition 5.55 yield immedi-
ately the following continuity property:

Corollary 5.56. Let f be P -bounded, and (fn)n∈N be a sequence of P -bounded
measurable functions such that limn→+∞ ‖f − fn‖P,∞ = 0. Then

lim
n→+∞

P (fn) = P (f)

in operator norm.

Proof. By Proposition 5.54, P (fn) ∈ B(H), n ∈ N, and

‖P (fn)− P (f)‖ = ‖P (fn − f)‖ = ‖fn − f‖P,∞ −−−−→n→+∞
0,

where the �rst equality follows from Proposition 5.55, and the second equality from
Proposition 5.54.

Corollary 5.57. All the identities in Exercise 5.36 hold when f, g are P -bounded.
That is, the functional calculus f 7→ P (f) is a ∗-algebra morphism from L∞P to B(H).

The algebraic properties established in Proposition 5.55 readily translate to prop-
erties of the functional calculus for P̂ , introduced in De�nition 5.47:

Proposition 5.58. Let P ∈ PVM(H,K) be a real- or complex-valued PVM and P̂
the corresponding operator. For any measurable functions f, g : K→ C, and scalar
λ ∈ C \ {0}, we have

(λf)(P̂ ) = λf(P̂ ), (5.132)

f(P̂ ) + g(P̂ ) ⊆ (f + g)(P̂ ), (5.133)

f(P̂ )g(P̂ ) ⊆ (fg)(P̂ ), (5.134)

f(P̂ ) = (f(P̂ ))∗, (5.135)

f(P̂ )(f(P̂ ))∗ = |f |2(P̂ ). (5.136)

For λ = 0, (5.132) holds as (0 · f)(P̂ ) = 0 ∈ B(H).
Moreover, equality holds in (5.133) if at least one of the functions is bounded. In

(5.134), we have

D
(
f(P̂ )g(P̂ )

)
= D(f(ĝ)) ∩ D((f + g)(P̂ )),

and equality holds in (5.134) if and only if D(g(P̂ )) ∩ D((fg)(P̂ )) = D((fg)(P̂ )).
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These allow us to settle the question raised around formulas (5.125)�(5.126). We
start with the following:

Exercise 5.59. Show that for n,m ∈ N, n ≤ m,

D
(

(idmK )(P̂ )
)
⊆ D

(
(idnK)(P̂ )

)
, (5.137)

where by de�nition, id0
K := 1K. Show that for any n,m ∈ N,

(idmK )(P̂ ) · (idnK)(P̂ ) = (idn+m
K )(P̂ ).

(Hint: Use the Hölder inequality.)

Solution:
The assertions are trivial when n = 0, since then idnK(P̂ ) = I, and hence we

assume that n > 0. Let p := m/n, and q := 1− 1/p = 1− n/m = (m− n)/n be its
Hölder conjugate. For any ψ ∈ H,∫

K
| idnK |2 dPψ =

∫
K
| id2

K |n · 1 dPψ ≤
∥∥| idK |2n∥∥p ‖1‖q

=

(∫
K

(
| idK |2n

)m/n
dPψ

)n/m(∫
K

1m/(n−m) dPψ

)(m−n)/m

=

(∫
K
| id2

K |m dPψ
)n/m

‖ψ‖2(m−n)/m ,

where the inequality follows from Hölder's inequality. Thus, if ψ ∈ D((idmK )(P̂ )) then
ψ ∈ D((idnK)(P̂ )), proving (5.137).

By Proposition 5.58,

D
(

(idmK )(P̂ ) · (idnK)(P̂ )
)

= D((idmK )(P̂ )) ∩ D((idK)n+m(P̂ )) = D((idn+m
K )(P̂ )),

where the last equality is due to (5.137).

Corollary 5.60. For any m ∈ N,

idmK (P̂ ) = P̂m,

and for any ψ ∈ P̂m, (5.125) holds, i.e.,∫
K

idmK dPψ =
〈
ψ, P̂mψ

〉
.
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Proof. By de�nition, P̂ = idK(P̂ ), and thus we have, for any m ∈ N,

P̂m = P̂ · . . . · P̂ = idK(P̂ ) · . . . · idK(P̂ ) = idmK (P̂ ),

where the last equality follows from Exercise 5.59.

The above can be further generalized as follows:

Exercise 5.61. Let P ∈ PVM(H,K) be a real- or complex-valued PVM and P̂ the
corresponding operator. Show that for any polynomial p(z) =

∑n
k=0 ckz

k, we have

p(P̂ ) = P (p) =
n∑
k=0

ckP̂
k.

(Hint: Show that D(p(P̂ )) = D(idnK(P̂ )) = D(p(P̂ )) where n = deg p. You may want
to compute the integral

∫
|p|2 dPψ by splitting K to a large enough disk around the

origin and its complement.)

Remark 5.62. Exercise 5.61 shows that the functional calculus developed for P̂ is
an extension of the polynomial function calculus.

Next, we turn to the following very important corollary of Proposition 5.55:

Corollary 5.63. For any measurable f : (X ,A) → C, P (f) is a normal operator,
i.e., it is densely de�ned, closed, and P (f)∗P (f) = P (f)P (f)∗.

Proof. We have seen in Proposition 5.41 that P (f) is densely de�ned. It is closed,
as P (f) = P (f)∗ by Proposition 5.55, and any adjoint operator is closed, and
P (f)∗P (f) = P (f)P (f)∗ also follows from Proposition 5.55.

As it turns out, the above Corollary can also be reversed, and we have the
following:

Theorem 5.64. (Spectral theorem for normal operators - PVM form)

Let T be a normal operator on a Hilbert space H. Then there exists a PVM P T ∈
PVM(H,C), called the spectral PVM of T , such that

T = P̂ T =

∫
idC dP

T .

Moreover, suppP T = spec(T ).

Remark 5.65. The above spectral theorem is one of the central results in the theory
of Hilbert space operators. Its proof is beyond the scope of these notes, and hence
we omit it.
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Similarly to usual measure theory, we say that a property of a function holds P -
almost everywhere (a.e.) if the set of points A where it does not hold is measurable,
and P (A) = 0. For a measurable function f : (X ,A)→ K, we de�ne its P -essential
range as

essranP f := supp(P ◦ f)−1 = {x ∈ K : P (f−1(Bε(x)) 6= 0 ∀ε > 0},

where Bε(x) is the ε-ball centered at x.
We leave the following properties of the functional calculus as an exercise:

Exercise 5.66. Let P ∈ PVM(H,X ,A) be a PVM and f : (X ,A) → C be a
measurable function. Show the following:

(i) The spectrum of P (f) is given by

spec(P (f)) = supp(P ◦ f−1) = essranP f.

In particular, if P is a real- or complex PVM then

spec(P̂ ) = suppP.

(ii) Show that P (f) is

a) self-adjoint ⇐⇒ essranP f ⊆ R;
b) unitary, ⇐⇒ essranP f ⊆ {z ∈ C : |z| = 1};
c) projection, ⇐⇒ essranP f ⊆ {0, 1};
d) positive semi-de�nite ⇐⇒ essranP f ⊆ [0,+∞).

Let us now consider some important examples and applications of the functional
calculus developed above.

Example 5.67. Consider the multiplication PVM M ∈ PVM(L2(X ,A, µ),X ,A)
from Example 5.11, given by M(A) := M1A , where the latter is the multiplication
operator with the characteristic function of A ∈ A. As we have already seen before,
for any ψ ∈ L2(X ,A, µ),

Mψ(A) = 〈ψ,M(A)ψ〉 =

∫
X
ψ1Aψ dµ =

∫
A

|ψ|2 dµ = (|ψ|2µ)(A).

Thus, for any f : (X ,A)→ C measurable,

ψ ∈ D(M(f))⇐⇒ +∞ >

∫
|f |2 dMψ =

∫
|f |2|ψ|2 dµ⇐⇒ ψ ∈ D(Mf ).

240



Moreover, for any simple measurable function f =
∑r

k=1 ck1Ak ,

M(f) =
r∑

k=1

ckM(Ak) =
r∑

k=1

ckM1Ak
= M∑r

k=1 ck1Ak
= Mf ,

and therefore for any measurable function f : (X ,A)→ C,

Mf = M(f) =

∫
X
f dM =

∫
C

idC d(M ◦ f−1) = f̂∗M.

De�nition ?? then allows us to de�ne functions of the multiplication operator Mf ,
and we obtain

g(Mf ) := g(M(f)) =

∫
X

(g ◦ f) dM = Mg◦f , (5.138)

for any measurable function g : C → C. That is, a function g of the multiplication
operator by f is the multiplication operator by g ◦ f .

It is straightforward to verify that multiplication operators are normal, and from
the point of view of Theorem 5.64, the above considerations show that the spectral
PVM of the multiplication operator Mf is M ◦ f−1, i.e.,

PMf = M ◦ f−1 = f∗M.

Example 5.68. Let us now specify Example 5.67 to the case where (X ,A, µ) =
(R,B(R), λ), with λ being the Lebesgue-measure, and let Q denote the multiplication
PVM. We may consider it as a real-valued POVM, or as a complex-valued PVM with
support in R, and we can de�ne the operator Q̂ corresponding to Q according to
De�nition 5.45, as

Q̂ :=

∫
K

idK dQ = Q(idR) = MidR ,

the multiplication with the coordinate in R, where the equalities follow as special
cases of Example 5.67. This is the operator corresponding to the position observable
in quantum mechanics. Functions of the position observable are then de�ned as

g(Q̂) := Mg◦idR = Mg,

according to (5.138). The spectral PVM of the position operator Q̂ is then Q itself,
i..e.,

P Q̂ = Q.

Exercise 5.69.
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6 Composite systems

6.1 The tensor product of Hilbert spaces

De�nition 6.1. Let H1, . . . ,Hn, be Hilbert spaces over the same scalar �eld K. A
pair (K, τ), where K is a Hilbert space over K, and τ : H1 × . . . × Hn → K is an
n-linear map, is called a realization of the tensor product of H1, . . . ,Hn, if

(i) the inner product of K factorizes on ran τ as

〈τ(φ1, . . . , φn), τ(ψ1, . . . , ψn)〉 = 〈φ1, ψ1〉 · . . . · 〈φn, ψn〉 , (6.139)

where φi, ψi ∈ Hi, i ∈ [n];

(ii) the subspace generated by ran τ is dense in K, i.e.,

span{τ(ψ1, . . . , ψn) : ψi ∈ Hi, i ∈ [n]} = K. (6.140)

Lemma 6.2. Assume that an n-linear map τ : H1× . . .×Hn → K satis�es (6.139).

(i) τ is bounded with norm 1.

(ii) For any orthonormal systems (ei,j)j∈Ji , i ∈ [n],

{ej := τ(e1,ji , . . . , en,jn) : j ∈ ×ni=1Ji}

is an ONS in K.

(iii) (6.140) holds if and only if for any/some ONBs (ei,j)j∈Ji , i ∈ [n],

{ej = τ(e1,ji , . . . , en,jn) : j ∈ ×ni=1Ji} is an ONB in K. (6.141)

Proof. (i) According to (6.139),

‖τ(ψ1, . . . , ψn)‖ = ‖ψ1‖ · . . . · ‖ψn‖

for any ψi ∈ Hi, i ∈ [n], proving the assertion.

(ii) Immediate from (6.139).

(iii) Assume that (6.141) holds for some ONBs. Then

K = span{ej : j ∈ ×ni=1Ji} ⊆ span{τ(ψ1, . . . , ψn) : ψi ∈ Hi, i ∈ [n]} ⊆ K,

and hence all containments are equalities, and (6.140) holds. Assume next that
(6.140) holds, and let (ei,j)j∈Ji , i ∈ [n], be arbitrary ONBs in the respective spaces.
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For any ψi ∈ Hi, there exists a sequence ψi,m ∈ span{ei,j}j∈Ji such that ‖ψi − ψi,m‖ →
0 as m→ +∞. Then∑
j∈×ni=1Ji

n∏
i=1

〈ei,ji , ψi〉 τ(e1,j1 , . . . , en,jn)

︸ ︷︷ ︸
∈span{ej : j∈×ni=1Ji}

= τ(ψ1,m, . . . , ψn,m) −−−−→
m→+∞

τ(ψ1, . . . , ψn),

where the �rst equality is by the n-linearity of τ , the sum is �nite by assumption,
showing that the �rst expression is in span{ej : j ∈ ×ni=1Ji}, and the convergence is
due to the continuity of τ , established in the �rst point (i). Thus,

K = span{τ(ψ1, . . . , ψn) : ψi ∈ Hi, i ∈ [n]} ⊆ span{ej : j ∈ ×ni=1Ji} ⊆ K,

proving that span{ej : j ∈ ×ni=1Ji} is dense in K. By (ii), this means that {ej : j ∈
×ni=1Ji} is an ONB in K.

Proposition 6.3. Let H1, . . . ,Hn, be Hilbert spaces.

(i) There exists a realization of their tensor product.

(ii) If (K1, τ1) and (K2, τ2) are two realizations of the tensor product of H1, . . . ,Hn,
then there exists a unique unitary U : K1 → K2 such that

τ2 = U ◦ τ1 (6.142)

(and hence U−1 ◦ τ2 = τ1).

Proof. (i) For every i ∈ [n], let (ei,j)j∈Ji be an ONB in Hi. Then Hi is isomorphic
to l2(Ji) via Uiψ := (〈ei,j, ψ〉)j∈Ji , ψ ∈ Hi; see Corollary 4.111. For ψi ∈ Hi, i ∈ [n],
let

τ(ψ1, . . . , ψn) := U1ψ1 ⊗̇ . . . ⊗̇Unψn ∈ l2 (×ni=1Ji) =: K,

where ⊗̇ is the tensor product of functions introduced in De�nition 2.96, i.e.,

(U1ψ1 ⊗̇ . . . ⊗̇Unψn)(j1, . . . , jn) = (U1ψ1)(j1) · . . . · (Unψ1)(jn)

= 〈e1,j1 , ψ1〉 · . . . · 〈en,jn , ψn〉 , j ∈ ×ni=1Ji.

Clearly, τ is n-linear, and (6.139) is straightforward to verify. Since

τ(e1,j1 , . . . , en,jn) = U1e1,j1︸ ︷︷ ︸
=1{j1}

⊗̇ . . . ⊗̇Une1,jn︸ ︷︷ ︸
=1{jn}

= 1(j1,...,jn), j ∈ ×ni=1Ji,

243



is an ONB in l2 (×ni=1Ji), (6.140) holds due to Lemma 6.2.

(ii) For every i ∈ [n], let (ei,j)j∈Ji be an ONB in Hi. By (iii) of Lemma 6.2 and
Lemma 4.110, there exists a unique unitary U : K1 → K2 such that

Uτ1(e1,j1 , . . . , en,jn) = τ2(e1,j1 , . . . , en,jn), j ∈ ×ni=1Ji.

If ψi ∈ span{ei,j}j∈Ji , i ∈ [n], then

Uτ1(ψ1, . . . , ψn) = U
∑

j∈×ni=1Ji

n∏
i=1

〈ei,ji , ψi〉 τ1(e1,j1 , . . . , en,jn)

=
∑

j∈×ni=1Ji

n∏
i=1

〈ei,ji , ψi〉 τ2(e1,j1 , . . . , en,jn)

= τ2(ψ1, . . . , ψn).

For general ψi ∈ Hi, i ∈ [n], Uτ1(ψ1, . . . , ψn) = τ2(ψ1, . . . , ψn) follows from the above
by continuity; see (i) of Lemma 6.2.

According to Proposition 6.3, any two realizations of the tensor product are
equivalent in a canonical way. Hence, unless we want to explicitly specify what
realization we are working with, we will simply write �the� tensor product of the
Hilbert spaces H1, . . . ,Hn for any realization, and denote it by

H1⊗ . . .⊗Hn = ⊗ni=1Hi, and τ(ψ1, . . . , ψn) by ψ1⊗ . . .⊗ψn.

In the proof of Lemma 6.3 we constructed a speci�c realization. However, this is
not always the most convenient to work with. For instance, when Hi = L2(Xi,Ai, µi)
then

⊗ni=1Hi = L2(×ni=1Xi,⊗ni=1Ai,⊗ni=1µi),

with

f1⊗ . . .⊗ fn := f1 ⊗̇ . . . ⊗̇ fn : (x1, . . . , xn) 7→ f1(x1) · . . . · fn(xn)

is a more natural realization of the tensor product; see Section 4.3.

De�nition 6.4. Let Hi, i ∈ [n], be Hilbert spaces, and for each i ∈ [n], let Ki be a
subspace of Hi. We de�ne the algebraic tensor product of the Ki as

K1⊗ . . .⊗Kn := span{ψ1⊗ . . .⊗ψn : ψi ∈ Ki, i ∈ [n]}. (6.143)
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It is straightforward from the de�nitions that if each Ki in De�nition 6.4 is closed
(i.e., a Hilbert space) then the closure of the subspace in (6.143) gives a realization
of the tensor product of K1, . . . ,Kn with the natural n-linear map τ(ψ1, . . . , ψn) :=
ψ1⊗ . . .⊗ψn, and hence we write

K1⊗ . . .⊗Kn = K1⊗ . . .⊗Kn.

More generally, we have the following:

Exercise 6.5. Show that in the setting of De�nition 6.4,

K1⊗ . . .⊗Kn = K1⊗ . . .⊗Kn,

with the natural n-linear map τ(ψ1, . . . , ψn) := ψ1⊗ . . .⊗ψn.

6.2 The spin chain

The observable algebra

In this section we give a description of the observable algebra of an in�nite spin
system. To avoid technical di�culties of working with in�nite tensor product of
Hilbert spaces, we choose a C∗-algebraic description instead of working on the Hilbert
space level. An additional advantage of this choice is that quantum and classical
chains can be treated within the same formalism.

Let C0 denote the observable algebra of a single spin, located at one site of
the in�nite lattice Z. For a classical spin-1

2
system C0 is the commutative algebra

F({−1, 1}), while for a quantum spin-s system C0 = B(H) where H is a 2s + 1-
dimensional Hilbert space. The observable algebra of the spins located at the sites
of a �nite subset Λ ⊂ Z is CΛ := ⊗k∈Λ C0. For any pair Λ ⊂ Λ′ the observable
algebra CΛ can naturally be viewed as a subalgebra of CΛ′ . More precisely, there
exists a unity-preserving embedding ιΛ′,Λ of CΛ into CΛ′ , given by the formula

ιΛ′,Λ (A) := A⊗
(
⊗

l∈Λ′\Λ
I

)
for A ∈ CΛ.

The union of the CΛ's can be equipped with a natural equivalence relation; for
A ∈ CΛ1 , B ∈ CΛ2 we say that A and B are equivalent, if there exists a bigger
subset Λ such that the embedded images of A and B in CΛ are the same, i.e.

ιΛ,Λ1(A) = ιΛ,Λ2(B).

Factorization with this equivalence relation yields a normed ∗-algebra, in which also
the C∗-property is satis�ed. This algebra is called the algebra of local observables,
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and its norm completion is by de�nition the spin chain algebra C. By identifying
elements in di�erent CΛ's with their equivalence classes, we get an embedding of
the �nite algebras into the in�nite one, which is compatible with the embeddings of
the �nite algebras into each other, i.e. we have embeddings ιΛ : CΛ → C such that
ιΛ = ιΛ′ ◦ ιΛ′,Λ holds. For the rest we identify CΛ with its embedded image and in
the following we use the same notation CΛ for it. With this identi�cation the local
algebra can be written as the union of all the CΛ's. Elements of the local algebra can
be pictured as linear combinations of elements of the form

. . . I ⊗ I ⊗ Ai1 ⊗ . . .⊗ Ain ⊗ I ⊗ I ⊗ . . . ,

where i1, . . . , in ∈ Z and Aik ∈ C0.
Note that the local algebra can also be given as the union of all subalgebras of

the form C{−n,...,n}. The half-in�nite chain CN is de�ned as the C∗-subalgebra of C,
generated by the union of all subalgebras of the form C{0...,n}; n ≥ 0.

Example 6.6. The classical chain
In the classical case, a spin-1

2
particle is modeled by a two-level system with

con�guration space {−1,+1}. The confuguration space of a system of spins located
at the sites corresponding to a �nite subset Λ ⊂ Z is ΩΛ := {−1,+1}Λ; the observable
algebra F (ΩΛ) is isomorphic to CΛ = ⊗k∈ΛF({−1, 1}). If we endow the �nite set
{−1,+1} with the discrete topology, then the con�guration space of the in�nite
system Ω := {−1,+1}Z becomes a topological space with the product topology,
which is homeomorphic to C × C, where C is the Cantor set

C :=

{∑
n∈N

xn
3n

: xn ∈ {0, 2}, n ∈ N

}
⊂ [0, 1];

an explicit homeomorphism is given by

h(ω) :=

(
−∞∑
n=−1

ωn + 1

3−n
;

+∞∑
n=0

ωn + 1

3n+1

)
; ω ∈ Ω.

The Cantor set can be written in the form

C =
⋂
n∈N

2n−1⋃
k=0

Ik,n,

where Ik,n is an interval of the form
[∑n

l=1
xl
3l
,
∑n

l=1
xl
3l

+ 1
3n

]
with

∑n
l=1 xl2

l−1 = k.
The algebra CΛ can be identi�ed with functions on Ω that depend only on the

coordinates corresponding to Λ; these functions are obviously continuous on Ω. In
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the case Λ = [−n, n − 1] the elements of CΛ can also be pictured as functions on
C × C that are constants on the sets (Ik,n × Il,n) ∩ (C × C). Since the collection of
these functions for all n forms a dense set in Fc (C × C) then the observable algebra
C can be identi�ed by the commutative C∗-algebra Fc (C × C). The algebra of the
left (as well as the right) half-chain in this picture is naturally isomorphic to Fc (C).
Note that since C × C is homeomorphic to C then also C is isomorphic to Fc (C).

The quantum spin chain algebra can also be given as the universal C∗-algebra1

corresponding to a set of generators and relations. Two canonical choices are the
spin operators {Snj : n ∈ Z; j = 1, 2, 3}, satisfying relations

(R1) (Snj )∗ = Snj ∀j ∀n (6.144)

(R2) [Snj , S
m
k ] =

{
0 , if n 6= m;

iεjklS
n
l , if n = m,

(6.145)

and the commuting matrix units {enij : n ∈ Z; i, j = 1, . . . , d}, satisfying relations

(R1') (enij)
∗ = enji (6.146)

(R2') enij e
m
kl =

{
emkl e

n
ij , if n 6= m;

δjk e
n
il , if n = m

(6.147)

(R3')
2s+1∑
i=1

eii = I. (6.148)

Here [., .] denotes the commutator, δij is the Kronecker delta, and εjkl is the Levi-
Civita symbol. A set of matrix units can be given in CΛ by the de�nition

eij :=
∏
n∈Λ

ein jn ; i, j ∈ {1, . . . , d}Λ . (6.149)

For the quantum spin-1
2
case it is convenient to introduce the Pauli operators

σnx := σn1 := 2Sn1 ; σny := σn2 := 2Sn2 ; σnz := σn3 := 2Sn3 ; (6.150)

1For the de�nition of a universal C∗-algebra see Appendix A.1.
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a commuting set of matrix units can then be given by

en11 :=
1

2
(I + σnz ) ; en12 := 1

2

(
σnx + iσny

)
;

en21 :=
1

2

(
σnx − iσny

)
; en22 := 1

2
(I − σnz ) . (6.151)

The right shift is de�ned on the generators as γ (Snk ) := Sn+1
k , and is easily seen

to extend to an automorphism of the spin chain. For the half-in�nite chain the right
shift is de�ned the same way, and its e�ect on local elements can be pictured as

γ : A1 ⊗ . . .⊗ An ⊗ I ⊗ . . . 7→ I ⊗ A1 ⊗ . . .⊗ An ⊗ I ⊗ . . . .

States on the spin chain

For a state ϕ on the spin chain the restrictions ϕΛ := ϕ �CΛ form a compatible family,
i.e. ϕΛ′(A) = ϕΛ(A) holds when Λ ⊂ Λ′ and A ∈ CΛ. On the other hand, given
a compatible family {ϕΛ} of states, there exists a unique state ϕ on C such that
ϕΛ = ϕ �CΛ ∀Λ holds. To determine a state of the spin chain it is actually su�cient
to know all the restrictions to subalgebras of the form C{−n,...,n} (or C{0,...,n} in the
half-in�nite case). The density matrices of the states ϕΛ are given by

[ϕΛ]i,j = ϕΛ (eji) ; i, j ∈ {1, 2}Λ.

A state ϕ on the (half-)in�nite spin chain is called translation-invariant (or shift-
invariant), if

ϕ ◦ γ = ϕ

holds for the right shift γ. To specify a shift-invariant state it su�ces to know all
the restrictions

ϕn := ϕ �C{0,...,n−1}

even for the two-sided in�nite chain C. Note that the restriction to CN of a shift-
invariant state on C gives a shift-invariant state, while a shift-invariant state on
CN can be uniquely extended to a shift-invariant state of C, giving a one-to one
correspondence between shift-invariant states of the full chain and the right half
chain.

The set of translation-invariant states is convex; its extremal points are called
ergodic states. Note that a pure translation-invariant state is extremal in the convex
set of all states, and so it is also ergodic. An equivalent characterization of ergodicity
is the following [?]:
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Theorem 6.7. A state ϕ is ergodic if and only if

lim
n→∞

1

n

n−1∑
k=0

ϕ
(
aγk(b)

)
= ϕ(a)ϕ(b) , a, b ∈ C. (6.152)

Note that by continuity it is enough to check (6.152) for local elements a, b.

Example 6.8. Given a state % on C0, we can de�ne a compatible family of states by

ϕn(A0 ⊗ . . .⊗ An−1) = %(A0) · . . . · %(An−1); A0, . . . , An−1 ∈ C0.

The resulting state on C is denoted by %⊗∞. States of this form are called (shift-
invariant) product states.

A product state is always ergodic, as easily seen from the characterization (6.152),
and is pure if and only if % is a pure state on C0.

By Example (6.6) and Example (??) a pure state on the classical spin-1
2
chain

is a Dirac measure concentrated on an in�nite con�guration ω, and therefore it is
shift-invariant if and only if ωk = 1 ∀k or ωk = −1 ∀k. On the quantum spin chain,
however, there is an abundance of shift-invariant pure states, showing a far richer
structure of the state space of the quantum chain.

It is in general rather di�cult to check properties (e.g. purity or ergodicity) of
a state, resulting from a compatible family {%n}. Two important classes with well
handable criteria are the quasi-free states, presented in section 7.4, and the �nitely
correlated states, that contain quantum Markov states as a subclass, which in turn
contains classical Markov states.

Example 6.9. Finitely correlated states
Let B be a �nite dimensional C∗-algebra with a state % on it, and E : A⊗B → B

be a unital CP map, where A ⊂ B(H) is the one-site algebra of the spin chain; hence
E∗ : B → A⊗ B is a stochastic map. E is related to % such that

TrA E∗ (%) = % (6.153)

holds. Let

ω1 := E∗ (%)

ω2 := (idA⊗E∗) ◦ E∗ (%)
...

ωn :=
(

id
⊗(n−1)
A ⊗E∗

)
◦ . . . ◦ (idA⊗E∗) ◦ E∗ (%) ;
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here ωn is de�ned on A⊗n ⊗ B. To obtain a family on the spin chain, we take

ϕn := TrB ωn;

on simple product operators it takes the value

ϕn(A1 ⊗ . . .⊗ An) = % (E (A1 ⊗ E (A2 ⊗ . . .E (An ⊗ IB) . . .))) .

Compatibility of this family is guaranteed by the unitality of E, while shift-invariance
follows from (6.153). The induced state ϕ on the spin chain is called a �nitely
correlated state. By lemma 2.5, [?], B can always be taken to be B(K) for some
�nite dimensional Hilbert space K, and % can be assumed to be faithful. Note that
the construction of the sequence ωn resembles very much to that of Markov states
(Example (6.10)). However, the construction of the sequence ϕn doesn't follow the
scheme for Markovian states, as ϕn+1 is derived from ωn+1 instead of ϕn. As a
consequence, the resulting state ϕ is in general not Markovian.

A �nitely correlated state is purely generated, if E = AdV ∗ for an isometry
V : K → H ⊗ K. A purely generated state is pure if and only if the spectrum of
Ê : b 7→ E(IA ⊗ b) intersects the complex unit circle only at {1}, and 1 is a simple
eigenvalue.

A �nitely correlated state is ergodic, if and only if 1 is a simple eigenvalue of Ê
(Proposition 3.1, [?]).

A special subclass is when the algebra B is a commutative one, isomorphic to
F(X ) for some �nite set X . E∗ is speci�ed by its values on the Dirac measures
δx, and since the result is a state on A ⊗ F(X ), it can uniquely be written as∑

y pxy %xy ⊗ δy, where {pxy} is a probability distribution for a �xed x, and %xy are
states on A. The state % is of the form % =

∑
x px δx, and (6.153) is equivalent to

{px} being an invariant measure of the stochastic map with matrix Tx,y := pxy. The
resulting states are of the form

ϕn =
∑

{x1,...,xn+1}

µ(x1, . . . , xn+1) %x1 x2 ⊗ . . .⊗ %xn xn+1 ,

where µ is the classical Markov measure, generated by {px} and T . In this case Ê is
the linear map on F(X ) with matrix T , thus ϕ is ergodic if and only if 1 is a simple
eigenvalue of T , which is equivalent to the ergodicity of the classical measure µ. We
obtain a special form when %xy is independent of x; in this case

ϕn =
∑

{x1,...,xn}

µ(x1, . . . , xn) %x1 ⊗ . . .⊗ %xn . (6.154)

Example 6.10. Markov states
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A shift-invariant state % on the in�nite spin chain is called a Markov state if there
exists a stochastic map α : A → A⊗A such that

%n+1 =
(

id
⊗(n−1)
A ⊗α

)
(%n) . (6.155)

Note that the criterion for Markovianity doesn't provide a method to construct
Markovian states, as for a given map α and state ϕ1 the sequence ϕ1 := α (ϕ1) ;
ϕ2 := (idA⊗α) ◦ α (ϕ1) ; . . . is in general not a compatible one.

Markov states are �nitely correlated. Indeed, the choice

B := A; E := α∗ and % := ϕ1

yields ωn = ϕn+1, and TrB ωn = Trn+1 ϕn+1 = ϕn. Compatibility and shift-
invariance implies

Tr1 α (ϕ1) = Tr2 α (ϕ1) = ϕ1 .

Note that (6.155) is equivalent to %n+2 saturating (SSA) with respect to the
partition A⊗n ⊗A⊗A (see Chapter ?? for details), therefore the algebraic charac-
terization (Theorem ??) can be used to construct Markov states. We can specify a
Markov state by

• a splitting H =
⊕K

k=1 HL
k ⊗HR

k ;

• a set of states {%kl : k, l = 1, . . . , K}, where %kl is a state on HR
k ⊗HL

l ;

• a classical shift-invariant Markov measure µ on {1, . . . , K}∞.
Let

%L
l :=

∑
k

µ(k, l)

µ(l)
TrHR

k
%kl and %R

k :=
∑
l

µ(k, l)

µ(k)
TrHL

l
%kl; (6.156)

Then

%1 =
⊕
k

µ(k) %L
k ⊗ %R

k , and

%n =
⊕

{k1,...,kn}

µ(k1 . . . , kn) %L
k1
⊗ %k1 k2 ⊗ . . .⊗ %kn−1 kn ⊗ %R

kn . (6.157)

Markovianity of µ implies µ(k1, . . . , kn) = µ(kn−1) µ(k1,..., kn−1)
µ(kn−1)

µ(kn−1, kn)
µ(kn−1)

, hence

%n =
⊕
kn−1

µ(kn−1)

 ⊕
{k1,..., kn−2}

µ(k1, . . . , kn−1)

µ(kn−1)
%L
k1
⊗ %k1 k2 ⊗ . . .⊗ %kn−2 kn−1


⊗[⊕

kn

µ(kn−1, kn)

µ(kn−1)
%kn−1 kn ⊗ %R

kn

]
,

therefore it satis�es the structural criterion (??) for all n ≥ 2.

251



Symmetries

As in the general theory of dynamical systems, symmetries are described by the same
mathematical tool as the dynamical evolution of the system, i.e. by (a group of)
automorphisms. Symmetries can be local, that is, automorphisms of a local algebra
CΛ, or global, i.e. automorphisms of C. If a global automorphism preserves the local
structure of the spin chain then it can be restricted to give a local automorphism
on each local algebra. As for states, the thermodynamical limit of a family of local
automorphisms can be de�ned. If a given family of local automorphisms leaves the
local Hamiltonians invariant, then in an ideal case the same holds for the thermo-
dynamical limit automorphism and the thermodynamical limit of the equilibrium
states. Here we describe in some detail the automorphism group of rotations, as it
is going to have some importance later on.

The map

κw : σkx 7→ cosϑ σkx + sinϑ σky ; σky 7→ − sinϑ σkx + cosϑ σky ; σkz 7→ σkz

for w = eiϑ; ϑ ∈ [0, 2Π) describes a rotation of angle ϑ in the xy plane, and extends
to an automorphism of the in�nite chain for every w. Note that the de�nition of
κw depends on the choice of spin operators σx, σy, σz, i.e. on the choice of the
basis. The map w 7→ κw gives a representation of the complex unit circle T in the
automorphism group of the spin chain, which we will call the rotation group for the
sake of simplicity. Since κw (CΛ) = CΛ, it can be restricted to an automorphism (κw)Λ

of the algebra CΛ.
The set {−1, 1} forms an order two subgroup of the unit circle; the order two

automorphism κ−1 we call the parity automorphism. It describes a rotation of angle
180◦ in the xy plane. The elements of its �xed point algebra are called even, while
elements for which κ−1(a) = −a are called odd. Every element can uniquely be
decomposed into a sum of an even and an odd element in the form

a = a+ + a−; a+ =
1

2
(a+ κ−1(a)) , a− =

1

2
(a− κ−1(a)) .

Product of even elements is even again, therefore the set of even elements forms a
subalgebra C+, while the set of odd elements is not closed under multiplication, and
therefore not an algebra. A matrix unit enij is even, if i = j, and odd, if i 6= j; thus
matrix units in CΛ of the form (6.149) are even (odd) if and only if

∑
n∈Λ (in − jn)

is even (odd).
We call a state ϕ rotation-invariant, if ϕ◦κw = ϕ ∀w ∈ T, and even, if ϕ◦κ−1 =

ϕ. Note that a state is even if and only if it vanishes on odd elements, therefore for
the entries of the density matrices of an even state we have

[ϕΛ]i,j = 0, if
∑
k∈Λ

(ik − jk) is odd.
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Physical models

Mathematical models describing e�ectively one-dimensional spin systems are in gen-
eral speci�ed by a sequence of local Hamiltonians HN ∈ C[−N,N ]. The thermal equi-
librium state of a �nite subsystem at inverse temperature β is then the Gibbs state
%N,β with density e−βHN

/
Tr e−βHN . A state % is a ground state, if it minimizes the

expectation value ofHN . It is easily seen that % is a ground state if and only if its sup-
port is contained in the lowest-energy eigensubspace of HN . The zero-temperature
limit %N,∞ := limβ→∞ %N,β of the Gibbs states gives a particular ground state. The
thermodynamical limit of the states %N,β is de�ned on local elements as

%β(A) := lim
N→∞

%N,β(A); A ∈ Cloc . (6.158)

For a detailed analysis of conditions that guarantee the existence of the above limit,
see [?].

Example 6.11. The XY model describes nearest-neighbor interaction of spins in
the presence of a homogeneous z-directional magnetic �eld h. It is speci�ed by a
sequence of local Hamiltonians of the form

HN :=
N−1∑
k=−N

(
1 + δ

2
σkxσ

k+1
x +

1− δ
2

σkyσ
k+1
y

)
+ h

N∑
k=−N

σkz (6.159)

where δ is a real parameter. Special cases are the Ising model, where |δ| = 1, and
the XX-model, where δ = 0.

The parity automorphism leaves the local Hamiltonians of the XY-model invari-
ant, i.e. κ−1 is a symmetry of the local systems, and the local Gibbs states (as
well as the ground states) are even, and these two properties carry through to the
thermodynamical limit. The local Hamiltonians of the XX-model are invariant un-
der the whole rotation group, and so the local Gibbs and the ground states are
rotation-invariant, the and the same holds after taking the thermodynamical limit.

The �rst solution of the ground state problem of the XY model was given in [?]
for the case h = 0. The case h 6= 0 was studied for the Ising model in [?], and for
the general XY model in [?]. In Appendix C.1 we present an explicit computation,
following the method of [?], that shows that the ground state of the XX model
can be identi�ed as a pure translation-invariant quasi-free state (see section 7.4 for
quasi-free states on the spin chain).

6.3 Symmetric and antisymmetric tensors, Fock spaces

Let Sn denote the permutation group of [n] := {1, . . . , n}. IfH is a Hilbert space with
an ONB (ei)i∈I , then (ei1 ⊗ . . .⊗ ein)i∈In is an ONB in H⊗n, according to Lemma
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6.2. Moreover, for any σ ∈ Sn, (eiσ−1(1)
⊗ . . .⊗ eiσ−1(n)

)i∈In is also an ONB in H⊗n,
since it is simply a permutation of the original basis elements. Hence, there is a
unique unitary operator Uσ,H on H⊗n such that

Uσ,H(ei1 ⊗ . . .⊗ ein) = eiσ−1(1)
⊗ . . .⊗ eiσ−1(n)

, i ∈ In.

Remark 6.12. When the Hilbert space H is clear from the context, or if it is
irrelevant, we will omit it from the notation, and simply write Uσ instead of Uσ,H.

The following is straightforward to verify.

Exercise 6.13. (i) Show that Uσ = Uσ,H is the unique bounded linear operator
on H⊗n satisfying

Uσ (ψ1 ⊗ . . .⊗ ψn) = ψσ−1(1) ⊗ . . .⊗ ψσ−1(n), ψk ∈ H, k ∈ [n].

(ii) Show that Sn 3 σ 7→ Uσ is a unitary representation of Sn on H⊗n, i.e.,

Uid = I, Uσ1Uσ1 = Uσ1σ2 , σ1, σ2 ∈ Sn.

In particular, Uσ−1 = U−1
σ = U∗σ .

Remark 6.14. More generally, for any vector space V , and any σ ∈ Sn, the map

V n 3 (v1, . . . , vn) 7→ vσ−1(1) ⊗ . . .⊗ vσ−1(n)

is n-linear, and hence it has a unique linearization Uσ,V through the algebraic tensor
product V ⊗n, given by

Uσ,V (v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n), vk ∈ V, k ∈ [n].

It is easy to verify that Sn 3 σ 7→ Uσ,V is a representation of Sn on V ⊗n.
Moreover, it is easy to see that if V = H is a Hilbert space then Uσ,H is isometric

(w.r.t. the natural norm onH⊗n) on the subspace spanned by product vectors. Thus,
it has a unique unitary extension to H⊗n, and it coincides with the Uσ,H de�ned
above.

Recall that the sign ε(σ) of a permutation σ ∈ Sn is de�ned as

ε(σ) := (−1)|{i<j:σ(i)>σ(j)}|,

where the number in the exponent is the number of inversions in σ. In particular,
ε(σ) is equal to +1 or −1. It is not too di�cult to see that ε gives a 1-dimensional
representation of Sn, as

ε(σ1σ2) = ε(σ1)ε(σ2), σ1, σ2 ∈ Sn.
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De�nition 6.15. A vector ψ ∈ H⊗n is called symmetric, if

Uσψ = ψ ∀σ ∈ Sn,

and antisymmetric, if

Uσψ = ε(σ)ψ ∀σ ∈ Sn.

We denote the set of symmetric vectors inH⊗n by ∨nH, and the set of antisymmetric
vectors by ∧nH.

Exercise 6.16. Show that both ∨nH and ∧nH are closed subspaces.

Exercise 6.17. Show that the operators

P (n)
s :=

1

n!

∑
σ∈Sn

Uσ and P (n)
a :=

1

n!

∑
σ∈Sn

ε(σ)Uσ

are self-adjoint projections with ranges ∨nH and ∧nH, respectively. Show that
P

(n)
a P

(n)
s = 0 and conclude that ∧nH ⊥ ∨nH.

Solution: Hidden.

For ψ1, . . . , ψn, we use the notations

ψ1 ∨ . . . ∨ ψn :=
√
n!P (n)

s (ψ1 ⊗ . . .⊗ ψn) =
1√
n!

∑
σ∈Sn

ψσ(1) ⊗ . . .⊗ ψσ(n)

ψ1 ∧ . . . ∧ ψn :=
√
n!P (n)

a (ψ1 ⊗ . . .⊗ ψn) =
1√
n!

∑
σ∈Sn

ε(σ)ψσ(1) ⊗ . . .⊗ ψσ(n).

Lemma 6.18.

∨nH = span{ψ1 ∨ . . . ∨ ψn : ψi ∈ H, i ∈ [n]}, (6.160)

∧nH = span{ψ1 ∧ . . . ∧ ψn : ψi ∈ H, i ∈ [n]}. (6.161)

Proof. By the de�nition of the tensor product,

H⊗n = span{ψ1⊗ . . .⊗ψn : ψi ∈ H, i ∈ [n]}

(see (6.140)), whence (6.160) and (6.161) follow due to the linearity and continuity

of P
(n)
s and P

(n)
a , respectively.
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Exercise 6.19. Show that for any σ ∈ Sn,

UσP
(n)
s = P (n)

s = P (n)
s Uσ, UσP

(n)
a = ε(σ)P (n)

a = P (n)
a Uσ,

and prove that for any ψ1, . . . , ψn ∈ H,

Uσ(ψ1 ∨ . . . ∨ ψn) = ψσ−1(1) ∨ . . . ∨ ψσ−1(n) = ψ1 ∨ . . . ∨ ψn, (6.162)

Uσ(ψ1 ∧ . . . ∧ ψn) = ψσ−1(1) ∧ . . . ∧ ψσ−1(n) = ε(σ)ψ1 ∧ . . . ∧ ψn. (6.163)

Conclude that

∃ i 6= j : ψi = ψj =⇒ ψ1 ∧ . . . ∧ ψn = 0. (6.164)

For two sequences of vectors ~ψ := (ψ1, . . . , ψn) ∈ Hn and ~φ := (φ1, . . . , φn) ∈ Hn,
we de�ne their Gram matrix

G
(
~ψ, ~φ
)
i,j

:= 〈ψi, φj〉, i, j ∈ [n].

Exercise 6.20. Show that

〈x1 ∧ . . . ∧ xn, y1 ∧ . . . ∧ yn〉 = det
(
G
(
~ψ, ~φ
))

, (6.165)

〈x1 ∨ . . . ∨ xn, y1 ∨ . . . ∨ yn〉 = per
(
G
(
~ψ, ~φ
))

, (6.166)

where per(A) :=
∑

σ∈Sn
∏n

i=1Ai,σ(i) stands for the permanent of the matrix A.

Let I be an arbitrary set. For i ∈ In, the type of i is a probability distribution
on I, de�ned by

Pi(j) :=
1

n
|{k : ik = j}|.

That is, Pi(j) is the frequency of j ∈ I in the sequence i ∈ In. Pi is also called the
empirical distribution of i.

Clearly, Pi is a �nitely supported probability distribution, and all its weights can
be written as non-negative rational numbers with n in the denominator. It is also
clear that

P(i1,...,in) = P(j1,...,jn) ⇐⇒ ∃σ ∈ Sn : jk = iσ(k), k ∈ [n]. (6.167)

Proposition 6.21. Let (ei)i∈I be an ONS in H, where I is some totally ordered set
(such as [d] = {0, . . . , d− 1}, N or Z). Then

{ei1 ∧ . . . ∧ ein : i ∈ In, i1 < . . . < in} (6.168)
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is an ONS in ∧nH, and 1√∏
j∈I(nPi(j))!

ei1 ∨ . . . ∨ ein : i ∈ In, i1 ≤ . . . ≤ in

 (6.169)

is an ONS in ∨nH. Moreover, if (ei)i∈I is an ONB in H then (6.168) and (6.169)
de�ne ONBs in ∧nH and ∨nH, respectively.
Proof. It is clear from (6.165) and (6.166) that (6.168) and (6.169) de�ne orthonor-
mal systems.

Assume that {ei : i ∈ I} is an ONB in H, and that ∧nH 3 ψ ⊥ ei1 ∧ . . . ∧ ein
for all i1 < . . . < in. Then

0 = 〈ei1 ∧ . . . ∧ ein , ψ〉
=
〈
Uσ(eσ(i1) ∧ . . . ∧ eσ(in)), ψ

〉
=
〈
eσ(i1) ∧ . . . ∧ eσ(in), Uσ−1ψ

〉
= ε(σ−1)

〈
eσ(i1) ∧ . . . ∧ eσ(in), ψ

〉
= ε(σ−1)

√
n!
〈
P (n)
a (eσ(i1)⊗ . . .⊗ eσ(in)), ψ

〉
= ε(σ−1)

√
n!
〈
eσ(i1)⊗ . . .⊗ eσ(in), P

(n)
a ψ

〉
= ε(σ−1)

√
n!
〈
eσ(i1)⊗ . . .⊗ eσ(in), ψ

〉
.

Thus, ψ ⊥ ej = ej1 ⊗ . . .⊗ ejn if jk 6=k 6=l jl. If there exist k 6= l such that jk = jl

then 0 = ej1 ∧ . . . ∧ ejn =
√
n!P

(n)
a (ej1 ⊗ . . .⊗ ejn), according to (6.164), whence

0 =
〈
P (n)
a (ej1 ⊗ . . .⊗ ejn), ψ

〉
=
〈
ej1 ⊗ . . .⊗ ejn , P (n)

a ψ
〉

= 〈ej1 ⊗ . . .⊗ ejn , ψ〉 .

Thus, ψ ⊥ ej = ej1 ⊗ . . .⊗ ejn for any j ∈ In, and therefore ψ = 0, according to
Lemma 6.2.

Remark 6.22. Note that the vectors in (6.169) can be equivalently written as

1√∏
j∈I(nPi(j))!

ei1 ∨ . . . ∨ ein =

√
n!√∏

j∈I(nPi(j))!
P (n)
s (ei1 ⊗ . . .⊗ ein).

Corollary 6.23. We have

dim∧nH =

(
dimH
n

)
:=

dimH(dimH− 1) · . . . ·(dimH− n+ 1)

n!

dim∨nH =

(
dimH + n− 1

n

)
:=

(dimH + n− 1) · . . . · dimH
n!

=
n∏
k=1

(
1 +

dimH− 1

k

)
(both of them equal to dimH when H is in�nite-dimensional).
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Proof. Let (ei)i∈I be an arbitrary ONB in H. Since I can be totally ordered, the
assertions follow immediately from Proposition 6.21.

Corollary 6.24. If H is �nite-dimensional then

dim
(
∧dimHH

)
= 1, and n > dimH =⇒ ∧nH = {0},

while

dimH < dim∨2H < dim∨3H < . . .

Let us now give some equivalent formulations of the basis vectors in (6.168) and
(6.169), for which we will need some further simple observations about types.

The set of n-types Pn(I) on I is de�ned as the collection of all probability
distribution on I as above, i.e.,

Pn(I) := {Pi}i∈In .

We have the natural identi�cations

Pn ≡

{
n ∈ NI : |n| :=

∑
k∈I

nk = n

}
≡ In/∼, (6.170)

where in the last expression the factorization is according to the equivalence relation
on the RHS of (6.167), and the correspondences are given by P (k) = nk/|n| = Pi(k),
k ∈ I.

Now let (ei)i∈I be an ONS (ONB) in H. We may introduce

esP := esn :=

√√√√ |n|!∏
k∈I

nk!
P (n)
s

(
⊗k:nk>1e

⊗nk
k

)
=

1√∏
j∈I(nPi(j))!

ei1 ∨ . . . ∨ ein ,

(6.171)

where the n-type P , the sequence n ∈ NI and the sequence i = (i1, . . . , in) ∈ In
correspond to each other according to (6.170). With these notations, Proposition
6.21 tells that

(esP )P∈Pn(I) ,
(
esn
)
n∈NI ,|n|=n

are orthonormal systems (orthonormal bases) in ∨nH, and they can be naturally
identi�ed according to (6.171) and (6.170). Note that with these parametrizations
we actually do not need a total ordering of I to uniquely specify the basis vectors
in ∨nI.
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The situation is slightly di�erent in the antisymmetric case. First, (6.164) implies
that here we need to restrict to sequences n such that nk = 0 or 1 for each k, or
equivalently, to n-types P such that P (k) = 0 or 1/n. Another slight complication
stems from the fact that for each P ∈ Pn(I), EP := {ei1 ∧ . . . ∧ ein : Pi = P} has
exactly two elements, which are parallel to each other, according to (6.163), and we
need to choose exactly one element from each EP , P ∈ Pn, to get an ONS (ONB)
in ∧nH. Hence, we cannot unambiguously specify an ONS (ONB) in ∧nH from one
given in H without some extra assumption, e.g., a total order on I, as was done
in Proposition 6.21. This, however, is not a serious issue, as any set can be totally
ordered, and, moreover, the ONB in H is usually parametrized by [d], N, or Z,
anyway, which carry a natural total order. In these cases we may de�ne

eaP := ean := ∧k:nk=1ek = ek1 ∧ . . . ∧ ekn , (6.172)

where k1 < . . . < kn are the k values for which nk = 1.
The ways of writing the basis vectors as in (6.171) and (6.172) is called the

occupational number representation. The picture behind this terminology is that the
ei represent distinguished physical states of the system, and the sequence n tells how
many of the n particles occupy each of the given states. The notation

|n1, n2, . . .〉

is also used for either type of basis vectors above; note, however, that the dependence
on the choice of ONB in H is suppressed in this notation.

On top of the symmetrized tensor products, we also have the following generating
set for the symmetric subspace:

Proposition 6.25.

∨nH = span{ψ⊗n : ψ ∈ H}. (6.173)

Proof. Let (ei)i∈I be an ONB in H. By the above, it is su�cient to prove that
esP ∈ span{ψ⊗n : ψ ∈ H} for every P ∈ Pn(I). Let r := | suppP(I)|; then we can
identify Ĩ with [r], and we may consider P as an element of Pn([r]).

For any t ∈ Rr, let ψ(t) :=
∑r

k=1 tkek. Then

ψ(t)⊗n =
∑

P∈Pn([r])

t
nP (1)
1 · . . . · tnP (r)

r

∑
k∈[r]n:Pk=P

ek1 ⊗ . . .⊗ ekn

=
∑

P∈Pn([r])

t
nP (1)
1 · . . . · tnP (r)

r

√
n! e1 ∨ . . . ∨ e1︸ ︷︷ ︸

nP (1)times

∨ . . . er ∨ . . . ∨ er︸ ︷︷ ︸
nP (r)times

=
∑

P∈Pn([r])

t
nP (1)
1 · . . . · tnP (r)

r

√
n!(nP (1))! · . . . · (nP (r))! esP .
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Thus,

esP =
√
n!(nP (1))! · . . . · (nP (r))!

−1 ∂

∂t
nP (1)
1 . . . ∂t

nP (r)
r

ψ(t)⊗n
∣∣∣
t1=...=tr=0

,

and hence esP ∈ span{ψ⊗n : ψ ∈ H}, since derivatives are obtained by linear opera-
tions and taking limits.

Remark 6.26. For n = 2, (6.173) can be proved in a straightforward manner, as

span{ψ⊗2 : ψ ∈ H} 3(x+ y)⊗ (x+ y)− (x− y)⊗ (x− y)

= 2(x⊗ y + y ⊗ x) = 4P (2)
s (x⊗ y) =

4√
2
x ∨ y.

There are various physical problems where the number of particles (fermions
or bosons) may change during the time evolution of the system. To model such
situations, we introduce the full Fock space, the antisymmetric Fock space and the
symmetric Fock space, respectively, as

F(H) := ⊕n∈NH⊗n, Fa(H) := ⊕n∈N ∧n H, Fs(H) := ⊕n∈N ∨n H,

where H⊗0, ∧0H and ∨0H are, by de�nition, the one-dimensional Hilbert space C.
The dimension of Fa(H) is 2dim H, which is �nite when H is �nite dimensional (it
is a result of the fact that ∧nH = 0 when n > dim H), while F(H) and Fs(H) are
always in�nite dimensional.

Both the antisymmetric and the symmetric Fock spaces are subspaces of the full
Fock space, and, since their projectors are ⊕n∈NP (n)

a and ⊕n∈NP (n)
s , respectively, and,

since (
⊕n∈NP (n)

a

) (
⊕n∈NP (n)

s

)
= ⊕n∈NP (n)

a P (n)
s = 0,

the two subspaces are orthogonal to each other.
A basis vector given by the formula (6.168) or (6.169) is uniquely determined by

the numbers Nk := #{j : ij = k}, so the set of basis vectors can be identi�ed by

sequences N ∈ (NI )∗, where ∗ refers to the fact that only �nitely many terms of the
sequence can be di�erent from 0. Of course, Nk can only take the values 0 or 1 in
the antisymmetric case. We introduce the notations

eaN := ∧k:Nk=1ek and esN :=
1√∏

k∈I
Nk!
∨k:Nk>0

(
∨Nkek

)
.
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Rewriting formulas (6.168) and (6.169 ) using these notations, we have that the sets

{eaN : N ∈ (NI )∗,
∑
k∈I

Nk = n} and {esN : N ∈ (NI )∗,
∑
k∈I

Nk = n}

are orthonormal bases for ∧nH and ∨nH, respectively, and so the sets

{eaN : N ∈ (NI )∗} and {esN : N ∈ (NI )∗}

are orthonormal bases for Fa(H) and Fs(H), respectively.

6.4 Operators

Respectively, an operator A ∈ B (H⊗n) is symmetric, if it commutes with all the
operators of the representation, i.e.

UσAU
∗
σ = A ∀σ ∈ Sn

and antisymmetric, if

UσAU
∗
σ = ε(σ)A ∀σ ∈ Sn.

Again, symmetric and antisymmetric operators form subspaces ∨nB(H) and ∧nB(H),
that are closed with respect to the operator norm.

Exercise 6.27. Show that Uπ (A1 ⊗ . . .⊗ An) U∗π = Aπ(1) ⊗ . . . ⊗ Aπ(n), and the

operators P(n)
s ,P(n)

a : B(H)⊗n → B(H)⊗n, given by

Ps(X)(n) =
1

n!

∑
π∈Sn

UπX U∗π ; Pa(X)(n) =
1

n!

∑
π∈Sn

ε(σ)UπX U∗π

are idempotents with corresponding ranges ∨nB(H) and ∧nB(H). Restrict the above
operators to B2(H⊗n) (the Hilbert-Schmidt operators on H⊗n), and show that in this

case P(n)
s and P(n)

a are self-adjoint projections with orthogonal ranges.

Exercise 6.28. Show that symmetric operators leave the subspaces ∨nH and ∧nH
invariant, while antisymmetric operators interchange them.

Exercise 6.29. Show that both P
(n)
s and P

(n)
a are symmetric operators.

We will use the notations

A1 ∨ . . . ∨ An := P(n)
s A1 ⊗ . . .⊗ An =

1

n!

∑
σ∈Sn

Aσ(1) ⊗ . . .⊗ Aσ(n)

A1 ∧ . . . ∧ An := P(n)
a A1 ⊗ . . .⊗ An =

1

n!

∑
σ∈Sn

ε(σ)Aσ(1) ⊗ . . .⊗ Aσ(n).
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(Note that this notation is slightly incosistent, as there is a
√
n! di�erence from the

de�nitions of x1 ∨ . . . ∨ xn and x1 ∧ . . . ∧ xn given for vectors.) These operators can
equivalently de�ned as the unique bounded linear extensions of

A1 ∨ . . . ∨ An x1 ∨ . . . ∨ xn := (A1x1) ∨ . . . ∨ (Anxn)

A1 ∧ . . . ∧ An x1 ∧ . . . ∧ xn := (A1x1) ∧ . . . ∧ (Anxn) .

Exercise 6.30. Let H be a �nite dimensional Hilbert space and A ∈ B(H). Let
E := {e1, . . . , ed} be an orthonormal base w.r.t. which the matrix of A is upper
triangular (see Exercise ??). Show that the matrix of A⊗m, ∧mA and ∨mA are also
upper triangular in the bases canonically obtained from E, when the base elements
are ordered lexikogra�cally (i.e. ei � ej i� ia > ja for some 1 ≤ a ≤ m and ik = jk
for all k < a).

Solution: a) in the case of A⊗m we have

〈
ei1 ⊗ . . .⊗ eim , A⊗mej1 ⊗ . . .⊗ ejm

〉
=

m∏
k=1

〈eik , Aejl〉

where i1, . . . , im and j1, . . . , jm are arbitrary. This is obviously 0 if there exists a k
such that ik > jk.

b) we have〈
ei1 ∧ . . . ∧ eim , A⊗mej1 ∧ . . . ∧ ejm

〉
= detG(i, j)〈

ei1 ∨ . . . ∨ eik , A⊗kej1 ∨ . . . ∨ ejk
〉

= PG(i, j) ,

where G(i, j)kl := 〈eik , Aejl〉. i1 < . . . < im and j1 < . . . < jm for ∧mA and
i1 ≤ . . . ≤ im and j1 ≤ . . . ≤ jm for ∨mA. It is easy to see that if ei � ej then
G(i, j)[a,d]×[1,a] = 0 hence both the determinant and the permanent of G(i, j) is 0.

Exercise 6.31. Let {λ1, . . . , λd} be the eigenvalues of A ∈ B(H), counted with
multiplicity and arranged so that |λ1| ≥ . . . ≥ |λd| (here d = dimH). Show that

(i)

σ(A⊗k) = {λi1 · . . . · λik : 1 ≤ i1, . . . , ik ≤ d} ,
σ(∨kA) = {λi1 · . . . · λik : 1 ≤ i1 ≤ . . . ≤ ik ≤ d} ,
σ(∧kA) = {λi1 · . . . · λik : 1 ≤ i1 < . . . < ik ≤ d} .
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(ii) Let µ1(A) ≥ . . . ≥ µd(A) be the singular values of A. Show that

|λ1(∧kA)| =
k∏
i=1

|λi(A)| ,

µ1(∧kA) =
k∏
i=1

µi(A) .

Note that µ1(A) = ‖A‖ and µ1(∧kA) =
∥∥∧kA∥∥.

(iii) Show that

k∏
i=1

|λi(A)| ≤
k∏
i=1

µi(A) .

(iv) Show that if A,B ∈ B(H) then

k∏
i=1

µi(AB) ≤
k∏
i=1

µi(A)µi(B) .

If, moreover, AB is normal then

k∏
i=1

µi(AB) ≤
k∏
i=1

µi(BA) .

Solution:

(i) follows from Exercise 6.30.

(ii) the �rst formula follows from the previous point and immediately yields the
second, as µi(A) = λi(|A|).

(iii)

k∏
i=1

|λi(A)| = |λ1(∧kA)| ≤
∥∥∧kA∥∥ = µ1(∧kA) =

k∏
i=1

µi(A) .

(iv)

k∏
i=1

µi(AB) = µ1(∧kAB) =
∥∥∧kAB∥∥ =

∥∥(∧kA) (∧kB)
∥∥

≤
∥∥∧kA∥∥∥∥∧kB∥∥ = µ1(∧kA)µ1(∧kB) =

k∏
i=1

µi(A)µi(B) .
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If AB is normal then ∧kAB is normal as well, hence |λ1(∧kAB)| =
∥∥∧kAB∥∥ =

µ1(∧kAB). Since the spectral radius of a product does not depend on the order
of the product,

k∏
i=1

µi(AB) = µ1(∧kAB) = |λ1(∧kAB)| = |λ1

(
(∧kA) (∧kB)

)
|

= |λ1

(
(∧kB ∧k A)

)
| = |λ1(∧kBA)| ≤

∥∥∧kBA∥∥
= µ1(∧kBA) .

Exercise 6.32. Let A ∈ B(H) be compact with singular value decomposition A =∑
k µk |fk〉〈ek|.

(i) Show that A⊗n and ∧nA are also compact, with singular value decompositions

A⊗n =
∑

k1,...,kn

µk1 · . . . · µkn |fk1 ⊗ · . . .⊗ fkn〉〈ek1 ⊗ · . . .⊗ ekn| ,

∧nA =
∑

k1<...<kn

µk1 · . . . · µkn |fk1 ∧ · . . . ∧ fkn〉〈ek1 ∧ · . . . ∧ ekn| .

(ii) Conclude that if A ∈ Bp(H) then A⊗n ∈ Bp(H⊗n) and ∧nA ∈ Bp(∧nH), and∥∥A⊗n∥∥
p

= ‖A‖np , ‖∧nA‖p ≤
1

n!
‖A‖np . (6.174)

(iii) Show that if rkA = r then

rkA⊗n = rn, rk∧nA =

(
r

n

)
,

both of them being in�nite when A is of in�nite rank. In particular, if P is a
�nite-rank projection onto the subspace spanned by the orthonormal vectors
e1, . . . , er then

∧rP = |e1 ∧ . . . ∧ er〉〈e1 ∧ . . . ∧ er| .

Solution: The �rst statement is obvious for A with �nite rank. One can easily see
that

‖∧nA− ∧nB‖ ≤
∥∥A⊗n −B⊗n∥∥ ≤ ‖A−B‖ n−1∑

k=0

‖B‖k ‖A‖n−k
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for arbitrary bounded operators A,B ∈ B(H). Form this it follows that if a se-
quence Am of �nite-rank operators converge to A in norm then also A⊗nm → A⊗n

and ∧nAm → ∧nA, from which the �rst assertion follows. The statement about the
p-norms is an immediate consequence.

Exercise 6.33. Let A ∈ B(H) and de�ne the operator AF by

dom(AF ) :=

{
x ∈ Fa(H) :

∑
n

∥∥(∧nA)P (n)
a x

∥∥2
<∞

}
, AFx :=

∑
n

∧nAP (n)
a x.

We also use the notation AF = ⊕n ∧n A.
Show that:

(i) AF is bounded if ‖A‖ ≤ 1. Moreover, if ‖A‖ , ‖B‖ ≤ 1 then ‖AF −BF‖ ≤
‖A−B‖, hence the map A 7→ AF from B(H) to B(Fa(H)) is continuous on
the unit ball of B(H).

(ii) AF ∈ Bp(Fa(H)) if and only A ∈ Bp(H), and

‖AF‖p ≤ e‖A‖p .

(iii) If A is of �nite rank then

TrAF = det(I + A) , (6.175)

where det(I +A) := (1 + λ1) · . . . · (1 + λk), with λ1, . . . , λk being the non-zero
eigenvalues of A, counted with multiplicity.

Solution: The statements follow from the facts ‖∧nA‖ ≤ ‖A⊗n‖ and (6.174).

By the above exercise, TrAF is �nite for any trace-class operator A, and (6.175)
motivates to de�ne

det(I + A) := TrAF .

Exercise 6.34. Let A ∈ B(H) be a normal trace-class operator, and assume that
−1 is not in its spectrum. Show that

TrAF c(x1)∗ . . . c(xn)∗c(ym) . . . c(y1) = δm,n det(I+A) det

{〈
yjk ,

A

I + A
xil

〉}n
k,l=1

.
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Solution: First assume thatA is of �nite rank with eigen-decompositionA =
∑r

k=1 λk |ek〉〈ek|.
Choose a base of H consisting of e1, . . . , er as the �rst r elements. First let k1 <
. . . < kp, i1 < . . . < in, j1 < . . . < jm, and compute

T (k1, . . . , kp) :=
〈
ek1 ∧ . . . ∧ ekp , AF c(ei1)∗ . . . c(ein)∗c(ejm) . . . c(ej1)ek1 ∧ . . . ekp

〉
=

〈
(Aek1) ∧ . . . ∧ (Aekp), c(ei1)∗ . . . c(ein)∗c(ejm) . . . c(ej1)ek1 ∧ . . . ekp

〉
= λk1 · . . . · λkp

〈
c(ei1) . . . c(ein)ek1 ∧ . . . ∧ ekp , c(ejm) . . . c(ej1)ek1 ∧ . . . ekp

〉
.

This last expression can be non-zero only if m = n and {i1, . . . , in} = {j1, . . . , jn} ⊂
{k1, . . . , kp}. Thus

T := TrAF c(ei1)∗ . . . c(ein)∗c(ejm) . . . c(ej1)

= δm,nδi1,j1 · . . . · δin,jn
∑

{i1,...,in}⊂{k1,...,kp}

λk1 · . . . · λkp

= δm,nδi1,j1 · . . . · δin,jnλi1 · . . . · λin
∑

X⊂{1,...,r}\{i1,...,in}

λX

= δm,nδi1,j1 · . . . · δin,jnλi1 · . . . · λin
∏

t∈{1,...,r}\{i1,...,in}

(1 + λt)

= δm,nδi1,j1 · . . . · δin,jn
λi1

1 + λi1
· . . . · λin

1 + λin
det(I + A)

= δm,n det(I + A) det

{〈
ejk ,

A

I + A
eil

〉}n
k,l=1

.

Now for a general A with eigen-decomposition A =
∑

k λk |ek〉〈ek| we have AN :=∑N
k=1 λk |ek〉〈ek| → A as N →∞, and by continutity of the above terms we get the

desired statement when x1, . . . , xn and y1, . . . , yn are eigenvectors of A. The assertion
for general vectors follows by multilinearity of both sides.

Exercise 6.35. Let Q ∈ B(H), and assume that 1 is not in the spectrum of Q.
Show that

(i) Q is trace-class if and only if
(

Q
I−Q

)
F
is trace-class;

(ii) 0 ≤
(

Q
I−Q

)
F
if and only if 0 ≤ Q ≤ I;

(iii) if Q is trace-class with 0 ≤ Q ≤ I then

DωQ := det(I −Q)

(
Q

I −Q

)
F

is a density operator, and

TrDωQc(x1)∗ . . . c(xn)∗c(ym) . . . c(y1) = δm,n det {〈yjk , Qxil〉}
n
k,l=1 .
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Solution: The �rst assertion can easily be seen by drawing the graphs of the func-

tions x
1−x and

x
1+x

. Obviously, 0 ≤
(

Q
I−Q

)
F
if and only if 0 ≤ Q

I−Q , which is equivalent

to 0 ≤ Q ≤ I (see again the graphs). The third statement follows immediately from
the previous exercise.

6.5 Second quantization basics

If A ∈ B(H) then A⊗m leaves ∨mH invariant, and we denote its restriction to ∨mH
by ∨mA. The Fock operator AF , corresponding to A, is

AF :=
∞⊕
m=0

∨mA with dom(AF ) :=

{
⊕∞m=0xm ∈ F(H) :

∞∑
m=0

‖(∨mA)xm‖2 <∞

}
.

Note that the Fock operators are closed, and

Ff (H) :=
{
⊕Mm=0xm : xm ∈ ∨mH ∀m, M ∈ N

}
is a common core for all Fock operators, on which AFBF = (AB)F holds. If A ≥ 0
then we also have (AF )t = (At)F on Ff (H) for any t ∈ R, with the convention
0t := 0, t ∈ R. Fock operators are also characterized by the property AFxF =
(Ax)F , x ∈ H.

IfA ≥ 0 is a �nite-rank operator andA =
∑r

k=1 λk |ek〉〈ek| is an eigen-decomposition
of A, then

∨mA =
∑

m1,...,mr=m

λm |em〉〈em|

is an eigen-decomposition of ∨mA, where

λm := λm1
1 · . . . · λmrr , em :=

1√
m1! . . .mr!m!

∑
σ∈Sm

U (m)
σ e⊗m1

1 ⊗ . . .⊗ e⊗mrr ,

and U
(m)
σ , σ ∈ Sm, denotes the standard unitary representation of the symmetric

group Sm on H⊗m. As a consequence,

∞∑
m=0

Tr∨mA =
r∏

k=1

(
∞∑
m=0

λmk

)
, (6.176)

which is �nite if and only if A < I, in which case AF is trace-class with

TrAF = det (I − A)−1 . (6.177)
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If A is a bounded operator then A⊗ I⊗(m−1) + I ⊗A⊗ Im−2 + . . .+ I⊗(m−1)⊗A
leaves ∨mH invariant, and we denote its restriction to ∨mH by Γm(A). The second-
quantized version of A is

Γ(A) := ⊕∞m=0Γm(A).

Assume that A is of �nite rank with an eigen-decomposition A =
∑r

k=1 λk |ek〉〈ek|.
Then, since Γm(A)U

(m)
σ = U

(m)
σ Γm(A) for all m ∈ N and σ ∈ Sm,

Γ(A)em = Γm(A)em

=
1√

m1! . . .mr!m!

∑
σ∈Sm

Γm(A)U (m)
σ e⊗m1

1 ⊗ . . .⊗ e⊗mrr

=
1√

m1! . . .mr!m!

∑
σ∈Sm

U (m)
σ Γm(A)e⊗m1

1 ⊗ . . .⊗ e⊗mrr

=
1√

m1! . . .mr!m!

∑
σ∈Sm

U (m)
σ (m1λ1 + . . .+mrλr) e

⊗m1
1 ⊗ . . .⊗ e⊗mrr

= (m1λ1 + . . .+mrλr)
1√

m1! . . .mr!m!

∑
σ∈Sm

U (m)
σ e⊗m1

1 ⊗ . . .⊗ e⊗mrr

= (m1λ1 + . . .+mrλr) em,

and hence,

Γ(A) =
∞∑
m=0

∑
m1,...,mr=m

(m1λ1 + . . .+mrλr) |em〉〈em| .

Since

(logAF ) em = (log λm) em = (m1 log λ1 + . . .+mr log λr) em,

we get

logAF = Γ(logA).

Now let A and B be of �nite rank with A =
∑r

k=1 λk |ek〉〈ek| < I. Then,

TrAFΓ(B) =
∞∑
m=0

∑
m1,...,mr=m

λm 〈em,Γm(B)em〉 .

Since Γm(B) is permutation-invariant, we get

〈em,Γm(B)em〉 =
1

m1! . . .mr!m!

∑
σ,π∈Sm

〈
e⊗m1

1 ⊗ . . .⊗ e⊗mrr , U
(m)

σ−1 Γm(B)U (m)
π e⊗m1

1 ⊗ . . .⊗ e⊗mrr

〉
=

1

m1! . . .mr!

∑
τ∈Sm

〈
e⊗m1

1 ⊗ . . .⊗ e⊗mrr , U (m)
τ Γm(B)e⊗m1

1 ⊗ . . .⊗ e⊗mrr

〉
.
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Orthogonality of the ek's gives

〈
e⊗m1

1 ⊗ . . .⊗ e⊗mrr , U (m)
τ Γm(B)e⊗m1

1 ⊗ . . .⊗ e⊗mrr

〉
= m1!·. . .·mr!

r∑
k=1

mk 〈ek, Bek〉 ,

and therefore

TrAFΓ(B) =
r∑

k=1

〈ek, Bek〉
∞∑
m=0

∑
m1,...,mr=m

λmmk

=
1

det (I − A)

r∑
k=1

〈ek, Bek〉 (1− λk)
+∞∑
n=0

nλnk

=
1

det (I − A)

r∑
k=1

〈ek, Bek〉
λk

1− λk

=
1

det (I − A)
Tr

A

I − A
B.
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7 Fermionic systems

7.1 The CAR algebra

The observable algebra of an indeterminate number of Fermions with one-particle
Hilbert space H is called the CAR (canonical anticommutation relations) algebra
on H; in notation CAR(H). Mathematically it can be described as the universal
C∗-algebra given by the set of generators {c(x) : x ∈ H} satisfying relations

(R1�) The map x 7→ c(x) is complex anti-linear; (7.178)

(R2�) {c(x), c(y)} = 0; (7.179)

(R3�) {c∗(x), c(y)} = 〈y, x〉 I; (7.180)

where { . , . } denotes the anti-commutator.
The map x 7→ c(x) is easily seen to be norm-preserving, which, by (anti-)

linearity implies that CAR(H) can equally be speci�ed as the universal C∗-algebra
with generators {cn : n = 1, . . . , dimH} satisfying

{cn, cm} = 0 and {c∗n, cm} = δnmI . (7.181)

The relation between the two pictures is that cn equals to c(en), where {en : n =
1, . . . , dimH} is an orthonormal base in H.

A possible realization of relations (7.181) can be obtained by de�ning ĉn :=(∏n−1
j=0 σ

j
z

)
σn+ in the spin-1

2
quantum chain, with σn+ := 1

2

(
σnx + iσny

)
. The set

{ĉn : n ∈ N} is easily seen to generate the half-in�nite spin chain, thus CN is a
homomorphic image of CAR(H). On the other hand, the elements

En
11 := cnc

∗
n En

22 := c∗ncn

En
12 :=

(
n−1∏
j=0

(
1− 2c∗jcj

))
ck En

21 :=

(
n−1∏
j=0

(
1− 2c∗jcj

))
c∗k

in CAR(H) satisfy relations (R1'), (R2') and (R3') of commuting matrix units, more-
over, they generate CAR(H), therefore CAR(H) is isomorphic to CN. An explicit
isomorphism is obtained by extending the map

J : En
ij 7→ enij,
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where {enij} is an arbitrary set of commuting matrix units in CN. This isomorphism
is called the Jordan-Wigner isomorphism.

A particular representation of the CAR algebra is the Fock representation. The
Hilbert space carrying it is the antisymmetric Fock space

F(H) :=
⊕
n∈N

∧nH , (7.182)

where ∧nH is the n-th antisymmetric tensor power of H, spanned by vectors of the
form

x1 ∧ . . . ∧ xn :=
1√
n!

∑
σ∈Sn

ε(σ)xσ(1) ⊗ . . .⊗ xσ(n) .

Here ε(σ) is the sign of the permutation σ. Representants of c(y)∗ are the creation
operators, de�ned by

a∗(y) (x1 ∧ . . . ∧ xn) := y ∧ x1 ∧ . . . ∧ xn .

The adjoints a(y) are called the annihilation operators. The number operator N is
the unbounded operator that equals to n I∧nH when restricted to ∧nH. It can also
be expressed in the form N =

∑
k a
∗
kak, where ak = a(ek) for some orthonormal base

{ek} in H.

7.2 Quasi-free morphisms

An isometry V : H → K between the Hilbert spaces H and K de�nes a map

γV (c(x)) := c (V x)

from CAR(H) to CAR(K). It preserves the CAR relations, i.e.

{γV (c∗(x)) , γV (c(y))} = 〈y, x〉 I (7.183)

{γV (c(x)) , γV (c(y))} = 0 (7.184)

holds. As a consequence, γV extends to a homomorphism from CAR(H) to CAR(K),
with range CAR (V (H)). Such a homomorphism is called a quasi-free homomor-
phism. In particular, a unitary U de�nes a quasi-free automorphism of CAR(H).

Example 7.1. The parity automorphism α is the quasi-free automorphism generated
by the unitary −I, i.e.

α(c(x)) = c(−x).
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The �xed point algebra of α is

CAR(H)+ := {b ∈ CAR(H) : α(b) = b};

its elements are called even, while elements with the property α(b) = −b are called
odd. CAR(H)+ is generated by elements of the form

c∗i1 . . . c
∗
incjm . . . cj1 ; n+m is even ,

while the subset of the odd elements is the closure of the linear span of elements of
the form

c∗i1 . . . c
∗
incjm . . . cj1 ; n+m is odd .

Any element b ∈ CAR(H) can uniquely be decomposed into a sum of an even and
an odd element; the decomposition is of the form

b = b+ + b− ; b+ =
1

2
(b+ α(b)) , b− =

1

2
(b− α(b)) .

A functional ϕ on CAR(H) is called even, if ϕ ◦ α = ϕ, or equivalently, if ϕ
vanishes on odd elements.

Example 7.2. The gauge group of CAR(H) is the group of automorphisms (κw)w∈T,
where κw is the quasi-free automorphism given by the unitary wI on the one-particle
space, and T is the complex unit circle. The subalgebra

{b : κw(b) = b ∀w ∈ T}

is called the gauge-invariant part of CAR(H), and is generated by the monomials

c∗i1 . . . . . . c
∗
incjm . . . cj1 ; n = m.

A state ϕ is called gauge-invariant, if ϕ ◦ κw = ϕ holds for all w ∈ T.
Note that κ−1 = α is the parity automorphism.

Example 7.3. The shift operator

S δk := δk+1

on H := l2(Z), where {δk : k ∈ Z} is the standard base in H, is a unitary operator;
the quasi-free automorphism generated by it is called the shift automorphism, and
is denoted by γ. The shift automorphism is characterized by the property

γ(ck) = ck+1

with ck = c(δk).
A state ω on CAR (l2 (Z)) is called shift-invariant, if

ω = ω ◦ γ

holds.
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Example 7.4. In the Fock representation every quasi-free automorphism β with
one-particle unitary U is of the form β = AdUF

, where UF :=
⊕

n ∧nU is a unitary
on the Fock space. The unitary ∧nU on the n-particle space is de�ned by (∧nU) (x1∧
. . . ∧ xn) := Ux1 ∧ . . . ∧ Uxn.

Example 7.5. The unitary evolution of an interaction-free Fermionic system is the
typical physical example of a quasi-free evolution. The second-quantized Hamilto-
nian Ĥ is the direct sum of the restrictions of Hn := H ⊗ I ⊗ . . . ⊗ I + I ⊗ H ⊗
I ⊗ . . .⊗ I + I ⊗ . . .⊗ I ⊗H onto the antisymmetrized n-particle spaces, where H
is the one-particle Hamiltonian. The corresponding unitary group is U(t) := e−itĤ ,
and the evolution of the annihilation operators in the Fock representation is

c(x)(t) = eitĤ c(x) e−itĤ = c
(
eitHx

)
(7.185)

7.3 Quasi-free states

Suppose an interaction-free fermionic system is described by a Hamilton operator
H with discrete spectrum, such that e−βĤ is a trace-class operator for all positive
β, where Ĥ is the second-quantized Hamiltonian. Then the Gibbs state %β of the

system in the Fock representation has density operator e−βĤ

Tr e−βĤ
, and its value on

monomials can be expressed as

%β (c(x1)∗ . . . c(xn)∗c(ym) . . . c(y1)) = δm,n det{〈yi, Q xj〉 , (7.186)

where Q has the same eigenvectors as H with corresponding eigenvalues e−β hi

1+e−β hi
,

where the hi's are the eigenvalues of H.
In general, given an operator Q on the one-particle Hilbert space, a functional

de�ned on monomials by the right-hand side of (7.186) extends to a state of the
CAR algebra if and only if 0 ≤ Q ≤ I; the resulting state is called a quasi-free state
with symbol Q. A quasi-free state is pure if and only if its symbol Q is a projection.
The two extremes are the Fock state and the anti-Fock state, with symbol 0 and I;
these two states are completely determined by

ωF(c(x)∗c(x)) = 0 and ωaF(c(x)c(x)∗) = 0 . (7.187)

The Fock representation is the GNS representation of the Fock state; the representing
vector is the vacuum vector Ω ∈ ∧0H.

For a subspace K ⊂ H let AK be the subalgebra of CAR(H), generated by
{c(x) : x ∈ K}. The restriction of a quasi-free state to AK is easily seen to be a
quasi-free state itself, with symbol PQP , where P is the projection onto K.
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For a �nite dimensional Hilbert space H the symbol Q yields a base of the space,
consisting of its eigenvectors. The corresponding Jordan-Wigner isomorphism sends
the quasi-free state into a product state on the spin chain, with density

D =
dimH⊗
k=1

[
qk 0
0 1− qk

]
(7.188)

where the qk are the eigenvalues of Q.
A quasi-free state ωQ on CAR (l2 (Z)) is translation-invariant if and only if its

symbol is, i.e. it commutes with the shift operator of l2 (Z). Shift-invariant operators
are also called Toeplitz operators. A shift-invariant symbol is uniquely determined
by a sequence q : Z→ C, such that the matrix of Q in the standard base of l2 (Z) is
of the form Qk,l = q(k− l). Shift-invariance implies that the Fourier transformation
maps the symbol of a shift-invariant quasi-free state to a multiplication operator Mq̂

on L2 (T), where T is the one dimensional torus and q̂ is a real-valued measurable
function on T. By identifying T with the interval [0, 2π), the function q̂ can be
viewed as a function on [0, 2π), satisfying 0 ≤ q̂(ϑ) ≤ 1 for almost all ϑ ∈ [0, 2π).
The de�ning sequence q is then the sequence of Fourier coe�cients of q̂:

q(k) =
1

2π

∫ 2π

0

e−ikϑ q̂(ϑ) dϑ.

The state is pure if and only if q̂ is the characteristic function χK of a subset K ⊂
[0, 2π].

7.4 Quasi-free states on the spin chain

LetA := CAR (l2(Z)) and C be the two-sided quantum spin-1
2
chain with correspond-

ing shift automorphisms γA and γC. Our aim in this section is to give translation-
invariant states on the two-sided spin chain, by carrying shift-invariant states on A
to C. Since these algebras are isomorphic to each other, we can carry any state ϕ
on A to a state ϕ ◦ τ−1 on C, where τ is any isomorphism from A onto C. How-
ever, the image of a shift-invariant state need not be shift-invariant on C, unless τ is
compatible with the shifts of the two algebras, i.e.

γC ◦ τ = τ ◦ γA

holds. Note that the Jordan-Wigner isomorphism gives an isomorphism between A
and the one-sided chain CN, but the procedure described there cannot be modi�ed
to obtain an isomorphism onto C. Moreover, the Jordan-Wigner isomorphism is not
compatible with the shift of A and the shift of the one-sided chain.
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Not having an isomorphism at hand that is compatible with the shifts, we use
a more involved method, developed by Araki in [?], to obtain shift-invariant states
on C from shift-invariant states on A. The basic idea is to embed the algebra A
into a bigger algebra Ã, extend the shift γA to an automorphism γ̃ of Ã and the
shift-invariant state ϕ to a γ̃-invariant state ϕ̃ on Ã, and then to �nd a γ̃-invariant
subalgebra Â of Ã, restrict γ̃ and ϕ̃ to Â, and, as a last step, to �nd an explicit
isomorphism between Â and C that is compatible with the restriction γ̂ and γC.

The algebra

We work in the Fock representation of CAR (l2 (Z)), and identify A with the alge-
bra generated by the Fock space annihilation operators {a(x) : x ∈ l2 (Z)}. We
introduce the unbounded self-adjoint operator

N− :=
∑
k<0

a∗kak,

and, by means of functional calculus, the bounded operator

T := (−1)N− ,

which is a self-adjoint unitary, i.e.

T ∗ = T ; T 2 = I. (7.189)

Evaluating the product TakT on vectors of the form x1 ∧ . . . ∧ xn, and taking into
account that the linear span of vectors of this form is dense in the Fock space, we
get

TakT =

{
ak if k ≥ 0;

−ak if k < 0.
(7.190)

In other words, the map b 7→ TbT is the quasi-free automorphism generated by the
unitary

U =
∑
k≥0

|δk〉〈δk| −
∑
k<0

|δk〉〈δk| . (7.191)

Now we de�ne Ã to be the C∗-algebra generated by A and T . It is shown in
Appendix C.2 that T is not an element of A, therefore Ã is strictly bigger than A.
Clearly, every element of Ã can uniquely be written in the form a+Tb with a, b ∈ A,
that is,

Ã = A+ TA.
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A straightforward computation veri�es that the following maps are automor-
phisms of Ã:

β (a+ Tb) := a− Tb;
γ̃ (a+ Tb) := γ(a) + T σ̂0

zγ(b),

κ̃w (a+ Tb) := κw(a) + Tκw(b),

with σ̂0
z := I−2a∗0a0, and that γ̃ is an extension of the shift automorphism γA, while

κ̃w extends the gauge group to Ã. We use the notation α̃ for the extension of the
parity automorphism α = κ−1.

The �xed point set of the automorphism β−1α̃ forms a C∗-algebra, which we
denote by Â, i.e.

Â = {a+ Tb ∈ Ã : α̃(a+ Tb) = β(a+ Tb)}
= {a+ Tb ∈ Ã : α(a) = a, α(b) = −b}
= A+ + TA−,

where A+ and A− are the even and the odd parts of A.
For an odd element b ∈ A the element σ0

zb is odd again, and since γ (A+) = A+

and γ (A−) = A−, we have

γ̃
(
Â
)

= Â,

and so γ̃ can be restricted to an automorphism of Â, which we denote by γ̂, and call
the shift automorphism of the algebra Â. A similar argument shows that κ̃w can
also be restricted to Â; the restriction is again denoted by κ̂w.

Using the notation σ̂kz := I − 2a∗kak we de�ne the elements

Ak :=


∏k−1

`=0 σ̂
l
z , if k > 0;

I , if k = 0;∏−1
`=k σ̂

l
z , if k < 0.

and

Êk
11 := aka

∗
k, Êk

22 := a∗kak, Êk
12 := TAkak, Êk

21 := TAka
∗
k. (7.192)

The elements Êk
ij are easily seen to be in the subalgebra Â, and a direct computation

shows that they satisfy the relations (R1'), (R2') and (R3') of commuting matrix
units, moreover,

γ̂
(
Êk
ij

)
= Êk+1

ij .
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This implies that the map

Π : Êk
ij 7→ ekij

extends to an isomorphism between the algebras Â and C, and that

γC ◦ Π = Π ◦ γ̂, (7.193)

i.e. Π intertwines the shifts of the two algebras.
With these notations we have

Π−1
(
σkz
)

= σ̂kz ,

and

σ̂kx := Π−1
(
σkx
)

= Êk
12 + Êk

21; σ̂ky := Π−1
(
σky
)

= −iÊk
12 + iÊk

21 . (7.194)

Since

κ̂w

(
Êk

11

)
= Êk

11; κ̂w

(
Êk

22

)
= Êk

22; κ̂w

(
Êk

12

)
= wÊk

12; κ̂w

(
Êk

21

)
= wÊk

21;

then we have

κ̂w
(
σ̂kx
)

= cosϑ σ̂kx + sinϑ σ̂ky ; κ̂w
(
σ̂ky
)

= − sinϑ σ̂kx + cosϑ σ̂ky ; κ̂w
(
σ̂kz
)

= σ̂kz ;

with w = eiϑ, that is,

Π ◦ κ̂w = κCw ◦ Π, (7.195)

where now κCw denotes the rotation group of the spin chain. In particular, the even
part of the spin chain is identi�ed with the subalgebra

Â+ := {a+ Tb ∈ Â : α̂ (a+ Tb) = a+ Tb} = A+,

while the odd part is mapped by Π−1 to

Â− := {a+ Tb ∈ Â : α̂ (a+ Tb) = − (a+ Tb)} = TA−.

Since the decomposition of an element into the sum of an even and an odd element
is unique both in the CAR algebra and the spin chain, the map W : A → Â;

Wb := b+ + Tb−

is well-de�ned, and gives a linear isomorphism between the two algebras, with the
locality property

W (AΛ) = ÂΛ for an interval Λ = [a, b]; a ≤ 0 ≤ b,
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where ÂΛ is the algebra generated by {Êk
ij : i, j ∈ {1, 2}; k ∈ Λ}. Note, however,

that W (AΛ) = ÂΛ doesn't hold for a general Λ. W is also compatible with the
translations, and the gauge (rotation) groups of the algebras:

γ̂ ◦W = W ◦ γ; κ̂w ◦W = W ◦ κw.

The restriction onto the intersection A ∩ Â = A+ is simply the identity of A+.

The algebra A[0,N−1] is also generated by a set of matrix units
{
E

(N)
ij :=

N−1∏
k=0

Ek
ij :

i, j ∈ {1, 2}N
}
, where

Ek
11 := aka

∗
k, Ek

22 := a∗kak, Ek
12 := Akak, Ek

21 := Aka
∗
k.

Such a matrix unit is even (odd) if and only if
∑n−1

k=0(ik − jk) is even (odd). We can

de�ne matrix units the same way in Â[0,N−1], i.e. Ê
(N)
ij :=

N−1∏
k=0

Êk
ij. Relations (7.189)

and (7.190) imply that

Ê
(N)
ij =

{
E

(N)
ij , when

∑n−1
k=0(ik − jk) is even;

TE
(N)
ij , when

∑n−1
k=0(ik − jk) is odd;

therefore we have

W
(
E

(N)
ij

)
= Ê

(N)
ij .

States

If ϕ0 is a state on A+, then

ϕ(b) := ϕ0(b+)

de�nes a linear functional on A, which is the trivial extension of ϕ0. Since

|ϕ(b)| =
∣∣∣∣ϕ0

(
1

2
(b+ α(b))

)∣∣∣∣ ≤ ∥∥∥∥1

2
(b+ α(b))

∥∥∥∥ ≤ 1

2
(‖b‖+ ‖α(b)‖) = ‖b‖

then ‖ϕ‖ = 1 = ϕ(I), and so, by lemma (??), the extension is a state, which is
obviously even. On the other hand, any even state on A can be recovered by this
method from its restriction to A+, so we have a one-to-one correspondence between
states on A+ and even states of A. Repeating the same argument for Â we get a
one-to one correspondence between states of A+ and even states of Â. We denote
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the even extension of ϕ0 to Â by ϕ̂. Note that ϕ̂ is the restriction to Â of the state
ϕ̃ on Ã, de�ned by

ϕ̃ (a+ Tb) := ϕ(a).

The positivity of ϕ̃ follows from

ϕ̃ ((a+ Tb)∗ (a+ Tb)) = ϕ(a∗a+ b∗b) ≥ 0.

We can also express the one-to-one correspondence between even states ϕ of A
and even states of Â by the help of the operator W from the previous section:

ϕ = ϕ̂ ◦W.

The states ϕ, ϕ̂ and ϕ0 not only determine each other uniquely, but they are essen-
tially the same in the sense that both ϕ and ϕ̂ are trivial extensions of ϕ0. Note that
the same statements hold when we consider the local algebras AN , ÂN and (AN)+.

Since W intertwines the shifts of A and Â, and γ(A+) = A+, then the shift-
invariance of any of the above three states implies the shift-invariance of the other
two.

The density matrices of the restrictions ϕN := ϕ �A[0,N−1]
and ϕ̂N := ϕ̂ �Â[0,N−1]

are the same:

[ϕN ]i,j = ϕ
(
E

(N)
ji

)
= ϕ̂ ◦W

(
E

(N)
ji

)
= ϕ̂

(
Ê

(N)
ji

)
= [ϕ̂N ]i,j .

In the shift-invariant case these restrictions determine the state completely. As a
consequence, the purity of ϕ implies the purity of ϕ̂ for even shift-invariant states.

Example 7.6. Let ϕ be the Fock state on A, with corresponding symbol Q = 0. The
restriction ϕN to A[0,N−1] is again a quasi-free state with symbol 0N , where 0N is the
N×N zero operator on the subspace spanned by {δ0, . . . , δN−1}. Since the symbol of
ϕN is a projection then ϕN is pure, implying that ϕ̂N is also pure for every N , which
immediately yields that ϕ̂ is a pure product state on C. To identify it, it is enough
to know the density of ϕ̂1. Since the state is even, [ϕ̂1]12 = ϕ̂1(Ê1

21) = 0 = ϕ̂1(Ê1
12) =

[ϕ̂1]21. For the diagonal matrix elements we have [ϕ̂1]11 = ϕ̂1(Ê1
11) = ϕ(a1a

∗
1) = 1

and [ϕ̂1]22 = ϕ̂1(Ê1
22) = ϕ(a∗1a1) = 0. The density is then

[ϕ̂1] =

[
1 0
0 0

]
= |↑〉〈↑ |,

with |↑〉 :=

(
1
0

)
, and so ϕ̂ is the pure product state |↑〉〈↑ |⊗∞.

A completely similar argument shows that if ϕ is the anti-Fock state, then ϕ̂ =
|↓〉〈↓ |⊗∞.
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A Bosonic systems

Let (H, σ) be a real symplectic space and κ ∈ R\{0}. We say that a mapW : H → A
to a C∗-algebra A is a realization of the (κ, σ)-canonical commutation relations if A
is generated by {W (x) : x ∈ H}, and the following relations hold:

W (x)∗ = W (−x) (A.196)

W (x)W (y) = e−iκσ(x,y)W (x+ y) . (A.197)

Obviously, κσ is again a symplectic form, hence the introduction of κ may seem
super�uous in the de�nition. However, we follow this terminology in order to be as
compatible as possible with the various conventions appearing in the literature. For
instance, one can �nd κ = 1

2
in [?], κ = −1

2
in [?], κ = −1 in [?] and κ = 1

2~ in [?].
Note that if such a realization exists then W (x) is a unitary with W (x)−1 =

W (−x) for all x ∈ H and W (0) = I, independent of the concrete realization of the
CCR relations. Indeed,

W (x)W (0) = e−iκσ(x,0)W (x+0) = W (x), W (0)W (x) = eiκσ(x,0)W (0+x) = W (x),

and

W (x)∗W (x) = W (−x)W (x) = e−iκσ(−x,x)W (0) = I,

W (x)W (x)∗ = W (x)W (−x) = e−iκσ(x,−x)W (0) = I.

Two realizations W1 : H → A1 and W2 : H → A2 are said to be isomorphic
if there exists a C∗-algebra isomorphism α : A1 → A2 such that α ◦ W1 = W2.
If A1 ⊂ B(H1) and A2 ⊂ B(H2) with some Hilbert spaces H1 and H2 and α is
implemented by a untary U : H1 → H2 then the two realizations are said to be
unitarily equivalent to each other.

Two questions arises naturally: whether a realization exists, and if so, whether it
is unique up to isomorphism. It is easy to see that the answer to the �rst question
is a�rmative. Indeed, de�ne

H := l2(H) :=

{
f : H → C,

∑
x∈H

|f(x)|2 < +∞

}
,

which is a Hilbert space with the inner product

〈f, g〉 :=
∑
x∈H

f(x)g(x).

Let Mx be the multiplication operator by the function eiκσ(x,.) and Sx be the trans-
lation by x, (Sxf)(y) := f(y − x). De�ne

W (x) := MxSx, i.e., (W (x)f)(y) := eiκσ(x,y)f(y − x) .
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Then,

〈W (x)∗g, f〉 = 〈g,W (x)f〉 =
∑
y∈H

g(y)eiκσ(x,y)f(y − x)

=
∑
u∈H

g(u+ x)eiκσ(x,u+x)f(u) =
∑
u∈H

g(u+ x)e−iκσ(x,u)f(u)

=
∑
u∈H

(W (−x)g)(u)f(u) = 〈W (−x)g, f〉 ,

and

(W (x1)W (x2)f)(y) = eiκσ(x2,y)(W (x1)f)(y − x2)

= eiκσ(x2,y)eiκσ(x1,y−x2)f(y − x2 − x1)

= e−iκσ(x1,x2)eiκσ(x1+x2,y)f(y − (x2 + x1))

= e−iκσ(x1,x2) (W (x1 + x2)f) (y) ,

hence the CCR relations (A.196) hold.
Note that, in the above construction the non-degeneracy of σ didn't play a

role, hence we can construct a realization of the (κ, σ)-CCR relations for any anti-
symmetric bilinear form σ.

Theorem A.1. (Slawny) Any two realizations of the (κ, σ)-CCR relations are iso-
morphic to each other if κ is non-degenerate.

The proof of the above theorem is somewhat involved; we refer the interested
reader to [?, Theorem 5.2.8] or [?, Theorem 2.1]. We will later give a proof in the
case when H is �nite-dimensional, following [?]. As we would like to bene�t from
the above uniqueness theorem, we will assume for the rest that σ is non-degenerate.

By the above, we can talk about the C∗-algebra realizing the (κ, σ)-CCR relations,
which we will denote by CCR (H, κ, σ). In sections A.1 and A.2, we will describe
two convenient and widely used special representations for �nite-dimensional H, the
Fock representation and the Schrödinger representation. We will refer to the above
given representation on l2(H) as the standard representation.

Corollary A.2. CCR (H, κ, σ) is simple.

Proof. Assume that I is a two-sided ideal in CCR (H, κ, σ), and let π : CCR(H, κ, σ)→
CCR(H, κ, σ)/I be the factorization map, with kernel I. Then, {π(W (x)) : x ∈ H}
is again a representation of the (κ, σ)-CCR relations, and hence π is an isomorphism,
by Theorem A.1.

Corollary A.3. The set {W (x) : x ∈ H} is linearly independent.

281



Proof. The statement is independent of which realization we use, hence we can work
in the standard representation. If

∑n
k=1 λkW (xk) = 0 then, for any l = 1, . . . , n,

0 =

(
n∑
k=1

λkW (xk)

)
1{0}(xl) =

n∑
k=1

λke
iσ(xk,xl)1{xk}(xl) = λl .

Lemma A.4. There exists a faithful tracial state τ on CCR(H, κ, σ) such that
τ(W (x)) = δx,0.

Proof. De�ne

τ0

(∑
x∈H

λxW (x)

)
:= λ0

on A0 := span{W (x) : x ∈ H}. By the above Corollary, τ0 is a well-de�ned linear
functional on A0, and positivity and tracial properties are easy to see. By positivity,
for any a ∈ A0,

|τ0(a)|2 ≤ τ0(a∗a)τ0(I) ≤ ‖a‖2 τ0(I)2 ,

hence τ0 is bounded, and therefore have a unique extension τ ontoA := CCR (H, κ, σ),
with ‖τ‖ = ‖τ0‖ ≤ τ(I) = 1. On the other hand, τ(I) = 1 implies ‖τ‖ = 1 = τ(I),
from which positivity of τ follows. The tracial property is obviously inherited by τ ,
and hence {a ∈ A : τ(x∗x) = 0} is a two-sided ideal. Faithfulness of τ then follows
from the simplicity of A.

A.1 Fock representation

Let H be a complex vector space, σ(x, y) := Im 〈x, y〉 be its standard symplectic
form and κ > 0. Denote the nth symmetric tensor power of H by ∨nH for all n ≥ 1
and let ∨0H := C. Let

F(H) :=
+∞⊕
n=0

∨nH

be the symmetric Fock space. For every x ∈ H we de�ne the corresponding Fock
vector by

xF :=
+∞⊕
n=0

1√
n!
x⊗n .
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We have

〈xF , yF 〉 = e〈x,y〉, ‖xF‖2 = e‖x‖
2

, x, y ∈ H.

The vector

0F = 1⊕ 0⊕ 0⊕ . . .

is called the vacuum vector.

Lemma A.5. The Fock vectors are linearly independent and their linear span is
dense in F(H).

De�ne the linear operators C(x), x ∈ H on the linear span of the Fock vectors
by

C(x)yF := e−
1
2
‖x‖2−〈x,y〉 (y + x)F .

Since the Fock vectors are linearly independent, the above operators are well-de�ned,
and an easy computation shows that

〈C(x)yF , C(x)zF 〉 = e〈y,z〉 = 〈yF , zF 〉 .

As a consequence, C(x) is norm-preserving and therefore has a unique unitary ex-
tension to F(H), which we denote also by C(x). Moreover, we have the following:

〈C(x)∗yF , zF 〉 = 〈yF , C(x)zF 〉 = e−
1
2
‖x‖2−〈x,z〉e〈y,z+x〉 = e−

1
2
‖x‖2+〈y,x〉+〈y−x,z〉

= 〈C(−x)yF , zF 〉 ,

and

C(x1)C(x2)yF = e−
1
2
‖x2‖2−〈x2,y〉C(x1) (y + x2)F

= e−
1
2
‖x2‖2−〈x2,y〉e−

1
2
‖x1‖2−〈x1,y+x2〉 (y + x2 + x1)F

= e− Im〈x1,x2〉e−
1
2
‖x1+x2‖2−〈x1+x2,y〉 (y + x2 + x1)F

= e− Im〈x1,x2〉C(x1 + x2)yF ,

that is,

C(x)∗ = C(−x), C(x1)C(x2) = e−i Im〈x1,x2〉C(x1 + x2), x, x1, x1 ∈ H.

Consequently, for

Wκ(x) := C(
√
κx), x ∈ H
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we have

Wκ(x)∗ = Wκ(−x), Wκ(x1)Wκ(x2) = e−iκ Im〈x1,x2〉Wκ(x1+x2), x, x1, x2 ∈ H,

i.e., the operators Wκ(x), x ∈ H yield a realization of the (κ, σ)-CCR relations for
the standard symplectic form σ.

For κ < 0, one can modify the above construction by de�ning

Wκ(x) := C
(√
|κ|Jx

)
,

with some anti-unitary J . Then again, Wκ(x), x ∈ H yield a realization of the
(κ, σ)-CCR relations for the standard symplectic form σ.

By Lemma B.17, any �nite-dimensional symplectic space is isomorphic to (Cd, σCd)
with d = dimH/2. Choosing H := Cd with its standard inner product to be the
Hilbert space in the above construction, we get a representation of CCR (H, κ, σ).
This gives an alternative proof for the existence of a realization of the (κ, σ)-CCR
relations on H when H is �nite-dimensional.

Note that for κ > 0,

Wκ(x)yF = e−
1
2
κ‖x‖2e−

√
κ〈x,y〉 (y +

√
κx
)
F
.

In particular,

Wκ(x)0F = e−
1
2
κ‖x‖2 (√κx)

F
.

As a consequence, the normalized Fock vector (also referred to as coherent state) is
obtained from the vacuum by

e−
1
2
‖x‖2xF = Wκ

(
1√
κ
x

)
0F .

A.2 Schrödinger representation

For every x ∈ Rd, consider the corresponding multiplication and translation opera-
tors

(Mxf)(y) := eixyf(y), (Sxf)(y) := f(y − x), y ∈ Rd

on L2(Rd). A straightforward computation yields

S∗x = S−x, SxSy = Sx+y, M∗
x = M−x, MxMy = Mx+y, x, y ∈ Rd,
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by which Sx and Mx are unitaries for all x ∈ Rd, and both x 7→ Sx and x 7→Mx give
unitary representations of Rd on L2(Rd). Moreover,

Sx1Mx2f(y) = (Mx2f) (y − x1) = eix2(y−x1)f(y − x1)

= e−ix1x2eix2yf(y − x1)

= e−ix1x2Mx2Sx1f(y). (A.198)

For every (x1, x2) ∈ Rd × Rd, de�ne

WS(x1, x2) := e−
i
2
x1x2Mx2Sx1 ,

i.e.,

WS(x1, x2)f(y) = e−
i
2
x1x2eix2yf(y − x1) .

By the above,

WS(x1, x2)∗ = e
i
2
x1x2S−x1M−x2 = e

i
2
x1x2e−

i
2
x1x2M−x2S−x1 = WS(−x1,−x2),

WS(x1, x2)WS(y1, y2) = e−
i
2
x1x2Mx2Sx1e

− i
2
y1y2My2Sy1

= e−
i
2
x1x2e−

i
2
y1y2Mx2e

−ix1y2My2Sx1Sy1

= e−
i
2

(x1y2−x2y1)e−
i
2

(x1+y1)(x2+y2)Mx1+y1Sx2+y2

= e−
i
2

(x1y2−x2y1)WS(x1 + y1, x2 + y2).

Hence, {WS(x1, x2) : (x1, x2) ∈ Rd × Rd} gives a realization of the
(

1
2
, σR2d

)
-

commutation relations on Rd × Rd. In order to get a realization of the (κ, σR2d)-
commutation relations, one can de�ne

WS,κ(x1, x2) :=

{
WS

(√
2κx1,

√
2κx2

)
, κ > 0,

WS

(√
2|κ|x2,

√
2|κ|x1

)
, κ < 0.

For g ∈ L2(Rd), the Fourier transform of g can be written as

ĝ(x) := (Fdg) (x) = lim
M→∞

1
√

2π
d

∫
[−M,M ]d

e−ixyg(y) dλ(y), x ∈ Rd

and one has the inversion formula

g(y) = lim
M→∞

1
√

2π
d

∫
[−M,M ]d

e−ixyĝ(x) dλ(x), y ∈ Rd.

Obviously, if f, g ∈ L2
(
Rd
)
then

e−iπ1⊗π2f ⊗ ĝ : (y, z) 7→ e−iyzf(y)ĝ(z), y, z ∈ Rd

is an element of L2
(
Rd × Rd

)
, and we have the following:
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Lemma A.6. Let {WS(x) : x ∈ Rd×Rd} be the Schrödinger representation of the
(1

2
, σR2d)-CCR relations. Then,

〈f,WS (x) g〉 = e−
i
2
x(1)x(2)√

2π
d
F2d

(
e−iπ1⊗π2f ⊗ ĝ

) (
−x(2), x(1)

)
.

Proof.

〈f,W (x)g〉 =

=

∫
f(y) (W (x)g) (y) dλ(y)

=

∫
f(y)e−

i
2
x(1)x(2)

eix
(2)yg(y − x(1)) dλ(y)

= e−
i
2
x(1)x(2)

∫
f(y)eix

(2)yg(y − x(1)) dλ(y)

= e−
i
2
x(1)x(2)

lim
K→∞

∫
[−K,K]d

f(y)eix
(2)yg(y − x(1)) dλ(y)

= e−
i
2
x(1)x(2)

lim
K,M→∞

1
√

2π
d

∫
[−K,K]d

∫
[−M,M ]2d

f(y)eix
(2)yeiz(y−x

(1))ĝ(z) dλ(z)dλ(y)

= e−
i
2
x(1)x(2)

lim
K,M→∞

1
√

2π
d

∫
[−K,K]d

∫
[−M,M ]2d

e−i(−yx
(2)+zx(1))eizyf(y)ĝ(z) dλ(z)dλ(y),

which is just
√

2π
d
e−

i
2
x(1)x(2)

times the Fourier transform of the 2d-variable function

(y, z) 7→ eizyf(y)ĝ(z)

at (−x(2), x(1)).

Corollary A.7.

〈f,WS,κ (x) g〉 =

e−iκx
(1)x(2)√

2π
dF2d

(
e−iπ1⊗π2f ⊗ ĝ

) (
−
√

2κx(2),
√

2κx(1)
)
, κ > 0,

eiκx
(1)x(2)√

2π
dF2d

(
e−iπ1⊗π2f ⊗ ĝ

) (
−
√

2|κ|x(1),
√

2κx(2)
)
, κ < 0.

Corollary A.8. Let {fn : n ∈ N} and {gn : n ∈ N} be orthonormal bases in
L2(Rd). Then,

ϕn,m(x) :=

√
|κ|
π

d

〈fn,WS,κ(x)gm〉 , x ∈ R2d, n,m ∈ N

is an orthonormal basis in L2
(
R2d
)
.
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Proof. Since the Fourier transformation is a unitary operator, ĝm, m ∈ N is also an
orthonormal basis in L2

(
Rd
)
, and hence

ϕ̃n,m(y, z) := eizy
(
fn ⊗ ĝm

)
(y, z) = eizyfn(y)ĝm(z), y, z ∈ Rd

is an orthonormal basis in L2
(
Rd
)
⊗ L2

(
Rd
)

= L2
(
R2d
)
. Thus, F2dϕn,m, n,m ∈ N

is again an orthonormal basis in L2
(
R2d
)
. Consequently,

x 7→


√

2κ
dF2dϕn,m

(
−
√

2κx(2),
√

2κx(1)
)
, κ > 0,√

2|κ|dF2dϕn,m

(
−
√

2|κ|x(1),
√

2|κ|x(2)
)
, κ < 0,

are again orthonormal bases. The statement then follows from Lemma A.7.

Lemma A.9.∫
R2d

〈f1,WS,κ(x)g1〉 〈f2,WS,κ(x)g2〉 dλ(x) =

(
π

|κ|

)d
〈f2, f1〉 〈g1, g2〉 , f1, f2, g1, g2 ∈ L2(Rd).

Proof. By a simple integral transformation,∫
R2d

〈f1,WS,κ(x)g1〉 〈f2,WS,κ(x)g2〉 dλ(x) =

(
1√
2|κ|

)2d ∫
R2d

〈f1,WS(x)g1〉 〈f2,WS(x)g2〉 d2dx.

Now, by Lemma A.6 and Parseval's identity,∫
R2d

〈f1,WS(x)g1〉 〈f2,WS(x)g2〉 d2dx

= (2π)d
∫
R2d

eizyf1 (y) ĝ1 (z)e−izyf2 (y)ĝ2 (z) dzdy

= (2π)d
∫
Rd
f2 (y)f1 (y) dy

∫
Rd
ĝ1 (z)ĝ2 (z) dz

= (2π)d
∫
Rd
f2 (y)f1 (y) dy

∫
Rd
g1 (z)g2 (z) dz

= (2π)d 〈f2, f1〉 〈g1, g2〉 .

For a general �nite-dimensional symplectic space (H, σ), one obtains a realization
of the (κ, σ)-CCR relations by �rst �xing an isomorphism T with

(
Rd × Rd, σR2d

)
(or equivalently, by �xing a symplectic basis, see Lemma B.17) and then apply the
above construction. That is, we de�ne

Wκ(x) := WS,κ(Tx), x ∈ H.
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Note that the so obtained representation depends on the isomorphism (the symplectic
basis) chosen, but any two such representations are unitarily equivalent to each other.
Hence, we call any such representation the Schrödinger representation of the (κ, σ)-
CCR relations.

Lemma A.10. Let {W (x) : x ∈ H} be a continuous irreducible representation of
CCR (H, σ, κ) for a �nite-dimensional H on a Hilbert space H. Then,∫
H

〈f1,W (x)g1〉 〈f2,W (x)g2〉 dλ(x) =

(
π

|κ|

)d
〈f2, f1〉 〈g1, g2〉 , f1, f2, g1, g2 ∈ H.

Proof. It follows from the previous lemma, by noting that any two continuous irre-
ducible representations of the CCR are unitarily equivalent to each other.

Now, let {Wκ(x) : x ∈ H} be a continuous irreducible representation of the
(κ, σ)-CCR relations of a �nite-dimensional H on a Hilbert space H. The charac-
teristic function of a trace-class operator T ∈ B1(H) is

Ŵκ[T ](x) := TrTW (−x), x ∈ H.

Lemma A.11. Let T1, T2 ∈ B2(H) be Hilbert-Schmidt operators on H. Then,
Ŵ [T1], Ŵ [T2] ∈ L2(H), and∫

H

Ŵκ[T1](x)Ŵκ[T2](x) dλ(x) =

(
π

|κ|

)d
TrT ∗1 T2

Proof. Let T ∈ B2(H) be self-adjoint with an eigen-decomposition T =
∑

k tk |ek〉〈ek|.
Then,

Ŵκ[T ](x) = TrTW (−x) =
∑
k

tk 〈ek,W (−x)ek〉 .

By the previous lemmas,

fk(x) := 〈ek,W (−x)ek〉 ∈ L2(H)

and

〈fk, fm〉 =

∫
H

fk(x)fm(x) =

(
π

|κ|

)d
〈em, ek〉 〈ek, em〉 = δm,l

(π
κ

)d
.

Hence,∥∥∥Ŵ|κ|[T ]
∥∥∥2

2
=
∑
k

|tk|2 ‖fk‖2
2 =

(π
κ

)d∑
k

|tk|2 =

(
π

|κ|

)d
TrT 2.

Now, the assertion follows by polarization.

Proposition A.12. The Schrödinger representation is irreducible.
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A.3 Gaussian states

Let (H, σ) be a symplectic space and α be a positive de�nite symmetric form such
that

σ(x, y)2 ≤ α(x, x)α(y, y), x, y ∈ H, (A.199)

or equivalently,

α + iσ ≥ 0. (A.200)

Then, there exists a unique state %α on CCR(H, κ, σ) such that

%α (W (x)) = e−
|κ|
2
α(x,x), x ∈ H.

States de�ned in the above way are called quasi-free states.
If %α is a quasi-free state then its unitary rotation by some W (y),

%α,y(a) := %α (W (y)∗aW (y)) , a ∈ CCR (H, κ, σ)

is again a state, with characteristic function

%α,y (W (−x)) = %α (W (y)∗W (−x)W (y)) = e−2iκσ(y,x)%α (W (−x)) = e−2iκσ(y,x)e−
|κ|
2
α(x,x).

De�nition A.13. A state %α,y is called a Gaussian state with displacement vector
y and covariance α.

Note that with α′ := |κ|α, condition (A.199) becomes

κ2σ(x, y)2 ≤ α′(x, x)α′(y, y), x, y ∈ H,

or equivalently,

α′ + iκσ ≥ 0,

and

%α,y (W (−x)) = e−2iκσ(y,x)e−
1
2
α′(x,x), x ∈ H.

In the literature (e.g., in [?]) sometimes α′ is referred to as the covariance of %α. We
will, however, use the previous convention.

For the rest we assume that H is �nite-dimensional.
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Lemma A.14. Let %α be a Gaussian state with zero displacement and let Hα be
the α-canonical complexi�cation of H. Then, %α is normal with respect to the Fock
representation on F (Hα) and

D%α =
2dimHα

det(I +Q)

(
Q− I
Q+ I

)
F

=
1

det(I + Q̃)

(
Q̃

Q̃+ I

)
F

where Q is the symbol of α and 2Q̃ := Q− I.

Proof.

Corollary A.15. Let H be an arbitrary complexi�cation of H. Every Gaussian
state is normal with respect to the Fock representation on F(H).

Proof. Let %α,y be a Gaussian state and Hα be the α-canonical complexi�cation
of H. Since F(Hα) and F(H) are both irreducible representations, there exists a
unitary U : F(Hα) → F(H) such that UWHα(x)U∗ = WH(x), x ∈ H, where WHα

and WH are the representations of CCR (κ, σ,H) on F(Hα) and F(H), respectively.
Consequently, %α is given be the density

WH(y)UD%αU∗WH(y),

where D%α is the density of %α on F(Hα).

Lemma A.16. Let %α1,y1 and %α2,y2 be Gaussian states. Then,

TrD%α1,y1D%α2,y2 =
2d√

det (α1 + α2)
e−2|κ|(α1+α2)−1(y,y) ,

where y := y1 − y2.

Proof. By [?, Chapter V, Theorem 3.2],

TrD%α1,y1D%α2,y2 =

(
|κ|
π

)d ∫
H

e2iκσ(y1,x)− |κ|
2
α1(x,x)e−2iκσ(y2,x)− |κ|

2
α2(x,x) dλ(x)

=

(
|κ|
π

)d ∫
H

e2iκσ(y1−y2,x)− |κ|
2

(α1+α2)(x,x) dλ(x)

=

(
|κ|
π

)d ∫
H

e2iκσ(y,x)− |κ|
2
α(x,x) dλ(x),

with y := y1 − y2 and α := α1 + α2.
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Let us �x a |κ|α-canonical basis e1, . . . , e2d, and denote the symplectic eigenvalues
of |κ|α with a1, . . . , ak. Then,

2iκσ(y, x)− |κ|
2
α(x, x) =

d∑
k=1

2iκ (y2k−1x2k − y2kx2k−1)− 1

2
ak
(
x2

2k−1 + x2
2k

)
,

where x =
∑2d

m=1 xmem, y =
∑2d

m=1 ymem. Hence,

TrD%α1,y1D%α2,y2 =
d∏

k=1

|κ|
π

∫
exp

(
2iκ (y2k−1x2k − y2kx2k−1)− 1

2
ak
(
x2

2k−1 + x2
2k

))
dx2k−1dx2k.

Let us compute the integral for a �xed k. The exponent is

− 1

2
ak

[
x2

2k−1 +
4iκ

ak
y2kx2k−1

]
− 1

2
ak

[
x2

2k −
4iκ

ak
y2k−1x2k

]
= −1

2
ak
[
x2

2k−1 − 2w2k−1x2k−1

]
− 1

2
ak
[
x2

2k − 2w2kx2k

]
= −1

2
ak (x2k−1 − w2k−1)2 − 1

2
ak (x2k − w2k)

2 +
1

2
ak
(
w2

2k−1 + w2
2k

)
,

with

w2k−1 := −2iκ

ak
y2k, w2k :=

2iκ

ak
y2k−1.

Since∫
exp

(
−1

2
ak (x2k−1 − w2k−1)2

)
dx2k−1 =

∫
exp

(
−1

2
ak (x2k − w2k)

2

)
dx2k =

√
2π

ak

and

1

2
ak
(
w2

2k−1 + w2
2k

)
= −2κ2

ak

(
y2

2k−1 + y2
2k

)
,

we get

TrD%α1,y1D%α2,y2 =
d∏

k=1

2|κ|
ak

e
− 2κ2

ak
(y2

2k−1+y2
2k) =

2d|κ|d√
det |κ|α

e−2κ2(|κ|α)−1(y,y),

which yields the desired formula.
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Lemma A.17. Let D%(α,y) be the density of the Gaussian state %(α,y). Then, for
any 0 < t ≤ 1,(

D%(α,y)

)t
= Nα,tD%(ft(α),y)

where

Nα,t := 2td det
[
(α + 1)t − (α− 1)t

]−1/2
=

d∏
k=1

2t

(ak + 1)t − (ak − 1)t
(A.201)

with a1, . . . , ad the symplectic eigenvalues of α, and

ft(x) :=
(x+ 1)t + (x− 1)t

(x+ 1)t − (x− 1)t
.

Proof. Based on the computation in the next section, which should be slightly up-
dated.

Corollary A.18. For Gaussian states %α1,y1 and %α2,y2 and 0 < t < 1,

Tr (D%α1,y1)t (D%α2,y2)1−t

= Nα1,tNα2,1−t
2d√

det (ft (α1) + f1−t (α2))
e−2|κ|(ft(α1)+f1−t(α2))−1(y,y) ,

where y := y1 − y2.

Proof. It follows immediately from the previous two lemmas.

A.4 Gaussian states on complex Hilbert spaces

Let H be a complex Hilbert space. The second-quantized version z 7→ (zI)F of its
gauge-group z 7→ zI gives a unitary representation of the complex unit circle T on
F(H), and

γz : W (x) 7→ (zI)∗F W (x) (zI)F = W (zx)

is a (quasi-free) group of automorphisms on CCR (H, κ), which is called the gauge
group of CCR (H, κ). A state ϕ is gauge-invariant if ϕ ◦ γz = ϕ for all z on the unit
circle.

Lemma A.19. A Gaussian state %α,y is gauge-invariant if and only if its covariance
α is gauge-invariant.
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Proof. Obviously, %α,y is gauge-invariant if and only if its quasi-free part %α is gauge-
invariant. The assertion then follows by computing expectations of two-term prod-
ucts of �eld operators; see e.g. [?, Formula 3.8].

Corollary A.20. A Gaussian state %α,y on a �nite-dimensional Hilbert space H is
gauge-invariant if and only if there exists a complex linear operator Q ≥ I such that
α(x, y) = Re 〈Qx, y〉 , x, y ∈ H.

De�nition A.21. We say that a Gaussian state %α,y has a symbol if there exists a
complex linear operator Q ≥ I such that α(x, y) = Re 〈Qx, y〉 , x, y ∈ H. By the
above, if H is �nite-dimensional then a Gaussian state has a symbol if and only if
it is gauge-invariant. Note that if H is in�nite-dimensional then having a symbol is
a possibly stronger condition then being gauge-invariant. For a Gaussian state with
symbol Q we will also use the notation %Q̃,y, where 2Q̃ := Q− I.

Example A.22. A state of CCR (()H) is coherent if it has density e−‖y‖
2 |yF 〉〈yF |

on F(H) for some y ∈ H. Consider the case κ > 0. The characteristic function of a
coherent state is

Ŵκ

[
e−‖y‖

2

|yF 〉〈yF |
]

= e−‖y‖
2

〈yF ,Wκ(x)yF 〉

= e−‖y‖
2

e−
κ
2
‖x‖2−

√
κ〈x,y〉e〈y,y+

√
κx〉

= e−
κ
2
‖x‖2+2i

√
κ Im〈y,x〉.

That is, e−‖y‖
2 |yF 〉〈yF | is the density of a Gaussian state with covariance α(x, y) =

Re 〈x, y〉 and displacement 1√
κ
y. Obviously, a coherent state is gauge-invariant, and

it has a symbol Q = I, or equivalently, Q̃ = 0. Hence,

e−‖y‖
2

|yF 〉〈yF | = D%0,y/
√
κ ,

or equivalently,

D%0,y = e−κ‖y‖
2 ∣∣√κyF〉〈√κyF ∣∣ .

Vice versa, if a Gaussian state has a symbol which is I then it is a coherent state.
That is, coherent states are exactly those gauge-invariant Gaussian states that have
a symbol which is the identity.

Note that

e−‖y‖
2

|yF 〉〈yF | = Wκ

(
y/
√
κ
)
|0F 〉〈0F |Wκ

(
y/
√
κ
)∗
,

i.e., every coherent state is obtained from the vacuum state by a unitary rotation.
The above equation can also be rewritten as

D%0,y = Wκ (y) D%0,0Wκ (y)∗ = Wκ (y) |0F 〉〈0F | Wκ (y)∗ .
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Example A.23. Let H be �nite-dimensional and κ > 0. For any Borel probability
measure µ on H,

|µ〉〈µ| :=

∫
H

∣∣∣e−‖y‖2/2yF〉〈e−‖y‖2/2yF ∣∣∣ dµ(y)

=

∫
H
Wκ

(
y/
√
κ
)
|0F 〉〈0F |Wκ

(
y/
√
κ
)∗
dµ(y)

gives a density operator on F(H) with characteristic function

Ŵκ [|µ〉〈µ|] (x) =

∫
H

TrWκ(x)
∣∣∣e−‖y‖2/2yF〉〈e−‖y‖2/2yF ∣∣∣ dµ(y)

=

∫
H
e−

κ
2
‖x‖2+2i

√
κ Im〈y,x〉 dµ(y)

= e−
κ
2
‖x‖2

∫
H
e2i
√
κ Im〈y,x〉 dµ(y).

States of this form are called classical.
Obviously, classical states are gauge-invariant. Note that coherent states are

classical, and

e−‖y‖
2

|yF 〉〈yF | = |δy〉〈δy| .

Example A.24. Let H be �nite-dimensional, κ > 0 and %α,y be a gauge-invariant
Gaussian state with symbol Q. De�ne R := 2 (Q− I)−1 = Q̃−1, where the inverse is
taken on H1 := supp(Q− I) = supp Q̃. Let r := rkR, de�ne detR as the product of
the non-zero eigenvalues of R, and let γ(x, y) := Re 〈Rx, y〉. Let λ be the Lebesgue
measure of the symplectic subspace H1, and de�ne the probability measure µ as

µ(B) :=

∫
H
1B

detR

πr
e−γ(x,x) dλ(x).

Note that µ is a Gaussian measure, supported on H1. By the above,

|µ〉〈µ| =
detR

πr

∫
H1

e−γ(y,y)Wκ

(
y/
√
κ
)
|0F 〉〈0F |Wκ

(
y/
√
κ
)∗
dλ(y)

= detR
(κ
π

)r ∫
H1

e−κγ(u,u)Wκ (u) |0F 〉〈0F |Wκ (u)∗ dλ(u),

and the characteristic function is

Ŵκ [|µ〉〈µ|] (x) = e−
κ
2
‖x‖2 detR

πr

∫
H1

e−γ(y,y)+2i
√
κ Im〈y,x〉 dλ(y)

= e−
κ
2
‖x‖2 detR

(κ
π

)r ∫
H1

e−κγ(u,u)+2iκσ(u,x) dλ(u).
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Let rk denote the symplectic eigenvalues of γ (i.e., the eigenvalues of R), and let
e1, . . . , er be an eigenbasis of R. Then, ek, iek, k = 1, . . . , r is a γ-canonical basis,
and writing out the components of u and x in this basis, we get

γ(u, u)− 2iσ(u, x) =
r∑

k=1

rk
(
u2

2k−1 + u2
2k

)
− 2i (u2k−1x2k − u2kx2k−1)

=
r∑

k=1

rk

(
u2

2k−1 − 2iu2k−1
x2k

rk

)
+ rk

(
u2

2k + 2iu2k
x2k−1

rk

)
=

r∑
k=1

rk (u2k−1 − ix2k/rk)
2 +

x2
2k

rk
+ rk (u2k + ix2k−1/rk)

2 +
x2

2k−1

rk
.

Hence,

Ŵκ [|µ〉〈µ|] (x) = e−
κ
2
‖x‖2 detR

(κ
π

)r r∏
k=1

e
− κ
rk

(x2
2k−1+x2

2k) ·

·
∫
R2

e−κrk(u2k−1−ix2k/rk)2−κrk(u2k+ix2k−1/rk)2

du2k−1 du2k

= e−
κ
2
‖x‖2 detR

(κ
π

)r r∏
k=1

e
− κ
rk

(x2
2k−1+x2

2k) π

κrk

= e−
κ
2
‖x‖2−κ〈R−1x,x〉 = e−

κ
2
‖x‖2−κ

2
〈(Q−I)x,x〉

= e−
κ
2
〈Qx,x〉.

That is,

|µ〉〈µ| = D%α.

Compare this example with Example A.25.

A.5 Powers of quasi-free states

Let % be the quasi-free state corresponding to α, determined by

%(W (x)) = e−
1
4
α(x,x) .

Then, H = ⊕dk=1Hk, Hk := span{e2k−1, e2k} and HC = ⊕dk=1(Hk)C with (Hk)C ∼= C,
and

Fsym(HC) ∼= ⊗dk=1Fsym(C) , CCR(H, σ) ∼= ⊗dk=1CCR(Hk, σk) , % ∼= ⊗dk=1%k ,

with

%k(W (x)) = e−
1
4
ak|x|2 , x ∈ C .
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Let {|n〉 : n ∈ N} denote the standard basis of Fsym(C) = l2(N), and let yF :=
⊕∞n=0

1√
n!
yn |n〉 , y ∈ C. From this,

〈zF , |n〉〈n| yF 〉 =

{
1
n!

(zy)n, n ≥ 1

1, n = 0 .
(A.202)

In this representation,

W (x)yf = e
− 1

4
|x|2− 1√

2
xy

(
y +

1√
2
x

)
F

, x, y ∈ C .

Now, by Theorem in [?, Chapter V, Corollary 3.2], the density D%k of %k is given by

〈zF ,D%kyF 〉 =
1

2π

∫
C
〈zF ,W (x)yF 〉 e−

1
4
ak|x|2 dx

=
1

2π

∫
C
e
− 1

4
|x|2− 1√

2
xy− 1

4
ak|x|2+z(y+ 1√

2
x)
dx.

Now, with x = x1 + ix2, x1, x2 ∈ R, in the exponent we have

− 1 + ak
4

(x2
1 + x2

2)− 1√
2

(x1 − ix2)y + zy +
1√
2

(x1 + ix2)z

= −1 + ak
4

x2
1 −

1√
2
x1[y − z]− 1 + ak

4
x2

2 +
i√
2
x2[y + z] + zy

= −1 + ak
4

[
x2

1 +
4√

2(1 + ak)
x1[y − z]

]
− 1 + ak

4

[
x2

2 −
4i√

2(1 + ak)
x2[y + z]

]
+ zy

= −1 + ak
4

[
x2

1 + 2x1w1

]
− 1 + ak

4

[
x2

2 − 2x2w2

]
+ zy

= −1 + ak
4

(x1 + w1)2 − 1 + ak
4

(x2 − w2)2 +
1 + ak

4
(w2

1 + w2
2) + zy ,

with

w1 :=

√
2

1 + ak
[y − z] , w2 :=

√
2i

1 + ak
[y + z] ,

which gives

w2
1 + w2

2 = − 8

(1 + ak)2
yz , and hence

1 + ak
4

(w2
1 + w2

2) + zy =
ak − 1

ak + 1
yz .

Thus,

〈zF ,D%kyF 〉 =
1

2π

∫
C

exp

(
−1 + ak

4
(x2

1 + w1)2 − 1 + ak
4

(x2
2 − w2)2 +

ak − 1

ak + 1
yz

)
dx1 dx2

= exp

(
ak − 1

ak + 1
yz

)
2

1 + ak
.
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By (A.202), if zy 6= 0 then

1

n!
=

〈
zF ,

1

(zy)n
|n〉〈n| yF

〉
,

and thus for y, z 6= 0

〈zF ,D%kyF 〉 =
2

1 + ak

∞∑
n=0

(
ak − 1

ak + 1
yz

)n〈
zF ,

1

(zy)n
|n〉〈n| yF

〉

=

〈
zF ,

2

1 + ak

∞∑
n=0

(
ak − 1

ak + 1

)n
|n〉〈n| yF

〉
,

and this formula holds also when yz = 0. Hence,

D%k =
2

1 + ak

∞∑
n=0

(
ak − 1

ak + 1

)n
|n〉〈n| .

Now, let f(a) := a−1
a+1

, a ≥ 1, with inverse g(x) = 1+x
1−x , 0 ≤ x ≤ 1, and introduce the

notation

D%(a) :=
2

1 + a

∞∑
n=0

(
a− 1

a+ 1

)n
|n〉〈n| = (1− f(a))

∞∑
n=0

f(a)n |n〉〈n| .

For a ≥ 1 and t ∈ R, let a(t) := g (f(a)t) = 1+xt

1−xt , where x = a−1
a+1

. That is,

f(a(t)) = f(a)t, or a(t)−1
a(t)+1

=
(
a−1
a+1

)t
. Then,

D%(a)t = (1− f(a))t
∞∑
n=0

(
f(a)t

)n |n〉〈n|
=

(
2

1 + a

)t
1 + a(t)

2

2

1 + a(t)

∞∑
n=0

f(a(t))n |n〉〈n|

=
2t

(a+ 1)t − (a− 1)t
D%(a(t)) .

A.6 Gaussian channels

Example A.25. Let (H, σ) be a �nite-dimensional symplectic space and γ be an in-
ner product on it. Choose an arbitrary irreducible representation of CCR (()H, κ, σ)
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on some Hilbert space H and de�ne the following operation on density operators of
H:

Φ : D% 7→
∫ √

det γ

πd
e−γ(y,y)Wκ(y)D%Wκ(y)∗ dλ(x).

That is, Φ represents a random unitary rotation, distributed according to a normal
distribution on the Weyl unitaries. Obviously, Φ is positive and trace-preserving.
Moreover, since unitary rotations are completely positive, Φ is actually a quantum
stochastic map or a channel.

Now let us see how the characteristic function of a density D% changes under the
map Φ:

Ŵκ[Φ(D%)](x) = Tr Φ(D%)W (x)

=

∫ √
det γ

πd
e−γ(y,y) TrWκ(y)D%Wκ(y)∗W (x) dλ(y)

=

∫ √
det γ

πd
e−γ(y,y) TrD%Wκ(y)∗Wκ(x)Wκ(y) dλ(y)

=

∫ √
det γ

πd
e−γ(y,y)e2iκσ(y,x) TrD%Wκ(x) dλ(y)

= Ŵκ[D%]

∫ √
det γ

πd
e−γ(y,y)e2iκσ(y,x) dλ(y).

Writing out every vector in a γ-canonical basis, we get

γ(y, y)− 2iκσ(y, x) =
d∑

k=1

ak
(
y2

2k−1 + y2
2k

)
− 2iκ (y2k−1x2k − y2kx2k−1)

=
d∑

k=1

ak

(
y2

2k−1 −
2iκx2k

ak
y2k−1

)
+ ak

(
y2

2k +
2iκx2k−1

ak
y2k

)

=
d∑

k=1

ak

(
y2k−1 −

iκx2k

ak

)2

+
κ2x2

2k

ak
+ ak

(
y2k +

iκx2k−1

ak

)2

+
κ2x2

2k−1

ak
.
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Hence,

Ŵκ[Φ(D%)](x) = Wκ[D%]

√
det γ

πd

d∏
k=1

e
−κ

2

ak
(x2

2k−1+x2
2k) ·

·
∫

exp

(
−ak

(
y2

2k−1 +
iκx2k

ak

)2

− ak
(
y2

2k −
ix2k−1

ak

)2
)
dλ(y)

= Wκ[D%]

√
det γ

πd
e−κ

2γ−1(x,x)

d∏
k=1

π

ak

= Wκ[D%](x)e−κ
2γ−1(x,x).

Now, if % = %α,y is a Gaussian state, then

Ŵκ[Φ(D%)](x) = e−
|κ|
2
α(x,x)+2iκσ(y,x)e−κ

2γ−1(x,x)

= e−
|κ|
2 (α(x,x)+2|κ|γ−1(x,x))+2iκσ(y,x),

and hence Φ (D%α,y) is the density of a Gaussian state with

Φ (D%α,y) = D%α+2|κ|γ−1,y.

Note that since α + iσ ≥ 0 and γ ≥ 0, we also have α + 2|κ|γ−1 + iσ ≥ 0.

The following has been shown in [?]:

Theorem A.26. The output p-norm of the above channel is multiplicative for in-
teger p's.
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A The Jordan measure

A.1 The Jordan measure on Rd

The set of d-dimensional boxes is de�ned as

Box(Rd) :=
{
×di=1[ai, bi) : ai, bi ∈ R

}
,

on which we may introduce the volume function

Vol
(
×di=1[ai, bi)

)
:=

d∏
i=1

(bi − ai).

To de�ne the volume of more general subsets of Rd, we may try to approximate
them by boxes, as follows.

De�nition A.1. The Jordan outer measure Vol∗J : P(Rd)→ [0,+∞] is de�ned as

Vol∗J(A) := inf

{
r∑
i=1

Vol(Ti) : Ti ∈ Box(Rd), i ∈ [r], A ⊆ ∪ri=1Ti, r ∈ N

}
,

(A.203)

for any A ⊆ Rd.
Remark A.2. Note that if A ⊆ Rd is unbounded then it is not possible to cover it
with �nitely many boxes, and hence in the de�nition (A.203) of its outer measure,
we are taking the in�mum over the empty set, which is, by de�nition, +∞. That is,
the Jordan outer measure of any unbounded set is +∞.

De�nition A.3. The Jordan inner measure Vol∗,J : P(Rd)→ [0,+∞] is de�ned as

Vol∗,J(A) := sup

{
r∑
i=1

Vol(Ti) : Ti ∈ Box(Rd), i ∈ [r], ·∪ri=1Ti ⊆ A, r ∈ N

}
,

(A.204)

for any A ⊆ Rd.
De�nition A.4. A set A ⊆ Rd is Jordan measurable if Vol∗J(A) = Vol∗,J(A), and in
this case this common value is called its Jordan measure, denoted by VolJ(A).

Example A.5. Let A = {x} consist of one single point x = (x1, . . . , xd) ∈ Rd;
then clearly Vol∗,J({x}) = 0. On the other hand, for every ε > 0, we can choose
Tε := ×di=1[xi − ε, xi + ε) ∈ Box(Rd) so that {x} ⊆ Tε for every ε > 0, and thus

Vol∗J({x}) ≤ inf
ε>0

Vol(Tε) = 0

Hence, {x} is Jordan measurable, and its Jordan measure is VolJ({x}) = 0.
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Exercise A.6. Use the de�nitions to show that any subset of Rd consisting of �nitely
many points is Jordan measurable, and its Jordan measure is 0.

The following properties of the Jordan measure(s) are easy to verify. We will
consider these properties in a more general setting in Section A.2.

Proposition A.7.

(i) The outer Jordan measure of a set is at least as large as its inner Jordan
measure, i.e.,

Vol∗,J(A) ≤ Vol∗J(A), A ⊆ Rd. (A.205)

(ii) The Jordan measure is an extension of the volume function, i.e., every box
T ∈ Box(Rd) is Jordan measurable, and VolJ(T ) = Vol(T ).

(iii) (Monotonicity) Both the inner and the outer Jordan measures are monotonic,
i.e., for A,B ⊆ Rd,

A ⊆ B =⇒ Vol∗,J(A) ≤ Vol∗,J(B), Vol∗J(A) ≤ Vol∗J(B),

and if both A and B are measurable then also VolJ(A) ≤ VolJ(B), i.e., the
Jordan measure is also monotonic.

(iv) Both the empty set and Rd are Jordan measurable, and

VolJ(∅) = 0, VolJ(Rd) = +∞.

(v) (Finite additivity) The Jordan measure is �nitely additive in the following
sense: If A1, . . . , Ar are disjoint Jordan measurable subsets of Rd then A =
·∪ri=1Ai is also Jordan measurable, and

VolJ(A) =
r∑
i=1

VolJ(Ai).

Although the Jordan measure has a very appealing geometric picture behind its
construction, its properties are not good enough for the purposes of analysis and
probability theory. Below we outline some of these problems.

Probably the biggest problem with the Jordan measure is that it is not countably
additive in the sense that a countable union of measurable sets is not necessarily
measurable. Even worse, especially for the purposes of probability theory, is that a
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countable union of disjoint sets all with zero Jordan measure may not be measurable.
Indeed, let An := {n} for every n ∈ N. Then

VolJ({n}) = 0 ∀n ∈ N, but Vol∗,J(N) = 0, while Vol∗J(N) = +∞,
(A.206)

and hence N = ∪n∈N{n} is not measurable. One might think that the problem here
is the unboundedness of the union, but this is not the case. Indeed, A := Q ∩ [0, 1]
is a countable union of single-point sets, all with measure 0, but again it is easy to
see that

Vol∗,J(Q ∩ [0, 1]) = 0 and Vol∗J(Q ∩ [0, 1]) = 1, (A.207)

and hence Q ∩ [0, 1] is not Jordan measurable.
A closely related problem is that the Jordan measure is not well connected to the

topology of Rd in the sense that even sets with the simplest topological structure
(e.g., open sets, compact sets) may not be Jordan measurable. To see this, consider
the fat Cantor sets Ca,q, constructed the following way. Let a > 0 and 0 < q < 1
be such that 1 >

∑
m∈N 2maqm = 2aq

1−2q
. (There are continuum many such pairs; e.g.,

a = 1 and q < 1/4.) Remove from the unit interval the open interval of length

aq centered in the middle of [0, 1], leaving C
(1)
a,q , which is the union of two disjoint

closed intervals of equal length: C
(1)
a,q = [0, 1/2−aq/2] ·∪ [1/2+aq/2, 1]. Next, remove

from each of these two intervals an open interval of length aq2 centered in their
middle, leaving four disjoint closed intervals of equal length, which we denote by
C

(2)
a,q . Continuing this procedure, we get for every n ∈ N a set C

(n)
a,q , consisting of 2n

disjoint compact intervals of equal length, so that C
(1)
a,q ⊇ C

(2)
a,q ⊇ . . .. Let us de�ne

Ca,q :=
⋂
n∈N

C(n)
a,q .

Now, it is clear that whatever non-trivial interval [a, b) we take in [0, 1], there is

an n0 after which C
(n)
a,q is the union of disjoint intervals all of length strictly smaller

than (b − a). Hence, Ca,q does not contain any non-trivial interval, and therefore
Vol∗,J(Ca,q) = 0. It is also obvious that Vol∗,J([0, 1] \ Ca,q) = 2aq

1−2q
< 1.

Assume that Vol∗J([0, 1] \ Ca,q) < 1, i.e., that [0, 1] \ Ca,q can be covered with
�nitely many intervals [ai, bi), i ∈ [r], such that

∑r
i=1(bi − ai) < 1. It is easy to see

that we can assume without loss of generality that all these intervals are disjoint,
and we can order them so that 0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ 1. Then
the intervals T0 := [0, a1), Ti := [bi, ai+1), i = 1, . . . , r − 1, and Tr := [br, 1) are all
contained in Ca,q, and hence Vol∗,J(Ca,q) ≥ 1 −

∑r
i=1(bi − ai) > 0, a contradiction.

Hence, Vol∗J([0, 1] \Ca,q) = 1 > 0 = Vol∗,J([0, 1] \Ca,q), and therefore [0, 1] \Ca,q, an
open set, is not Jordan measurable.
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An exactly analogous argument shows that Vol∗J(Ca,q) > 0 = Vol∗,J(Ca,q), and
hence Ca,q, a compact set, is not Jordan measurable, either.

One thing that one can notice in the examples above is that restricting the
number of boxes to be �nite in the de�nition of the outer Jordan measure is a
serious limitation. Hence, it is natural to consider the following generalization:

De�nition A.8. The Lebesgue outer measure Vol∗ : P(Rd)→ [0,+∞] is de�ned as

Vol∗(A) := inf

{∑
n∈N

Vol(Tn) : Tn ∈ Box(Rd), n ∈ N, A ⊆ ∪n∈NTn,

}
, A ⊆ Rd.

(A.208)

One could also modify the de�nition of the inner measure to allow in�nitely many
disjoint boxes. However, it is easy to see that this would make no change:

Exercise A.9. Show that for any A ⊆ Rd,

Vol∗,J(A) = sup

{∑
n∈N

Vol(Tn) : Tn ∈ Box(Rd), n ∈ N, ·∪n∈NTn ⊆ A

}
.

Following the same logic as for the construction of the Jordan measure, the next
logical step would be to call a set A ⊆ Rd measurable if Vol∗,J(A) = Vol∗(A), and
de�ne its measure to be this common value. This would �x the problem in some
of the above examples. Indeed, it is easy to see that with this modi�ed de�nition
every set consisting of countably many points is measurable and has zero measure;
compare with the examples in (A.206) and (A.207). It is also easy to see that with
this de�nition, [0, 1]\Ca,q, the complement of the fat Cantor set, becomes measurable,
and its measure is the intuitively expected value 2aq

1−2q
.

On the other hand, the inner measure of Ca,q is still zero, and hence, even if Ca,q
was measurable, its measure would be zero, which is not what we expect intuitively
(we would expect 1− 2aq

1−2q
). Phrasing it more mathematically, if Ca,q was measurable,

its measure would be zero, and hence the measure of Ca,q and the measure of [0, 1] \
Ca,q would not sum up to 1, i.e., the measure would not be additive. (As it turns
out later, the outer Lebesgue measure of Ca,q is indeed 1 − 2aq

1−2q
, as expected, and

hence Ca,q is not measurable according to the above de�nition.)
Thus, while the above modi�cation of the Jordan measure o�ers some improve-

ment, it does not remove all the drawbacks of the Jordan measure. Interestingly,
the way out turns out to be to forget about the inner measure, and de�ne the mea-
surability of sets, and measure their volume, solely in terms of the outer Lebesgue
measure Vol∗.
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A.2 Generalized Jordan measures

The above described procedure to extend the volume function from boxes to more
general sets can be carried out more generally for any additive set function α on a
semi-ring S, which we outline below.

De�nition A.10. Let α be an additive set function on a semi-ring S ⊆ P(X ). Its
outer Jordan α-measure α∗J and inner Jordan α-measure α∗,J are de�ned as

α∗J(A) := inf

{
r∑
i=1

Vol(Si) : Si ∈ S, i ∈ [r], A ⊆ ∪ri=1Si, r ∈ N

}
, (A.209)

α∗,J(A) := sup

{
r∑
i=1

Vol(Si) : Si ∈ S, i ∈ [r], ·∪ri=1Si ⊆ A, r ∈ N

}
, (A.210)

for any A ⊆ X . We say that a set A ⊆ X is Jordan α-measurable if α∗J(A) = α∗,J(A),
and in this case this common value is called its Jordan α-measure, denoted by αJ(A).

Proposition A.11. Let α be an additive set function on a semi-ring S ⊆ P(X ).

(i) The outer Jordan α-measure of a set is at least as large as its inner Jordan
α-measure, i.e.,

α∗,J(A) ≤ α∗J(A), A ⊆ X . (A.211)

(ii) The Jordan α-measure is an extension of α, i.e., every S ∈ S is Jordan α-
measurable, and αJ(S) = α(S).

(iii) (Monotonicity) Both the inner and the outer Jordan measures are monotonic,
i.e., for A,B ⊆ X ,

A ⊆ B =⇒ α∗,J(A) ≤ α∗,J(B), α∗J(A) ≤ α∗J(B),

and if both A and B are measurable then also αJ(A) ≤ αJ(B), i.e., the Jordan
α-measure is also monotonic.

(iv) (Finite additivity) The Jordan α-measure is �nitely additive in the following
sense: If A1, . . . , Ar are disjoint Jordan α-measurable subsets of
X then A = ·∪ri=1Ai is also Jordan α-measurable, and

αJ(A) =
r∑
i=1

αJ(Ai).

Exercise A.12. Prove properties (i)�(iii) in Proposition A.11.
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Solution: Hidden.

Exercise A.13. Prove that the Jordan α-measure is an extension of α, (i.e., (ii) of
Proposition A.11), using Corollary 3.50.

Solution: Hidden.

Exercise A.14. Prove the �nite additivity of the Jordan α-measure ((iv) of Propo-
sition A.11).

Solution: Hidden.

Exercise A.15. The de�nitions of the inner and the outer Jordan measures seem
asymmetric, as the boxes are required to be disjoint in the de�nition of the inner
Jordan measure, but not in the de�nition of the outer Jordan measure.

(i) Show that the Jordan outer measure would not change if we required disjoint-
ness of the boxes in its de�nition.

(ii) What would happen if we did not require the disjointness of the boxes in the
de�nition of the inner Jordan measure? What would be the inner Jordan
measure of a non-trivial bounded interval in the real line?
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B Symplectic spaces

B.1 Bilinear forms

Let H be a real vector space with dual space H∗. For a base {ei : i ∈ I}, let
{e∗1 : i ∈ I} denote the dual system, i.e., e∗i ∈ H∗, i ∈ I and e∗i (ej) = δi,j. The
dual system forms a basis of H∗ if and only if H is �nite-dimensional (otherwise
dimH∗ > dimH). The set of bilinear forms Bilin(H,R) on H forms a real vector
space, into which H∗ ⊗H∗ is naturally embedded, through

ϕ1 ⊗ ϕ2(x, y) := ϕ1(x)ϕ2(y) .

If H is �nite-dimensional then the above embedding is also an isomorphism, other-
wise H∗ ⊗H∗ is a proper subspace of Bilin(H,R).

If e1, . . . , ed is a base in H then e∗i ⊗ e∗j , i, j = 1, . . . , d is a base in H∗ ⊗H∗, and
hence any ω bilinear form can be expanded in this base. One can easily see that the
expansion coe�cients are given by ω(ei, ej), i.e.,

ω =
d∑

i,j=1

ω(ei, ej)e
∗
i ⊗ e∗j .

The matrix of ω is [ω]e, with entries ([ω]e)ij := ω(ei, ej). If f1, . . . , fd is another basis
then

[ω]f = [T ]Te [ω]e[T ]e , (B.212)

where T is the linear transformation Tek := fk, and [T ]e is its matrix in the basis
e1, . . . , ed, i.e., ([T ]e)ij = e∗i (Tej) = e∗i (fj) .

Any bilinear form ω induces a homomorphism ω[ from H to H∗, by

ω[ : x 7→ ω(x, .) , x ∈ H , i.e., ω[(x)y = ω(x, y) .

One can easily see that the matrix of ω[ in the pair of bases (e1, . . . , ed), (e∗1, . . . , e
∗
d)

coincides with [ω]Te . Indeed,

ω[(ei)x = ω[(ei)(x) = ω[(ei)

(
d∑
j=1

e∗j(x)ej

)
=

d∑
j=1

e∗j(x)ω[(ei)(ej)

=
d∑
j=1

ω(ei, ej)e
∗
j(x) =

(
d∑
j=1

ω(ei, ej)e
∗
j

)
x .

The rank of ω is the rank of its matrix. By (B.212), the rank does not depend
on the basis in which the matrix of ω is given. By the above, the rank of ω is equal
to the rank of the linear map ω[, i.e., rkω = dim ranω[.
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A bilinear form ω is called non-degenerate, if

ω(x, y) = 0 ∀y ∈ H =⇒ x = 0.

By the above, one can easily see that in a �nite-dimensional H, the following are
equivalent:

(i) ω is non-degenerate;

(ii) rkω = dimH;

(iii) ω[ is an isomorphism between H and H∗.

By (iii), if ω is non-degenerate then for every ϕ ∈ H∗ there exists a unique xϕ ∈ H
such that ϕ(y) = ω(xϕ, y) (namely, xϕ =

(
ω[
)−1

ϕ). This is a �nite-dimensional
version (and generalization) of the Riesz representation theorem in Hilbert spaces.

If ω is non-degenerate then by the above, ω[ is invertible, and hence one can
de�ne

A(ω)
α :=

(
ω[
)−1 ◦ α[

for any bilinear form α. By de�nition, A
(ω)
α is a linear operator on H with the

property

α(x, y) = ω
(
A(ω)
α x, y

)
, x, y ∈ H.

Note that A
(ω)
α is unique in the sense that if A is any other operator for which

α(x, y) = ω (Ax, y) , x, y ∈ H

holds then A = A
(ω)
α . Indeed,

0 = ω
(
A(ω)
α x, y

)
− ω (Ax, y) = ω

(
A(ω)
α x− Ax, y

)
, x, y ∈ H

implies A
(ω)
α x − Ax = 0, x ∈ H, by the non-degeneracy of ω. If α is also non-

degenerate then A
(ω)
α is invertible, and(

A(ω)
α

)−1

=
((
ω[
)−1 ◦ α[

)−1

=
(
α[
)−1 ◦ ω[ = A(α)

ω , i.e.,

α
((
A(ω)
α

)−1

x, y
)

= ω (x, y) , x, y ∈ H.

A bilinear form ω is symmetric, if

ω(x, y) = ω(y, x) , x, y ∈ H
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and antisymmetric, if

ω(x, y) = −ω(y, x) , x, y ∈ H .

A symmetric bilinear form α is an inner product, if it is strictly positive de�nite,
i.e., α(x, x) > 0 for all x 6= 0. Obviously, an inner product is non-degenerate. A
linear transformation T is (α-)orthogonal if it preserves the inner product α, i.e.,
α(Tx, Ty) = α(x, y), x, y ∈ H.

We use the term symplectic form for non-degenerate anti-symmetric forms. A
linear transformation T is (σ-)symplectic if it preserves the symplectic form σ, i.e.,
σ(Tx, Ty) = σ(x, y), x, y ∈ H.

If α is an inner product then for a linear operator S the bilinear form σ(x, y) :=
α(Sx, y) is antisymmetric if and only if

α(Sx, y) = α(x, (−S)y), x, y ∈ H,

i.e., ST = −S, with the transpose taken with respect to the inner product α, and σ
is non-degenerate if and only if S is invertible.

If σ is symplectic then for a linear operator A the bilinear form α(x, y) := σ(Ax, y)
is an inner product if and only if

σ(Ax, y) = −σ(x,Ay), 0 < σ(Ax, x), x, y ∈ H, x 6= 0 .

Conversely, any such operator de�nes a positive de�nite symmetric bilinear form, and
the correspondence between such operators and positive de�nite symmetric bilinear
forms is a linear isomorphism.

De�nition B.1. A pair (H, σ), where H is a real vector space and σ a symplectic
form on it, is called a symplectic space.

Example B.2. Let H be a complex inner product space. Then,

σH(x, y) := Im 〈x, y〉 , x, y ∈ H

de�nes a symplectic form, which we call the standard symplectic form of H.

Example B.3. Let H := Rd × Rd, and for x, y ∈ Rd let xy denote their standard
inner product. Then,

σR2d

(
(x(1), x(2)), (y(1), y(2))

)
:= x(1)y(2) − x(2)y(1), x(1), x(2), y(1), y(2) ∈ Rd

de�nes a symplectic form, which we call the standard symplectic form of Rd × Rd.
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De�nition B.4. Let (H1, σ1) and (H2, σ2) be symplectic spaces. A linear map
T : H1 → H2 is symplectic if

σ2(Tx, Ty) = σ1(x, y), x, y ∈ H1.

Two symplectic spaces (H1, σ1) and (H2, σ2) are isomorphic to each other if there
exists a symplectic isomorphism between them.

Note that the inverse of a symplectic isomorphism is again a symplectic isomor-
phism.

Example B.5. Let H1 and H2 be complex inner product spaces. Any isomorphism
V : H1 → H2 is also a symplectic map, as

σH2(V x, V y) = Im 〈V x, V y〉 = Im 〈x, y〉 = σH2(x, y).

Moreover, an isometry V is a symplectic isomorphism if and only if it is unitary.

Example B.6. Consider the symplectic spaces (Rd × Rd, σR2d) and (Cd, σCd), and
de�ne the map

T : Rd × Rd → Cd, T :
(
x(1), x(2)

)
7→ x(1) + ix(2) , x(1), x(2) ∈ Rd .

Then, T is a real linear isomorphism between Rd × Rd and Cd (with Cd considered
with its real vector space structure), and a straightforward computation veri�es that
it is symplectic, too. Hence, the symplectic spaces (Rd ×Rd, σR2d) and (Cd, σCd) are
isomorphic to each other. The inverse of T is given by

T−1 : Cd → Rd × Rd, T−1 : x 7→ (Rex, Imx) , x ∈ H.

Example B.7. Let H be a d-dimensional complex Hilbert space and σH be its
standard symplectic form. We show that any orthonormal basis de�nes a symplectic
isomorphism of (H, σH) with (Cd, σCd), and therefore, by the above example, also
with (Rd×Rd, σR2d). Indeed, if e1, . . . , ed is an arbitrary orthonormal basis then the
coordinate map

T : H → Cd, T : x 7→ (〈e1, x〉 , . . . , 〈ed, x〉) , x ∈ H

is easily seen to be a symplectic isomorphism. The corresponding symplectic iso-
morphism with (Rd × Rd, σR2d) is given by

S : x 7→ ((Re 〈e1, x〉 , . . . ,Re 〈ed, x〉) , (Im 〈e1, x〉 , . . . ,Im 〈ed, x〉)) , x ∈ H.

309



As the above examples already suggest, a symplectic space is uniquely determined
by its dimension, up to symplectic isomorphisms. The analogous statement for inner
product spaces can be proved using orthonormal bases, and in the next section we
will prove the conjectured isomorphism of equal dimensional symplectic spaces using
the concecpt of symplectic bases.

In general, one cannot de�ne the determinant of a bilinear form if only a vector
space structure is available. A heuristic reason for this is that the matrix of a
bilinear form transforms as [α]f = [S]Te [α]e[S]e, where Sek := fk is the basis change
transformation, and hence the determinant of the matrix of α can be di�erent in
di�erent bases. If, however, an extra structure, like a symplectic form is given then
the situation is di�erent.

De�nition B.8. Let H be a �nite-dimensional real vector space and ω be a non-
degenerate bilinear form on it. The ω-determinant of a bilinear form α is de�ned
as

detω α := detA(ω)
α .

In particular, the determinant of a bilinear form α in a �nite-dimensional symplectic
space (H, σ) is de�ned as

detα := detσ α = detA(σ)
α .

B.2 Symplectic bases and symplectic transformations

Lemma B.9. Let H be a �nite-dimensional real vector space and σ be an anti-
symmetric form on it. Then, rkσ = 2n is even, and there exists a basis e1, . . . , ed
such that

σ(ei, ej) =


1, i = 2k − 1, j = 2k, k = 1, . . . , n,

−1, i = 2k, j = 2k − 1, k = 1, . . . , n,

0, otherwise.

(B.213)

Proof. If σ = 0 then n = 0 and any basis does the job. Assume that σ 6= 0. Then
there exist x, y ∈ H such that σ(x, y) 6= 0. By possibly interchanging x and y, we
can assume that σ(x, y) > 0. De�ne

e1 :=
1√

σ(x, y)
x, e2 :=

1√
σ(x, y)

y, and H1 := span{e1, e2} .

Then,

σ(e1, e2) = 1, σ(e2, e1) = −1, and σ(e1, e1) = σ(e2, e2) = 0 .
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Let

H⊥1 := {x : σ(x, e1) = σ(x, e1) = 0}

be the σ-orthocomplement of H1. If x = x1e1 + x2e2 ∈ H1 ∩H⊥1 , then

x1 = σ(x, e2) = 0, x2 = −σ(x, e1) = 0, i.e., x = 0 .

Hence, H1 ∩H⊥1 = {0}. Now we can restrict σ to H⊥1 ×H⊥1 and continue the above
process. In each step we obtain a new 2-dimensional subspace, spanned by e2k−1, e2k

in the kth step, with

σ(e2k−1, e2k) = 1, σ(e2k, e2k−1) = −1, σ(e2k−1, e2k−1) = σ(e2k, e2k) = 0

and

σ(e2k−1, em) = σ(e2k, em) = 0, m ≤ 2k − 1 .

Let Hk := span{e2k−1, e2k}. The process stops after the nth step if σ restricted to
H0×H0, H0 := (H1 ⊕ . . .⊕Hn)⊥ is the zero form, whence we can choose any basis
in H0 to complete the basis of H. Note that if dimH0 = 1 then then σ restricted to
H0×H0 is necessary 0, as there is no non-zero symplectic form on a one-dimensional
space. The matrix of σ in the so-obtained basis is

[σ] =

(
⊕nk=1

[
0 1
−1 0

])
⊕ 0d−2n×d−2n ,

which immediately yields the assertion about the rank.

Corollary B.10. A symplectic space has even or in�nite dimension. In a �nite-
dimensional symplectic space there exists a basis e1, . . . , edimH such that the matrix
of σ in this basis is

[σ]e = ⊕dimH/2
k=1

[
0 1
−1 0

]
.

De�nition B.11. A basis satisfying (B.213) is called a symplectic basis of H (for
σ).

Example B.12. Let H = Rd × Rd and σ be its standard symplectic form. Then,

e2k−1 := (1{k}, 0), e2k := (0,1{k}), k = 1, . . . , d

is a symplectic basis, where 1{k}, k = 1, . . . , d is the standard basis of Rd.
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Example B.13. LetH be a �nite-dimensional complex Hilbert space, and σ(x, y) :=
Im 〈x, y〉 , x, y ∈ H be its standard symplectic form. If e1, . . . , edimH is an orthonor-
mal basis then

f2k−1 := ek, f2k := iek, k = 1, . . . , dimH

is a symplectic basis. On the other hand, not every symplectic basis is of this form.
For instance, with the above notations, let

f ′2k−1 := ek, f ′2k := iek + ckek, k = 1, . . . , dimH

with some c1, . . . , cdimH ∈ R. Then, f1, . . . , fdimH is a symplectic basis, but ‖f ′2k‖ 6= 1
unless ck = 0.

Remark B.14. The above de�nition of a symplectic basis only works for �nite-
dimensional spaces. To include in�nite-dimensional spaces, one can modify the def-
inition the following way. Let dimH denote the dimension of H, which in general
is a cardinality. Assume that dimH is either in�nite or if �nite then it is even, and
hence dimH/2 is again a cardinality. A basis {ek, e′k : i ∈ I} with |I| = dimH/2 is
a symplectic basis if

σ(ek, e
′
k) = 1, σ(ek, el) = σ(e′k, e

′
l) = 0, k, l ∈ I.

For instance, if H is a complex Hilbert space with its standard symplectic form, and
{ek : k ∈ I} is an orthonormal basis then fk := ek, f

′
k := iek, k ∈ I is a symplectic

basis.

Lemma B.15. The dual basis of a symplectic basis e1, . . . , edimH , is

e∗2k−1 = σ[ (−e2k) = −σ(e2k, .), e∗2k = σ[ (e2k−1) = σ(e2k−1, .), k = 1, . . . , dimH.

The coordinate expansion of x ∈ H in the symplectic basis e1, . . . , edimH is given by

x =
d∑

k=1

−σ(e2k, x)e2k−1 + σ(e2k−1, x)e2k , x ∈ H.

Proof. By the above, for x =
∑dimH

j=1 xjej we have

σ(e2k−1, x) = x2k, σ(e2k, x) = −x2k−1,

from which the assertions follow.
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Similarly, the matrix elements of a linear operator A are given by

([A]e)2k−1,m = −σ(e2k, Aem), ([A]e)2k,m = σ(e2k−1, Aem).

In particular, if α is the bilinear form determined by α(x, y) = σ(Ax, y) (i.e., A =(
σ[
)−1 ◦ α[) then

([A]e)2k−1,m = σ(Aem, e2k) = α(em, e2k) = ([α]e)m,2k
([A]e)2k,m = −σ(Aem, e2k−1) = −α(em, e2k−1) = − ([α]e)m,2k−1 . (B.214)

As a consequence, we have the following:

Corollary B.16. Let α be a bilinear form in a symplectic space (H, σ). Then,

detα = det[α]e

for any symplectic basis e1, . . . , edimH .

Proof. By de�nition, detα = detA for A := A
(σ)
α , and by (B.214),

detA = det[A]e = det[α]e

in any symplectic basis e1, . . . , edimH .

It is easy to see that a linear map is symplectic if and only if it maps symplectic
bases into symplectic bases. If S is a linear map then the matrix of the bilinear form
σS(x, y) := σ(Sx, Sy) is related to that of σ by

[σS] = [S]T[σ][S].

In particular, S is symplectic if and only if

[σ] = [S]T[σ][S]

in some (and hence any) basis. Choosing the basis to be symplectic, we get

1 = det[σ] = det
(
[S]T[σ][S]

)
= det

(
[S]T

)
det ([S]) = det (S)2 ,

and hence the determinant of a symplectic transformation is 1 or −1. (We will see
later that it is actually 1).

Note that in general the determinant of the matrix of a bilinear form α depends
on the basis in which it is given, as the transformation rule (B.212) doesn't preserve
the determinant. However, as symplectic transformations have unit determinant,
the determinant of [α] is the same in any symplectic basis, as it also follows from
Corollary B.16.
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Lemma B.17. Let (H, σ) be a �nite-dimensional symplectic space with 2d :=
dimH. Any symplectic basis de�nes a symplectic isomorphism with (Rd×Rd, σR2d)
and another one with (Cd, σCd).

Proof. Let e1, . . . , e2d be a symplectic basis of H. One can check by a straightforward
computation that the coordinate map

T : x 7→ ((−σ(e2, x), . . . ,−σ(e2d, x)) , (σ(e1, x), . . . , σ(e2d−1, x)))

= ((x1, . . . , x2d−1) , (x2, . . . , x2d)) , x =
∑2d

j=1 xjej ∈ H

de�nes a symplectic isomorphism with (Rd × Rd, σR2d). Consequently,

S : x 7→ (x1 + ix2, . . . , x2d−1 + ix2d) , x =
2d∑
j=1

xjej ∈ H (B.215)

is a symplectic isomorphism with (Cd, σCd). Note that T and S are the real linear
extensions of the maps

Tem :=

{(
1{k}, 0

)
, m = 2k − 1,(

0,1{k}
)
, m = 2k,

Sem :=

{
1{k}, m = 2k − 1,

i1{k}, m = 2k,

respectively.

Lemma B.18. Let (H, σ) be a �nite-dimensional symplectic space with 2d :=
dimH. Any isomorphisms with (Rd × Rd, σR2d) or with (Cd, σCd) arise the way
described in Lemma B.17.

Proof. Let T : H → Rd ×Rd be a symplectic isomorphism, and let 1{1}, . . . ,1{d} be
the standard basis of Rd. Obviously,

e2k−1 := T−1
(
1{k}, 0

)
, e2k := T−1

(
0,1{k}

)
, k = 1, . . . , d

de�nes a symplectic basis in H, and T is easily seen to be the coordinate map
corresponding to this basis.

Similarly, if T : H → Cd is a symplectic isomorphism, and 1{1}, . . . ,1{d} is the
standard basis of Cd, then

e2k−1 := T−11{k}, e2k := T−1
(
i1{k}

)
, k = 1, . . . , d

de�nes a symplectic basis in H, and T is of the form given in (B.215).
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Remark B.19. Note that if S, T : (H, σ)→
(
Cd, σCd

)
are symplectic isomorphisms

then S ◦ T−1 : Cd → Cd is also a symplectic isomorphism, but it is not a complex
linear map in general. Indeed, let (H, σ) :=

(
Cd, σCd

)
and T be the identity map. Let

e1, . . . , ed by any orthonormal basis. Then, f2k−1 := ek, f2k := ek + iek, k = 1, . . . , d
is a symplectic basis, and

Sf2k−1 := ek, Sf2k := iek, k = 1, . . . , d

de�nes a symplectic isomorphism, but S ◦ T−1 = S is not complex linear.

B.3 Complexi�cation

Let H be a real vector space with �nite dimension, de�ne vector addition and multi-
plication by real scalars on H×H componentwise, and let (x(1), x(2)) := (−x(2), x(1)).
One can easily see that the result is a complex vector space, which we denote by HC
and call the standard complexi�cation of H. Note that H can be considered a real
lineat subspace of HC via H 3 x ≡ (x, 0) ∈ HC, and ix ≡ i(x, 0) = (0, x), so that
with this identi�cation, HC 3 (x(1), x(2)) ≡ x(1) + ix(2), and therefore HC ≡ H ⊕ iH.
In the case of H = Rd, (Rd)C ≡ Rd ⊕ iRd may be further identi�ed with Cd via

(Rd)C 3 (x(1), x(2)) ≡ x(1) + ix(2) ∈ Cd;

in particular, RC ≡ C.
If H,K are real vector spaces and A : H → K is a real linear map then

AC : HC → KC , AC(x(1), x(2)) := (Ax(1), Ax(2))

de�nes a complex linear map. Indeed,

ACi(x
(1), x(2)) = AC(−x(2), x(1)) = (−Ax(2), Ax(1)) = i(Ax(1), Ax(2)) = iAC(x(1), x(2)) .

Using the above identi�cations, the above can be rewritten as

AC(x(1) + ix(2)) = Ax(1) + iAx(2).

In particular, for the complexi�cation of a linear functional ϕ ∈ H ′, we get

ϕC
(
x(1) + ix(2)

)
= ϕC((x(1), x(2))) = (ϕ(x(1)), ϕ(x(2))) ≡ ϕ(x(1)) + iϕ(x(2)).

Note that the standard inner product on Cd may be written as〈
x(1) + ix(2), y(1) + iy(2)

〉
Cd =

〈
x(1), y(1)

〉
Rd + i

〈
x(1), y(2)

〉
Rd − i

〈
x(2), y(1)

〉
Rd +

〈
x(2), y(2)

〉
Rd ,
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where x(k), y(k) ∈ Rd, and 〈., .〉Rd is the standard inner product of Rd. This motivates
the extension of a real bilinear form ω : H ×H → R to a complex sesquilinear form
ωC : HC ×HC → C as

ωC
(
(x(1), x(2)), (y(1), y(2))

)
:= ω(x(1), y(1)) + iω(x(1), y(2))− iω(x(2), y(1)) + ω(x(2), y(2))

=
[(
ω[(x(1)

)
C − i

(
ω[(x(2)

)
C

] (
y(1) + iy(2)

)
, (B.216)

where the equality follows by a straightforward computation. Similarly to the real
case, one can de�ne

(ωC)[ : HC → H∗C, (ωC)[ : x 7→ ωC(x, .) , x ∈ HC ,

which is now a conjugate linear operator. By introducing the conjugate linear iso-
morphism

S : (H∗)C → H∗C, S(ϕ1, ϕ2) := (ϕ1)C − i(ϕ2)C,

we get

(ωC)[ = S ◦
(
ω[
)
C .

One can easily verify that ωC is non-degenerate if and only if ω is non-degenerate.
If ω is non-degenerate then (ωC)[ is bijective, and for any real bilinear form α on H,

A(ωC)
αC

:=
(
ω[C
)−1 ◦ α[C

is a complex linear map from HC to HC, with

αC(x, y) = ωC
(
A(ωC)
αC

x, y
)
, x, y ∈ HC.

A straightforward computation shows that

A(ωC)
αC

=
(
A(ω)
α

)
C ,

that is,

αC
(
(x(1), x(2)), (y(1), y(2))

)
= ωC

(
(A(ω)

α x(1), A(ω)
α x(2)), (y(1), y(2))

)
.

If α is a real inner product on H then αC is easily seen to be a complex in-

ner product on HC, with induced norm
∥∥(x(1), x(2))

∥∥2

α
= α(x(1), x(1)) + α(x(2), x(2)).

Moreover, if {ei}dimH
i=1 is an α-orthonormal basis in H then {(ei, 0)}dimH

i=1 is an αC-
orthonormal basis in HC. Let AT denote the transpose of A with respect to α,
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de�ned by α(ATy, x) = α(x,Ay), x, y ∈ H. For any (x(1), x(2)), (y(1), y(2)) ∈ HC we
have

αC
(
(x(1), x(2)), AC(y(1), y(2))

)
= αC

(
(x(1), x(2)), (Ay(1), Ay(2))

)
= α(x(1), Ay(1)) + iα(x(1), Ay(2))− iα(x(2), Ay(1)) + α(x(2), Ay(2))

= α(ATx(1), y(1)) + iα(ATx(1), y(2))− iα(ATx(2), y(1)) + α(ATx(2), y(2))

= αC
(
(ATx(1), ATx(2)), (y(1), y(2))

)
= αC

(
(AT)C(x(1), x(2)), (y(1), y(2))

)
,

and hence

A∗C = (AT)C ,

where the adjoint A∗C is taken with respect to the inner product αC. In particular, if

σ is a symplectic form then
(
A

(α)
σ

)T

= −A(α)
σ , and hence(

A(α)
σ

)∗
C = −

(
A(α)
σ

)
C .

The real dimension of a complex vector space is even, and the above construction
guarantees this necessary condition to be satis�ed by doubling the original space.
Hence, the complex dimension of the resulting complexi�cation is the same as the
real dimension of the original space. However, if the dimension of the original real
vector space is even, one may follow a di�erent way of complexi�cation, that results
in a complex vector space with half the dimension of the original real space.

Note that on a complex vector space H,

J : x 7→ ix is real linear and J2 = −I.

De�nition B.20. A real linear map J on a real vector spaceH is a complex structure
if

J2 = −I.

One can easily see that if a complex structure J is given on a real vector space
H then

ix := Jx

de�nes a multiplication between complex numbers and elements of H with respect
to which H is a complex vector space.
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De�nition B.21. The resulting complex vector space is said to be the J-complexi�cation
of H and is denoted by HJ .

Note that di�erent complex structures give rise to di�erent complexi�cations.
Indeed, if J1 6= J2 then there exists some non-zero x ∈ H for which J1x 6= J2x and
hence ix as meant in HJ1 is not equal to ix as meant in HJ2 .

De�nition B.22. Let H be a real vector space and J be a complex structure on it.
A real linear map A : H → H is J-linear if AJ = JA holds.

Note that a real linear map is J-linear if and only if it is complex linear with
respect to the J-complexi�cation.

Example B.23. It is easy to see that J(x, y) := (−y, x) is a complex structure on
H := Rd × Rd, and(

Rd × Rd
)
J

= (Rd)C.

Moreover, if A is a real linear map on Rd then

A(x(1), x(2)) :=
(
Ax(1), Ax(2)

)
= AC(x(1), x(2))

is J-linear.

Lemma B.24. A real vector space possesses a complex structure if and only if its
dimension is even. To every complex structure there exists a basis e1, . . . , edimH in
which

[J ]e = ⊕dimH/2
k=1

[
0 −1
1 0

]
,

i.e.,

Je2k−1 = e2k, Je2k = −e2k−1, k = 1, . . . , dimH. (B.217)

Conversely, if e1, . . . , edimH is a basis then there exists a unique complex structure
for which (B.217) holds.

Proof. As we have seen, a real vector space with a complex structure can be turned
into a complex one, an hence its real dimension has to be even. On the other hand,
let e1, . . . , edimH be a basis in an even-dimensional vector space and de�ne J to be
the unique real linear extension of

Je2k−1 := e2k, Je2k := −e2k−1, k = 1, . . . , dimH.
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One can easily verify that J is a complex structure.
Assume now that J is a complex structure on H, let f1, . . . , fdimH/2 be a basis

of HJ and de�ne e2k−1 := fk, e2k := Jfk, k = 1, . . . , dimH/2. Every x ∈ H can be
uniquely written in the form

x =

dimH/2∑
k=1

(Reλk + i Imλk) fk =

dimH/2∑
k=1

(Reλk) fk+(Imλk) Jfk, λ1, . . . , λdimH/2 ∈ C,

and hence e1, . . . , edimH is a basis. Je2k−1 = e2k follows by de�nition, and Je2k =
−e2k−1 because J2 = −I.

De�nition B.25. We say that a basis e1, . . . , edimH is J-canonical if (B.217) holds.

Note that a J-canonical basis is not unique.

Example B.26. Let H := Rd × Rd. Then,

J(x, y) := (−y, x)

de�nes a complex structure on H, and

e2k−1 :=
(
1{k}, 0

)
, e2k :=

(
0,1{k}

)
,

e′2k−1 :=
(
1{k},1{k}

)
, e2k :=

(
−1{k},1{k}

)
,

are two di�erent sets of J-canonical bases.

If H is a complex Hilbert space with inner product 〈., .〉 then

σH(x, y) := Im 〈x, y〉 (B.218)

de�nes a symplectic form on HR, where HR is H with its real vector space structure.
Note that a complex inner product can uniquely be recovered from its imaginary
part, as

Re 〈x, y〉 = Im i 〈x, y〉 = Im 〈x, iy〉 , (B.219)

and hence

〈x, y〉 = σH(x, iy) + iσH(x, y), x, y ∈ H.

De�nition B.27. A complex structure J on a symplectic space (H, σ) is called
symplectic if J is a symplectic map and is called positive de�nite if

σ(x, Jx) > 0, x ∈ H \ {0}. (B.220)
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Lemma B.28. A complex structure is symplectic if and only if the bilinear map

α(x, y) := σ(x, Jy)

is symmetric, and positive de�nite if and only if the above bilinear map is positive
de�nite.

Proof. The assertion about positive de�nitivity follows by de�nition. α is symmetric
if and only if

σ(x, Jy) = −σ(Jx, y),

which implies

σ(Jx, Jy) = −σ(J2x, y) = σ(x, y),

i.e., J is symplectic. On the other hand, if J is symplectic then

σ(x, Jy) = −σ(Jy, x) = σ(Jy, J2x) = σ(y, Jx) = −σ(Jx, y),

i.e., α is symmetric.

Remark B.29. Note that J is

a complex structure ⇐⇒ [J ]2 = −[I],

symplectic ⇐⇒ [J ]T[σ][J ] = [σ],

positive de�nite ⇐⇒ [σ][J ] is a positive de�nite matrix

in some (and hence any) basis.

Example B.30. Consider (H, σH) for a complex inner product space and de�ne

Jx := ix, x ∈ H

as a real linear map. Obviously, J2 = −I, and

σH(x, Jy) = Im 〈x, iy〉 = Re 〈x, y〉 ,

and hence (x, y) 7→ σ(x, Jy) is a positive de�nite symmetric bilinear form. By the
above lemma, J is a positive de�nite symplectic complex structure. Note that

〈x, y〉 = Re 〈x, y〉+ i Im 〈x, y〉 = σH(x, Jy) + iσH(x, y), x, y ∈ H.
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Lemma B.31. A complex structure on a symplectic space (H, σ) is symplectic
and positive de�nite if and only if there exists a complex inner product on the J-
complexi�cation HJ such that

σ(x, y) = Im 〈x, y〉 , x, y ∈ H. (B.221)

In this case, the inner product is uniquely determined by σ and J , as

〈x, y〉 = σ(x, Jy) + iσ(x, y), x, y ∈ H

holds.

Proof. A straightforward computation shows that

〈x, y〉 := σ(x, Jy) + iσ(x, y), x, y ∈ H

de�nes a sesquilinear form on the J-complexi�cation HJ which is hermitian and
positive de�nite due to J being symplectic and positive de�nite. Obviously, (B.221)
holds.

On the other hand, if there exists a complex inner product on HJ such that
(B.221) holds then Re 〈x, y〉 = σ(x, Jy) by (B.219), and Lemma B.28 yields the
assertion.

Lemma B.32. If e1, . . . , edimH is a symplectic basis in the symplectic space (H, σ)
then

Je2k−1 := e2k, Je2k := −e2k−1, k = 1, . . . , dimH (B.222)

de�nes a positive de�nite symplectic complex structure, and e2k−1, k = 1, . . . , dimH/2
is an orthonormal basis in HJ . Conversely, if J is a positive de�nite symplectic com-
plex structure and f1, . . . , fdimH/2 is an orthonormal basis in HJ then

e2k−1 := fk, e2k := Jfk, k = 1, . . . , dimH/2

is a symplectic basis in H.

Proof. First, let J as de�ned in (B.222). Then, the matrix of J in the given sym-
plectic basis is

[J ] =

dimH/2⊕
k=1

[
0 −1
1 0

]
, and hence, [J ]2 = −[I], [J ]T[σ][J ] = [σ], [σ][J ] = [I],

by which J is indeed a positive de�nite symplectic complex structure.
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Now, f1, . . . , fdimH/2 be a J-orthonormal basis, i.e.,

δk,l = σ (fk, Jfl)+ iσ(fk, fl)⇐⇒

{
σ(fk, fl) = 0

σ (fk, Jfl) = δk,l,
k, l = 1, . . . , dimH/2.

Since J is symplectic, we also have σ(Jfk, Jfl) = 0, k, l = 1, . . . , dimH/2. Hence,
e2k−1 := fk, e2k := Jfk, k = 1, . . . , dimH/2 is indeed a symplectic basis.

Corollary B.33. There exist in�nitely many di�erent positive de�nite symplectic
complex structures on a �nite-dimensional symplectic space.

Proof. By the previous lemma, any symplectic basis e1, . . . , edimH de�nes a positive
de�nite symplectic complex structure. Now, ec,k := ek, k 6= 2 and ec,2 := e2 + ce1

de�nes a symplectic basis for any c ∈ R, and by the above lemma, there exist positive
de�nite symplectic complex structures such that

Jcec,2k−1 = ec,2k, Jcec,2k = −ec,2k−1, k = 1, . . . , dimH.

Thus,

Jce2 = Jc (ec,2 − ce1) = −ec,1 − cJce1 = −e1 − ce2,

and hence Jc 6= Jc′ unless c = c′.

Example B.34. On the symplectic space (Rd × Rd, σR2d),

J(x, y) := (−y, x), x, y ∈ Rd

de�nes a complex structure. Since(
(x(1), x(2)), J(y(1), y(2))

)
7→ σR2d

(
(x(1), x(2)), J(y(1), y(2))

)
= x(1)y(1) + x(2)y(2)

is a positive de�nite symmetric bilinear form, J is a positive de�nite symplectic
complex structure. The corresponding inner product is〈

(x(1), x(2)), (y(1), y(2))
〉

:= σ((x(1), x(2)), i(y(1), y(2))) + iσ((x(1), x(2)), (y(1), y(2)))

= x(1)y(1) + x(2)y(2) + i
(
x(1)y(2) − x(2)y(1)

)
.

Note that Jx = T−1 (iTx), where T is the symplectic isomorphism given in Example
B.6.
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B.4 Inner products in symplectic spaces

It is well-known in linear algebra that two positive semi-de�nite symmetric forms
can simultaneously be diagonzalized, if at least one of them is strictly positive def-
inite, i.e., an inner product. The following lemma establishes a similar result for a
symplectic form and an inner product, by showing that they can be brought to a
canonical form in the same basis.

Lemma B.35. Let σ be an antisymmetric form and α an inner product. There
exists a symplectic basis in H which is also α-orthogonal.

Proof. If rkσ = 0 then any α-orthogonal basis does the job, hence we assume for
the rest that rkσ > 0. This also implies that dimH > 1, since one can easily see
that on a one-dimensional space there is no non-zero symplectic form.

Let T := A
(α)
σ =

(
α[
)−1 ◦ σ[, i.e., σ(x, y) = α(Tx, y) , x, y ∈ H . Then, for any

x, y ∈ H,

α(x, TTy) := α(Tx, y) = σ(x, y) = −σ(y, x) = −α(Ty, x) = α(x, (−T )y) .

Hence, TT = −T , where the transpose is taken with respect to α, as de�ned above.
Obviously, rkT = rkσ[ = rkσ.

Consider now the operator TC on the complexi�cation HC, equipped with the
inner product αC. Since T ∗C = (TT)C = (−T )C = −TC, TC is a normal operator,
and all its eigenvalues are purely imaginary. Let it be a non-zero eigenvalue with
corresponding eigenvector (v(1), v(2)), i.e.,

(Tv(1), T v(2)) = TC(v(1), v(2)) = it(v(1), v(2)) = (−tv(2), tv(1)) ,

or equivalently,

Tv(1) = −tv(2), T v(2) = tv(1) .

As a consequence, neither of v(1) or v(2) can be equal to zero. Further,

TC(v(1),−v(2)) = (Tv(1),−Tv(2)) = (−tv(2),−tv(1)) = −t(v(2), v(1)) = −it(v(1),−v(2)) ,

and thus −it is an eigenvalue with eigenvector (v(1),−v(2)). Since it 6= −it, the
corresponding eigensubspaces are orthogonal, and hence

0 =
〈
(v(1), v(2)), (v(1),−v(2))

〉
= α(v(1), v(1))− iα(v(1), v(2))− iα(v(2), v(1))− α(v(2), v(2))

= α(v(1), v(1))− α(v(2), v(2))− 2iα(v(1), v(2)) ,

323



i.e.,

α(v(1), v(1)) = α(v(2), v(2)) and α(v(1), v(2)) = 0 .

As a consequence, v(1) and v(2) are α-orthogonal, and can be assumed to be normal-
ized, i.e., α(v(1), v(1)) = α(v(2), v(2)) = 1. The above computation also shows that the
map (x(1), x(2)) 7→ (x(1),−x(2)) establishes an isomorphism between the (orthogonal)
eigensubspaces corresponding to the eigenvalues it and −it. As a consequence, the
geometric multiplicity of it and −it are the same, and hence one can list the non-zero
eigenvalues with multiplicities as it1,−it1, . . . , itn,−itn, t1, . . . , tn > 0. Moreover,
there exist α-orthonormal vectors f1, . . . , f2n, such that

Tf2k−1 = −tkf2k, Tf2k = tkf2k−1 .

Let e2k−1 := 1√
tk
f2k, e2k := 1√

tk
f2k−1, and choose an arbitrary α-orthonormal basis

e2n+1, . . . , edimH in the α-orthocomplement of span{e1, . . . , e2n} (this can be done
e.g. by Gram-Schmidt orthogonalization). Then e1, . . . , edimH is a basis with the
desired properties.

Corollary B.36. Let σ be a symplectic form and α an inner product on H. There
exist positive numbers a1, . . . , adimH/2, uniquely determined by α, and a symplectic
basis which is also α-orthogonal such that the matrices of α and σ in this basis are

[α] = ⊕dimH/2
k=1

[
ak 0
0 ak

]
, [σ] = ⊕dimH/2

k=1

[
0 1
−1 0

]
. (B.223)

Proof. Let A := T−1 =
(
σ[
)−1 ◦ α[ and ak := 1

tk
from the proof of the previous

lemma. One can easily see that the matrix of A in the basis constructed in the
lemma is

[A] = ⊕dimH/2
k=1

[
0 ak
−ak 0

]
, (B.224)

and by (B.214), the matrix of α is as given in (B.223). As a consequence, the
characteristic polynomial of A is

p(λ) =
d∏

k=1

(λ2 + a2
k) ,

with complex roots ±ia1, . . . ,±iad. Since T and its characteristic polynomial is
independent of the choice of the basis, so are the numbers a1, . . . , adimH/2.
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De�nition B.37. The numbers a1, . . . , adimH/2 in the above lemma are called the
symplectic eigenvalues of α (with respect to σ). We denote the symplectic spectrum
by Σ(α). We call a symplectic basis α-canonical if the matrix of α in this basis is of
the form (B.223), with the symplectic eigenvalues in the diagonal.

Remark B.38. In general, there may be more than one canonical basis for a given

α. On the other hand, the de�ning operator A =
(
σ[
)−1 ◦α[ has the form (B.224) in

any α-canonical basis, due to (B.214). Hence we call the form (B.224) the canonical
form of A.

Corollary B.39. The determinant of α, de�ned in De�nition B.8, is the product of
its symplectic values on the square:

detα =
(
a1 · . . . · adimH/2

)2
.

Remark B.40. If f1, . . . , fdimH is a symplectic basis which is also α-orthogonal then

[α]f = ⊕dimH/2
k=1

[
bk 0
0 ck

]
, [σ]f = ⊕dimH/2

k=1

[
0 1
−1 0

]
(B.225)

with some numbers bk, ck, k = 1, . . . , dimH/2, that are positive by

bk = α(f2k−1, f2k−1) > 0, ck = α(f2k, f2k) > 0.

By (B.214), the matrix of A =
(
σ[
)−1 ◦ α[ in this basis is

[A]f = ⊕dimH/2
k=1

[
0 ck
−bk 0

]
and hence the characteristic polynomial of A is

p(λ) =
d∏

k=1

(λ2 + bkck) ,

from which there has to exist a permutation π ∈ SdimH/2 such that

ak =
√
bπ(k)cπ(k), k = 1, . . . , dimH/2.

In an arbitrary symplectic basis f1, . . . , fdimH , one can de�ne an inner product by
giving its matrix as in (B.225). Obviously, the basis is then α-orthogonal for the so
de�ned α, but if bk 6= ck for some k then it is not α-canonical. Hence α-orthogonality
of a symplectic basis doesn't imply it being α-canonical in general.
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Example B.41. Let (H, σ) = (H, σH) for some complex Hilbert space H. Any
complex linear operator A de�nes a real bilinear form α by

α(x, y) := σ(Ax, y) = Im 〈Ax, y〉 .

By de�nition, AR =
(
σ[
)−1 ◦ α[, where AR is simply A as a real linear operator.

Then,

α(x, y) = Im 〈Ax, y〉 = Im 〈x,A∗y〉 = Im 〈A∗y, x〉 = Im 〈(−A∗)y, x〉 ,

and hence α is symmetric if and only if A∗ = −A. In this case, the operator Q := iA
is self-adjoint, and

α(x, y) = Im 〈(−iQ)x, y〉 = Im i 〈Qx, y〉 = Re 〈Qx, y〉 = Re 〈x,Qy〉 .

As a consequence, α is an inner product if and only if Q is (strictly) positive de�nite.
Q has an eigen-decomposition

Q =
d∑

k=1

qk |vk〉〈vk| ,

and

e2k−1 := vk, e2k := ivk, k = 1, . . . , d

is an α-canonical basis. In particular, the symplectic eigenvalues of α coincide with
the eigenvalues of Q.

Moreover, if e1, . . . , edimH , is an α-canonical basis then e2k−1, k = 1, . . . , dimH/2,
is an orthonormal eigen-basis of Q, and e2k = ie2k−1 for all k. Indeed, Ae2k−1 =
−qke2k, Ae2k = qke2k−1 and thus Qe2k−1 = −iqke2k, Qe2k = iqke2k−1 for all k. Hence,

Q (e2k−1 + ie2k) = −iqke2k − qke2k−1 = −qk (e2k−1 + ie2k) ,

and, since −qk is not an eigenvalue of Q, we get e2k−1 + ie2k = 0, i.e., e2k = ie2k−1.
Now, for any m 6= 2k, 2k − 1,

Im 〈em, e2k−1〉 = 0 = Im 〈em, e2k〉 = Re 〈em, e2k−1〉 ,

and therefore e2k−1 ⊥ e2l−1 for k 6= l. Finally,

1 = Im 〈e2k−1, e2k〉 = Re 〈e2k−1, e2k−1〉 = ‖e2k−1‖2 .
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Now let σ be a �xed symplectic form on H and α an inner product with corre-

sponding A :=
(
σ[
)−1 ◦ α[. In an α-canonical basis we have the canonical matrix

forms given in (B.223) and (B.224), and one may then be tempted to de�ne functions
of α, either through

[f(α)] := ⊕dimH/2
k=1

[
f(ak) 0

0 f(ak)

]
or

f(α)(x, y) := σ(f(A)x, y), x, y ∈ H,

for positive-valued functions on Σ(α) in the �rst case, or entire analytic functions in
the second. The second idea has some inherent problems, namely that f(A) doesn't
in general de�ne an inner product even for the simplest functions. Indeed,

σ(A2x, y) = −σ(Ax,Ay) = σ(x,A2y),

and hence the bilinear form (x, y) 7→ σ(A2x, y) is not symmetric. (This is heuris-

tically related to the fact that [A2] = ⊕dimH/2
k=1

[
−a2

k 0
0 −a2

k

]
is not of the canonical

form (B.224).) One can easily verify by induction that odd powers n = 2m+ 1 yield
symmetric bilinear forms; however, they are positive de�nite only for n = 4m + 1,
and negative de�nite for the rest, in accordance with[

A2m+1
]

= (−1)m ⊕dimH/2
k=1

[
0 ank
−ank 0

]
. (B.226)

Hence in order to get symplectic eigenvalues a2m+1
1 , . . . , a2m+1

dimH/2, one has to apply

f(t) := (−1)mt2m+1 to A instead of the naively expected f(t) = t2m+1.
The �rst de�nition, on the other hand, clearly de�nes an inner product; what is

not clear is whether it is independent of the α-canonical basis in which it is de�ned.
The following lemma shows that both of the above ideas can be used to obtained
a well-behaved functional calculus for inner products. We give two di�erent proofs,
corresponding to the di�erent approaches outlined above.

Lemma B.42. For any real-valued function f on Σ(α), there exists a bilinear form
f(α) such that in any α-canonical basis

[f(α)] = ⊕dimH/2
k=1

[
f(ak) 0

0 f(ak)

]
,

[
A

(σ)
f(α)

]
= ⊕dimH/2

k=1

[
0 f(ak)

−f(ak) 0

]
.

(B.227)

In particular, f(α) is an inner product if and only if f is positive-valued, and in this
case any α-canonical basis is also f(α)-canonical.
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Proof 1: Let HC be the standard complexi�cation of H and σC, αC and AC be the
standard complex extensions of α, σ and A = A

(σ)
α , respectively. For any α-canonical

basis e1, . . . , edimH ,

Ae2k−1 = −ake2k, Ae2k = ake2k−1,

and hence,

AC(e2k, e2k−1) = (Ae2k, Ae2k−1) = ak(e2k−1,−e2k) = −iak(e2k, e2k−1)

AC(e2k,−e2k−1) = (Ae2k,−Ae2k−1) = ak(e2k−1, e2k) = iak(e2k,−e2k−1).

Since vk,± := (e2k,∓e2k−1), k = 1, . . . , dimH/2 is a basis of HC, the spectrum of AC
is −iΣ(α) ∪ iΣ(α).

Choose a polynomial p such that p(ak) = f(ak) and p(−ak) = −f(ak), k =
1, . . . , dimH, and de�ne f̃(z) := ip(−iz), z ∈ C. Then,

f̃(iak) = if(ak), f̃(−iak) = −if(ak), k = 1, . . . , dimH,

and hence

f̃ (AC) vk,− = f̃(−iak)vk,− = −if(ak)vk,−,

f̃ (AC) vk,+ = f̃(iak)vk,+ = if(ak)vk,+.

Consequently,

f̃ (AC) (e2k, 0) = f̃ (AC)
1

2
(vk,− + vk,+) = if(ak)

1

2
(vk,+ − vk,−)

= −if(ak)(0, e2k−1) = f(ak)(e2k−1, 0),

f̃ (AC) (e2k−1, 0) = f̃ (AC)
i

2
(vk,+ − vk,−) =

i

2
if(ak) (vk,+ + vk,−)

= −f(ak)(e2k, 0).

Therefore, f̃ (AC) leaves the real subspace H × {0} invariant, and hence one can
de�ne the real linear operator Af on H as the restriction of f̃ (AC) onto H × {0}.
De�ne

f(α)(x, y) := σ(Afx, y).

By the above,

[Af ]e = ⊕dimH/2
k=1

[
0 f(ak)

−f(ak) 0

]
and hence by (B.214),

[f(α)]e = ⊕dimH/2
k=1

[
f(ak) 0

0 f(ak)

]
,

which yields that f(α) is an inner product. Since e1, . . . , edimH was an arbitrary
α-canonical basis, the assertion is proven.
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Remark B.43. Note that Af 6= f(A) in general. The case f(x) = 1
x
is of special

importance; in this case Af = −f(A), i.e., the inverse of an inner product is de�ned
through

α−1(x, y) = σ
(
−A−1x, y

)
.

Proof 2: For f : Σ(α)→ R de�ne

f̃ : −Σ(α) ∪ Σ(α)→ R, f̃(x) :=

{
f(x), x ∈ Σ(α),

−f(x), x ∈ −Σ(α).

Choose any odd polynomial p̃ for which p̃(x) = f̃(x), x ∈ −Σ(α) ∪ Σ(α). For
instance, the Lagrange interpolation polynomial

p̃(x) :=
dimH∑
k=1

f(ak)
d∏

m=1
m 6=k

x− am
ak − am

k∏
m=1

x+ am
ak + am

−f(ak)
d∏

m=1

x− am
−ak − am

k∏
m=1
m6=k

x+ am
−ak + am

will do. Being odd, p̃ has the form p̃(x) = x
∑r

k=1 ckx
2k. Let p(x) := x

∑r
k=1(−1)kckx

2k

and de�ne

f(α)(x, y) := σ
(
p
(
A(σ)
α

)
x, y
)
, x, y ∈ H, i.e., A

(σ)
f(α) := p

(
A(σ)
α

)
.

By (B.226),

[
p
(
A(σ)
α

)]
=

dimH/2⊕
k=1

[
0 p(ak)

−p(ak) 0

]
=

dimH/2⊕
k=1

[
0 f(ak)

−f(ak) 0

]
in any α-canonical basis, from which (B.227) follows, and it is also clear that A

(σ)
f(α) =

p
(
A

(σ)
α

)
is independent of the concrete polynomial chosen.

Example B.44. In the setting of Example B.41, one can de�ne

f(α)(x, y) := Re 〈f(Q)x, y〉 , x, y ∈ H

for any function f on Σ(α), and the result is an inner product whenever f takes
strictly positive values on Σ(α). If H is �nite-dimensional then the matrix of f(α)
in any α-canonical basis is

[f(α)] = ⊕dimH/2
k=1

[
f(ak) 0

0 f(ak)

]
,

and hence this de�nition of f(α) coincides with the one provided by Lemma B.42.
Note that

det f(α) = (det f(Q))2 . (B.228)
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Lemma B.45. Let α be an inner product on a �nite-dimensional symplectic space

(H, σ). There exists a complex structure Jα on H such that A :=
(
σ[
)−1 ◦ α[ is

Jα-linear and Q := iA := JαA is positive de�nite with

α(x, y) = Re 〈x,Qy〉 , 〈x, y〉 = σ(x, Jαy) + iσ(x, y), x, y ∈ H.

Moreover, if e1, . . . , edimH is an α-canonical basis then e2k−1, k = 1, . . . , dimH/2 is
a Jα-orthonormal eigenbasis of Q, and hence

Q =

dimH/2∑
k=1

ak |e2k−1〉〈e2k−1| , a1, . . . , adimH/2 ∈ Σ(α).

Vice versa, any Jα-orthonormal eigenbasis f1, . . . , fdimH/2 of Q de�nes an α-canonical
basis through e2k−1 := fk, e2k := Jαfk.

Proof. Let f(x) := −1, x > 0 and Jα := A
(σ)
f(α). Then

[Jα] = ⊕k
[
0 −1
1 0

]
in any α-canonical basis, and hence[

J2
α

]
= −[I], [Jα]T [σ] [Jα] = [σ], [σ] [Jα] = [I], [A] [Jα] = [Jα] [A],

i.e., Jα is a positive de�nite symplectic complex structure by Remark B.29, and A is
Jα-linear. Moreover,

Re 〈x,Qy〉 = σ (x, JαQx) = σ(x,−Ay) = σ(Ax, y) = α(x, y), x, y ∈ H.

Now, if e1, . . . , edimH is an α-canonical basis then

〈e2k−1, e2l−1〉 = σ (e2k−1, Jαe2l−1) + iσ (e2k−1, e2l−1) = σ (e2k−1, e2l) = δk,l,

showing that e2k−1, k = 1, . . . , dimH/2, is Jα-orthonormal. Moreover,

Qe2k−1 = JαAe2k−1 = Jα (−ake2k) = ake2k−1,

and hence e2k−1, k = 1, . . . , dimH/2, is an eigenbasis of Q.
Assume now that f1, . . . , fdimH/2 is a Jα-orthonormal eigenbasis of Q. By Lemma

B.32, e2k−1 := fk, e2k := Jαfk de�nes a symplectic basis. Moreover,

Ae2k−1 = (−iQ) fk = −iakfk = −ake2k,

Ae2k = (−iQ) ifk = akfk = ake2k−1,

by which e1, . . . , edimH is indeed an α-canonical basis.

De�nition B.46. The above complexi�cation is called the α-canonical complexi�-
cation of H, and Q is the symbol of α.

330



B.5 Gauge-invariant inner products

In the previous section we have seen that for any inner product α there exists a com-
plexi�cation of the symplectic space and a positive de�nite complex linear operator
Q such that

σ(x, y) = Im 〈x, y〉 , α(x, y) = Re 〈Qx, y〉 , x, y ∈ H.

Obviously, this complexi�cation depends on α, and we may get di�erent complexi�-
cations for di�erent inner products. As later we would like to treat more than one
inner products together, it is important to know when there exists a common com-
plexi�cation for them. As a slightly less ambitious goal, in this section we consider
the situation when the symplectic space is (H, σH) for some Hilbert space H, and
investigate the conditions for an inner product to be compatible with the complex
structure of the Hilbert space.

Hence, let H = HR and σ(x, y) = σH(x, y) = Im 〈x, y〉 for some Hilbert space H.
Let A be a real linear map on HR and

α(x, y) := σ(Ax, y) = Im 〈Ax, y〉 , x, y ∈ H,

This α is symmetric if and only if

Im 〈Ax, y〉 = α(x, y) = α(y, x) = Im 〈Ay, x〉 , x, y ∈ H.

Replacing y with iy we get the equivalent condition

Re 〈Ax, y〉 = Im i 〈Ax, y〉 = Im 〈Ax, iy〉 = Im 〈Aiy, x〉 = Re 〈iAiy, x〉 , x, y ∈ H.

Finally, symmetricity of α is equivalent to

〈Ax, y〉 = Re 〈Ax, y〉+ i Im 〈Ax, y〉 = Re 〈iAiy, x〉 − i Im 〈x,Ay〉
= Re 〈x, iAiy〉 −Re 〈x,−Ay〉+ Re 〈x,−Ay〉 − i Im 〈x,Ay〉
= 〈x, (−A) y〉+ Re 〈x, (iAi+ A) y〉 , x, y ∈ H. (B.229)

As a consequence, we have the following:

Lemma B.47. For a symmetric bilinear form α(x, y) = Im 〈Ax, y〉, we have

A is complex linear ⇐⇒ 〈Ax, y〉 = 〈x, (−A) y〉 , x, y ∈ H.

Proof. Assume �rst thatA is complex linear. Then iAi = −A, and henceRe 〈x, (iAi+ A) y〉 =
0 in (B.229), from which the assertion follows. Vice versa, if 〈Ax, y〉 = 〈x, (−A) y〉 , x, y ∈
H thenRe 〈x, (iAi+ A) y〉 = 0, x, y ∈ H. Replacing y with iy, we get 〈x, (iAi+ A) y〉 =
0, x, y ∈ H, which yields iAi = −A, and therefore A is complex linear.

331



The map z 7→ zI gives a unitary representation of the complex unit circle T onH,
which is called the gauge group ofH. We say that a bilinear form α is gauge-invariant
if α(zx, zy) = α(x, y) for all x, y ∈ H and z ∈ T.

Lemma B.48. A bilinear form α is gauge-invariant if and only if A = A
(σ)
α is complex

linear.

Proof. Gauge-invariance of α is equivalent to

α(x, y) = α ((cos t+ i sin t)x, (cos t+ i sin t) y)

= cos2 t α(x, y) + cos t sin t α(x, iy) + cos t sin t α(ix, y) + sin2 t α(ix, iy)

for all x, y ∈ H, t ∈ [0, 2π). By rearranging, we get

1− cos 2t

2
[α(ix, iy)− α(x, y)] +

sin 2t

2
[α(x, iy) + α(ix, y)] = 0

for all t, by which

α(ix, iy) = α(x, y), α(x, iy) = −α(ix, y), x, y ∈ H.

Writing out,

Re 〈iAx, y〉 = Re(−i) 〈Ax, y〉 = Im 〈Ax, y〉 = α(x, y)

= α(ix, iy) = Im 〈Aix, iy〉 = Im i 〈Aix, y〉
= Re 〈Aix, y〉

and

Im 〈iAx, y〉 = Im(−i) 〈Ax, y〉 = − Im 〈Ax, iy〉 = −α(x, iy)

= α(ix, y) = Im 〈Aix, y〉 .

Finally, α is gauge-invariant if and only if 〈iAx, y〉 = 〈Aix, y〉 , x, y ∈ H, i.e., A is
complex linear.

Corollary B.49. A real bilinear form α is a gauge-invariant real inner product if
and only if A = A

(σ)
α is complex linear, A∗ = −A and Q := iA is positive de�nite.

Corollary B.50. A real inner product α is gauge-invariant if and only ifH coincides
with the α-canonical complexi�cation of HR, i.e., Jαx = ix, x ∈ H.

De�nition B.51. Let α be a gauge-invariant real inner product on (H, σH) with
symbol Q. For any bounded measurable function f on the spectrum of Q, we de�ne

f(α)(x, y) := Re 〈f(Q)x, y〉 , x, y ∈ H.

By Example B.44, this de�nition coincides with that of Lemma B.42 when H is
�nite-dimensional and f is real-valued.
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