Dynamical systems, Spring 2020

Homework problem set #1 . Due on March 31, Tuesday

One of the 11 problems below can be regarded as a bonus problem. That is, with complete solutions for 10 problems you can obtain full credit. Solving all the 11 problems properly deserves extra credit.

- 1. Consider the one dimensional map $T_{\lambda}: \mathbb{R} \to \mathbb{R}$, $T_{\lambda}x = x^3 \lambda x$, where the parameter λ satisfies $-\infty < \lambda < 1$. Investigate the λ -dependence of
	- (a) the fixed points and their stability properties.
	- (b) the asymptotic behavior of the orbit $T_{\lambda}^{n}x, n \geq 0$ for any initial condition $x \in \mathbb{R}$.
- 2. Consider the doubling map $T : \mathbb{S}^1 \to \mathbb{S}^1$, $Tx = 2x \pmod{1}$. Let $D \subset \mathbb{S}^1$ denote the set of points x such that $\{T^n x | n = 0, 1, 2 \dots \}$ is dense in \mathbb{S}^1 . Prove that $\lambda(D) = 1$ (where λ is the Lebesgue measure).
- 3. We sketched in class that

$$
T : [0, 1] \to [0, 1],
$$
 $T(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1/x \text{ (mod 1)} & \text{if } x \neq 0. \end{cases}$

(the Gauss map) has an absolutely continuous invariant (probability) measure, with density $\rho(x)$ = 1 ln 2 1 $\frac{1}{1+x}$. Provide a detailed argument for this fact.

- 4. Recall from class that on $\Sigma^+ = \{0,1\}^{\mathbb{N}}$, that is, the space of infinite sequences of 2 symbols, we defined a metric as $d(\underline{a}, \underline{b}) = 2^{-s(\underline{a}, \underline{b})}$, where $s(\underline{a}, \underline{b}) = \min\{k \geq 1 | a_k \neq b_k\}$ (here $\underline{a} = (a_1, a_2, ...)$ and similarly for \underline{b} . Prove that $d(\underline{a}, \underline{b})$ is indeed a metric, in particular, it satisfies the triangular inequality.
- 5. Consider $T : [0, 1] \rightarrow [0, 1]$, $Tx = 4x(1 x)$ (the logistic map with $\mu = 4$). Verify that T has an absolutely continuous invariant (probability) measure, with density $\rho(x) = C(x(1-x))^{-1/2}$. $(C = ?)$
- 6. Fix a positive integer $K \geq 1$, and let $\Sigma_K^+ = \{0, 1, ..., K-1\}^{\mathbb{N}}$, that is, the space of infinite sequences of K symbols. The shift map $\sigma : \Sigma_K^+ \to \Sigma_K^+$ is defined in the usual way.
	- (a) What are the periodic points of this shift map with K symbols? Specify a point in Σ_K^+ that has a dense orbit.
	- (b) Consider now the map $T_K : \mathbb{S}^1 \to \mathbb{S}^1$, $T_K x = Kx \pmod{1}$. How are these two dynamical systems related?
- 7. Show that the map $T: [-1,1] \rightarrow [-1,1],$ $Tx = 4x^3 3x$ has an absolutely continuous invariant (probability) measure, and determine the density. (*Hint*: in class we discussed the case of $Tx =$ $2x^2 - 1$, you may proceed along the same lines, just instead of $2x \pmod{1}$ consider $3x \pmod{1}$ as a map of the unit circle in C.)
- 8. Consider the linear maps $T : \mathbb{R}^2 \to \mathbb{R}^2$, $T(x) = Ax$ for the matrices A below. In each case, describe the asymptotic behavior and sketch the phase portrait. In hyperbolic cases, determine the stable and unstable subspaces $(W^s \text{ and } W^u)$.

(a)
$$
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
$$
 (b) $\begin{bmatrix} 2 & 1 \\ 0 & 1/2 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 3/\sqrt{2} & 3/\sqrt{2} \\ -3/\sqrt{2} & 3/\sqrt{2} \end{bmatrix}$.

- 9. Let $T: \mathbb{T}^2 \to \mathbb{T}^2$ be a hyperbolic toral automorphism. Show that, for the matrix A associated to T, the eigenvalues are irrational numbers while the eigendirections, as lines on \mathbb{R}^2 , have irrational slope.
- 10. Let $T: \mathbb{T}^2 \to \mathbb{T}^2$ be a hyperbolic toral automorphism. Show that $x \in \mathbb{T}^2$ is a periodic point for T if and only if both of its coordinates are rational.
- 11. Consider the logistic map $T_{\mu}x = \mu x(1-x)$ with $\mu > 2 + \sqrt{5}$. Show that there exists some $\lambda > 1$ such that $|T'_{\mu}(x)| > \lambda$ whenever $x \in I_0 \cup I_1$. (Recall that we denoted $T^{-1}_{\mu}[0,1] = I_0 \cup I_1$, where I_0 and I_1 are disjoint intervals.)