Dynamical systems, Spring 2022

Homework problem set \#1. Due on March 29, Tuesday

One of the 10 problems below can be regarded as a bonus problem. That is, with complete solutions for 9 problems you can obtain full credit. Solving all the 10 problems properly deserves extra credit.

1. Consider the one dimensional map $T_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}, T_{\lambda} x=x^{5}-\lambda x$, where the parameter λ satisfies $-\infty<\lambda \leq 1$. Investigate the λ-dependence of
(a) the fixed points and their stability properties.
(b) the asymptotic behavior of the orbit $T_{\lambda}^{n} x, n \geq 0$ for any initial condition $x \in \mathbb{R}$.
2. Consider the doubling map $T: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, T x=2 x(\bmod 1)$. Let $D \subset \mathbb{S}^{1}$ denote the set of points x such that $\left\{T^{n} x \mid n=0,1,2 \ldots\right\}$ is dense in \mathbb{S}^{1}. Prove that $\lambda(D)=1$ (where λ is the Lebesgue measure).
3. Consider $T:[0,1] \rightarrow[0,1], T x=4 x(1-x)$ (the logistic map with $\mu=4$). Verify that T has an absolutely continuous invariant (probability) measure, with density $\rho(x)=C(x(1-x))^{-1 / 2}$. $(C=$?)
4. Fix a positive integer $K \geq 1$, and let $\Sigma_{K}^{+}=\{0,1, \ldots, K-1\}^{\mathbb{N}}$, that is, the space of infinite sequences of K symbols. The shift map $\sigma: \Sigma_{K}^{+} \rightarrow \Sigma_{K}^{+}$is defined in the usual way.
(a) What are the periodic points of this shift map with K symbols? Specify a point in Σ_{K}^{+}that has a dense orbit.
(b) Consider now the map $T_{K}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, T_{K} x=K x(\bmod 1)$. How are these two dynamical systems related?
5. Recall from class that on $\Sigma^{+}=\{0,1\}^{\mathbb{N}}$, that is, the space of infinite sequences of 2 symbols, we defined a metric as $d(\underline{a}, \underline{b})=2^{-s(\underline{a}, \underline{b})}$, where $s(\underline{a}, \underline{b})=\min \left\{k \geq 1 \mid a_{k} \neq b_{k}\right\}$ (here $\underline{a}=\left(a_{1}, a_{2}, \ldots\right.$) and similarly for \underline{b}). Prove that $d(\underline{a}, \underline{b})$ is indeed a metric, in particular, it satisfies the triangular inequality.
6. Show that the map $T:[-1,1] \rightarrow[-1,1], T x=8 x^{4}-8 x^{2}+1$ has an absolutely continuous invariant (probability) measure, and determine the density. (Hint: in class we discussed the case of $T x=$ $2 x^{2}-1$, you may proceed along the same lines, just instead of $2 x(\bmod 1)$ consider $4 x(\bmod 1)$ as a map of the unit circle in \mathbb{C}.)
7. Consider the linear maps $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x)=A x$ for the matrices A below. In each case, describe the asymptotic behavior and sketch the phase portrait. In hyperbolic cases, determine the stable and unstable subspaces (W^{s} and W^{u}).
(a) $\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$
(b) $\left[\begin{array}{rr}3 & 1 \\ 0 & 1 / 3\end{array}\right]$
(c) $\left[\begin{array}{rr}0 & 1 / 5 \\ 1 / 5 & 0\end{array}\right]$
(d) $\left[\begin{array}{rr}\sqrt{3} & 1 \\ -1 & \sqrt{3}\end{array}\right]$.
8. Let $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a hyperbolic toral automorphism. Show that, for the matrix A associated to T, the eigenvalues are irrational numbers while the eigendirections, as lines on \mathbb{R}^{2}, have irrational slope.
9. Let $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a hyperbolic toral automorphism. Show that $x \in \mathbb{T}^{2}$ is a periodic point for T if and only if both of its coordinates are rational.
10. Consider the logistic map $T_{\mu} x=\mu x(1-x)$ with $\mu>2+\sqrt{5}$. Show that there exists some $\lambda>1$ such that $\left|T_{\mu}^{\prime}(x)\right|>\lambda$ whenever $x \in I_{0} \cup I_{1}$. (Recall that we denoted $T_{\mu}^{-1}[0,1]=I_{0} \cup I_{1}$, where I_{0} and I_{1} are disjoint intervals.)
