Dynamical systems, Spring 2022

Homework problem set #2. Due on May 3, Tuesday

One of the 8 problems below can be regarded as a bonus problem. That is, with complete solutions for 7 problems you can obtain full credit. Solving all the 8 problems properly deserves extra credit.

- 1. If $T: M \to M$ is a dynamical system with invariant measure μ and $n \ge 2$ is a fixed integer, then it is possible to consider $T^n = T \circ \cdots \circ T$, the *n*th power of *T*, for which μ is again invariant. Show that whenever T^n is ergodic, then *T* is ergodic. On the other hand, the converse is not true; give an example when *T* is ergodic but T^n (for some *n* fixed) is not ergodic.
- 2. Consider the rotation $T : \mathbb{S}^1 \to \mathbb{S}^1$, $Tx = x + 1/2 \pmod{1}$. Verify that the following two measures are invariant:

$$\mu_1 = \frac{1}{2} \left(\delta_{\frac{1}{4}} + \delta_{\frac{3}{4}} \right); \qquad \mu_2 = \frac{1}{4} \left(\delta_0 + \delta_{\frac{1}{4}} + \delta_{\frac{1}{2}} + \delta_{\frac{3}{4}} \right).$$

Are μ_1 and/or μ_2 ergodic? Are they mixing (with respect to T)?

- 3. Let M be a compact metric space, $T: M \to M$ continuous, and let \mathcal{M}_{inv} denote the collection of T-invariant Borel probability measures, while $\mathcal{M}_{erg} \subset \mathcal{M}_{inv}$ is the subcollection of ergodic measures. Show that whenever $\mu \in \mathcal{M}_{inv}$ but $\mu \notin \mathcal{M}_{erg}$, μ is not an extreme point of the convex set \mathcal{M}_{inv} , that is, there exist $\mu_1, \mu_2 \in \mathcal{M}_{inv}$ and 0 < t < 1 such that $\mu = t\mu_1 + (1-t)\mu_2$.
- 4. Consider $T: [0,1] \to [0,1]$, $Tx = x + a \sin(2\pi x)$, where $0 < a < \frac{1}{2\pi}$. Describe \mathcal{M}_{inv} and \mathcal{M}_{erg} for this map.
- 5. Show that the conditions of the Krylov-Bogolyubov theorem are "sharp" by giving examples of maps with $\mathcal{M}_{inv} = \emptyset$ and
 - (a) $T: [0,1] \rightarrow [0,1]$, but T is not continuous (minimize the number of discontinuity points);
 - (b) $T: (0,1) \rightarrow (0,1)$ and T is continuous;
 - (c) $T : \mathbb{R} \to \mathbb{R}$ and T is continuous.
- 6. Consider the first two bits in the binary expansions of the numbers 3, 9, 27, ..., 3ⁿ, What is more frequent, 11 or 10?
- 7. Piecewise linear (strong) Markov maps $T : [0,1] \rightarrow [0,1]$ are associated to finite partitions $0 = a_0 < a_1 < a_2 < \cdots < a_{K-1} < a_K = 1$ of the interval [0,1]. When restricted to the subinterval $I_j = (a_{j-1}, a_j)$, the map is given by $T_j := T|_{I_j}$; $T_j x = \frac{x a_{j-1}}{a_j a_{j-1}}$, that is, T_j is a *linear* one-to-one map of I_j onto (0,1) $(j = 1, 2, \ldots, K)$.
 - (a) Show that the Lebesgue measure is invariant for T.
 - (b) Show that T with the Lebesgue measure is isomorphic to a Bernoulli shift with K symbols (the probability distribution on the K symbols has to be defined appropriately, of course). Conclude that T is ergodic (in fact, mixing) with respect to the Lebesgue measure.
 - (c) For (Lebesgue) almost every $x \in (0,1)$ the quantity $|(T^n)'(x)|$ that is, the derivative of the *n*th iterate is well-defined. Show that $|(T^n)'(x)|$ grows exponentially with the same rate λ for almost every $x \in (0,1)$. Remark: in this simple context, λ is the occurrence of the "asymptotic expansion rate" or "Lyapunov-exponent". Recall that a numerical sequence b_n grows exponentially with rate λ if $\lim_{n\to\infty} \frac{\ln b_n}{n} = \lambda$.

- 8. Let M be a topological space and $T: M \to M$ a continuous map.
 - For $x \in M$ the ω -limit points of x are

$$\omega(x) = \bigcap_{n \in \mathbb{Z}^+} \overline{\bigcup_{j \ge n} T^j x};$$

that is $y \in \omega(x)$ if and only if there is a subsequence $n_k \to \infty$ such that $T^{n_k} x \to y$.

• The recurrent points of T are:

$$\mathcal{R}(T) = \{ x \in M \mid x \in \omega(x) \}.$$

• $x \in M$ is a non-wandering point for T if given any open neighborhood $U \ni x$ there exists $n \ge 1$ such that $T^n U \cap U \neq \emptyset$. The collection of non-wandering points is denoted by $\Omega(T)$.

Show that (i) $\Omega(T)$ is closed; (ii) if $y \in \Omega(T)$ then $Ty \in \Omega(T)$; (iii) for any $x \in M$ it holds that $\omega(x) \subset \Omega(T)$; hence (iv) $\overline{\mathcal{R}(T)} \subset \Omega(T)$; and we have the following chain of implications (v) x is periodic $\Rightarrow x$ is recurrent $\Rightarrow x$ is non-wandering; however (vi) give examples that all these inclusions are proper.