Dynamical systems, Spring 2022

Homework problem set #3. Due on May 24, Tuesday

One of the 6 problems below can be regarded as a bonus problem. That is, with complete solutions for 5 problems you can obtain full credit. Solving all the 6 problems properly deserves extra credit.

- 1. We discussed in class that $\Lambda \subset M$ is an *attractor* for the invertible topological dynamical system $T: M \to M$ if there exists an open neighborhood $U \supset \Lambda$ such that for the closure $N = \overline{U}$ it holds that $T(N) \subset U$ (that is, U is a *trapping region*) and $\Lambda = \bigcap_{n=0}^{\infty} T^n N$. Show that in such a case Λ is a closed invariant set (invariance means $\Lambda = T(\Lambda) = T^{-1}(\Lambda)$).
- 2. As usual, let us represent \mathbb{T}^2 as $[0,1]^2$ with the opposite sides identified. Let a > 0 be some small parameter (say $a < \frac{1}{100}$) and consider $F : \mathbb{T}^2 \to \mathbb{T}^2$, $F(x,y) = (x+a\sin(2\pi x), y+a\cos(2\pi x)\sin(2\pi y))$. Identify the fixed points, verify that all of them are hyperbolic, and classify them into sources, sinks and saddles. Find the (global) stable and unstable manifolds for each fixed point.
- 3. Consider the one-sided full shift with two symbols, $\sigma : \Sigma^+ \to \Sigma^+$. Prove that this system has the shadowing property. That is, given a δ -pseudo orbit construct a point the true orbit of which is ε -shadowing the pseudo orbit (where δ is appropriately chosen for ε).
- 4. Let M be a compact metric space, and for $\varepsilon > 0$ let $C(\varepsilon)$, $N(\varepsilon)$ and $S(\varepsilon)$ denote the minimum cardinality of ε -covers, the minimum cardinality of ε -nets, and the maximum cardinality of ε -separated sets, respectively. Prove that $C(2\varepsilon) \le N(\varepsilon) \le S(\varepsilon) \le C(\varepsilon)$.
- 5. Prove (ii), (iii), (iv), (vi), (vii) and (viii) from the list of properties of $H(\alpha)$ and $H(\alpha|\beta)$. (You may rely on (i) and (v).)
- 6. Prove (1), (2), (3), (5), (6) and (7) from the list of properties of h(T). (You may rely on (4) and (i-xii).)