Markov Chains and Dynamical Systems, Spring 2024

Homework problem set \#4. Due on April 30, Tuesday

1. Consider the one dimensional map $T_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}, T_{\lambda} x=x^{3}-\lambda x$, where the parameter λ satisfies $-\infty<\lambda \leq 1$. Investigate the λ-dependence of
(a) the fixed points and their stability properties.
(b) the asymptotic behavior of the orbit $T_{\lambda}^{n} x, n \geq 0$ for any initial condition $x \in \mathbb{R}$.
2. (a) Prove that $\log _{2}(3)$ is an irrational number.
(b) For some $m \geq 2$, let $w=w_{1} w_{2} \ldots w_{m}=1 w_{2} \ldots w_{m}$ be a binary word of length m that starts with 1 but otherwise arbitrary, that is, $w_{1}=1$ while $w_{i} \in\{0,1\}, i=2, \ldots m$. Show that there exists some $n \geq 1$ such that the first m digits in the binary code of 3^{n} coincide with w.
(c) Consider the first two digits in the binary code for the sequence of numbers $3,9,27, \ldots 3^{n}, \ldots$. There are two options: 10 and 11. Which one is more frequent? (Compute the asymptotic frequencies of these two options.)
3. Recall that, given two dynamical systems $T_{1}: M_{1} \rightarrow M_{1}$ and $T_{2}: M_{2} \rightarrow M_{2}$,

- T_{2} is a factor of T_{1} if there is a map $\Phi: M_{1} \rightarrow M_{2}$ such that $\Phi \circ T_{1}=T_{2} \circ \Phi$. In such a case, Φ is called a semiconjugacy.
- If, moreover, Φ is a bijection (one-to-one and onto) then it is called a conjugacy (and the two dynamical systems are conjugate).

For any $\alpha \in(0,1)$, let $R_{\alpha}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ denote the rotation of the circle by α. Given α, let $\beta=2 \alpha(\bmod 1)$ and $\gamma=1-\alpha$.
(a) Show that R_{β} is a factor of R_{α}. (Moreover, the semiconjugacy is continuous).
(b) Show that R_{γ} and R_{α} are conjugate. (Moreover, the conjugacy is a homeomorphism of \mathbb{S}^{1}, that is, a continuous bijection with a continuous inverse).
4. Consider the doubling map $T: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, T x=2 x(\bmod 1)$. Let $D \subset \mathbb{S}^{1}$ denote the set of points x such that $\left\{T^{n} x \mid n=0,1,2 \ldots\right\}$ is dense in \mathbb{S}^{1}. Prove that D is uncountable.
Bonus problem: Prove that $\lambda(D)=1$ (where λ is the Lebesgue measure).
5. Consider the logistic map $T_{a} x=a x(1-x)$ with $a>2+\sqrt{5}$. Show that there exists some $\lambda>1$ such that $\left|T_{a}^{\prime}(x)\right|>\lambda$ whenever $x \in I_{0} \cup I_{1}$. (Recall that we denoted $T_{a}^{-1}[0,1]=I_{0} \cup I_{1}$, where I_{0} and I_{1} are disjoint intervals.)

