- 1. The questions below concern the doubling map, that is $T: \mathbb{S}^1 \to \mathbb{S}^1$, $Tx = 2x \pmod{1}$.
 - (a) What is the orbit of $x = \frac{6}{7}$ under T?
 - (b) Find the binary code of $x=\frac{6}{7}$, that is, the sequence of digits $x_k\in\{0,1\}, k=1,2,\ldots$ such that $\frac{6}{7}=\sum_{k=1}^{\infty}x_k2^{-k}$.
 - (c) Find some $y \in \mathbb{S}^1$ such that (i) $|y \frac{6}{7}| \le \frac{1}{32}$, (ii) y is irrational, (iii) the orbit of y is not dense on \mathbb{S}^1 .

2. (a) Sketch the graph of the function $G: \mathbb{R}^+ \to \mathbb{R}^+, G(x) = \frac{2}{3}x + \frac{3}{x}$.

(b) Consider the recursion $x_0 = 200$, $x_n = G(x_{n-1}) = \frac{2}{3}x_{n-1} + \frac{3}{x_{n-1}}$. $\lim_{n \to \infty} x_n = ?$