1. Two fair dice are rolled. Consider the following events:
$A=\{$ At least one of the two dice turns up 2.\} $\quad B=\{$ The sum of the two values rolled is 5.$\}$
Compute (i) $\mathbb{P}(A)=$
(ii) $\mathbb{P}(A \mid B)=$
(iii) Are A and B independent?
2. Consider a biased coin that turns up Head with probability p, and turns up Tail with probability $q=1-p$. We keep flipping this coin until it turns up Head for the first time. Let X denote the number of flips. Express, in terms of q, the probability $\mathbb{P}(X$ takes an even value $)=$

Bonus Consider the previous problem and assume this time $\mathbb{P}(X$ takes an even value $)=\frac{1}{4}$. Determine $\mathbb{E} X$.

BSM Course on Markov Chains and Dynamical Systems, Spring 2024
Quiz \#1, February 15; NAME:

1. Two fair dice are rolled. Consider the following events:
$A=\{$ At least one of the two dice turns up 2.\} $\quad B=\{$ The sum of the two values rolled is 5.$\}$
Compute (i) $\mathbb{P}(A)=$
(ii) $\mathbb{P}(A \mid B)=$
(iii) Are A and B independent?
2. Consider a biased coin that turns up Head with probability p, and turns up Tail with probability $q=1-p$. We keep flipping this coin until it turns up Head for the first time. Let X denote the number of flips. Express, in terms of q, the probability
$\mathbb{P}(X$ takes an even value $)=$

Bonus Consider the previous problem and assume this time $\mathbb{P}(X$ takes an even value $)=\frac{1}{4}$. Determine $\mathbb{E} X$.

