Quiz \#7, April 25; NAME:

1. Consider the map $T:[0,1] \rightarrow[0,1]$,

$$
T(x)= \begin{cases}\frac{3}{2} x & \text { if } 0 \leq x<\frac{2}{3} \\ 3 x-2 & \text { if } \frac{2}{3} \leq x \leq 1\end{cases}
$$

Is Lebesgue measure invariant for T ? If yes, explain why, if no, find some other absolutely continuous invariant probability measure (ie. an invariant probability density).
2. Consider the map $T_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}, T_{\lambda}(x)=x^{2}+\lambda$, specifically for (a) $\lambda=0$ and (b) $\lambda=2$. For both cases, sketch the graph of T_{λ}, find its fixed points and determine their stability (attracting or repelling). Is there some $\lambda \in(0,2)$ that can be considered as a bifurcation value? If yes, for what type of bifurcation, and why?

