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Abstract

Following recent work of Chernov, Markarian, and Zhang, it is known that

the billiard map for dispersing billiards with zero angle cusps has slow decay

of correlations with rate 1/n. Since the collisions inside a cusp occur in quick

succession, it is reasonable to expect a much faster decay rate in continuous

time. In this paper we prove that the flow is rapid mixing: correlations decay

faster than any polynomial rate. A consequence is that the flow admits strong

statistical properties such as the almost sure invariance principle, even though

the billiard map does not.

The techniques in this paper yield new results for other standard examples

in planar billiards, including Bunimovich flowers and stadia.

1 Introduction

Lorentz gas models (and the associated discrete time billiard maps) are an important
class of examples in mathematical physics. Their systematic study from the viewpoint
of smooth ergodic theory was begun by Sinăı [31] in the 1970’s. Sinăı focused on planar
periodic Lorentz gases with convex obstacles (dispersing billiards) proving properties
such as uniform hyperbolicity and ergodicity. The situation is analogous to the much-
studied case of Anosov and Axiom A systems for which advanced statistical properties
such as decay of correlations and central limit theorems are by now classical [2, 29, 32].
In particular, if Λ ⊂M is a mixing hyperbolic basic set with Gibbs measure µ for an
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Axiom A diffeomorphism f : M → M , then for all Hölder observables v, w : Λ → R

the correlation function

ρ(n) =
∫
Λ
v w ◦ fn dµ−

∫
Λ
v dµ

∫
Λ
w dµ,

decays exponentially: ρ(n) = O(τn) for some τ ∈ (0, 1). The corresponding results for
billiards are complicated by the presence of singularities and unbounded derivatives,
but these difficulties were eventually overcome by Young [34] and Chernov [6] who
proved exponential decay of correlations for planar periodic dispersing billiards by
constructing a certain type of infinite Markov extension called a Young tower [34, 35].

The situation for flows is considerably more subtle. Whereas mixing Axiom A
diffeomorphisms always have exponential decay of correlations for Hölder observables,
there exist Axiom A flows that are mixing but at an arbitrarily slow rate [30, 27].
Currently, it is not known if exponential decay of correlations is typical for Axiom A
flows. However, Dolgopyat [15] (see also [17]) proved that typical Axiom A flows are
rapid mixing (faster than any polynomial rate) for sufficiently regular observables.
Melbourne [19, 20] extended this result to flows with a Poincaré map modelled by
a Young tower, proving for example that the planar periodic Lorentz gas with finite
horizon is rapid mixing. For this particular flow, Chernov [7] was able to prove
stretched exponential decay of correlations.

Thus, generally speaking our understanding of planar periodic dispersing billiards
and Lorentz gases is now as advanced as in the Axiom A case. However, there are a
number of classes of planar billiards for which open questions remain [8, 10, 12]. In
this paper, we focus mainly on questions related to decay of correlations for Lorentz
gas flows, building on [19] (rapid mixing) and [20] (slow mixing).

Example 1.1 (Dispersing billiards with cusps) Dispersing billiards with cusps,
where the boundary curves are all dispersing but the interior angles at corner points
are zero, turned out to be much more involved technically than the usual Lorentz
gases. For example ergodicity for the dispersing billiard map with cusps was only
proved in the mid 1990’s by Reháček [28]. By standard arguments, ergodicity implies
K-mixing [10, Chapter 6] and the Bernoulli property [9, 25] for all the hyperbolic
billiard examples.

Concerning rates of mixing, Chernov & Markarian [11] proved, using the method
of Young towers, that decay of correlations for the billiard map satisfies ρ(n) =
O((logn)2/n). It was anticipated that the logarithmic factor is an artifact of the
proof, and this factor was removed by Chernov & Zhang [14] yielding the decay rate
ρ(n) = O(1/n). It is believed that this result is optimal for the billiard map. This
rate of decay of correlations is too weak for strong statistical limit laws (see [1]).

Since the collisions inside a cusp occur in quick succession, it is reasonable to
expect a much faster decay rate in continuous time [12, Section 5.6], possibly even
exponential decay of correlations. Exponential decay seems to be beyond current tech-
niques even for simpler problems (such as the finite horizon planar periodic Lorentz
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gas). Previously, no results on decay of correlations for the flow (not even slow mix-
ing) were available when there are cusps. In this paper we prove rapid mixing for the
flow.

A byproduct of our proof is the almost sure invariance principle (ASIP) for the
flow. We note that the ASIP implies numerous statistical limit laws such as the central
limit theorem, the law of the iterated logarithm, and their functional versions, see for
example [26, 22].

Example 1.2 (Bunimovich flowers) It was discovered by Bunimovich in the
1970’s that billiard tables with focusing boundary components may also show hy-
perbolic behaviour. For the first examples of such tables, constructed for example in
[3], the boundary components are either dispersing, or focusing arcs of circles, sub-
ject to some further constraints (see Section 3.1 below). Given their typical shape,
such billiards are often called Bunimovich flowers. Later the probably best known
example of a hyperbolic billiard with focusing boundary components, the Bunimovich
stadium, was introduced in [4]. Focusing hyperbolic billiards have a rich literature
by now – it is worth pointing out Wojtkowski’s contribution, [33] in particular, which
clarified much of the mechanism behind hyperbolic behaviour. For further histori-
cal accounts, and detailed proofs of ergodicity, we refer to the monograph [10] and
references therein.

As for rates of mixing, Chernov & Zhang [13] show that in Bunimovich flowers the
billiard map has decay of correlations ρ(n) = O((logn)3/n2). (Again, the logarithmic
factor appears to be an artifact of the proof and it is expected that 1/n2 is the optimal
rate.) It follows that the map satisfies statistical limit laws such as the ASIP. See [21]
for the scalar case and [22] for R

d-valued observables.
By [24], the billiard flow immediately inherits the ASIP (and hence the other

limit laws). However, previous results were unable to establish estimates for decay
of correlations of the flow. We recall from [13] that the only effect slowing down the
decay rate of the billiard map is sliding along a circular arc, where collisions occur
in quick succession. Just as in the cusp example, it is reasonable to expect that the
flow mixes better than the map in Bunimovich flowers.

In this paper, we prove rapid mixing for the flow.

Example 1.3 (Bunimovich stadia) Bunimovich [4, 5] established hyperbolicity
and ergodicity for the stadium billiard bounded by two parallel lines connecting two
semicircles. Markarian [18] proved decay of correlations O((logn)2/n) for the billiard
map, and Chernov & Zhang [14] improved this to obtain the optimal rate 1/n. This
is too weak for strong statistical limit laws; indeed Bálint & Gouëzel [1] prove a
nonstandard limit law (nonstandard domain of attraction of the normal distribution
with

√
n logn normalization) for typical observables. The same limit law holds for

the flow [1, 24]. In particular, the ASIP fails for both the billiard map and the flow.
This time, we do not expect the flow to mix more rapidly than the map, but slow

mixing does not follow from previous results. In this paper, we prove that the stadium
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flow decays at the same slow rate 1/t as the map.

Remark 1.4 Dolgopyat’s results [15] on rapid mixing for Axiom A flows require
the observables to be smooth in the flow direction. This restriction is inherited by
the generalisation in [19, 20] to nonuniformly hyperbolic flows, and by the current
paper. In particular, our results on rates of mixing for Lorentz gases do not apply
to certain physically relevant observables such as position and velocity. At present,
the only result on decay of correlations for Lorentz gas flows that includes general
Hölder observables is Chernov’s result for the planar periodic Lorentz gas with finite
horizon [7].

On the other hand, our proof of the ASIP for billiard flows with cusps in Exam-
ple 1.1 is valid for all Hölder observables.

The remainder of the paper is organised as follows. In Section 2, we recall back-
ground material on Young towers [34, 35], and on decay of correlations for flows
possessing a Poincaré map modelled by a Young tower [19, 20]. In Section 3, we
present our new results for Examples 1.1, 1.2 and 1.3.

2 Young towers and flows

Let f : M →M be a map, and let h : M → R
+ be a roof function. Let ϕt : Mh →Mh

be the corresponding suspension flow. Thus the map f(x) = ϕh(x)(x) is a Poincaré
map for the flow. Conversely, given f and h we define the suspension Mh = {(x, u) ∈
M × R : 0 ≤ u ≤ h(x)}/ ∼ where (x, h(x)) ∼ (fx, 0). Then the suspension flow is
given by ϕt(x, u) = (x, u+ t) computed modulo identifications.

In our examples, M is a finite union of Riemannian manifolds. We will say that
the map f : M →M is modelled by a Young tower if it satisfies the axioms introduced
by Young [34, 35]. In particular, there is a set Y ⊂M that possesses an appropriate
hyperbolic product structure. Furthermore, there exists a measurable partition of
Y into countably many sets Yi, and r : Y → N with constant values rYi

on the Yi,
such that the induced map F = f r : Y → Y is smooth and uniformly hyperbolic
when restricted to any Yi, with respect to the hyperbolic product structure of Y . It
is important to note that r is not necessarily the first return time to Y , thus the
corresponding tower map is a Markov extension of the original map f : M → M . For
further details of the construction see the original references.

For examples from billiards, there is a natural invariant measure µ (the Liouville
measure) that is equivalent to Lebesgue measure on M with L∞ density. In what
follows we always assume that both the discrete return time r (defined on Y ) and
the roof function h (defined on M) are integrable with respect to Lebesgue measure
and hence µ. The natural flow-invariant probability measure µh on Mh given by
µh = µ×lebesgue/

∫
M
h dµ coincides with Lebesgue measure for the billiard examples.
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We aim to compute the rate of decay of correlations and statistical limit laws
for sufficiently regular observables v, w : Mh → R. For m ≥ 0, η ∈ (0, 1), the
function space Cm,η(Mh) consists of those v : Mh → R for which ‖v‖m,η = ‖v‖η +
‖∂tv‖η + · · ·+ ‖∂mt v‖η <∞ where ∂t denotes the derivative in the flow direction and
‖v‖η = |v|∞ + supx 6=y, u∈[0,max{h(x),h(y)}] |v(x, u) − v(y, u)|/d(x, y)η.

We now summarize results from [19, 20] used in Section 3. Define

ρv,w(t) =
∫
Mh v w ◦ ϕt dµh −

∫
Mh v dµ

h
∫
Mh w dµ

h.

Theorem 2.1 ( [19] ) Let f : M → M be a map modelled by a Young tower and
h : M → R

+ be a Hölder roof function. Assume

• Exponential tails: Leb(y ∈ Y : r(y) > n) = O(γn) for some γ ∈ (0, 1).

Then typically the flow ϕt : Mh →Mh is rapid mixing: there exists η ∈ (0, 1) and
for any n ≥ 1, there exists m ≥ 0, C ≥ 1, such that

|ρv,w(t)| ≤ C‖v‖m,η‖w‖m,η t−n,

for all v, w ∈ Cm,η(Mh) and all t > 0.

Theorem 2.2 ( [20] ) Let f : M → M be a map modelled by a Young tower and
h : M → R

+ be a Hölder roof function. Assume

• Polynomial tails: Leb(y ∈ Y : r(y) > n) = O(1/nβ+1) for some β > 0, and

• 1/h ∈ L∞, or more generally there is an integer p ≥ 1 such that 1/hp ∈ L∞

where hp = h+ h ◦ f + · · · + h ◦ f p−1.

Then typically the flow ϕt : Mh →Mh is polynomial mixing with rate 1/tβ: there
exists η ∈ (0, 1), m ≥ 0, C ≥ 1, such that

|ρv,w(t)| ≤ C‖v‖m,η‖w‖m,η t−β,

for all v, w ∈ Cm,η(Mh) and all t > 0.

Remark 2.3 In general, Theorems 2.1 and 2.2 hold typically, subject to a nonde-
generacy condition stated explicitly in the references [19, 20]. However, this nonde-
generacy condition is automatic for the billiards examples considered here because of
the contact-like structure [20].

Remark 2.4 Theorem 2.1 implies that in situations where Young [34] obtains expo-
nential decay of correlations for the billiard map f : M → M , rapid decay of corre-
lations holds for the flow ϕt. Similarly, Theorem 2.2 implies that in situations where
Young [35] obtains polynomial decay of correlations for the billiard map f : M →M
with rate O(1/nβ), polynomial decay of correlations with rate O(1/tβ) holds for the
flow ϕt.
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Remark 2.5 The condition that h is Hölder can be relaxed in Theorems 2.1 and 2.2.
It suffices that h is uniformly piecewise Hölder (hence bounded) as follows. The
billiard examples are examples of smooth dynamical systems with at most countably
many singularities. Write M =

⋃
Mj where the Mj are the maximal subsets of M

on which f is smooth. It is enough that supj ‖h1Mj
‖η <∞.

By construction, the Young tower that models the billiard map “respects” the par-
tition

⋃
Mj in the following sense: as F |Yi

is smooth,
⋃
Yi is necessarily a refinement

of the restriction of
⋃
Mj onto Y .

Let us make one more remark. Even though this is a very simple observation,
this is the Key Observation behind the arguments of Section 3. Note that M can
be viewed as a Poincaré cross-section to the flow. It may be the case that there is
an alternative cross-section M̂ with Poincaré map f̂ : M̂ → M̂ (and roof function

ĥ : M̂ → R
+) that can also be modelled by a Young tower and such that the tail

distribution of the Young tower for f̂ : M̂ → M̂ allows for a better control of the

statistical properties. Note that the corresponding suspension flow ϕ̂t : M̂ ĥ → M̂ ĥ is
identical to the original flow.

Statistical limit laws

Theorem 2.6 ( [22] ) Let f : M → M be a map modelled by a Young tower and
h : M → R

+ be a Hölder roof function. Assume

• Summable tails: Leb(y ∈ Y : r(y) > n) = O(1/nβ+1) for some β > 1.

Then the (vector-valued) ASIP holds: there exists λ > 0, and for any Hölder
observable v : Mh → R

d with mean zero there is a d-dimensional Brownian motion
W , such that (on a possibly enriched probability space)

∫ T

0
v ◦ ϕt dt = W (T ) +O(T

1

2
−λ) as T → ∞ a.e.

Remark 2.7 Again, it suffices that the roof function h is uniformly piecewise Hölder
as in Remark 2.5. Similarly, the Hölder regularity requirement for the observable

v in Theorem 2.6 can be relaxed. Define V (x) =
∫ h(x)

0
v ◦ ϕt dt. It suffices that

V : M → R
d is uniformly piecewise Hölder.

Remark 2.8 A more difficult question is the ASIP for the time-one map of a flow.
A general argument of [16, 23] yields the scalar ASIP (for real-valued observables)
in situations where (i) summable decay of correlations is established by certain tech-
niques, (ii) the class of dynamical systems is closed under time reversal. This includes
time-one maps for Axiom A flows [23]. Again the result is restricted to observables
that are sufficiently smooth in the flow direction.

It is immediate from these considerations that the scalar ASIP holds for time-one
maps of the flows in the cusp and flower examples (Examples 1.1 and 1.2). The
vector-valued ASIP remains an open question even for time-one maps of Axiom A
flows.
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3 Billiard flows

In this section, we specialise to billiard flows and treat the three examples discussed
in the introduction. We begin with Example 1.2 (flowers) since this is the simplest.
Then we treat Examples 1.1 (cusps) and 1.3 (stadia).

Let Q be a compact domain in R
2 with piecewise C3 boundary ∂Q and let us

consider the corresponding billiard dynamics in Q – the motion of a point particle
that travels with unit speed and bounces off ∂Q elastically (the angle of incidence
is equal to the angle of reflection). The resulting flow ϕt is a three-dimensional
volume preserving flow. There is a natural two-dimensional cross-section M = ∂Q×
[−π/2, π/2] corresponding to collisions, and the Poincaré map f : M → M is called
the billiard map. We choose coordinates x = (r, ϕ) on M , where r (the position) is
the arclength parameter along ∂Q and ϕ (the outgoing velocity) is the angle made
by the reflected trajectory and the normal to the boundary. The natural invariant
measure for the billiard map is is the Liouville measure dµ = cosϕdr dϕ.

By components or arcs we mean the maximal connected C3-smooth pieces of the
boundary ∂Q. We use the same terminology for the corresponding (two-dimensional)
components of the phase space M . We assume that the curvature of any component
has a fixed sign, thus we may consider convex inwards (dispersing), convex outwards
(focusing) and neutral arcs, and decompose the phase space as M = M+ ∪M−∪M0,
respectively.

The dynamics of the billiard map/flow may depend sensitively on further geo-
metrical properties of ∂Q, including the types of the components present and their
distances and angles. Below we restrict to certain physically relevant examples and
cite the literature for their known dynamical properties. For further details on billiard
dynamics in general, see [10] and references therein.

Our analysis relies on the standard fact that the billiard map f and the roof
function (collision time) h are piecewise Hölder continuous. A simple argument shows
that the Hölder exponent is 1

2
for both f and h. Note that h(x) = |f(x) − x| so it

suffices to verify that f is 1
2
-Hölder.

It is clear that f is smooth except near preimages of tangencies (grazing collisions)
and writing f = (fr, fϕ) a standard calculation [10, Section 2.11] shows that f ′

is bounded except for singularities where it behaves like 1/ cos(fϕ(x)). Writing ψ =
π/2−ϕ and suppressing the r-coordinates, we have f ′

ψ(x) ∼ 1/ sin(fψ(x)) ∼ 1/(fψ(x))

so that ((fψ(x))2)′ ∼ 1. Hence fψ(x) ∼ ψ1/2 which is 1
2
-Hölder as required.

3.1 Bunimovich flowers

Bunimovich [3] studied hyperbolicity and ergodicity for a class of billiard tables Q ⊂
R

2 such that (i) M0 = ∅ (no neutral components); the dispersing components M+

may have arbitrary geometry, in contrast (ii) M− consists of circular arcs all strictly
smaller than a semicircle; (iii) if such a circular arc was extended to a full solid circle,
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the obtained circular disc would be completely contained in Q; (iv) the neighbouring
components are transversal (no cusps). Actually, the conditions can be relaxed and
even neutral components can be allowed as long as certain technical assumptions are
satisfied, see [13] for details.

Chernov & Zhang [13] show that for Bunimovich flowers the billiard map f :
M → M can be modelled by a Young tower with tail estimate roughly O(1/n3). It
then follows from Young [35] that the map has decay of correlations roughly O(1/n2).
By [22], the vector-valued ASIP holds for Hölder observables for both the billiard
map and the billiard flow.

However, there is no immediate conclusion for the decay of correlations of the flow.
(Exponential tails are required in Theorem 2.1 while Theorem 2.2 would yield at best
O(1/t2) decay. In any case, the assumption that h is bounded below in Theorem 2.2
is violated.) Nevertheless, we now prove rapid mixing for the flow for sufficiently
smooth observables. (The scalar ASIP for the time-one map for the flow then follows
from Remark 2.8.)

Theorem 3.1 Let ϕt be the flow corresponding to a Bunimovich flower. Then ϕt is
rapid mixing (in the sense of Theorem 2.1).

Proof The argument in Chernov & Zhang [13, p. 1546] demonstrates the existence

of an alternative cross-section M̂ ⊂ M (with Poincaré map f̂ : M̂ → M̂) that is
modelled by a Young tower with exponential tails. We claim that the corresponding
collision time ĥ : M̂ → R

+ satisfies the uniformly piecewise Hölder condition in
Remark 2.5, expressed of course in terms of M̂, f̂ , ĥ. Rapid mixing follows from
Theorem 2.1.

First, we recall the definition of M̂ in [13]. As mentioned above we write M =
M+ ∪M− where M+ corresponds to dispersing arcs and M− corresponds to focusing
arcs. Then M̂ is given by M̂ = M+ ∪ E where E ⊂ M− consists of only the first
(sliding) collisions at each focusing arc, so E = M− ∩ f(M+).

Next we verify that ĥ ∈ L∞. Since ĥ = h on dispersing arcs we can restrict
attention to a single focusing arc Γ(⊂M−), and in particular the single first collision
set EΓ = Γ ∩ E. Consider x ∈ EΓ. There is an integer n ≥ 2 such that f jx ∈ Γ for
j = 1, . . . , n and fn+1x 6∈ Γ. Hence

ĥ = g + h ◦ fn, (3.1)

where g(x) = h(x) + h(fx) + · · ·+ h(fn−1x) is the amount of time it takes to “slide”

along the arc Γ. Hence |ĥ1E|∞ ≤ |Γ| + |h|∞ and so ĥ is bounded.

Finally, we verify that there is a uniform Hölder constant for ĥ on each partition
element. Again we may restrict to a single first collision set EΓ ⊂ Γ where Γ is a
focusing arc, but this time it is necessary to consider the finer partition EΓ =

⋃
n≥1En

where En = {x ∈ E : f jx ∈ Γ for j = 1, . . . , n and fn+1x 6∈ Γ}. (In other words,
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f̂ = fn+1 on En.) Note that the partition elements En coincide with the smoothness

components of f̂ : M̂ → M̂ , which is in agreement with Remark 2.5.
Let R denote the radius of the focusing arc Γ. Let (r, ϕ) denote the standard

coordinates and note that sliding occurs for ϕ ∼ π/2 so it is convenient to introduce
ψ = π/2 − ϕ. It is immediate from the geometry of the circle that

f(x) = (r + 2Rψ, ψ), h(x) = R sinψ

for all x = (r, ψ) ∈ Γ ∩ f−1Γ. Hence

|g(x1) − g(x2)| ≤ nR| sinψ1 − sinψ2| ≤ nR|ψ1 − ψ2| (3.2)

for all x1, x2 ∈ En. On the other hand, since the angle ψ remains constant during the
n grazing iterations, it is elementary that there is a constant C1 depending only on
Γ such that C1/(n+1) ≤ ψ ≤ C1/n for all x ∈ En. Hence |ψ1 −ψ2| ≤ C1(

1
n
− 1

n+1
) ≤

C1/n
2 and so

|ψ1 − ψ2|
1

2 ≤ C
1

2

1 n
−1. (3.3)

Combining estimates (3.2) and (3.3), we obtain |g(x1)− g(x2)| ≤ C2|ψ1 −ψ2|
1

2 where

C2 = RC
1

2

1 depends only on the arc Γ.
In addition, since fn(r, ψ) = (r + 2nRψ, ψ) on En and h 1

2
-Hölder, |h(fnx1) −

h(fnx2)| ≤ C3(|r1 − r2| + (2Rn + 1)|ψ1 − ψ2|)
1

2 ≤ C4(|r1 − r2| + |ψ1 − ψ2|
1

2 )
1

2 ≤
C4(|r1 − r2|

1

2 + |ψ1 −ψ2|
1

4 ). Combining the estimates for g and h ◦ fn, we have shown

that ĥ is Hölder on En with constant independent of n (and exponent 1
4
). Since there

are only finitely many arcs, this completes the proof.

3.2 Dispersing billiards with cusps

Chernov & Markarian [11] studied dispersing billiards with cusps, where the boundary
curves are all dispersing – that is, M = M+ – but the interior angles at corner points
are zero. By [11, 14], the billiard map f : M → M can be modelled by a Young
tower with tail estimate O(1/n2). It follows from Young [35] that the map has decay
of correlations O(1/n). This is too weak for strong statistical limit laws (see [1]).
Nevertheless we now prove rapid mixing and the ASIP for the flow.

Theorem 3.2 Let ϕt be the flow corresponding to a billiard table with cusps. Then
ϕt is rapid mixing (in the sense of Theorem 2.1) and satisfies the ASIP (in the sense
of Theorem 2.6).

Proof Following Chernov & Markarian [11] we define M̂ by excluding a neighbour-

hood of each cusp. The new collision map f̂ : M̂ → M̂ is modelled by a Young tower
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with exponential tails [11]. By Theorems 2.1 and 2.6, it again suffices to show that

the new collision time ĥ : M̂ → R
+ satisfies the uniformly piecewise Hölder condition

in Remark 2.5.
Consider a single cusp and let En be the set of those points in M̂ that spend

exactly n iterates in the cusp before returning to M̂ . Note again that, in accordance
with Remark 2.5, the sets En coincide with the smoothness components of f̂ . The
calculation in [11, p. 738] shows that ĥ is bounded on En independent of n. Hence ĥ

is bounded on the whole of M̂ .
It remains to find a uniform Hölder constant for ĥ on each En. Explicit calculations

are more difficult than in Section 3.1 so we search for coarser estimates. We claim
that there are positive constants α1, α2, α3, C1, C2 (independent of n) such that

(i) |ĥ(x1) − ĥ(x2)| ≤ C1n
α1 |x1 − x2|α2 , and

(ii) |ĥ(x1) − ĥ(x2)| ≤ C2n
−α3 ,

for all x1, x2 ∈ En. It then follows that |ĥ(x1) − ĥ(x2)|γ+1 ≤ C|x1 − x2|α2γ with

γ = α3/α1, C = Cγ
1C2, and so ĥ is uniformly piecewise Hölder as required, with

exponent α2γ/(γ + 1).
We verify the claim with α1 = 5

2
, α2 = 1

16
and α3 = 1

3
(and hence Hölder exponent

1
136

). (Of course, we do not claim that these bounds are optimal, but they are strong
enough for our purposes.)

Throughout, C is a uniform constant that can change from line to line. First
we prove statement (i), which requires more effort than (ii). In particular, we need
bounds on the maximal possible expansion along a corner series (the time spent in
the vicinity of the cusp), which we summarize in Lemma 3.3 below. The proof of this
technical Lemma, which relies on several estimates obtained in [11], is moved to the
Appendix.

Lemma 3.3 Consider x ∈ En, and let ||Dyf
k|| denote the norm of the derivative

of the kth iterate of f at the point y. Then uniformly for all x ∈ En, and all j =
3, . . . , n− 1,

||Df2xf
j−2|| ≤ Cn3.

Let us show how to obtain estimate (i) using the bound of Lemma 3.3. Let
x1, x2 ∈ En. Recall that f and h are Hölder with exponent 1

2
. In particular,

|h(f jx1) − h(f jx2)| ≤ C|x1 − x2|1/8, j = 0, 1, 2. (3.4)

By Lemma 3.3, |f jx1 − f jx2| ≤ Cn3|f 2x1 − f 2x2| for j = 3, . . . , n − 1 so by Hölder
continuity of f and h,

|h(f jx1) − h(f jx2)| ≤ Cn3/2|x1 − x2|1/8, j = 3, . . . , n− 1, (3.5)
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and

|h(fnx1) − h(fnx2)| ≤ C|fnx1 − fnx2|1/2 ≤ C|fn−1x1 − fn−1x2|1/4

≤ Cn3/4|f 2x1 − f 2x2|1/4 ≤ Cn3/4|x1 − x2|1/16. (3.6)

Summing up the n+1 terms of estimates (3.4), (3.5) and (3.6), we get (i) with α1 = 5
2

and α2 = 1
16

.
Finally we prove estimate (ii). By [11, p. 738, last line], we have h(fxj) + · · · +

h(fn−1xj) ≤ Cn−1 for j = 1, 2. As shown in [11, pp. 748–749], the cell En has
diameter of order n−2/3 so that |h(x1) − h(x2)| ≤ C|x1 − x2|1/2 ≤ Cn−1/3. By time-
reversibility of the construction, |h(fnx1) − h(fnx2)| ≤ Cn−1/3. Altogether, we have

|ĥ(x1) − ĥ(x2)| ≤ Cn−1/3 establishing estimate (ii). (The estimates of [11] that we
have used are established in the first instance for a special billiard table with three
cusps, but then extended to the general situation in [11, Section 6].)

Remark 3.4 Again, we stress that the vector-valued ASIP for the flow holds for gen-
eral (piecewise) Hölder observables, whereas rapid mixing is restricted to sufficiently
smooth observables (as is the scalar ASIP for the time-one map of the flow which
holds by Remark 2.8).

3.3 Bunimovich stadia

Bunimovich [5] established hyperbolicity and ergodicity for the stadium billiard
bounded by two parallel lines (M0) connecting two semicircles (M−). By [18, 14],
the billiard map f : M → M can be modelled by a Young tower with tail estimate
O(1/n2). It follows from Young [35] that the map has decay of correlations O(1/n) for
Hölder observables. This is too weak for strong statistical limit laws; indeed Bálint &
Gouëzel [1] prove a nonstandard limit law (nonstandard domain of attraction of the
normal distribution with

√
n log n normalization) for typical observables. By [24], the

same limit law holds for the flow. In particular, the ASIP fails for both the billiard
map and the flow.

This time, we do not expect the flow to mix more rapidly than the map. Nor
can we apply Theorem 2.2 directly since the roof function is not bounded below.
Nevertheless the conclusion of Theorem 2.2 is valid.

Theorem 3.5 Let ϕt be the flow corresponding to a Bunimovich stadium. Then ϕt
is polynomially mixing with rate 1/t.

Proof The argument in Chernov & Zhang [13, p. 1548] demonstrates the existence

of an alternative cross-section M̂ ⊂ M (with Poincaré map f̂ : M̂ → M̂) that is
modelled by a Young tower with exponential tails. However, the corresponding roof
function ĥ : M̂ → R

+ is unbounded, so Theorem 2.1 does not apply this time. As
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mentioned above, they show that the corresponding tower for f : M → M has tails
decaying at the rate O(1/n2). We note that the tower for M is built over the same

base Y as the tower for M̂ but is strictly higher (since it incorporates the returns

from M to M̂).

Whereas the cross-section M̂ in [13] takes account of both sliding along circular
arcs in M− and bouncing between the parallel straight lines in M0, we define an
intermediate cross-section M̂ ′ with M̂ ⊂ M̂ ′ ⊂M that takes only account of sliding.
That is, we define M̂ ′ = M0∪E where E = M−∩f(M0) consists of the first (sliding)
collisions in M−.

It is immediate that the tower for f̂ ′ : M̂ ′ → M̂ ′ has tail decay rate no worse than
the tower for M̂ : it shares the same base Y as the other two towers, but is lower than
the tower for M̂ (and higher than the tower for M). In particular the tower for M̂ ′

has tail decay rate O(1/n2).

Let ĥ′ : M̂ ′ → R
+ denote the new roof function. It remains to verify the hypothe-

ses on ĥ′ in Theorem 2.2. The proof that ĥ′ is uniformly piecewise Hölder is identical
to that in Section 3.1. We claim that ĥ′p is bounded below for p = 2. Indeed, ĥ′

can approach zero only at points x ∈ M0 which are close to one of the endpoints
of a straight boundary component, that is, to the corner made with M−, and have
velocity almost tangent to the straight boundary component. But then fx is about
to undergo a long sequence of sliding collisions so that ĥ′(fx) has magnitude approx-

imately the length of a semi-circular arc in M−. Hence ĥ′2 is bounded away from zero
as required.

Appendix: Proof of Lemma 3.3

In this Appendix we show how the technical estimates of [11] imply our Lemma 3.3.
Throughout, we use the notation A(x, dx) ≍ B(x, dx) if there are some positive
constants c and C, uniform in the relevant phase points x ∈ M and tangent vectors
dx ∈ TxM , such that cA(x, dx) ≤ B(x, dx) ≤ C A(x, dx).

First let us summarize some material from the theory of dispersing billiards in gen-
eral (for further details see [10], or the first page of [11, Section 4]). Standard coordi-
nates for the billiard map phase space are r ∈ ∂Q (configuration) and ϕ ∈ [−π/2, π/2]
(velocity angle). Directions parallel to a fixed tangent vector w = (dr, dϕ) can be
characterized by their slope m = dϕ

dr
. In dispersing billiards, unstable vectors have

positive, and stable vectors have negative slope. In addition to the usual (Euclidean)
metric |w| =

√
dr2 + dϕ2, there is another metric-type quantity, the p-metric, to mea-

sure the length of tangent vectors defined as |w|p = cosϕ|dr|. The p-metric is degen-
erate on arbitrary tangent vectors; however it is well-defined and increases/decreases
monotonically for the vectors tangent to the unstable/stable direction. In particular,

12



if wu ∈ TxM is tangent to the unstable direction, then

|Dxf(w)|p
|w|p

= 1 + λ = 1 + τB+
u ,

where τ = h(x) is the length of the free flight, while B+
u measures how strongly the

outgoing wavefront corresponding to the tangent vector w diverges. In particular, B+
u

and mu are related by
mu = B+

u cosϕ−K,

where K is the curvature of ∂Q . Note that K > 0 is uniformly bounded away from
0 and ∞, whereas B+

u is unbounded. The Euclidean and the p-length of an unstable
vector are related by

|wu|p = cosϕ
|wu|√
1 +m2

u

.

From now on we focus on cusps, in particular the dynamics of corner series,
following [11]. Fix x ∈ En and a tangent vector dx ∈ TxM . We introduce the nota-
tions: xj = f jx, dxj = Dxf

j(dx), and supply all further quantities introduced above
(B+, cosϕ,m, τ, ...) with the index j if they correspond to xj . For any tangent vector
w, let ws and wu denote its projections to the stable and unstable direction, respec-
tively. In what follows, unless otherwise stated, we will work with unstable vectors,
and if no confusion arises omit the subscript u for brevity. By time reflection sym-
metry of billiard dynamics (and time reflection symmetry of corner series) analogous
estimates hold for stable vectors.

As observed in [11], the corner series of x ∈ En can be partitioned into three
periods: the entering period 1 ≤ j ≤ n1 , the turning period n1 ≤ j ≤ n3, and the
exiting period n3 ≤ j ≤ n, with n1 ≍ n3 ≍ n. The first and the last point of the
series, x1 and xn are exceptional, as certain dynamical quantities lack uniform bounds
in these points. However, [11] obtains, in terms of n, uniform upper and lower bounds
for the dynamical quantities in xj with 2 ≤ j ≤ n− 1, which we summarize below. It
is worth mentioning that our indices j and n are n and N in [11], respectively, and
that [11] often uses the notation γ = min(|π

2
− ϕ|, |−π

2
− ϕ|). Note furthermore that,

by time reflection symmetry, the bounds in the exiting and the entering periods are
equivalent once we replace j with m = n+ 1 − j, see also [11, Remark 3.3].

Concerning the turning period, by [11, p. 738], line -3,

cosϕj ≍ 1; τj ≍ n−2; j = n1, . . . , n3,

and by [11, p. 742], line -4,

B+
j ≍ n; j = n1, . . . , n3.

This implies mj ≍ n for the slope of the unstable direction, and |w|
|w|p

≍ n for the

relation of the Euclidean and the p-length of unstable vectors.
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Concerning the entering period, by [11, Formulas (3.5), (3.32)],

cosϕj ≍ j2/3n−2/3; τj ≍ j−4/3n−2/3; j = 2, . . . , n1,

while, by the second line in [11, Remark 4.3]:

B+
j ≍ j1/3n2/3; j = 2, . . . , n1.

This implies mj ≍ j ≤ n for the slope of the unstable direction, and 1 ≤ |w|
|w|p

≤ Cn

for the relation of the Euclidean and the p-length of unstable vectors. As already
mentioned, similar bounds can be obtained for the exiting period.

We still need to refer to Proposition 4.1, in particular to Formula (4.5) and the
last paragraph of section 4 in [11]. This way we obtain bounds on the expansion
of the p-length of unstable vectors, which we summarize in estimate 3. below. We
also note that all calculations in the proof of [11, Proposition 4.1] are in terms of the
p-metric, see the top three lines of [11, p. 741].

Here we collect the necessary estimates, which, as discussed above, all follow from
the analysis of [11]:

1. In the tangent spaces of xj , j = 2, . . . , n − 1, the angle of the stable and the
unstable direction is at least C/n. This implies that

C(|dxju| + |dxjs|) ≤ |dxj| ≤ Cn(|dxju| + |dxjs|), j = 2, . . . , n− 1.

2. For dxju and dxjs; j = 2, . . . , n− 1, the Euclidean and p-norms are related by

|dxju|p ≤ |dxju| ≤ Cn|dxju|p; |dxjs|p ≤ |dxjs| ≤ Cn|dxjs|p.

3. Apart from the first two and the last iterate, [11] obtains upper bounds in terms
of n on the expansion of the p-norm for an unstable vector in a corner series:

|dxju|p ≤ Cn|dx2
u|p, j = 2, . . . , n− 1.

Now applying consecutively estimates 1., 2., 3. (along with the monotonicity proper-
ties of the p-metric), and once more estimates 1. and 2., we obtain

|dxj| ≤ Cn(|dxju| + |dxjs|) ≤ Cn2(|dxju|p + |dxjs|p) ≤ Cn3(|dx2
u|p + |dx2

s|p) ≤ Cn3|dx2|,

which completes the proof of Lemma 3.3.
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[1] P. Bálint and S. Gouëzel. Limit theorems in the stadium billiard. Commun. Math.
Phys. 263 (2006) 461–512.

[2] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomor-
phisms. Lecture Notes in Math. 470, Springer, Berlin, 1975.

[3] L. A. Bunimovich. The ergodic properties of billiards that are nearly scattering.
Soviet Math. Dokl. 14 (1973) 1136–1139.

[4] L. A. Bunimovich. On the ergodic properties of some billiards. Funct. Anal. Appl.
8 (1974) 73–74.

[5] L. A. Bunimovich. On the ergodic properties of nowhere dispersing billiards.
Commun. Math. Phys. 65 (1979) 295–312.

[6] N. Chernov. Decay of correlations and dispersing billiards. J. Statist. Phys. 94
(1999) 513–556.

[7] N. Chernov. A stretched exponential bound on time correlations for billiard flows.
J. Stat. Phys. 127 (2007) 21–50.

[8] N. Chernov and D. Dolgopyat. Hyperbolic billiards and statistical physics. In-
ternational Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006,
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