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Abstract

We prove local ergodicity of uniformly hyperbolic discrete time dynamical sys-
tems with singularities, which satisfy certain regularity conditions and an assump-
tion on the growth of unstable manifolds. We apply the result to prove ergodicity
of a class of multi-dimensional dispersing billiards.
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Introduction

In this paper we study local ergodicity of hyperbolic systems with singularities. Our
goal is to understand a multi-dimensional, uniformly hyperbolic setting, in particular
multi-dimensional dispersing billiards.

Theorems that guarantee abundance of stable and unstable manifolds, designed for
local ergodicity purposes (Hopf chain construction), are often referred to as fundamental
theorems in the literature. We mention theorems as there are (at least) two different
types of statements of this sort.

The one which we concentrate on in this paper is Sinai’s argument from [S], worked
out for the case of two dimensional dispersing billiards in its original formulation. Sinai’s
approach uses uniform hyperbolicity strongly, and, in the original exposition, also two
dimensional geometry. One of our main goals with the present paper is to show that this
beautiful theorem by Sinai can be suitably generalized to a multi-dimensional uniformly
hyperbolic setting. In particular, we can prove this way local ergodicity for a reasonable
class of multi-dimensional dispersing billiards (see below).

The other formulation of the fundamental theorem is adapted to non-uniformly hy-
perbolic situations. This case, of course, needs much more care and more complicated
constructions – eg. regular coverings of local neighborhoods with parallelopipeds, the
Chernov-Sinai Ansatz etc. We do not consider the issue of this “non-uniformly hyper-
bolic” fundamental theorem here, we refer to the literature instead, see [SCh], [KSSz],
[Ch1], [LW], [BChSzT2], [B] and refereces therein.

Our exposition states a set of assumptions based on which the fundamental theorem
– and thus local ergodicity – can be proved. Though our main application is definitely
the multi-dimensional dispersing billiard situation, we believe that there are many other
classes of systems that satisfy our assumptions.

To see in what extent our results are new in the billiard case we recall some recent
history. In [BChSzT1] a pathological behaviour of singularities in multi-dimensional
(semi-)dispersing billiards was found. This discovery calls for a reconsideration of earlier
proofs of ergodicity in multi-dimensional semi-dispersing billiards. The papers [BChSzT2]
and [B] handle the problem for certain special cases: [BChSzT2] deals with the case
of algebraic scatterers, while [B] treats strictly dispersing billiards with highly smooth
scatterers, and a strong condition on the complexity of the singularities. The present
paper also contributes to this work: in Theorem 4.4 we prove ergodicity for a broader
class of billiards, requiring only C3 smoothness of the scatterers, but still requiring strict
dispersing, and a weaker assumption about complexity of singularities.

Actually, the systems we are interested in are more than just ergodic. In his paper
[Ch3], Chernov gave sufficient conditions for exponential decay of correlations in hyper-
bolic systems with singularities. In that paper, ergodicity is one of the assumptions,
and other assumptions – regularity conditions and growth of unstable manifolds – are
stronger than those usually needed in proofs of ergodicity. No wonder, that until recently,
all the systems for which the result of [Ch3] could be applied, were known in advance to
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be ergodic.
However, in the recent manuscript [BT], two of the present authors managed to check

all the conditions in [Ch3] – except for ergodicity – for a class of multi-dimensional
billiards for which no independent proof of ergodicity is known. This naturally raises the
question, whether the other assumptions of [Ch3] imply ergodicity in any sense.

In this paper we give a partially positive answer: we prove local ergodicity. Due to
the local nature of the assumptions, there is no chance to get more. In this way, the
assumptions of [Ch3] give exponential correlation decay on ergodic components.

The assumptions we need for ergodicity are basically a subset of Chernov’s assump-
tions in [Ch3], e.g. our main assumption about the growth of unstable manifolds (As-
sumption A8) is a simplified version of the growth property required in [Ch3]. Only a
few of our assumptions are a little stronger than those in [Ch3]. Namely, the equiva-
lence of measures (Assumption A2) and alignment (Assumption A5) are not required
in [Ch3], and absolute continuity (Assumption A7) is required in a somewhat different
form. However, most of these properties are known in case of the systems of interest.

This way, we can prove Theorem 4.4 about ergodicity of a class of multi-dimensional
dispersing billiards with C3 smooth scatterers. The result of [Ch3] then gives exponential
correlation decay for the same sytems. Before this, in more than two dimensions only
those dispersing billiards were known to be ergodic, for which the scatterers exhibit the
stronger regularity properties required in [BChSzT2] or [B].

The paper is organized as follows. In Section 1 we list some basic notions and our
assumptions, while in Section 2 we draw a few immediate consequences of these assump-
tions. In Section 3 we prove Theorem 3.1, which is the adoptation of Sinai’s original
fundamental theorem for the multi-dimensional case. Then in Section 4 we perform the
Hopf chain construction based on the fundamental theorem to prove Theorem 4.1 about
local ergodicity. Finally, as a corollary, we prove Theorem 4.4 about ergodicity of certain
multi-dimensional dispersing billiards.

1 Assumptions and preliminaries

Assumption A1 (The Dynamical system).
We consider the dynamical system (M, T, µ) where the phase space M is a compact
Riemannian manifold of dimension dM , possibly with boundary. The dynamics T is
defined on a full (Riemannian) measure subset of M . Namely, there are two closed
subsets Γ1, Γ−1 ⊂ M with Riemannian measure zero, such that T : M \ Γ1 → M \ Γ−1

is a diffeomorphism. µ is a T -invariant probability measure on M . If M has boundary,
then we assume ∂M ⊂ Γ1, Γ−1.

We will use the notation ρ for the distance and m for the induced Lebesgue (Rieman-
nian) measure on M . If V is a submanifold of M , ρV and mV will denote the induced
metric and measure on V .

We will call Γ1 the singularity set of T , and Γ−1 the singularity set of T−1.
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For integer n 6= 0 we introduce the notation Γn for the n-step singularity set:

Γn =

{
T−n+1Γ1 if n ≥ 1

T n+1Γ−1 if n ≤ −1
.

We say that T n is singular in the set

Γ(n) =

{⋃n−1
k=1 Γk if n ≥ 1⋃−n−1
k=1 Γ−k if n ≤ −1

.

Remark 1.1. In known examples Γ1 is either a finite collection of 1 codimensional
submanifolds, or Γ1 = S ∪ Γ̃, where Γ̃ is a countable collection of 1 codimensional sub-
manifolds that accumulates on S which is a finite union of 1 codimension submanifolds.
In the literature (see e.g.[BT]) this S is often referred to as the “primary singularity set”.
Often one can roughly write S = T−1∂M ∪ ∂M . Note however, that for convenience we
have chosen not to define T on Γ1.

It is also worth noting that we do not have any smoothness requirements on the sin-
gularity. If T has unbounded and anisotropic derivatives, it may happen that, though Γ1

consists of smooth and compact submanifolds, the sets Γn, n ≥ 2 behave irregularly. This
happens in the case of multi-dimensional dispersing billiards, see [BChSzT1, BChSzT2].
This phenomenon does not conflict our assumptions.

Assumption A2 (Equivalence of measures).
We assume that the invariant measure µ is equivalent to the Lebesgue (Riemannian)
measure m on M .

This assumption will only be used in Section 4 for the Hopf chain construction. It
is possible that it could be relaxed somewhat, but we don’t investigate this issue here.
The assumption is in coherence with (actually implies) the fact that Γ1 and Γ−1 have
Riemannian measure zero.

Assumption A3 (Uniform hyperbolicity).
We assume that there are two families of cone fields Cu

x and Cs
x in the tangent planes

TxM , x ∈ M and there exists a constant Λ > 1 with the following properties:

• DT (Cu
x ) ⊂ Cu

Tx and DT (Cs
x) ⊃ Cs

Tx whenever DT exists;

• |DT (v)| ≥ Λ|v| ∀v ∈ Cu
x ;

• |DT−1(v)| ≥ Λ|v| ∀v ∈ Cs
x;

• these families of cones are continuous on M , their axes have the same dimensions
across the entire M which we denote by du and ds, respectively;

• du + ds = dim M ;
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• the angles between Cu
x and Cs

x are uniformly bounded away from zero:

∃ δus > 0 such that ∀x ∈ M and for any dw1 ∈ Cu
xand dw2 ∈ Cs

x one has

^(dw1, dw2) ≥ δus.

The Cu
x are called the unstable cones whereas the Cs

x are called the stable ones.

The property that the angle between stable and unstable cones is uniformly bounded
away from zero is called transversality. Since we have demanded that the cone fields be
defined and continuous on all of M (which is compact), this transversality is automatic,
still we wish to stress its importance and use the constant δus.

When investigating unstable manifolds, we will use the notation d = du.

Remark 1.2. In the literature uniform hyperbolicity is often used in a weaker form,
namely so that only the existence of a c > 0 and a Λ > 1 is assumed so that |DT n(v)| ≥
cΛn|v| ∀v ∈ Cu

x and |DT−n(v)| ≥ cΛn|v| ∀v ∈ Cs
x. Throughout the paper, all our

arguments could easily be modified to fit this setting as well.

To formulate further assumptions, we need the notion of stable and unstable mani-
folds.

Definition 1.3. A du-dimensional submanifold γu is a u-manifold if, for any point x ∈
γu, the tangent plane of γu at x belongs to the unstable cone Cu

x . s-manifolds are defined
analogously. A special subclass of u-manifolds (s-manifolds) is of particular interest:

A submanifold W u ⊂ M of dimension du is an unstable manifold if T−n is defined
and smooth on it for all n ≥ 0, and for any x, y ∈ W u ρ(T−nx, T−ny) → 0 exponentially
fast.

A submanifold W s ⊂ M of dimension ds is a stable manifold if T n is defined and
smooth on it for all n ≥ 0, and for any x, y ∈ W s ρ(T nx, T ny) → 0 exponentially fast.

When we consider a small (piece of a) stable manifold, we will use the phrase “local
stable” manifold (LSM), to emphasize that we think of a connected submanifold on which
T n is defined for all n > 0, or a subset of such a connected manifold. That is, several
components which can be separated from each other temporarily, but are eventually
brought back together by T are not allowed. Similarly, the unstable manifolds under
consideration will be local unstable manifolds (LUM).

Assumption A4 (Existence of invariant manifolds).
We assume that for µ-a.e. point x of M there exists a unique maximal local stable and a
unique maximal local unstable manifold, both of which contain x as an interior point.

Remark 1.4. The µ-a.e. existence of invariant manifolds follows from uniform hyper-
bolicity and some regularity assumption on the frist step singularity set Γ1. For example

m({x ∈ M | ρ(x, Γ1) < ε }) ≤ Cεq for some q > 0 (1)
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would do, see [Ch2] and references therein. In the setting of multi-dimensional dispers-
ing billiards such a regularity assumption holds for Γ1 itself, it is only the higher order
singularities Γn, n ≥ 2 for which irregularities start to show up, see Remark 1.1 above.
We could have assumed (1) directly, however, we prefer to state assumption A4 as this
is the one we need.

We use the notation W s(x) (W u(x)) for the maximal local stable (unstable) manifold
passing through x ∈ M . We will denote by rs(x) (ru(x)) the radius of the largest ds-
dimensional (du-dimensional) ball centered at x contained in W s(x) (W u(x)), in the inner
geometry of the submanifold.

In case rs(x) > R, W s
R(x) is the stable ball of radius R around x. That is: W s

R(x) =
{y ∈ W s(x) | ρW s(x)(x, y) ≤ R}. W u

R(x) is defined similarly.
If W is a LSM, we denote its inner radius with r(W ), that is, r(W ) = supx∈W rs(x).

The inner radius of an unstable manifold is denifed similarly.
Our next assumption, called alignment, is a key regularity property that allows us to

compare the distance of a point form a singularity when measured in two different ways,
along the unstable direction, or in the entire manifold. We demand such a property for
Γ−1, the singularity set of T−1. This is not a usual property to assume, but due to the
nature of the growth propery we will use (Assumption A8), this is what we need.

Our assumption basically means that unstable manifolds are uniformly transversal to
components of Γ−1. That is, there is a global constant Ca < ∞ so that the distance of
any point x from Γ−1, when measured along the unstable manifold, is at most Ca times
the distance in the phase space. More precisely, this is only required if the unstable
manifold containing x is long enough to reach that far in every direction. Note, however,
that unstable manifolds terminate on Γ−1, thus technically it is enough to compare the
inner radius of the maximal unstable manifold passing through x to the distance of x
form Γ−1, when measured in the full phase space.

We give two versions of this assumption. The first, simplified version is more trans-
parent, but not general enough to cover billiards.

Assumption A5 (Alignment).
We assume that the dynamical system satisfies one of the following two properties:

1. Alignment, simplified version

There is a global constant Ca < ∞ such that for any x ∈ M we have ρ(x, Γ−1) ≥
1

Ca
ru(x). Similarly, ρ(x, Γ1) ≥ 1

Ca
rs(x) is assumed.

2. Alignment, general version

Consider any x ∈ M and y ∈ Γ−1. We assume that

• either ρ(x, y) ≥ 1
Ca

ru(x),

• or the image of y under T−1 is also in Γ−1 in the following sense (recall from
Assumption A1 that T−1 is not defined on Γ−1): Take any continuous curve
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γ connecting x to y and avoiding Γ−1 – that is, γ : [0, 1] → M , γ(0) = x,
γ(1) = y, γ(t) /∈ Γ−1 for t < 1. We require that y− = limt→1 T−1γ(t) exists
and y− ∈ Γ1 ∩ Γ−1.

The analogous property for rs(x) and Γ1 is also assumed.

The simplified version of this assumption obviously implies the general, so we will use
the general one in our proof.

In applications this property is typically a consequence of some smoothness of the
manifolds, plus a uniform lower bound on their angles at the intersection points. The
heuristic meaning of the general version is that as an unstable manifold evolving under
T hits a component of Γ1∩Γ−1 (e.g. ∂M), they only need to be properly aligned at their
first encounter. If the “image under T” (as a one-sided limit) of that component is also
in Γ−1, alignment there is no longer required, at least not from that side.

Remark 1.5. This assumption is general enough to cover many interesting examples,
including (multi-dimensional) dispersing billiards with no corner points. However, we
mention two examples where it does not hold: the baker’s map, and billiards with corner
points.

Assumption A6 (Distortions).
Consider a LUM W that lies in one connected component of M \ Γ(n), i.e., the map T n

is smoothly defined on W . In particular, W ′ = T nW is a LUM as well. Given x ∈ W
consider the n-step unstable Jacobian Ju

n (x), i.e., the Jacobian (w.r. to the Lebesgue
measures on W and W ′) of the map T n restricted to W at the point x. We assume there
exists a function ϕ(·) with ϕ(s) → 0 as s → 0, such that, given any W described above

and any x, y ∈ W , we have log Ju
n (x)

Ju
n (y)

≤ ϕ(ρW ′(T nx, T ny)).

We assume similar distortion bounds for T−n when restricted to suitable LSMs.

Assumption A7 (Absolute continuity).
Let γ1, γ2 be two u-manifolds (cf. Definition 1.3). Note this implies that both γ1 and γ2

are du-dimensional submanifolds of M , uniformly transversal to stable manifolds. Let
them be so small that any LSM W s intersects both γ1 and γ2 in at most one point. Let
γ′1 = {x ∈ γ1 | W s(x)∩γ2 6= ∅}. Then we define a map h : γ′1 → γ2 by sliding along stable
manifolds. This map is often called the holonomy map. We assume that it is absolutely
continuous with respect to the Lebesgue measures mγ1 and mγ2.

Remark 1.6. Similarly to assumptions A2 and A4, the assumption on absolute conti-
nuity is only used in Section 4, i.e. it is not needed for the proof of the fundamental
theorem itself.

For δ0 > 0 we say that a LUM W is a δ0-LUM if diamW ≤ δ0. In our arguments we
will only use a fixed δ0 that will be chosen to be sufficiently small. For a δ0-LUM W , the
components of T nW are not necessarily δ0-LUM-s, due to the expansion by T . However,
they may be chopped into δ0-LUM-s by omitting a set of measure zero. This may be
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done e.g. by cutting with a grid of locally flat hypersurfaces that cut a piece of M into
cubes of diameter less than δ0.

Assumption A8 (Growth property).
We assume that there exist 0 < α < 1 and β > 0 such that given any δ0-LUM W , its
T -image TW can be decomposed, modulo a set of mTW -measure zero, into (at most)
countably many disjoint δ0-LUM-s TW1, TW2, . . . such that for any ε > 0 we have:

mW (∪i{x ∈ Wi | ρTWi
(Tx, ∂TWi) < ε}) ≤

≤ α · Λ mW ({x ∈ W | ρW (x, ∂W ) < ε/Λ}) + εβδ−1
0 mW (W ). (2)

We also assume the time reversal counterpart of this statement for δ0-LSMs.

Now if T is applied to the components TW1, TW2, . . . , the images T (TW1), T (TW2), . . .
may need to be chopped further to obtain δ0-LUM-s. Iterating that, we can get for every
n ≥ 1 a partition of T nW (modulo a set of zero measure) into at most countably many
disjoint δ0-LUM-s. Having such a partion, we can define for every n ≥ 1 a function on W
that measures the distance of a point from the boundary of the containing component af-
ter n steps: rW,n(x) = ρT nWj

(T nx, ∂T nWj) if T nWj is the component of T nW containing
T nx.

With this notiton, (2) can be rewritten as

mW (rW,1 < ε) ≤ αΛmW (rW,0 < ε/Λ) + εβδ−1
0 mW (W ).

In [BT] it is shown that all the assumptions listed are satisfied in a class of multi-
dimensional dispersing billiards.

2 Basic consequences of the assumptions

2.1 shadowing of unstable manifolds

The (uniform) continuity of the cone fields and the transversality condition (both in
Assumption A3) easily imply the following lemma:

Lemma 2.1. There exist constants δ1 > 0 and C1 = C1(δus) < ∞ such that for any
x, y ∈ M satisfying ρ(x, y) < δ1, if ru(x) > C1ρ(x, y) and rs(y) > C1ρ(x, y), then
W u(x) ∩W s(y) 6= ∅.

from this we may conclude that two unstable manifolds which are sufficiently close
to each other and sufficiently large, can surely be connected by a stable manifold which
is large enough.

Definition 2.2. Given two LUMs W ′ and W , we say that W ′ s-shadows W if for every
x ∈ W with rs(x) > 2r(W ′) we have that W s

2r(W ′)(x) ∩W ′ 6= ∅.
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The following lemma is a trivial consequence of Lemma 2.1.

Lemma 2.3. There exists a Cδus < ∞ with the following property. If W = W u
R(z) and

W ′ = W u
R′(z′) with R′ > 100R, and ρ(z, z′) < R′Cδus, then W ′ s-shadows W .

2.2 growth lemma for iterates of T

Lemma 2.4. If assumptions A6 and A8 are satisfied, then there exists a sufficiently
small δ0 > 0 and global constants 0 < α′ < 1, β′ < ∞ such that for every δ0-LUM W
and every n ≥ 1, T nW can be partitioned into δ0-LUMs (modulo a set of measure zero)
so that

mW (rW,n < ε) ≤ (α′Λ)nmW (rW,0 < ε/Λn) + εβ′δ−1
0 mW (W ). (3)

Proof. The statement comes from (2) using induction in n, see e.g. [Ch3]. If δ0 is chosen
sufficiently small, then α′ is just slightly greater than α, and β′ is just slighlty greater
than β

(
1 + 1

Λ
+ 1

Λ2 + . . .
)
.

3 Growth Lemma implies Fundamental Theorem

Theorem 3.1 (Fundamental Theorem). Consider a dynamical system satisfying the as-
sumptions A1, A3, A5, A6 and A8. Then, given any A > 1, there exists nA ∈ N with the
following property. For any x ∈ M \ Γ(nA) there exists a neighborhood BR(x) such that,
for any LUM W ⊂ BR(x):

mW ({ y ∈ W | rs(y) > A · r(W ) }) > 0.

Remark 3.2. Note that assumptions A2, A4 and A7 are not required, see also Re-
mark 1.6.

Remark 3.3. Note that this is an adaptation of Sinai’s original fundamental theorem in
[S], formulated for 2d dispersing billiards, see also [CM] Chapter 5. However, there are
remarkable differences:

• in 2 dimensions, one can show the existence of long stable manifolds through a set
of arbitrarily big relative measure in W . Here we only have a positive measure set
of points y, but this is enough for the Hopf chain construction in Section 4.

• There is also an improtant improvement: we do not require x 6∈ Γ(n) for all n, just
for some nA fixed. This may make the proof of ergodicity simpler, as it can be seen
in the proof of Theorem 4.4.

This theorem has a time reversal counterpart.

9



Theorem 3.4. Consider a dynamical system satisfying the assumptions A1, A3, A5, A6
and A8. Then, given any A > 1, there exists nA ∈ N with the following property. For any
x ∈ M \ Γ(−nA) there exists a neighborhood BR(x) such that, for any LSM W ⊂ BR(x):

mW ({ y ∈ W | ru(y) > A · r(W ) }) > 0.

Before the proof we state and prove a key lemma:

Lemma 3.5. There exists a global constant Cg with the following property. Let W be a
δ0-LUM such that ρ(W, Γ1) > r(W )/Cg, and that W lies in a connected component of
M \ Γ1. If ε ≤ r(W )/Cg, then mW (rs > ε) > 0.

Proof. First we will prove the following claim: Let Ca be the constant in Assumption A5.
Then given any x ∈ W satisfying rk(x) > Caε/Λ

k for all k ≥ 1, we have rs(x) > ε.
To see this, take a point x that satisfies the assumption, and assume indirectly that

rs(x) ≤ ε. From the standard construction of stable manifolds in uniformly hyperbolic
systems we know that the maximal stable manifold W s of x can only terminate on Γn for
some n ≥ 1. So let y ∈ Γn ∩ ∂W s, ρW s(x, y) ≤ ε. The assumption of the lemma implies
that n ≥ 2. The definition of Γn implies that T n−1y ∈ Γ1, but T n−2y /∈ Γ1. Clearly
ρT n−1W s(T nx, T ny) ≤ ε/Λn−1. Let γ be a curve of length ≤ ε/Λn−1 connecting T n−1x to
T n−1y in T nW s (as in Assumption A5). Clearly Tγ is a curve of length≤ ε/Λn connecting
T nx to some y+ ∈ Γ−1. However, we have assumed rn(x) > Caε/Λ

n, which implies that
ru(T nx) > Caε/Λ

n. This means that in our alignment assumption (Assumption A5)
applied to T nx and y+, the first case is contradicted, so the second must hold, thus
T n−1y ∈ Γ−1. But we have also assumed rn−1(x) > Caε/Λ

n−1, thus applying, as above,
the alignment assumption to T n−1x and T n−1y, we now get T n−2y ∈ Γ1, a contradiction.
So the claim is proven.

Lemma 2.4 allows us to estimate the measure of points which do not satisfy the
condition in the claim. Specifically, the measure of these bad points can be compared
to the measure of the ε-boundary of W . In order to compare this measure to the total
measure of W , we apply the lemma to a ball in the unstable manifold.

In particular, if Wa ⊂ W is a du dimensional unstable ball of radius a = r(W ) < δ0,
then

mWa(rWa,n < ε) ≤ (α′Λ)nC1a
d−1ε/Λn + C2a

dε ≤ C3a
d−1ε (4)

for all n ≥ 1. Here and in the rest of the proof the global constants Ci may depend on
d(= du) via the volume and the area of the unit sphere in Rd, as well as on the geometry
of the cone fields in Assumption A3 and on δ0, but this has no significance.

Substituting ε → Caε/Λ
n in (4), summing over n ≥ 1 and applying the claim we get:

mWa(r
s < ε) ≤ C4εa

d−1.

Since mWa(Wa) ≥ C5a
d, we have mWa(r

s > ε) > 0 whenever ε < a/Cg. This
observation fixes the global constant Cg.
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As we have assumed the time reversal counterparts for the properties A3, A5, A6
and A8, we may perform an analogous argument for LSMs, to have the time reversed
analogue of Lemma 3.5:

Lemma 3.6. There exists a global constant Cg with the following property. Let W be a
δ0-LSM such that ρ(W, Γ−1) > r(W )/Cg, and that W lies in a connected component of
M \ Γ−1. If ε ≤ r(W )/Cg, then mW (ru > ε) > 0.

In the proof of the Fundamental Theorem we will use the following observation several
times without mentioning:

Lemma 3.7. There exists a global constant K such that for any LUM or LSM W if we
have W ⊂ BR for some sphere BR of some small radius R, then r(W ) ≤ KR.

Proof. This follows from the uniform continuity of the cone fields in Assumption A3.

Proof of Theorem 3.1. The concept of constructing the large stable manifolds through a
postitive measure set of points y is the following.

• Apply a high iterate T n of the dynamics to W , so that it is stretched greatly

• Then use Lemma 3.5 to construct stable manifolds crossing T nW , which will be
comparable in radius to T nW .

• Eventually, pull these stable manifolds back using T−n to obtain long stable mani-
folds crossing W .

Now if n was chosen so that Λ2n/Cg > A, then the stable manifolds constructed will have
an inner radius greater than A times the inner radius of W .

To carry out this concept, we only need to make sure that the growth of our manifolds
is not interrupted by singularities (including ∂M) along the n steps forward and back.
This is ensured by chosing the set BR(x) so small, that its image under the n iterations
still remains small, and keeps away from the singularities. The rest of the proof is
dedicated to the technical details of this construction.

First we should tell how for a given A > 1 the integer nA is chosen: we need
Λ2(nA−1)/Cg > A where Λ > 1 is the factor of minimal expansion from (Assumption A3),
and Cg is the constant of Lemma 3.5. For brevity in the rest of the proof we omit the
subscript A and use n = nA − 1.

Now assume that we have some x ∈ M \ Γ(n+1): we should find an open ball BR(x)
for which the statement of the Theorem holds. As Γ(n+1) is closed, there exists an open
ball centered at x, U = B(x) such that

U ∩ Γ(n+1) = ∅. (5)

BR(x), the open ball of radius R should lie within U and should satisfy two further re-
quirements, both of them ensuring that BR(x) lies “in the middle of” U in an appropriate
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sense. Later we will refer to these requirements as the first and the second requirement
on B = BR(x).

(R1) On the one hand we need that ρ(BR(x), ∂U) > KAR.
(R2) On the other hand we have that ρ(T nx, Γ1) = R′′ > 0. Consider B′ = BR′(T nx),

the open ball of radius R′ = R′′Cg

K(Cg+1)
around T nx. We require that B ⊂ T−nB′.

The reason for the second requirement is as follows. If we have a LUM W ⊂ B,
then W ′ = T nW is a LUM and W ′ = T nW ⊂ B′. However given W ′ ⊂ B′, we have
r(W ′) < KR′, thus, by the choice of R′, ρ(W ′, Γ1) > r(W ′)/Cg. On the other hand (5
implies that W ′ (as a subset ot T nU) lies in one connected component of M \ Γ1. These
observations ensure that Lemma 3.5 applies to W ′ = T nW whenever W ⊂ B.

That is exactly what we are going to use. Consider an arbitrary LUM W ⊂ B and
let W ′ = T nW . Then, by uniform hyperbolicity (Assumption A3), r(W ′) ≥ Λnr(W ).
Furthermore, as discussed above, Lemma 3.5 applies to W ′ for suitable ε, in particular
for ε = Λnr(W )/Cg ≤ r(W ′)/Cg. We have:

mW ′({ y′ ∈ W ′ | rs(y′) > Λnr(W )/Cg }) > 0. (6)

Now we invoke Assumption A6: note that W lies within one connected component of
M \ Γ(n), thus the distortions of T n are bounded on W . Introduce

Wg ⊂ W, Wg = { y ∈ W | rs(T ny) > Λnr(W )/Cg }.

By the above mentioned distortion bounds (6) implies mW (Wg) > 0.
Now for y ∈ Wg let y′ = T ny and consider the stable manifold of y′. We distinguish

between two possibilities. If this stable manifold is not cut by the singularities of T−n,
then, by Assumption A3, its inner radius grows at least by a factor Λn when T−n is
applied. Thus in this case

rs(y) ≥ Λnrs(y′) > Λ2nr(W )/Cg > A · r(W )

by the definition of n. If, on the other hand, the stable manifold of y′ is cut by the
singularities of T−n, then the stable manifold of y should extend to Γ(n). Thus, recalling
the definition of U from (5), we have that the stable manifold of y reaches ∂U . Now by
our first requirement on B = BR(x), for such a y:

rs(y) ≥ ρ(y, ∂U) ≥ ρ(B, ∂U) > KAR ≥ A · r(W )

where we have also used r(W ) ≤ KR which follows from W ⊂ B.
Summarizing, we have rs(y) > A · r(W ) whenever y ∈ Wg, which, along with

mW (Wg) > 0, completes the proof of the Theorem.

The proof of Theorem 3.4 goes along the same lines, based on Lemma 3.6.
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4 Fundamental theorem implies local ergodicity

Theorem 4.1. Suppose that a dynamical system satisfies assumtions A1 . . .A8. Then
there is an n0 such that any x ∈ M \ (Γ(n0)∪Γ(−n0)) has an open neighborhood Ux, µ-a.e.
point of which belongs to a single ergodic component.

Before the proof we recall the Hopf construction of ergodic theory. This is the most
common tool for proving (local) ergodicity in hyperbolic systems. On further details see
eg. [BS] (Chapter 6), or [CM] (Chapter 6) in the billiard context.

Throughout the section “almost everywhere” (a.e.) is understood w.r.t µ or w.r.t
Lebesgue measure. By equivalence (Assumption A2) these two notions coincide. Given
a LUM (LSM) W , a.e. on W means a.e. w.r.t the induced Lebesgue measure on W .

Given a continuous function f : M → R define f+(x) = lim
n→∞

f(x)+f(Tx)...+f(T n−1x)
n

and

f−(x) = lim
n→∞

f(x)+f(T−1x)...+f(T−n+1x)
n

, the future and past time avarages. We will say that

x ∈ M is f -typical if f+(x) and f−(x) exist and coincide. By Birkhoff’s ergodic theorem
a.e. point on M is f -typical. Furthermore, by uniform continuity of f (M is assumed to
be compact), f+ is constant along LSMs and f− is constant along LUMs.

Consider two f -typical points, y1 and yK+1. We will say that the alternating sequence
of LUMs and LSMs Wi, i = 1, ..., K is a Hopf chain for f , connecting y1 to yK+1 if y1 ∈ W1

and yK+1 ∈ WK , W2k−1 is a LUM and W2k is a LSM, and for every i the intersection
Wi−1∩Wi = {yi} consists of exactly one point yi which is f -typical. We will say that the
Hopf chain starts from y1 and connects y1 to yK+1. By the above facts the time averages
exist, coincide and are the same for the interseciton points: f̄ = f+(yi) = f−(yi), for
i = 1, ..., (K + 1), and f̄ is independent of i. In particular, the following Lemma can be
proved by standard ergodic theory arguments (see again [BS] or [CM]):

Lemma 4.2. Consider a set M̃ ⊂ M of positive µ-measure. If for any continuous
function f there exists a set M̃f ⊂ M̃ of full µ-measure, such that every pair of points
ya, yb ∈ M̃f can be connected by a Hopf chain (for f), then M̃ belongs (mod zero µ-
measure) to one ergodic component.

Keeping the continuous function f fixed we recall some further definitions from [BS]
(or [CM]). We will say that a point x ∈ M is f -good if (i) it is f -typical, (ii) ru(x) > 0
and rs(x) > 0, (iii) a.e. point y ∈ W u(x) is f -typical and satisfies rs(y) > 0, and (iv)
a.e. point y ∈ W s(x) is f -typical and satisfies ru(y) > 0.

Absolute continuity (Assumption A7), along with the a.e. existence of LUMs and
LSMs (Assumption A4) imply the following lemma (see e.g. [CM]):

Lemma 4.3. A.e. x ∈ M is f -good. Furthermore, for an f -good x ∈ M , a.e. point of
its LUM W u(x) (and of its LSM W s(x)) is, in addition to being f -typical, also f -good.

In the proof of local ergodicity we will construct Hopf chains through intersection
points which are all f -good.
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Proof of Theorem 4.1. Let us fix A > max(1000, 100/Cδus). Choose n0 = nA3 . For
x ∈ M \ (Γ(n0) ∪ Γ(−n0)) we define below the “big neighborhood” Bx and the “small
neighborhood” Ux. Let Bx = BR(x) be the open ball for which both forms of the
fundamental theorem, Theorem 3.1 and Theorem 3.4 hold (with A → A3, and thus with
A → A′ whenever 1 < A′ ≤ A3). Take R0 = R/A5 and fix Ux = BR0(x) which becomes
this way a tiny ball in the middle of Bx.

We will show that the assumptions of Lemma 4.2 hold for M̃ = Ux, using the funda-
mental theorem several times with A, and once with A3, always in Bx.

Fix a continuous function f and two f -good points ya, yb ∈ Ux.
Let us fix y1 = ya. There exists 0 < R1 so small that ru(x) ≥ R1, and thus W1 =

W u
R1

(y1) exists. We may also assume, for simplicity, that this manifold is contained in
Ux. As y1 is f -good, almost every point of W1 is f -good. Fixing R2 = AR1, by the
Fundamental Theorem 3.1 (applied in Bx with A), rs(y) > R2 for a positive measure set
of points y on W1. These two observations imply that there is an f -good point y2 ∈ W1

such that W2 = W s
R2

(y2) exists and, by the choice of Bx and Ux, is necessarily contained
in Bx. We may continue this procedure: applying consecutively either Theorem 3.1 or
Theorem 3.4, along with the fact that a.e. point on the consecutive manifolds is f -good,
we construct a Hopf chain starting from ya with (un)stable manifolds of increasing size:
Wi = W §

Ri
(yi), where Ri = Ai−1R1, Wi−1 ∩Wi = {yi} is a good point, and § = u or § = s

depending on the parity of i. We only need to ensure that Wi ⊂ Bx, which remains true
as long as ρ(yi, Ux) < A4R0 and Ri < A4R0. This definitely holds throughout the process
if we stop at the first occasion when Ri > 100R0. Let us denote this final manifold in
our Hopf chain as W ′ = W u

Ra
(za).

1

We can repeat the same Hopf chain construction starting from yb. We arrive at two
Hopf chains: one starting from ya and terminating in W ′ = W u

Ra
(za), the other starting

form yb and terminating in W ′′ = W u
Rb

(zb). If we manage to connect the LUMs W ′ and
W ′′ via a stable manifold in such a way that the intersection points with both LUMs are
f -good, the proof is complete.

Note we have W ′, W ′′ ⊂ Bx and Ra, Rb > 100R0. We may assume Ra > Rb. By the
choice of A we also have ρ(za, zb) < RaCδus .

Fix W = W u
R0

(zb). Then Lemma 2.3 implies that W ′ s-shadows W .
Note that r(W ) = R0 and r(W ′) < A100R0, thus A3r(W ) > 2r(W ′). Applying

Theorem 3.1 (with A → A3) we have rs(z) > 2r(W ′) for a positive measure set of
points z ∈ W . As W ′ s-shadows W , these stable manifolds necessarily intersect W ′.
Furthermore, as a.e. point (both on W and on W ′) is f -good, recalling also the absolute
continuity property (Assumption A7), we can choose a LSM such that the intersection
points are f -good. This guarantees we have connected ya to yb with a Hopf chain, which
completes the proof of Theorem 4.1.

As a corollary, we can prove ergodicity of those multi-dimensional dispersing billiard

1If we happen to exceed 100R0 at a stable step, apply the fundamental theorem with A → 1, 0001
once.
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maps, for which the growth property of Assumption A8 could be checked in [BT]. For
details of the conditions of this theorem, please consult the above paper.

Theorem 4.4. Let (M, T, µ) be the billiard map for a multi-dimensional billiard. Assume
the surface of every scatterer is C3-smooth, and its second fundamental form (curvature)
is positively denifed everywhere (the billiard is dispersing). Assume that the horizon is
finite (the free flight is bounded), and that the scatterers are disjoint (there are no corner
points). Assume furthermore that the singularities of the map satisfy the subexponential
complexity condition – that is,

K(n) = sup
x∈M

(
number of connected components Mi of M \ Γ(n) with x ∈ Mi

)
grows subexponentially in n. Then (M, T, µ) is ergodic. Moreover, any higher iterate of
the map, (T n, µ) is also ergodic.

Remark 4.5. Note that as multi-dimensional dispersing billiards are hyperbolic systems
(actually, uniformly hyperbolic, that is, Assumption A3 is satisfied) ergodicity of all the
iterates automatically implies K-mixing ([SCh],[KS]) and the Bernoulli property ([ChH],
[OW]). Ergodicity of every higher iterate of the map is the property required in Assump-
tion A.3 of [BT].

Proof. The proof is based on [BT], where it is shown that the billiard maps under con-
sideration satisfy assumptions A1 . . . A8. Thus the statement of Theorem 4.1 applies.

Let M0 be the set of those phase points x ∈ M \∂M , which are at most once singular
along their entire trajetory. Points of M \ ∂M \ M0 are the phase points which are
at least twice singular. These are contained in a countable union of two-codimensional
submanifolds, so they cannot “cut” the phase space. That is, the connected components
of M0 coincide with the connected components of M , modulo a set of zero measure.
We claim that every point of M0 has an entire open neighbourhood which belongs to
a single ergodic component. This implies that every connected component of M can
intersect only one ergodic component.

First, consider an x ∈ M0 which is never singular – that is, x 6∈ Γn for any n ∈ Z.
Then Theorem 4.1 directly applies, to give the neighbourhood of x we are looking for.

Second, consider an x ∈ M0 which is singular exactly once, in the future – that is,
x ∈ Γn for a single n ≥ 1. Then we can apply Theorem 4.1 to T−kx with k + n > n0

to get an open neighbourhood of T−kx which belongs to a single ergodic component.
Applying T k to that neighbourhood gives the desired neighbourhood of x, since T−k is
continuous (with a continuous inverse) in a (sufficiently small) neighbourhood of x.

Third, consider an x ∈ M0 which is singular exactly once, in the past – that is,
x ∈ Γ−n for a single n ≥ 1. Then we can apply Theorem 4.1 to T kx with k + n > n0 to
get a neighbourhood of T kx, then apply T−k to get the desired neighbourhood of x.

Since every point of M0 is covered in one of the three cases, we have proven our claim,
and conclude that the ergodic components of M consist of entire connected components
of M .
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Now to get ergodicity, we only need to see that different connected components of
M belong to the same ergodic component. But connected components of the billiard
map correspond to scatterers of the billiard, and these scatterers obviously cannot be
partitioned into two sets so that no travel from one set to the other is possible. So
if there would exist several ergodic components, two of them would certainly contain
scatterers which are “neighbours” in the sense that a positive measure set of points on
one of them is mapped to the other by T , which means that these sets cannot be invariant
– a contradiction.

All that is left is to prove ergodicity for every power T n of the dynamics. Since
(un)stable manifolds of T are also (un)stable manifolds of T n, the Hopf chains are the
same, so we still know that every connected component of the phase space (corresponding
to every scatterer) belongs to a single ergodic component. So, to see ergodicity of every
T n, we only need to check that the scatterers cannot be grouped into two or more classes
so that transition is only possible from every class to the next one (and from the last one
to the first). This is true for geometrical reasons: one can always find three scatterers
A, B and C so that transition (of a positive measure set of points) is possible from A
to B, form B to C, form C to A and from B to A as well – so the lenght of any cycle
must be a divisor of both 2 and 3. For a more precise formulation and a detailed proof
of this statement see [CM], Lemma 6.23. The setting there is two-dimensional, but the
statement and the proof remain unchanged in the multi-dimensional case.

Remark 4.6. As a closing remark, let us comment on the above mentioned “subexpo-
nential complexity” condition. There is no doubt in the billiard community that such a
condition should be generic in the set of all finite horizon billiard systems, in any reason-
able sense of genericity. There is a sketch of proof for such a statement in [B], however,
the issue is definitely subject to further investigation.
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