
Ergodicity and Energy Distributions for Some
Boundary Driven Integrable Hamiltonian Chains

Peter Balint1, Kevin K. Lin2, and Lai-Sang Young3

Abstract. We consider systems of moving particles in 1-dimensional space interact-
ing through energy storage sites. The ends of the systems are coupled to heat baths,
and resulting steady states are studied. When the two heat baths are equal, an ex-
plicit formula for the (unique) equilibrium distribution is given. The bulk of the paper
concerns nonequilibrium steady states, i.e., when the chain is coupled to two unequal
heat baths. Rigorous results including ergodicity are proved. Numerical studies are
carried out for two types of bath distributions. For chains driven by exponential
baths, our main finding is that the system does not approach local thermodynamic
equilibrium as system size tends to infinity. For bath distributions that are sharply
peaked Gaussians, in spite of the near-integrable dynamics, transport properties are
found to be more normal than expected.

Introduction

This paper concerns a simple model of energy transport along a chain of Hamiltonian
systems with conservative, nearest-neighbor coupling. The ends of the chain are in
contact with unequal heat baths, and of interest to us are properties of the resulting
nonequilibrium steady state. In this paper, we address rigorously questions of invari-
ant densities and ergodicity. This is followed by a numerical investigation of energy
profiles along the chain and marginal distributions at specific locations as the length
of the chain tends to infinity.

The setup above is used in heat conduction studies, as are the questions raised [3,
11, 21]. We propose to look at these questions in a broader theoretical framework,
as transport of conserved quantities by dynamical processes in general and particle
systems in particular. As an example of this extended viewpoint, we will sometimes
consider energy sources that are not necessarily Gibbsian in distribution, even though
we will continue to call them “heat baths”.

Except for system-bath interactions, the class of models considered here obey
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purely deterministic (as opposed to stochastic) microscopic rules.4 Transport prop-
erties naturally depend on these dynamical rules. It is generally thought — though
far from proved — that “chaotic” local dynamics lead to diffusion-like behavior on
the macroscopic level, while “integrable” dynamics, which lie at the opposite end of
the spectrum, operate differently. An early example that contributes to this under-
standing is a chain of coupled harmonic oscillators [28]; see [21] for other examples
and more detailed discussion. The class of models considered in this paper is closer
to the integrable end.

Description of model. The constituent subsystems in our chains are as simple
as can be: each consists of a point mass moving freely back and forth along a unit
length interval. We order these intervals linearly. Energy is stored at the sites where
adjacent intervals meet; when a particle reaches a site, it exchanges energy with the
site, then turns around and moves away at a speed equal to the square root of its new
(kinetic) energy. The left and right ends of the chain are coupled to heat baths, which
function like other sites except that the energies they emit are random; we assume
they are i.i.d. with respect to certain prescribed distributions. This is a complete
description of the class of models studied in this paper.

If we replace the two baths by two regular sites, then the resulting closed chain
is a very simple, totally non-chaotic dynamical system: it has many independent
conserved quantities (besides the total energy) and is highly non-ergodic. For this
reason, we will sometimes refer to it (loosely) as an “integrable Hamiltonian chain”.
Any ergodic property of the open chain must come solely from the randomness of the
baths, and this randomness must find a way to penetrate the entire chain, which can
be arbitrarily long.

Preview of results. This paper has two separate parts: a rigorous part, and a
numerical part.

Our main rigorous result is ergodicity; under some conditions which require that
the bath distributions be sufficiently spread out, we prove that there is at most one
invariant probability measure, and that this measure has a density. In particular, we
prove that our system admits no singular invariant probability measures. We also
give the explicit form of the invariant density when the system is in equilibrium, i.e.,
when the two bath distributions are equal.

Numerical studies of nonequilibrium steady states were carried out for two types
of bath distributions: exponential distributions and sharply peaked Gaussians. When
in equilibrium, exponential bath distributions give rise to Gibbs distributions for the
moving particles in the chain. A finding that was a little surprising to us is that
when forced out of equilibrium, our chain produces local marginal densities that are
mixtures of Gibbs distributions (which are therefore not Gibbs). This is discussed in
Sect. 6.2. Sharply peaked Gaussian bath distributions were chosen to accentuate the

4There is a small exception to this statement: a stochastic rule is used to “break the tie” in the
unlikely event of same-site double collisions; see the end of Sect. 1.1.
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near-integrability of the dynamics. Here we discover that injected energies move about
in a hybrid ballistic-diffusive motion, resembling a random walk with “momentum”,
meaning a tendency to continue in the same direction; see Sect. 7.2.

Related works. With regard to ergodicity type results for boundary driven Hamil-
tonian chains, the only previous works we are aware of are for anharmonic chains [15,
12, 27] and for certain particle models in which rotating disks are used as energy stor-
age devices [13]. The latter was preceded by [20, 25], which contain numerical studies
of similar models, and by [16], which contains a simplification of the model in [20]
and a partial analysis. A similar class of models, with paddles in the place of rotating
disks, has also been studied [22]. These models have to some degree motivated the
idea of energies at “sites” in the present paper. Related works in systems defined by
dynamical local rules include [4, 5, 6, 7, 17]. For stochastic models, the collection
of results is much larger, and we mention only some that are closer to this paper in
spirit: [1, 2, 8, 9, 10, 16, 18, 19, 23, 24, 26, 29].

1 Model Description

1.1 Particle systems

We consider a model with N sites, denoted {1, 2, · · · , N}, connected to two baths
which we think of as located at sites 0 and N + 1. The physical space of the system
is the line segment [0, N + 1]. In this system, there are 2N + 1 particles, N of which
are “stationary” and the rest are in perpetual motion. The ith stationary particle
is confined to site i, while the ith moving particle, i = 0, 1, · · · , N , moves back and
forth along the segment [i, i+ 1]. Each particle carries an energy. The energy of the
ith stationary particle is denoted by ξi, while the ith moving particle carries energy
ηi and moves with speed

√
ηi. The phase variables of this system are therefore

X = ((x0, σ0, η0), ξ1, (x1, σ1, η1), ξ2, (· · · ), · · · ξN , (xN , σN , ηN)) .

Here we let xi(t) ∈ [0, 1] denote the location at time t of the ith moving particle and
σi(t) = ± its direction of travel, identifying the segments [i, i + 1] with [0, 1]. The
variables ηi, ξi ∈ (0,∞) are energies as defined earlier. Because the moving particles
are trapped in gaps between integer sites, we will also refer to the ηi as “gap energies.”

The rules for updating this continuous-time process are as follows. When a moving
particle reaches the boundary of the segment to which it is confined, a collision occurs,
and the post-collision dynamics are defined as follows: Suppose for definiteness that
at time t0,

xi(t
−
0 ) = 0, σi(t

−
0 ) = − ; i 6= 0 ,

i.e., at time t0, the ith particle collides with site i, which we assume is not the left
bath. We assume further that xi−1(t

−
0 ) 6= 1, i.e., it is not a double collision at site i.
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Then an exchange of energy between the particle at site i and the ith moving particle
takes place, and the latter reverses its direction, i.e.,

ξi(t
+
0 ) = ηi(t

−
0 ), ηi(t

+
0 ) = ξi(t

−
0 ), xi(t

+
0 ) = 0, and σi(t

+
0 ) = + .

An analogous rule holds when xi(t
−
0 ) = 1 and σ−

i (t0) = + provided that i 6= N .
When a particle reaches a bath, it bounces back with a random energy. More

precisely, we think of the left and right baths as having energy distributions with
densities L(ξ) and R(ξ) respectively. Each time the 0th moving particle reaches the
left bath, its energy is replaced by one drawn randomly and independently from
the distribution L(ξ); an analogous statement holds when the Nth moving particle
reaches the right bath. Emissions from the left and right baths are independent.

We say a multiple collision occurs at time t0 if at that time, two or more collisions
occur simultaneously. These collisions may involve the same site, or different sites,
or some combination of sites and baths. The post-collision rule above leaves no
ambiguity as to how to continue the dynamics after a multiple collision except when
there is a “same-site double collision”, i.e., when two particles arrive, from the left
and the right, to one of the sites at exactly the same time. There is no natural way to
continue the dynamics after such a collision. We fix (arbitrarily) the following rule:
equal probability is assigned to the two scenarios corresponding to one of the particles
arriving slightly ahead of the other; if collisions of this type occur simultaneously at
multiple sites, then the probabilities are assigned independently at each site.

1.2 Markov jump processes with very degenerate transitions

The process described in Sect. 1.1 is a Markov jump process. One may represent such
a process as a unit speed flow built over the “jump section”. Let M+ denote the set
of configurations X immediately following a collision. For each X ∈ M+, let r(X)
denote the time to the next collision, and let

M := {(X, s) : X ∈ M+ and s ∈ [0, r(X)]} .

Transition probabilities P t for the Markov process on M are defined as follows:

- for t < r(X), P t
(X,0) = δ(X,t), the point mass at (X, t);

- for t = r(X), a jump occurs, and P t
(X,0) is the probability measure supported

on M+ × {0} given by the rules in the last subsection.

Geometrically, each point in M+ × {0} moves “up” in the second coordinate at unit
speed until it reaches the pre-jump section {(X, s) : s = r(X)}, at which time its
image is identified, instantaneously, with a distribution on M+ × {0}. This distri-
bution is a point mass a vast majority of the time. It has a density in one direction
if the collision involves exactly one of the baths, in two directions if both baths are
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involved, and it is supported on a finite set of points following a same-site double
collision. Transition probabilities at other points in M are defined in the obvious
way.

The continuous-time Markov process above induces a discrete-time Markov chain
on M+ defined as follows: For X ∈ M+, the (time-1) transition probability starting

from X, denoted pX , is given by pX(A) = P
r(X)
(X,0)(A× {0}) for all A ⊂ M+.

A Borel probability measure µ on M+ is said to be invariant under the discrete-
time Markov chain pn if for all Borel sets A ⊂ M+,

µ(A) =

∫

pX(A) dµ(X) .

Invariant measures for the continuous-time process P t are defined similarly. The
invariant measures of these two processes are related via the following elementary
lemma the proof of which we omit. Let λk denote Lebesgue measure on R

k.

Lemma 1.1 (a) For every Borel probability measure µ on M+ invariant under pn,
µ̂ := (µ× λ1)|M is invariant under P t; µ̂(M) <∞ if and only if

∫

rdµ <∞.

(b) Conversely, each P t-invariant probability measure µ̂ gives rise to a pn-invariant
measure µ defined by

µ(A) = lim
ε→0

1

ε
µ̂({(X, s) : X ∈ A, s ∈ [0, ε]}.

1.3 The roaming particles viewpoint

In Sect. 1.1, we have described our model as consisting of N + 1 moving particles
each confined to a unit interval, exchanging energy with the particles confined to
sites when they meet. The following entirely equivalent way of viewing this model is
sometimes convenient and is used in many of the arguments:

Think of each particle as carrying an energy which remains unchanged throughout,
i.e., there are no energy exchanges. Instead, the particles exchange positions when
they meet. More precisely, a particle may be moving or at rest; when at rest, it is at
one of the sites, and is the sole occupant of that site. When a moving particle reaches
site i, it exchanges positions with the particle sitting at site i, and waits there until it
is relieved by the next particle to reach this site. Each particle is permitted to roam
the length of the chain until it exits at one of the two ends.

Formally, to define an equivalence with the model described in Sect. 1.1, one should
view all particles carrying the same energy as indistinguishable. Notice that this does
not prevent one from following, with no ambiguity, the trajectory of a particle from
the moment it enters the chain to when it leaves – except in the case of same-site
double collisions involving 3 particles with the same energy. In such a collision, one
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cannot deduce from the subsequent dynamics which one of the approaching particles
is assumed to have arrived first.

In this roaming particles description of the model, there is also the induced
discrete-time process, which is defined in the obvious way.

PART I. RIGOROUS RESULTS

2 Statement of results

Our results pertain to invariant measures of the processes defined in Sect.1. When the
bath distributions L(ξ) and R(ξ) are equal, we regard the system as being in equilib-
rium, and view its invariant measures as equilibrium distributions. When L(ξ) 6= R(ξ),
we view the system as forced out of equilibrium, and its invariant measures as nonequi-
librium steady states.

Our first result applies to situations both in and out of equilibrium. As noted in
the introduction, the closed chain corresponding to our model is integrable and highly
nonergodic, so that ergodicity of the open system, if true, is brought about solely by
the randomness from the baths. Intuitively, the more spread out the injected energies,
the more likely ergodicity will be achieved.

Theorem 1 Assume L(ξ), R(ξ) > 0 for all ξ ∈ (0,∞). Then the following hold for
all N-chains for both the continuous-time process P t and its associated discrete-time
process pn:

(a) There is at most one invariant probability measure (which is therefore ergodic).

(b) This measure has a density with respect to Lebesgue measure.

The conditions above can be weakened as follows: There is a function φ(N) = O( 1
N2 )

such that (a) and (b) hold for the N-chain if L(ξ) and R(ξ) are strictly positive on
open sets IL and IR, and there exist ξ ∈ IL∪IR and ξ′ ∈ IL∩IR such that ξ = φ(N)ξ′.

An example of φ(N) that is sufficient is φ(N) = 1
(18N)2

. The form of our as-

sumption involving φ(N) is quite possibly an artifact of our proof, but it is essential
for L(ξ) and R(ξ) to have some spread. Our results imply, in particular, that the
processes we consider have no singular invariant probability measures.

We do not prove the existence of invariant measures in this paper. For existence,
the two issues are: (1) tightness, which requires that one controls the dynamics of
super-fast and super-slow particles. (2) Discontinuities of transition probabilities pX

as a function of X due to same-site double collisions. Techniques for treating (1)
in nonequilibrium situations are generally lacking, and (2) is likely to involve very
technical arguments. We have elected to leave these problems for future work.
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Our next result gives an explicit formula for the equilibrium distribution in terms
of bath distributions. In general, no such explicit expressions exist for nonequilibrium
steady states, and our models appear to be no exception.

Theorem 2 Let L(ξ) = R(ξ) = ρ(ξ) be a probability density on (0,∞) satisfying (i)
∫

1√
ξ
ρ(ξ)dξ < ∞ and (ii) ρ(ξ) = O(ξ−κ) for some κ > 3/2 as ξ → ∞. Then the

following measure is invariant for the (continuous-time) process defined in Sect. 1.1:

(

dξ1 · · · dξN ·
N
∏

i=1

ρ(ξi)

)

×
(

dη0 · · ·dηN ·
N
∏

i=0

1√
ηi

ρ(ηi)

)

× λN+1 × ωN+1

where λN+1 = Lebesgue measure on [0, 1]N+1 and ωN+1 assigns equal weight to the
configurations in {(σ1, · · · , σN+1)}.

The following corollary suggests some examples to which our results apply:

Corollary 1. Any finite chain with bath injections L(ξ) = R(ξ) given by either
(a) an exponential distribution or
(b) a Gaussian truncated at 0 and normalized

has a unique (hence ergodic) equilibrium distribution, and it is given by the expression
in Theorem 2.

3 Density and Ergodicity: Outline of Proof

For definiteness, we will work with the discrete-time Markov chain on M+. By Lemma
1.1, the assertions in Theorem 1 for pn imply the corresponding assertions for P t.

Proving uniqueness of invariant measure or ergodicity requires, roughly speaking,
that we be able to steer a trajectory from one location of the phase space to another.
If the transition probabilities have densities on open sets, then one needs only to do so
in an approximate way. Our model, unfortunately, has highly degenerate transition
probabilities. One must, therefore, tackle hand in hand the problems of (i) acquisition
of densities for pn

X and (ii) steering of trajectories.
The purpose of this section is to outline how we plan to do this. Sect. 3.1

introduces definitions and ideas that will be used. In Sect. 3.2, we formulate three
propositions to which the proof of Theorem 1 will be reduced.

3.1 Basic ingredients of the proof

(A) Acquiring densities

Given a finite Borel measure ν on M+, we let ν = ν⊥ +νac denote the decomposi-
tion of ν into a singular and an absolutely continuous part with respect to Lebesgue
measure, and say ν has an absolutely continuous component when νac 6= 0. We
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say X ∈ M+ eventually acquires a density if for some n > 0, pn
X has an absolutely

continuous component, i.e. (pn
X)ac 6= 0.

Lemma 3.1 If every X ∈ M+ acquires a density eventually, then every invariant
probability measure of pn has a density.

Proof: For any measure ν, if ν is absolutely continuous with respect to Lebesgue, then
so is νn :=

∫

pn
Xdν(X). This is because under the dynamics, Lebesgue measure is car-

ried to a measure equivalent to Lebesgue, followed, at certain steps, by a diffusion in
one or two directions corresponding to bath injections. Thus (νn)ac(M+) ≥ νac(M+)
for all n ≥ 1. The hypothesis of this lemma implies that this inequality is strict for
some n unless ν⊥ = 0. Now let µ be an invariant probability measure for pn. Since
µn = µ, it follows that µ⊥ = 0. �

Recall that IL = {L > 0} and IR = {R > 0}. We call a finite or infinite sequence
of points X0, X1, . . . in M+ a sample path if such a sequence can, in principle, occur.
In particular, if Xn−1 is followed by a collision with the right bath, then the ξN -
coordinate of Xn must lie in IR, and similarly with the left bath.

Let X = (X0, X1, . . . , Xn) be a sample path obtained by injecting into the system
the energy sequence ε = (ε1, · · · , εm) in the order shown. (One does not specify
whether the injection is from the left or the right; it is forced by the sequence.) We
write ΦX0

(ε) = Xn. Suppose X has no multiple collisions. It is easy to see that there
is a small neighborhood E of ε in R

m such that for all ε′ ∈ E , (i) ε′ is a feasible
sequence of injections, i.e., if the sequence dictates that ε′j be injected from the left
(right) bath, then ε′j ∈ IL (resp. IR), and (ii) the sample path X ′ = (X ′

0, X
′
1, . . . , X

′
n)

produced by injecting ε′ has the exact same sequence of collisions as X. In particular,
it also has no multiple collisions. We may therefore extend Φ = ΦX0

to a mapping
from E to M+ with Φ(ε′) = X ′

n. As such, Φ is clearly continuous.

Lemma 3.2 Φ : E → M+ is continuously differentiable.

In the proof below, it will be useful to adopt the viewpoint expressed in Sect. 1.3,
i.e. to track the movements of the injected energies through time. Notice that for a
sample path with no multiple collisions, there is no ambiguity whatsoever about the
trajectory of an injected energy.

Proof: We verify that ∂ηi

δεj
, ∂ξi

δεj
and ∂xi

δεj
exist and are continuous on E . For ηi and ξi,

it is easy: either εj is carried by the particle in question, or it is not. If it is, then the
partial derivative is = 1; if not, then it is = 0.

For xi, consider first the case where ηi carries the injection εk, k 6= j. We let p be
the total number of times εj crosses the interval [i, i+ 1] (in either direction) before
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Xn. If p = 0, then ∂xi

δεj
= 0. Suppose not. Then perturbing (only) εj to εj + δε, the

time gained per crossing (with a sign) will be 1√
εj
− 1√

εj+δε
. Consequently

∂xi

δεj

= lim
δε→0

p
√
εk ·

1√
εj
− 1√

εj+δε

δε
=

p

2
ε

1

2

k ε
− 3

2

j .

The case where εj is carried by ηi is left to the reader. �

In the setting above, if DΦ(ε) is onto as a linear map, then by the implicit function
theorem, there is an open set E ′ ⊂ E with ε ∈ E ′ such that Φ carries Lebesgue measure
on E ′ to a measure in M+ with a strictly positive density on a neighborhood of Φ(ε).
This implies in particular (pn

X0
)ac > 0. We summarize as follows:

Definition 3.1 We say X ∈ M+ has full rank 5 if there is a sequence of injections
ε = (ε1, · · · , εm) leading to a sample path X = (X0, X1, . . . , Xn) with X0 = X such
that (i) X has no multiple collisions, and (ii) DΦX0

(ε) is onto.

Corollary 3.1 If X ∈ M+ has full rank and X is as above, then pn
X has strictly

positive densities on an open set containing Xn.

Having full rank is obviously an open condition, meaning if X has full rank, then
so does Y for all Y sufficiently close to X.

(B) Ergodic components

One way to force two points to be in the same ergodic component (in the sense
to be made precise) is to show that they have “overlapping futures”. This motivates
the following relation:

Definition 3.2 For X, Y ∈ M+, we write X ∼ Y if there exist a positive Lebesgue
measure set A = A(X, Y ) ⊂ M+ and m,n ∈ Z

+ such that (pm
X)ac|A and (pn

Y )ac|A
have strictly positive densities.

Here is how this condition will be used: Suppose µ and ν are ergodic measures,
and there is a positive µ-measure set Aµ and a positive ν-measure set Aν such that
X ∼ Y for all X ∈ Aµ and Y ∈ Aν . Then the ergodic theorem tells us that µ = ν
since they have the same ergodic averages along positive measure sets of sample paths.

As an immediate corollary of the ideas in Part (A), we obtain

Corollary 3.2 If X ∈ M+ has full rank, then there is a neighborhood N of X such
that Y ∼ Z for all Y, Z ∈ N .

5This property has the flavor of Hörmander’s condition for hypoellipticity for SDEs – in a setting
that is largely deterministic and has discontinuities.
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(C) Constant energy configurations

For fixed e ∈ (0,∞), let

Qe = {X ∈ M+ : ηi = ξi = e for all i} .

If we start from X ∈ Qe and inject only energies having value e, then the resulting
sample path(s) will remain in the set Qe. (Obviously, this is feasible only if e ∈
IL∩IR.) We call these constant-energy sample paths, and say X ∈ Qe has no multiple
collisions if that is true of its constant-energy sample path.

Needless to say, constant-energy sample paths occur with probability zero. How-
ever, they have very simple dynamics, and perturbations are relatively easy to control.
Our plan is to exploit these facts by driving all sample paths to some Qe and to work
from there.

3.2 Intermediate propositions

We claim that Theorem 1 follows readily from the following two propositions:

Proposition 3.1 Every X ∈ M+ eventually acquires a density.

Proposition 3.2 X ∼ Y for a.e. X, Y ∈ M+ with respect to Lebesgue measure.

We remark that to rule out the presence of singular invariant measures, we need
Proposition 3.1 to hold for every X, not just almost every X.

Proof of Theorem 1 assuming Propositions 3.1 and 3.2: Proposition 3.1 and
Lemma 3.1 together imply that every invariant probability measure has a density,
proving part (b). To prove part (a), let µ and ν be ergodic measures. Since they have
densities, Proposition 3.2 implies, as noted in Paragraph (B), that µ = ν. �

Next we identify three (more concrete) conditions that will imply Propositions 3.1
and 3.2. The following shorthand is convenient: For X, Y ∈ M+, we write

X ⇒ Y if given any neighborhood N of Y , there exists n such that pn
X(N ) > 0,

X ⇛ Y if given any neighborhood N of Y , there is a neighborhood N ′ of X
such that X ′ ⇒ Y for all X ′ ∈ N ′.

Proposition 3.3 Given X ∈ M+ and e ∈ IL∩IR, there exists Z = Z(X) ∈ Qe such
that X ⇒ Z.

Proposition 3.4 Z ⇛ Z ′ for all Z,Z ′ ∈ Qe, any e ∈ IL ∩ IR.

Proposition 3.5 Every Z ∈ Qe with no multiple collisions has full rank.
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Proofs of Propositions 3.1–3.2 assuming Propositions 3.3–3.5:
To prove Proposition 3.1, we concatenate Propositions 3.3 and 3.4 to show that

for every X ∈ M+, X ⇒ Z for some Z = Z(X) ∈ Qe with no multiple collisions.
The assertion is proved if there is a neighborhood NZ of Z such that every Z ′ ∈ NZ

eventually acquires a density. This follows from Proposition 3.5, Corollary 3.1 and
the fact that full rank is an open condition.

To prove Proposition 3.2, it is necessary to produce a common Z = Z(X, Y ) ∈
Qe with no multiple collisions such that X, Y ⇒ Z. To this end, we first apply
Proposition 3.3 to produce Z(X) ∈ Qe with X ⇒ Z(X) and Z(Y ) ∈ Qe with
Y ⇒ Z(Y ). We then fix an (arbitrary) Z ∈ Qe with no multiple collisions. Since
Z(X), Z(Y ) ⇛ Z (Proposition 3.4), we have X, Y ⇒ Z as before. Proposition 3.5
and Corollary 3.2 then give the desired result. �

Proving Theorem 1 has thus been reduced to proving Propositions 3.3–3.5.

4 Proofs of Propositions 3.3–3.5

In Sects. 4.1–4.2, we give an algorithm for driving sample paths from given initial
conditions to constant-energy surfaces. This can be viewed as changing the energies
in a configuration. In Sects. 4.3–4.4, we focus on changing the relative positions of
the moving particles.

4.1 Sample paths from X to Qe (“typical” initial conditions)

The hypothesis of Theorem 1 guarantees the existence of some ξ ∈ IL ∩ IR. We may
assume, without loss of generality, that ξ = 1. Given X ∈ M+, we seek sample paths
that lead to the constant energy surface Q1. Consider first the following specific
question: By injecting only particles with energy 1, will we eventually “flush out” all
the energies in X, replacing them with new particles having energy 1?

To study this question, we propose to suppress some information, to focus on
the following evolution of arrays of energies: To each X ∈ M+, we associate the
array E(X) = (η0, ξ1, η1, ξ2, · · · , ξN , ηN) where ηi and ξi are the energies of X and
they are arranged in the order shown. Then corresponding to each sample path
X = (X0, X1, · · · ) is the sequence of moves E(X0) → E(X1) → E(X2) → · · · . For
example, collision between site i and the particle on its right corresponds to swapping
the (2i + 1)st entry in the array with the (2i)th; the rightmost particle exiting the
system and an energy of value ξR entering corresponds to replacing the (2N + 1)st
entry by ξR, and so on. For as long as there are no same-site double collisions, we can
trace the movements of energies in (E(X0), E(X1), · · · ) as discussed in Sect. 1.3. We
define the exit time of the jth entry in E(X0) to be the number of moves before this
energy exits the system, and define T (X) to be the last exit time of all the elements
in E(X0). A priori, T (X) ≤ ∞.
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Lemma 4.1 Given X0 ∈ M+, suppose that injecting all 1s gives rise to a sample
path X with no same-site double collisions. Then T (X) <∞.

At each step, we will refer to the original energies of X0 that remain as the “old
energies”, and the ones that are injected as “new energies”. In particular, all new
energies have value 1 (some old energies may also have value 1). The lemma asserts
that in finite time, the number of old energies remaining will decrease to 0.

Proof: For each n, we let E(Xn) = (η0, ξ1, η1, ξ2, · · · , ξN , ηN), and say Xn is in state

(·, i) if the leftmost old energy is ξi,

(+, i) if the leftmost old energy is ηi and σi = +,

(−, i) if the leftmost old energy is ηi and σi = − .

The terminology above is not intended to suggest that we are working with a reduced
system. No such system is defined; nevertheless it makes sense to discuss which
transitions among these states are permissible in the underlying Markov dynamics.
Notice first that independent of the state of a system, it will change eventually. This
is because all energies are nonzero, so a collision involving the leftmost old energy is
guaranteed to occur at some point. We list below all the transitions between states
that are feasible, skipping over (many) steps in the Markov chain that do not involve
the leftmost old energy:

(1) Suppose the system is in state (−, i). If i 6= 0, then the only possible transition
is (−, i) → (·, i). If i = 0, then the leftmost old energy exits the system, and the new
state is determined by the next leftmost old energy (if one remains).

(2) Suppose the system is in state (+, i). If i = N , then T (X) is reached as this
last remaining old energy exits the system. If not, we claim the only two possibilities
are (+, i) → (·, i + 1) and (+, i) → (−, i). The first case corresponds to the energy
originally at site i+ 1 being new, the second case old.

(3) Finally, consider the case where the system is in state (·, i). If the next collision is
with the particle from the left, then (·, i) → (−, i−1). If it is with the particle from the
right, then there are two possibilities corresponding to the approaching energy being
new or old, namely (·, i) → (+, i) or (·, i) → (·, i). Notice that the system cannot
remain in state (·, i) forever, since the particle from the left will arrive sooner or later,
causing the state to change. For this reason, let us agree not to count (·, i) → (·, i)
as a transition.

To summarize, the only possible transitions are

(−, i) → (·, i), (·, i) → (−, i− 1), (+, i), (+, i) → (·, i+ 1), (−, i)
except where the transition leads to an old energy exiting the system. When that
happens, either there is no old energy left, or the system can start again in any state.
The following observation is crucial:

12



Sublemma 4.1 The transition sequence (−, i) → (·, i) → (+, i) is forbidden.

We first complete the proof of Lemma 4.1 assuming the result in this sublemma:
Observe first that if one starts from (+, i), either the evolution is (+, i) → (·, i+1) →
(+, i + 1) → (·, i + 2) → · · · leading to an exit at the right, or a state of the form
(−, j) is reached; a similar assertion holds if one starts from (·, i). On the other
hand, starting from (−, i), the only possible sequence permitted by the sublemma is
(−, i) → (·, i) → (−, i−1) → (·, i−1) → · · · leading to an exit at the left. This proves
that in finite time (meaning a finite number of steps with respect to the Markov chain
pn), the number of old energies remaining will decrease by one. �

Proof of Sublemma: Suppose the transition (−, i) → (·, i) takes place at t = 0. Since
all the energies to the left of site i are new and therefore have speed one, a particle
from the left is guaranteed to reach site i at time t = t0 < 2, since the previous
collision with the site from the left took place strictly before t = 0 (no same-site
double collisions). We will argue that when this particle arrives, it will find an old
energy at site i, that in fact the state of the system has not changed between t = 0
and t0. Thus the next transition has to be (·, i) → (−, i− 1).

Here are the events that may transpire between t = 0 and t0 on the segment
[i, i+1]: Observe that the transition at t = 0 is necessarily between an old and a new
energy (otherwise the state at t = 0− could not be (−, i)). This will result in a new
energy leaving site i for site i + 1 at t = 0+, and arriving at t = 1. The only way
(·, i) → (+, i) can happen is for a new energy to move leftward on [i, i + 1], and to
arrive at site i before time t0. This cannot happen, since new energies travel at unit
speed. (Notice that the old energy at site i may change between t = 1 and t0, but
the state of the system does not.) �

Partial proof of Proposition 3.3: We prove the result for X = X0 under the
additional assumption that injecting 1s gives rise to a sample path with no same-site
double collisions. By Lemma 4.1, there is a sample path X = (X0, · · · , Xn) with
Xn ∈ Q1. Let N be a neighborhood of Xn. If X has no multiple collisions, then
all nearby sample paths will end in N as discussed in Sect. 3.1. If X has multiple
(but not same-site) collisions,6 then injecting a slightly perturbed energy sequence
may – is likely to, in fact – desynchronize the simultaneous jumps. If, for example,
two collisions at sites i and i′ occur simultaneously at step j, then for perturbed
injected energies, Xj may be replaced by X ′

j and X ′′
j corresponding to two collisions

that happen in quick succession. This aside, the situation is similar to that with no
multiple collisions, and we still have pk

X(N ) > 0 but possibly for some k > n. �

6These points are discontinuities only for the (discrete-time) Markov chain, affecting the number
of steps. They are not discontinuities at all for the continuous-time jump process.
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4.2 Sample paths from X to Qe (“exceptional” cases)

As noted in Sect. 3.2, to rule out the existence of singular invariant measures, it is
necessary to show that every X ∈ M+ eventually acquires a density. Our strategy
is to inject energy 1s into the system and argue that this produces a sample path
X that leads to a point Z ∈ Q1. To prove X ⇒ Z, however, requires more than
that: it requires that a positive measure set of sample paths starting from X follow
X. This is not a problem if X has no same-site double collisions, for in the absence
of such collisions, the dynamics are essentially continuous (as explained above). Yet
it is unavoidable that for some X ∈ M+, injecting 1s will lead to same-site double
collisions. It is an exceptional situation, but one that we must deal with if we are to
follow the same route of proof.

We now address the potential problems. Recall that at each same-site double
collision, there are two ways to continue the sample path.

Partitioning nearby sample paths according to itineraries

Let X = (X0, X1, · · · , Xn) be a sample path obtained by injecting a sequence of
m energies all of which are 1s and making a specific choice at each same-site double
collision. As in Sect. 3.1(A), we consider energies ε = (ε1, . . . , εm) near 1 = (1, · · · , 1),
and ask the following question: Which injection sequence ε will give rise to a sample
path X(ε) that has the same collision sequence as X? To focus on the issues at hand,
we will ignore multiple collisions that do not involve same-site double collisions, for
they are harmless as explained earlier.

The computation in Lemma 3.2 motivates the following coordinate change, which
is not essential but simplifies the notation: Let ψ(ε) = 1√

ε
−1, and let Ψ(ε1, · · · , εm) =

(ψ(ε1), · · · , ψ(εm)). Then Ψ maps a neighborhood of 1 diffeomorphically onto a neigh-
borhood of 0 = (0, · · · , 0). We assume that X(ε) has the same itinerary as X through
step i−1, and that at step i, X has a double collision at site j. To determine whether
the left or right particle will arrive first at site j for X(ε), we use X as the point of
reference, and let tj(ε) and tj−1(ε) be the times gained (with a sign) by the particles
approaching site j from the right and left respectively. Then

tj(ε) = p1ψ(ε1) + · · · + pmψ(εm) and tj−1(ε) = q1ψ(ε1) + · · ·+ qmψ(εm)

where pk and qk are the numbers of times – up to and including the approach to site
j – the injected energy εk has passed through the intervals [j, j + 1] and [j − 1, j]
respectively. Thus for X(ε), the right particle arrives first if and only if tj(ε) > tj−1(ε).

Thus given X = (X0, X1, · · · , Xn) as above, there is a decreasing sequence of
subsets R

m = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vn defined as follows: Vi = Vi−1 except where a
same-site double collision occurs; when a same-site double collision occurs, say at site
j, we let Vi = Vi−1 ∩ H where H = {ε ∈ R

m : tj(ε) ≥ tj−1(ε)} or {tj(ε) ≤ tj−1(ε)}
depending on whether we have chosen to let the right or left particle arrive first in X.
If there are multiple same-site double collisions, then we intersect with the half-spaces
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corresponding to all of them. The sequence of Vi so obtained will have the property
that all ε close enough to 1 with Ψ(ε) ∈ Vn give sample paths that have the same
collision sequence as X. In particular, if Vn is nontrivial, meaning it has interior, then
the set of ε for which X(ε) shadows X will have positive measure. That is to say,
X0 ⇒ Xn. In general, there is no guarantee that Vn is nontrivial.

Supposing Vn for a sample path is nontrivial, we say the choices made at step n+1
are viable if they lead to a nontrivial Vn+1. Observe that inductively, a viable choice
can be made at each step, since one of the two half-spaces must intersect nontrivially
Vn from the previous step.

We first treat a special situation involving the same-site collision of three energies
all of which are 1s. The setting is as above.

Sublemma 4.2 Suppose Vn is nontrivial for a sample path X, and at step n + 1,
the energy εk, which is = 1, is involved in a same-site double collision with two other
energies both of which are 1s. Then the choice to have εk arrive first is viable if εk

has the following history:
(i) its movement up to the collision above is monotonically from left to right;
(ii) all of its previous same-site double collisions are with two other energy 1s.

Proof: By (i), we have that in the collision at step n+1, pk = 0 and qk = 1. Choosing
to have εk arrive first corresponds to choosing the half-space {Ψ(εk) ≥ G(ε)} where
G(ε) is a linear combination of Ψ(εi), i 6= k. By (ii), all the other half-spaces in the
definition of Vn either does not involve εk or is of the same type as the one above. �

Completing the proof of Proposition 3.3: Given X0 ∈ M+, we now inject 1s
and make a choice at every same-site double collision with the aim of obtaining a
sample path X0, X1, · · · , Xn with Xn ∈ Q1 and X0 ⇒ Xn. Our plan is to follow the
scheme in Sect. 4.1 to reach Q1, and to make viable choices along the way.

The proof of Lemma 4.1 is based on the following observation: the leftmost old
energy either moves right monotonically until it exits, or it turns around and starts
to go left, and by Sublemma 4.1, once that happens it must move left monotonically
until it exits. Revisiting the arguments, we see that with the exception of Sublemma
4.1, all statements in the proof of Lemma 4.1 hold for any sample path, with whatever
choices made at double collisions. Moreover, the only way Sublemma 4.1 can fail is
that at t = 0, a double collision occurs at site i, we choose to have the left particle
arrive first, and this is followed by another double collision at t = 2 at which time
we choose to have the right particle arrive first. It is only through these “two bad
decisions” that the leftmost old energy can turn around and head right again.

The choices at same-site double collisions are arbitrary provided the following two
conditions are met:

(i) The choice must be viable.

(ii) In the setting of Sublemma 4.2, we choose to have εk arrive first.
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Following these rules, it suffices to produce Xn ∈ Q1 for some n; the nontriviality
of Vn follows from (i). Suppose, to derive a contradiction, that no Xn ever reaches
Q1, i.e., a set of old energies is trapped in the chain forever. Let i0 be the leftmost
site that it visits infinitely often. That means from some step n0 on, the leftmost
energy never ventures to the left of site i0, but it returns to site i0 infinitely many
times, each time repeating the “two bad decisions” scenario above.

The situation to the left of site i0 is as follows: ¿From time n0 on, all the energies
strictly to the left of this site have speed one. Thus by rule (ii), after a new energy
enters from the left bath, it will march monotonically to the right until at least site
i0, whether or not it is involved in any same-site double collisions.

To complete the proof, consider a moment after time n0 when the leftmost old
energy arrives at site i0. From the discussion above we know it has to be involved in a
same-site double collision, and that the energy approaching from the left is new. By
(ii), we choose to have the new energy arrive first, making the first “bad decision”.
But then in the collision at the same site 2 units of time later, again we choose to
have the energy from the left arrive first, causing the old energy to move to site i0 −1
and contradicting the definition of site i0. �

4.3 Moving about on constant energy surfaces

This subsection focuses on getting from Z ∈ Qe to Z ′ ∈ Qe for e ∈ IL∩IR. In general,
this cannot be accomplished by considering sample paths that lie on Qe alone, since
such sample paths are periodic as we will see momentarily. Instead we will make
controlled excursions from Qe aimed at returning to specific target points. As before,
we assume 1 ∈ IL ∩ IR and work with Q1.

Circular tracks between sites

It is often useful to represent the pair (xi, σi) by a single coordinate zi and to view
the particle as making laps in a circle of length 2. More precisely, if we represent this
circle as [0, 2]/ ∼ with end points identified, then zi = xi for σi = + and zi = 2 − xi

when σi = −. A continuous-time sample path Z(t), t ≥ 0, for the process described
in Section 1 then gives rise to a curve

Z∗(t) = (z0(t), z1(t), · · · , zN(t)) ∈ T
N+1 .

(We write T
N+1 even though each factor has length 2.) For each i, zi(t) goes around

the circle in uniform motion, changing speed only at zi = 0 and 1. Accordingly, we
denote by ∂(TN+1) the set of points such that zi = 0 or zi = 1 for (at least) one i.

Asterisks will be used to signify the use of circular-track notation: A discrete-
time sample path Z = (Z0, Z1, · · · ) in the notation of previous sections corresponds
to Z∗ = (Z∗

0 , Z
∗
1 , · · · ) with Z∗

i ∈ ∂(TN+1). Returns of Z to M+
0 = M+ ∩ {x0 = 0}

translates into returns of Z∗ to ∂(TN+1) ∩ {z0 = 0}.
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We now identify two features of constant energy configurations that make them
easy to work with, beginning with the simplest case:

Lemma 4.2 Suppose we start from Z ∈ Q1 with no multiple collisions.
(a) By injecting all 1s, the sample path returns to Z in 2N + 2 steps.
(b) If all the injected energies are 1s except possibly for one, which we call e, and if

we assume the resulting sample path has no same-site double collisions, then the
energy e moves monotonically through the system until it exits, after which the
system rejoins the periodic sample path in (a).

Proof: (a) This is especially easy to see in continuous time and in circular-track
notation: each zi(t) is periodic with period 2. Thus the continuous-time sample path
Z(t) is periodic with period 2, and in every two units of time, there are exactly 2N+2
collisions.

(b) Suppose the energy e has just arrived at site j from the left. Then the next
collision at site j is with the particle from the right, because all cycles take 2 units of
time to complete and the right one has a (strict) headstart. This proves the monotonic
movement of the energy e. After it leaves the system, the relative positions between
zi and zj remain unchanged for all i, j, since the passage of the energy e through the
chain leads to identical time gains for zi and zj. �

Another nice property of constant energy sample paths is that the process is
continuous along these paths. We make precise this idea:

Definition 4.1 Given a sample path X = (X0, X1, . . . , Xn), we say the process is
continuous at X if the following holds: Let ε = (ε1, . . . , εm) be the sequence in injec-
tions. Then given any neighborhood N of Xn, there are neighborhoods N0 of X0 and
U of ε such that for all X ′

0 ∈ N0 and ε′ ∈ U , all the sample paths generated follows
X into N . (We do not require that it reaches N in exactly n steps; it is likely to take
more than n steps if X has multiple collisions.)

Lemma 4.3 Let X = (X0, . . . , Xn) be a sample path.

(a) If X either has no same-site double collisions or every such collision involves three
identical energies, then the process is continuous at X.

(b) If the process is continuous at X, then X0 ⇛ Xn.

The ideas behind part (a) are the same as those discussed in Sects. 4.1 and 4.2
and will not be repeated here. Part (b) is immediate, for “⇛” requires less than
continuity.

The following lemma is the analog of Lemma 4.2(b) without the assumption of
“no multiple collisions”:
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Lemma 4.4 Given any Z ∈ Q1, let all the energies injected be 1s except possibly for
one which has value e. Then (i) there is a sample path in which the energy e moves
through the system monotonically; (ii) except for a discrete set of values e, it will do
so without being involved in any same-site double collisions.

Proof: The monotonic motion of e is clear if it is not involved in any same-site double
collisions. If it is, choose to have it arrive first every time. This proves (i). To prove
(ii), let J be a finite interval of possible energies to be injected at t = 0, and suppose
e is on its way from site 0 to site 1. In circular-tracks notation, z1 is periodic with
period 2, and except for a finite subset of e ∈ J , z0 6= 1 at exactly the same time that
z1 = 0. We avoid this “bad set” of e, ensuring that the special energy will not be in
a double collision at site 1. Now this energy leaves site 1 exactly when z1 = 0, and
at such a moment, the configuration to the right of site 1 is identical (independently
of the value of e in use). The same argument as before says that to avoid a double
collision at site 2, another finite subset of J may have to be removed. �

Injecting a single energy different than 1 will not produce the desired positional
variations. We now show that injecting a second energy – both appropriately chosen
and injected at appropriate times – will do the trick. The hypothesis of Theorem
1 guarantees, after scaling to put 1 ∈ IL ∩ IR, that there exists e′ ∈ IL ∪ IR with
e′ = o(1/N2). (Lemma 4.5 below is the only part of the proof in which this hypothesis
is used.) Let us assume for definiteness that e′ ∈ IL, and consider initial conditions
Z ∈ M+

0 = M+ ∩ {x0 = 0}.

Lemma 4.5 There exists a0 > 0 for which the following hold: Given a with |a| < a0,
Z0 ∈ Q1 ∩ M+

0 and k ∈ {1, . . . , N}, there is a sample path Z = (Z0, · · · , Zn) with
Zn ∈ Q1 ∩M+

0 such that if Z∗
0 = (0, z1, . . . , zN ), then

Z∗
n = (0, z1, . . . , zk−1, zk − a, zk+1 − a, . . . , zN − a).

Moreover, the sample path Z may be chosen so that it has no same-site double colli-
sions except where all the energies involved are 1s.

Proof: First we focus on constructing a sample path that leads to the desired Zn

without attempting to avoid double collisions.
In the construction to follow, all the injections except for two will be 1s. At t = 0,

we inject energy e′ = o(1/N2) from the left bath, letting it move monotonically from
left to right. When it is about halfway between sites k and k + 1, we inject from
the left an energy e = e(a) ≈ 1 (the relation between e and a will be clarified later).
The energy e also moves monotonically from left to right until it reaches the kth site,
which takes O(N) units of time. Since the slow particle takes longer than O(N) units
of time to reach site k+1, the e-energy waiting at site k is met by a particle from the
left. So it turns around and moves monotonically left, eventually exiting at the left
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end. As for the slow energy, it eventually reaches site k + 1, and continues its way
monotonically to the right until it exits the chain.

Let Zn be the first return to M+
0 after the exit of e′ (the e-energy exits much

earlier). By definition, Zn ∈ Q1. It remains to investigate its zi-coordinates. Reason-
ing as in the proof of Lemma 4.2, we see that the e′-energy does not cause a shift in
the relative positions of the zi because its effects on all of the zi are identical. The
e-energy, on the other hand, has made one full lap (first half on its way to site k and
second half on its way back) on the segments [j, j + 1] for j = 0, 1, · · · , k − 1 but not

for j ≥ k. Let a = 2(1 − e−
1

2 ) be the (signed) time gain per lap for a particle with
energy e over a particle with energy 1. Then the position of z0 relative to zj for j < k
is maintained while relative to zj for j ≥ k, z0 is ahead by distance a, leading to the
coordinates of Zn as claimed.

We now see that the bound imposed on a is that e(a) must be in IL ∩ IR. This
completes the proof of the lemma except for the claim regarding double collisions.

From Lemma 4.4(b), we know that for e′ outside of a discrete set of values, the
particle carrying this special energy will not be involved in any same-site double
collisions. It remains to arrange for the energy e to avoid such collisions. Here the
situation is different: since a is given, e is fixed, but notice that increasing e′ is
tantamount to delaying the injection of the energy e. Thus an argument similar to
that in Lemma 4.4(b) can be used to show that by avoiding a further discrete set of
values for e′ (depending on Z0, e and k), the energy e will not be involved in same-site
double collisions. This completes the proof. �

Remark. The following two facts make this result very useful: (a) The dynamical
events described in Lemma 4.5 require no pre-conditions on Z0 other than Z0 ∈
Q1 ∩M+

0 . (b) The range of admissible a is independent of Z0.

Suppose a > 0, and for some j > k, the jth moving particle in Z0 is such that
xj < a and σj = +. Then it will follow that σj = − in Zn, since it is distance a
behind its original position. This is very natural when one thinks about it in terms
of circular tracks, but it is a jump in the phase space topology in Sect. 1.1.

4.4 Proofs of Propositions 3.4 and 3.5

Proof of Proposition 3.4: Given Z,Z ′ ∈ Q1, we will construct a sample path
Z = (Z0, Z1, · · · , Zn) with Z0 = Z,Zn = Z ′ and Z0 ⇛ Zn. Since all constant energy
sample paths pass through M+

0 , we may assume Z,Z ′ ∈ M+
0 .

Let Z∗ = (0, z1, · · · , zN) and (Z ′)∗ = (0, z′1, · · · , z′N). Our plan is to apply Lemma
4.5 as many times as needed to nudge each zi toward z′i one i at a time beginning
with i = 1. Write z1 − z′1 = ja for some j ∈ Z

+ and a small enough for Lemma 4.5.
Applying Lemma 4.5 j times with k = 1, we produce Zn1

∈ Q1 ∩M+
0 with

Z∗
n1

= (0, z′1, z2 + (z′1 − z1), · · · , zn + (z′1 − z1)).
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We then apply Lemma 4.5 to Zn1
with k = 2 repeatedly to change it to Zn2

with

Z∗
n2

= (0, z′1, z
′
2, z3 + (z′2 − z2 − (z′1 − z1)), · · · , zn + (z′2 − z2 − (z′1 − z1))),

and so on until Zn = ZnN
is reached.

Notice that the sample path Z so obtained has the property that it has no same-
site double collisions other than those that involve three identical energies (all of
which 1s). Lemma 4.3 says that the dynamics are continuous at such sample paths.
Hence Z ⇛ Z ′. �

Proof of Proposition 3.5: Given Z ∈ Q1 with no multiple collisions, our aim here
is to produce a sample path Z0 = Z,Z1, · · · , Zn, also free of multiple collisions, by
injecting a sequence of energies ε = (ε1, · · · , εm) so that in the notation of Sect. 3.1,
the map Φ has the property that DΦ(ε) is onto. We first give the algorithm, with
explanations to follow:

(1) We inject 1s until n0, the first time Zn0
∈ M+

0 .

(2) At step n0, we inject into the system an energy e′ = o(1/N2) chosen to avoid
multiple collisions, followed by all 1s, until the first time the sample path returns
to Q1 ∩M+

0 ; call this step n1.

(3) By Lemma 4.1, T (Zn1
) <∞. Let n be the smallest integer ≥ n1 + T (Zn1

) for
which Zn ∈ M+

0 .

We now prove that DΦ(ε) has full rank:
Let δηi denote an infinitesimal displacement in the ηi variable at Zn. To see that

δηi is in the range of DΦ(ε), we trace this energy backwards (in the sense of Sect.
4.1) to locate its point of origin. (3) above ensures that it was injected at step j for
some n1 < j ≤ n. Varying εj, therefore, leads directly to variations in ηi. The same
argument applies to δξi.

Next we consider displacements in xi. Assume for definiteness that e′ enters the
system from the left. We fix k ∈ {1, · · · , N}, and let εj, j = j(k), be one of the
energies injected from the left when e′ is about halfway between sites k and k + 1.
By Lemma 4.5, varying εj leads to a variation of the form δk = δxk + · · · + δxN in
Zn1

. By Lemma 4.2, this displacement is retained between Zn1
and Zn since only 1s

are injected. The vectors {δk, k = 1, 2, · · · , N} span the subspace corresponding to
positional variations.

The proof of Proposition 3.5 is complete. �

5 Equilibrium Distributions

5.1 Systems with a single site

This subsection treats exclusively the case N = 1. As we will see, nearly all of the
ideas in a complete proof of Theorem 2 (for general N) show up already in this very
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simple situation. Following the notation in Sect. 1.1, we consider phase variables

X = (η0, ξ, η1; x0, x1; σ0, σ1) ∈ (0,∞)3 × [0, 1]2 × {−,+}2;

the phase space has 4 components corresponding to the 4 elements of {−,+}2. Define

τ(η) =
1

Z

ρ(η)√
η

where Z =

∫ ∞

0

ρ(η)√
η
dη .

Theorem 2 asserts the invariance of the probability measure

µ = τ(η0)ρ(ξ)τ(η1)I[0,1]2(x0, x1) dη0dξdη1dx0dx1 × w4

where I(·) is the indicator function and w4 gives equal weight to the 4 points. Let
µt =

∫

P t
Xdµ(X) be the distribution at time t with initial distribution µ. To prove

Theorem 2, we need to show µt = µ for all t > 0, equivalently for all small enough
t > 0.

We say a system undergoes a simple change in configuration between times 0 and
t if during this period at most one collision occurs and this collision involves only
a single moving particle. We will show in a sense to be made precise that for any
system (independent of size), in short enough time intervals it suffices to consider
simple changes in configuration. This observation simplifies the proof for N = 1.
It is crucial in the analysis of N -chains; without it, the complexity of the situation
gets out of hand quickly. In stochastic processes, analogous ideas are provided by
independence and exponential clocks. The dynamics being largely deterministic here,
we will have to argue it “by hand”, deducing it from tail assumptions on ρ.

In what follows, |ν| denotes the total variation norm of a finite signed measure
ν, and µ = ν + O(t) means |µ − ν| = O(t). For notational simplicity, we assume
ρ(η) = O(η−2) as η → ∞.

Proof of Theorem 2 for the case N = 1.

Step 1. Reduction to simple changes in configuration

We will prove |µt −µ| = O(t1+δ) for some δ > 0 as t→ 0. To see that this implies
the invariance of µ, fix s > 0. By a repeated application of the estimate above with
step size s

n
, we obtain µs = µ+ n ·O(( s

n
)1+δ), which tends to µ as n→ ∞.

In what follows, we focus on the component M (+,+) = {(σ0, σ1) = (+,+)}; other
components are analyzed similarly. Instead of comparing µ and µt directly on all
of M (+,+), we will compare µ with some µ̂t ≈ µt (to be defined) on a large subset
Γt ⊂M (+,+) (to be defined).

(A) We consider in the place of µt the measure µ̂t =
∫

P t
Xdµ̂(X) where µ̂ is the

restriction of µ to the set {η0, ξ, η1 < t−2}. Notice that if all particles in a system
have energy < t−2, then their speeds are < t−1, so no moving particle colliding with
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a site or a bath can set off a second collision to take place within t units of time. We
claim that confusing µt with µ̂t leads to an error of a size we can tolerate, since

∫ ∞

t−2

ρ(ξ)dξ = O(t2) and

∫ ∞

t−2

τ(η)dη = O(t3) .

(B) Next, we permit at most one moving particle to have a collision. For a particle
at x ∈ (0, 1) with σ = + and speed

√
η, a collision occurred in the previous t units of

time if and only if t
√
η > x. Let

Γt = {X ∈M (+,+) : (i) η0, ξ, η1 < t−2 and (ii) t
√
η0 < x0 or t

√
η1 < x1} .

We claim that µ(Γt) = 1−O(t1+δ). This is because if t
√
η > x, then either (a) η > t−

2

3 ,

or (b) x < t · t− 1

3 = t
2

3 . Now (a) occurs with probability
∫∞

t−
2
3
τ(η)dη = O(t), and (b)

occurs with probability t
2

3 . Thus µ{t√η0 > x0 and t
√
η1 > x1} = [O(t

2

3 )]2 = O(t
4

3 ).

The implications of (A) and (B) above are as follows: Suppose we show

(∗) µ̂t|Γt
= µ|Γt

+O(t1+δ)

for some δ with 0 < δ ≤ 1
3
. Then by (B), we have

µ = µ · IΓt
+O(t1+δ) = µ̂t · IΓt

+O(t1+δ) .

Now we know from (A) that |µ̂t| = 1−O(t1+δ). This together with the equality above
implies µ̂t(Γ

c
t) = O(t1+δ), so that µ̂t · IΓt

= µ̂t +O(t1+δ). Thus

µ = µ̂t +O(t1+δ) = µt +O(t1+δ) ,

the second equality following from (A). This is what we seek.

Step 2. Analysis of simple changes in configuration

Let ϕ and ϕ̂t be the densities of µ and µ̂t respectively, and fix X̄ = (η̄0, ξ̄, η̄1; x̄0, x̄1;
+,+) ∈ Γt. We seek to compare ϕ(X̄) and ϕ̂t(X̄), remembering that to obtain µ̂t,
one considers only initial conditions in which all energies are < t−2.

Case 1: t
√
η̄0 < x̄0 and t

√
η̄1 < x̄1. The only way to reach X̄ in time t is to start

from (η̄0, ξ̄, η̄1; x̄0 − t
√
η̄0, x̄1 − t

√
η̄1; +,+). No collision occurs, and ϕ(X̄) = ϕ̂t(X̄).

Case 2: t
√
η̄0 < x̄0 and t

√
η̄1 > x̄1. Let s

√
η̄1 = x̄1. We claim that the only way to

reach X̄ in time t is to start from (η̄0, ξ, η1; x̄0 − t
√
η̄0, x1; +,−) where ξ = η̄1, η1 = ξ̄

and x1 = (t− s)
√
η1. Starting here, one reaches X̄ after a single exchange of energy

between the right particle and the site. To compute the densities at X̄, we let ε > 0
be a very small number. Initial conditions with x1 ∈ ((t− s)

√

ξ̄−∆, (t− s)
√

ξ̄ + ∆)

and ∆/
√

ξ̄ = ε/
√
η̄1 will reach the target interval (x̄1 − ε, x̄1 + ε) at time t. Since

ρ(η̄1)τ(ξ̄)∆ = ρ(η̄1)
1

Z

ρ(ξ̄)
√

ξ̄
∆ = ρ(η̄1)

1

Z

ρ(ξ̄)√
η̄1
ε = ρ(ξ̄)τ(η̄1)ε ,
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we conclude that ϕ(X̄) = ϕ̂t(X̄).

Case 3: t
√
η̄0 > x̄0 and t

√
η̄1 < x̄1. Here we let s be such that s

√
η̄0 = x̄0. The

only way to reach X̄ is for the left particle to start at x0 = (t − s)
√
η0 < 1 if η0

is its initial energy, go left, reach the left bath at time t − s, and have the newly
emitted energy η̄0 reach x̄0 at time t. To compare densities, again fix a small target
interval (x̄0 − ε, x̄0 + ε). This forces x0 ∈ ((t − s)

√
η0 − ∆(η0), (t − s)

√
η0 + ∆(η0))

with ∆(η0)/
√
η0 = ε/

√
η̄0. Thus

ϕ̂t(X̄) =
1

4
ρ(ξ̄)τ(η̄1) ·

(

∫ t−2

0

τ(η0)

√
η0√
η̄0
dη0

)

· ρ(η̄0)

=
1

4
ρ(ξ̄)τ(η̄1) ·

1

Z

ρ(η̄0)√
η̄0

∫ t−2

0

ρ(η0)dη0 = ϕ(X̄) · (1 − O(t2)) .

Since t
√
η̄0 > x̄0 and t

√
η̄1 > x̄1 is not permitted for X̄ ∈ Γt, we have exhausted

all viable cases, completing the proof of (∗). �

5.2 Proof of Theorem 2

We follow closely Sect. 5.1, adapting the ideas there to chains with N sites.

We begin with the analogous set of reductions. As in Sect. 5.1, we seek to show
µt = µ + O(t1+δ) for some δ > 0, focusing on a fixed component of the phase space
M (σ̄) = {(σ0, · · · , σN) = σ̄}. Instead of µt, we consider µ̂t =

∫

P t
Xdµ̂(X) where µ̂ is

the restriction of µ to {ηi, ξi < t−2, all i}. It follows from the estimates in Sect. 5.1
that (for fixed N) this introduces an error within the tolerable range:

|µt − µ̂t| < N

∫ ∞

t−2

ρ + (N + 1)

∫ ∞

t−2

τ = O(t2) .

We define Γt = Γ
(σ̄)
t to be

{X ∈M (σ̄) : (i) ξi, ηi < t−2 for all i;

(ii) t
√
ηi < xi if σi = +, t

√
ηi < 1 − xi if σi = −

for all except at most one i} ,

the idea being that when the above relation between t,
√
ηi and xi holds, no collision

occurs in the t units of time prior to arrival in that configuration. The same argument
as before shows that µ(Γt) = 1 − O(t

4

3 ): the set on which this relation is violated

by two of the moving particles has measure O(t
4

3 ); the set on which it is violated by
more than two particles is smaller.

As in Sect. 5.1, we seek to compare ϕ̂t and ϕ on the set Γt. As before, all changes
in configuration involved are simple: there are 3 cases corresponding to no collisions,
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a collision with a site, and a collision with a bath. The analysis is identical to that
in Sect. 5.1. �

PART II. NUMERICAL RESULTS

We report here some results on nonequilibrium steady states (NESS) obtained by
studying numerically two families of models: the first has exponential bath injections
and the second, which we call the “two-energy model”, is chosen for the transparency
of the role played by the integrable dynamics.

6 Exponential Baths

We consider in this section processes defined in Sect. 1.1 for which the bath injections
have exponential distributions, i.e., L(ξ) = βLe

−βLξ and R(ξ) = βRe
−βRξ where, as

usual, βL = T−1
L and βR = T−1

R are to be thought of as inverse temperatures. We are
interested in steady states of systems that are in contact with two baths at unequal
temperatures, i.e., where TL 6= TR. It follows from Theorem 1 that all invariant
distributions that arise from these bath injections are ergodic.

In Sect. 6.1, we demonstrate that mean energy profiles are well defined, both for
finite N and as N → ∞. In Sect. 6.2, we focus on specific points along the chain,
and investigate marginals of the NESS on (very) short segments. In the simulations
shown, mean bath temperatures are TL = 1 and TR = 10, and chains of various
lengths up to N = 1600 are used.

6.1 Macroscopic energy profiles

For a chain with N sites, we let E[ξi] denote the mean energy at site i, “mean” being
taken with respect to the unique steady state distribution. Let fN : [0, 1] → R be
the function which linearly interpolates fN( i

N+1
) = E[ξi], i = 1, · · · , N . If as N

increases, fN converges (pointwise) to a function f on [0, 1], we will call f the site-
energy profile of this model. Similarly, we let f ♯

N be the function that interpolates
f ♯

N( i+1
N+2

) = E[ηi], i = 0, 1, · · · , N , and call f ♯ = limN f
♯
N the gap-energy profile.

Profiles of gap energies conditioned on σi being + or − are denoted f+
N and f−

N .
Fig. 1 shows plots of fN , f±

N , and f ♯
N . Finite-chain profiles are found to vary little

as N goes from 100 to 1600, so we assume the limit profile will not be too different.
Convergence time to steady state is slow, and increases with N as expected. (See
numerical details in caption.)
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(a) Site energies, N = 1600 (b) Gap energies, N = 200

Figure 1: Mean energy profiles for the exponential baths model. The bath temperatures are
TL = 1 and TR = 10. Panel (a) shows the mean site energies fN for N = 1600. In (b), we

have superimposed the gap energy profiles f+
N , f−

N , and f ♯
N for N = 200. Numerical details:

We impose a constraint that injected energies are ≥ 0.01 but do not impose a high energy
cutoff. We simulate the system for 10k events (an “event” being one collision anywhere
in the chain), increasing k until the computed profile stabilizes. This occurred after 1013

events in (a), 4 × 1011 events in (b).

6.2 Local equilibrium properties

This subsection is about local properties of NESS, by which we refer to marginals of
the form µ̂x,ℓ,N where x ∈ (0, 1), N is the length of the chain, ℓ ≪ N , and µ̂x,ℓ,N is
the marginal distribution of the NESS on the ℓ-chain centered at site [xN ]. For fixed
(unequal) bath distributions, since the energy gradient on the ℓ-chain tends to zero
as N → ∞, one might expect the µ̂x,ℓ,N to resemble equilibrium distributions, i.e.,
invariant measures on chains with equal bath injections.

Theorem 2 gives an explicit formula for the equilibrium distribution µρ,N of the
N -chain when the bath distributions are L = R = ρ. This result is valid for very
general ρ. Notice that when specialized to the case ρ(ξ) = βe−βξ, the density of
µρ,N has the familiar form 1

Z
e−βH . More precisely, let us use (xi, vi), vi = σi

√
ηi, as

coordinates in the gaps instead of (ηi, xi, σi). Then

dµρ,N =
(

βNe−β
∑

i ξi Πidξi
)

×
(

Z
−(N+1)
β e−β

∑

i v2

i Πidxidvi

)

. (1)

Returning to the situation of unequal exponential baths, one way to define local
thermodynamic equilibrium (LTE) is to require that for every x ∈ (0, 1) and ℓ ∈ Z

+,
as N → ∞, the marginals µ̂x,ℓ,N tend to a probability measure having the form in (1)
with N replaced by ℓ and β = β(x) for some β(x) > 0. For a more physical notion of
LTE, one sometimes considers only ℓ-chains for 1 ≪ ℓ≪ N .
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A. Single-site and single-gap marginals

We consider marginal distributions of the NESS at single sites and single gaps at
[xN ] where x ∈ (0, 1) is fixed and N is varied. To show that the system does not tend
to LTE (by any definition), it suffices to show that these marginals are not Gibbsian.
This is because if marginals on ℓ-chains tended to µ̂x,ℓ,N , projecting onto the single
site or gap at [xN ] one would again obtain the a distribution of the form in (1).

Fig. 2 shows two examples of single-site marginal densities at x = 0.25 and 0.6 for
a chain of length N = 1600. The plots are log-linear, so that exponential functions
would appear as straight lines. Without a doubt both of the distributions shown are
very far from exponential.

These distributions are compared to mixtures of the bath distributions, meaning
distributions of the form

aL(ξ) + (1 − a)R(ξ), a = a(x) ∈ (0, 1).

In Fig. 2, open squares represent empirical data (from simulations), while the solid
curves are given by the formulas for mixtures with a chosen in each of the two cases
to fit the data best. Given the numerical cutoffs, etc., we think the fits between
empirical data and the mixtures curves are excellent. Plots (not shown) at other
locations evenly spaced along the chain show the same phenomenon, with the “knee”
moving steadily to the left as x increases.

Likewise, single-gap marginals are found to be mixtures: At gaps adjacent to [xN ]
for fixed x, instead of Z−1

β e−βv2

for some β = β(x), we find numerically the marginals
to be of the form

a · e
−βLv2

ZβL

+ (1 − a) · e
−βRv2

ZβR

for some a = a(x), in clear violation of the prescription of Gibbs for Hamiltonian
systems in equilibrium.

We explain how we arrived at the idea of “mixtures”: First, the energies in a
chain should reflect those injected, and if there is a nontrivial discrepancy between
βL and βR, it is difficult to imagine having an abundance of the energies in the
“middle” to constitute all the exponential distributions along the chain. We are also
influenced by the following stochastic model, which can be thought of as a “zeroth-
order” approximation to our Hamiltonian systems.

The random swaps model

This is a stochastic model defined by N random variables ξ1, · · · , ξN , to be thought
of as energies, located at sites 1, · · · , N . As usual there are two baths, situated at sites
0 and N +1. At bonds between sites i and i+1 for i ∈ {0, 1, · · · , N} are exponential
clocks which ring independently at rate 1. When a clock goes off, energies between
the 2 sites are swapped. That is to say, for i 6= 0, N , when the clock between sites
i and i + 1 rings, the values of ξi and ξi+1 are interchanged. Swapping energy with
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(a) x = 0.25 (b) x = 0.6

Figure 2: Site energy distributions for the exponential baths model in log-linear scales. The
parameters are TL = 1, TR = 10, N = 1600. Empirical data are plotted in open squares;
solid curve represents the mixture of left and right bath distributions that best fits the data
(in the total variation norm).

the left bath means that ξ1 is replaced by an energy drawn randomly from the left
bath distribution L(ξ), and similarly for ξN and the right bath, which has distribution
R(ξ). The energies emitted by each bath are assumed to be i.i.d. and independent
of emissions by the other bath. A model along similar lines was studied in [10].

Proposition 6.1 In the random swaps model, for each i ∈ {1, · · · , N}, the marginal
distribution ρi of the unique NESS is given by

ρi =

(

N + 1 − i

N + 1

)

L+

(

i

N + 1

)

R

for arbitrary bath distributions L and R.

Sketch of proof: First, we distinguish only between whether an energy is “from
the left” or “from the right”. In this reduced system, it is easy to see that there is
a unique steady state, the single-site marginals of which are, by definition, mixtures
of these two kinds of energies. Since the trajectory of each energy, from the time it
enters the system to when it leaves, is that of a simple unbiased random walk, the
weights in the formula for ρi follow from basic recursive relations. Finally, each of the
energies in this reduced system can be assigned independently any one of the allowed
values, so that the marginals are really mixtures of L and R. �

Since Proposition 6.1 holds for arbitrary bath distributions L and R, it is natural
to ask if a similar result holds for the Hamiltonian chain with non-exponential baths.
We investigated this question and found the answer to be negative. For example, when

27



107.552.50

Energy

0.2

0.1

0

Pr
ob

ab
ili

ty
 d

en
si

ty
Figure 3: An example to show that site marginals are not necessarily mixtures. Bath
distributions here are uniform distributions: L(ξ) is supported on [1,5], R(ξ) on [8,12];
N = 2000. Empirical data are plotted in open squares as above.

L and R are uniform distributions, marginal distributions are far from mixtures of
uniform distributions; see Fig. 3. When the densities of L and R have shapes closer to
exponential distributions, single-site marginals are closer to mixtures, but noticeable
differences were seen in each of the half-dozen or so cases tested.

The numerical results above raise the following questions:

(A) In the case of exponential baths, are single-site marginals as N → ∞ genuinely
mixtures of the two bath distributions, or are they simply close to mixtures?

(B) If the mixtures result here is exact, are exponential baths the only distributions
that have this property, and if so, what are the underlying reasons?

Independently of the answer to (A), we believe we have shown very definitively that
local marginal distributions do not have the form in (1). Hence the concept of LTE
does not apply to this class of Hamiltonian chains.

B. Vanishing of spatial correlations

We investigate next if, as N → ∞, µ̂x,ℓ,N → µρ,ℓ where ρ is the mixture found in
Paragraph A. Since spatial correlations are expected to be largest between adjacent
sites and gaps, we verify only that

(i) marginal distributions on two adjacent sites are product measures;

(ii) marginal distributions on two adjacent gaps are product measures, and the
directions of travel are independent;

(iii) marginal distributions on a site and its adjacent gap are product measures, with
gap density = const·ρ(η)/√η where site density = ρ.
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(a) N = 100 (b) N = 1600

Figure 4: Conditional probabilities in adjacent sites for the exponential-baths model. The
4 curves in each panel show P

(

ξ[Nx]+1 ∈ I | ξ[Nx] ∈ [2k, 2(k +1)]
)

for k = 0, 1, 2, · · · , 14 and
I = [0, 2], [2, 4], [4, 6], and [6, 8] (top to bottom). In both panels, x = 0.6. Bath parameters
are TL = 1, TR = 10.

A sample of simulation results in support of (i) is shown in Fig. 4. In the horizontal
axis are values of ξi for i = [0.6N ], and plotted are conditional distributions of
ξi+1 given the various values of ξi. Here we group the values of ξi+1 into intervals
(0, 2), (2, 4), (4, 6), and (6, 8), the 4 graphs representing the conditional probabilities
of ξi+1 being in each one of these intervals given the value of ξi in the horizontal axis.
The two plots, for N = 100 and 1600 respectively, show weak dependence of ξi and
ξi+1 in the first and close to zero dependence for the longer chain.

A small sample of data is shown in Table 5 to illustrate the combinations of joint
densities that need to be checked to verify (ii). Here we focus on two adjacent gaps at
x = 0.6, and distinguish only between “high” and “low” energies, referring to energies
η > 3 as “high” and η < 3 as “low”. The fractions of time in all configurations of high-
low and (σi, σi+1), referring to the directions of travel in these gaps, are tabulated.

Finally, we have computed energy distributions for adjacent sites and gaps at
various sites along the chain. The data confirm property (iii) above.

Remark. The “local product structure” finding above may be valid beyond the
case of exponential baths. Our simulations show that it holds both for the uniform
distribution models in Fig. 3 and for the “two-energy models” discussed in the next
section. Since the latter are rather “extreme” from many points of view, it gives reason
to conjecture that this phenomenon – which is very natural – may hold widely.
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P (ηi+1 < 3 | ηi < 3) = 0.775 = P (ηi+1 < 3 | ηi > 3)

ηi > 3 , ηi+1 > 3 ηi > 3 , ηi+1 < 3
σi = + σi = −

σi+1 = + 0.013 0.013
σi+1 = − 0.013 0.013

σi = + σi = −
σi+1 = + 0.043 0.044
σi+1 = − 0.043 0.043

ηi < 3 , ηi+1 > 3 ηi < 3 , ηi+1 < 3
σi = + σi = −

σi+1 = + 0.044 0.043
σi+1 = − 0.044 0.043

σi = + σi = −
σi+1 = + 0.151 0.150
σi+1 = − 0.150 0.150

Table 5: Joint distributions of gap energies conditioned on directions of travel. Here,
N = 1600 and i = [0.6 N ]. The numbers are raw probabilities of the specified events.

7 Two-energy Models

The bath distributions in this section are sharply peaked Gaussians truncated at 0.
In the simulations shown, these Gaussians have means 1 and 5, and their standard
deviations are chosen to be 0.2, so that the probability of being within ±0.5 of the
means is roughly 99%. Even though these systems are small perturbations of in-
tegrable models, we know from Theorem 1 that all of their invariant measures are
ergodic.

7.1 Macroscopic energy profiles and local distributions

Fig. 6(a) shows site-energy profiles fN for a range of N . Unlike the exponential case,
these profiles vary substantially with N : For N = 10 (not shown), the profile is
essentially flat; as N increases, it acquires a gradient and appears to be stabilizing,
but even at N = 3200, the profile is still moving a little. From these profiles, one
suspects – correctly – that for (very) small N , most energies move monotonically
along the chain, entering from one end and exiting at the other. As N increases,
some of the energies turn around, some doing so a number of times before exiting,
creating a gradient in the profile.

Fig. 6(b) shows profiles for gap energies with specified directions, showing that for
the chain with N = 200, f+

N and f−
N are substantially different, with more energy 1s

moving to the right and 5s moving to the left. This is to be contrasted with Fig. 1(b),
which shows that for exponential baths, this left–right discrepancy has by and large
vanished by N = 200. Indeed in the present model, f+

N and f−
N remain quite far apart

in some of the gaps even at N = 3200, leaving open the question whether or not
the distributions conditioned on σi = + and − will eventually equalize. A follow-up
investigation is discussed in Sect. 7.2.

With regard to local distributions, computations on site-to-site, gap-to-gap, and
site-to-gap correlations similar to those in Section 6 were carried out. Independence
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(a) Mean site energies (b) Mean gap energies

Figure 6: Mean energy profiles for two-energy model. Panel (a) shows mean site energies;
the curves are N =40, 200, and 3200, in order of increasing values at x = 1. Panel (b)

shows mean gap energies f−
N , f ♯

N , and f+
N (top to bottom) for N = 200. The rules used to

determine when a steady state is reached are as Fig. 1. See text for the bath distributions.
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Figure 7: Nearest-neighbor conditional probabilities in the two-energy model. This plot
shows P (ξ[Nx]+1 < 3 | ξ[Nx] < 3) (open squares) and P (ξ[Nx]+1 < 3 | ξ[Nx] > 3) (solid discs)
as functions of N . The location is x = 0.6; N ranges from 100 to 3200.
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was found to be achieved already at relatively small N .

Fig. 7 captures the two main points: The two curves representing P (ξ[0.6N ]+1 =
1|ξ[0.6N ] = k), k = 1 and 5, are virtually on top of each other for N ≥ 400, illustrating
the rapid vanishing of correlations between adjacent sites, while both curves continue
to have a slightly negative slope at N = 3200, illustrating the slow convergence of
mean site energies.

7.2 Ballistic transport vs. diffusion: a phenomenological ex-
planation

The purpose of this subsection is to examine more closely the way in which energy is
transported from one end of the chain to the other under near-integrable dynamics.
Since the vast majority of the energies in this system are very close to 1 or 5, let us
assume there are only two kinds of energies in the system. For definiteness, we adopt
the view in Sect. 1.3, and focus on the movement of 1s on the right side of the chain.

We will demonstrate that modulo certain time changes, the statistics generated
by the movements of these energies resemble those of a particle undergoing a 1-D
diffusion with a spatially-varying diffusion coefficient. We begin by introducing an
especially simple model which will be used for comparison purposes:

Model A. Consider a Markov chain with state space {0, 1, · · · , N + 1} defined as
follows: Starting from 1, one performs a simple, unbiased random walk until either 0
or N +1 is reached, then returns to 1 to start over again. For 1 ≤ i ≤ N −1, let ℓn(i)
and rn(i) denote the number of left and right crossings respectively between sites i
and i + 1 in the first n steps, and let EN,i = limn→∞ EN [ℓn(i)]/EN [rn(i)]. Here are
some easy facts:

(i) For all N and i, 0 < EN,i < 1.
(ii) For each N , EN,i decreases as i increases.
(iii) For each x ∈ (0, 1), EN,[xN ] increases to 1 as N → ∞.

These facts follow from the following observations: Fix i and N , and focus only on
left and right crossings between sites i and i + 1. Then a left crossing is necessarily
followed by a right crossing, while a right crossing can be followed by either. The
probability that a right crossing is followed by another right crossing is equal to the
probability of starting from site i + 1 and reaching site N + 1 before site i in the
random walk. The numbers EN,i can be explicitly estimated if one so desires.

To bring this simple model closer to our Hamiltonian chains, we first identify some
relevant features of the chains. The following idea is used in the rigorous part of this
paper (Lemmas 4.2 and 4.4): Consider a scenario in which an energy 1 is in the midst
of many energy 5s, i.e. in some segment of the chain, ξj = ηj = 5 for all j except for
a single ĵ where ηĵ = 1. Then the energy 1 will move monotonically in some direction
until the pattern is disrupted by the approach of another (oncoming) energy 1. After
such a “collision” a variety of things can happen; the resulting motion of the energies
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depends on the details of the interaction. Since the energy profiles have nonzero
gradient (see Fig. 6), 1s are more sparse on the right side of the chain. Thus the
closer to the right end, the larger the “mean free distance” between “collisions” of
energy 1s.

With regard to the ratio of left to right crossings (and not the actual number of
crossings per unit time), the observations above suggest the following modification of
Model A:

Model B. Let λ : (0, 1) → (0,∞) be a function that monotonically increases from 1
to ∞ on some subinterval (x∗, 1) ⊂ (0, 1). We consider a process similar to that in
Model A but with transition rules modified as follows: when at site i = [xN ], go X
sites to the left/right with probability 1

2
/1

2
where X is an exponential random variable

with mean λ(x), and return as before to 1 to start over once 0 or N + 1 is reached.

First we confirm numerically that in terms of the statistics generated, Model B
gives a good approximation of movements of energy 1s on the right side of the real
chain. (Obviously, we do not claim that the two models are equivalent.) We study the
lengths of runs of randomly picked 1s in specified segments of the chain, a run being
defined to be a consecutive sequence of moves in the same direction. Some mean
length-of-runs are tabulated in Fig. 8(a). The numbers in each row increase as one
moves to the right, a trend consistent with the environment becoming increasingly
dominated by energy 5s. As N increases, these means stabilize, as one would expect
them to when the local marginals tend to a distribution of the form µρ,ℓ. Histograms
of lengths of runs within specified intervals are plotted and found to have roughly
exponential distributions for large N ; one such plot is shown in Fig. 8(b).

Returning to Models A and B, observe that they are qualitatively similar if we
imagine that the sites in Model B are “packed closer and closer” as x → 1. More
precisely, the ratio of left to right crossings at site [xN ] in Model B should resemble
that at [yN ] in Model A for some y > x, with (1−y)/(1−x) → 0 as x→ 1. Properties
(i-iii) in Model A therefore pass to Model B. Assuming they pass from there to our
Hamiltonian chain, one would conclude that for our chain:

– left-right traffic will equalize everywhere as N → ∞;

– this equalization occurs more slowly than at corresponding sites in Model A,
the discrepancy increasing as x→ 1.

Simulations to compute the ratios of left/right crossings were performed. The results,
shown in Fig. 8(c), are very much consistent with the predictions above: for each
N , the x 7→ Prob(σ[Nx] = −)/Prob(σ[Nx] = +) curves are decreasing, and at each
x ∈ (0, 1), this ratio increases with N and appears to head toward 1.

Remarks on connection with theory. We have used the fact, proven rigorously
in Sect. 4.3, that in regions of the chain occupied by significantly more energies of one
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Interval of x
[0.2,0.4] [0.3,0.5] [0.4,0.6] [0.5,0.7] [0.6,0.8] [0.7,0.9] [0.8,1.0]

N = 400 5.7 5.9 6.6 8.1 10∗ – –
N = 1600 5.6 6.0 7.4 9.6 13 20 35∗

N = 3200 5.5 6.1 7.5 10 14 21 40

(a) Mean lengths of runs
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Figure 8: Statistics on lengths of runs. (a) Mean lengths of runs in different intervals [a, b].
Note that runs that reach the boundary of [a, b] are artificially cut short by our numerical
procedure (see “numerical details” below); we do not consider averages based on too many
(> 10%) such runs meaningful and have omitted those averages. (*) marks averages for
which 5−10% of the runs were cut short. (b) Log-linear plot of the histogram of run-lengths
in the interval [0.6, 0.8], for N = 3200. (c) The ratio P (ηi ≈ 1, σ = −)/P (ηi ≈ 1, σ = +)
as a function of x = i/N . The curves are, from bottom to top, N =100, 400, 1600, 3200.
Numerical details for (a) and (b): For a given interval [a, b], we begin with a suitably
prepared system and wait until an energy ≈ 1 hits the site at x = (a + b)/2. The energy
is tracked until it hits either x = a or x = b; the lengths of runs executed by this energy
are recorded. This process is repeated (after a delay to ensure that the energies are not too
correlated). Each data point in Table (a) based on 104 – 106 runs collected this way.
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kind than the other, the ones with low density will, on average, have relatively long
runs. The same is true, in fact, for the energies with high density. Our rigorous work
leaves untreated the situation where the two energies occur in roughly comparable
proportions. For these regions, we have seen via simulations that the mean lengths
of runs tend still to be greater than 2, the value for simple unbiased random walks.
For example, when TL = 1 and TR = 5, the region with the most even mix of 1s
and 5s is [0.2, 0.4], and there the mean run-length for 1s is > 5 (see Fig. 8(a)). Thus
the phenomena discussed in this subsection appear to be valid for both energies on a
good part of the chain.

Summary and Conclusion

We considered a Hamiltonian chain with many conserved quantities and studied its
nonequilibrium steady states when the two ends of the chain are put in contact with
unequal heat baths. Our main findings are:

Rigorous results. First, under mild restrictions on the bath distributions L(ξ) and
R(ξ), we proved ergodicity of the invariant measure (assuming existence). Second, we
identified a class of equilibrium measures {µρ,N} where µρ,N is the unique invariant
probability on the N -chain with L = R = ρ; the measures µρ,N are product measures.

Numerical results. Simulations were performed for chains with two kinds of bath dis-
tributions: exponential distributions and sharply peaked Gaussians, the latter giving
rise to what is called the “two-energy model”.

1. We demonstrated numerically that (a) NESS exist for finite N and mean energy
profiles converge as N → ∞; (b) as N → ∞ local marginals at x ∈ (0, 1) tend
to measures of the form µρ,ℓ for some distribution ρ = ρ(x).

2. For exponential bath distributions, the limits of local marginals are definitively
not Gibbs measures, i.e., this chain violates the concept of LTE. The marginals
appear to be weighted averages of Gibbs measures.

3. For the 2-energy model, the paths traced out by energies resemble the sample
paths of a random walk with a bias in favor of continuing in the same direction,
with this bias increasing as x→ 0 or 1. We conclude that the resulting transport
behavior is more normal, i.e., more diffusive, than one might have expected
given the integrable character of the dynamics.
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