Communications in Mathematical Physics manuscript No.
(will be inserted by the editor)

Correlation decay in certain soft billiards

Péter Balint!, Imre Péter Téth?

1 Alfréd Rényi Institute of the H.A.S. H-1053 Realtanoda u. 13-15. Budapest, Hungary;
Email: bpQrenyi.hu

2 Mathematical Institute, Technical University of Budapest, H-1111 Egry Jézsef u. 1. Budapest, Hungary
and Research group “Stochastics” of the Hungarian Academy of Sciences, affiliated to TUB;
Email: mogy@math.bme.hu

Received: date / Accepted: date

Abstract: Motivated by the 2D finite horizon periodic Lorentz gas, soft planar billiard systems with
axis-symmetric potentials are studied in this paper. Since Sinai’s celebrated discovery that elastic col-
lisions of a point particle with strictly convex scatterers give rise to hyperbolic, and consequently, nice
ergodic behaviour, several authors (most notably Sinai, Kubo, Knauf) have found potentials with analo-
gous properties. These investigations concluded in the work of V. Donnay and C. Liverani who obtained
general conditions for a 2-D rotationally symmetric potential to provide ergodic dynamics. Our main
aim here is to understand when these potentials lead to stronger stochastic properties, in particular to
exponential decay of correlations and central limit theorem. In the main argument we work with systems
in general for which the rotation function satisfies certain conditions. One of these conditions has already
been used by Donnay and Liverani to obtain hyperbolicity and ergodicity. What we prove is that if, in
addition, the rotation function is regular in a reasonable sense, the rate of mixing is exponential, and,
consequently the central limit theorem applies. Finally, we give examples of specific potentials that fit
our assumptions. This way we give a full discussion in the case of constant potentials and show potentials
with any kind of power law behaviour at the origin for which the correlations decay exponentially.
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1. Introduction

Consider the planar motion of a point particle in a periodic array of strictly convex scatterers. Interaction
with the scatterers is in the form of elastic collisions, otherwise motion is uniform. This dynamical
system, the planar Lorentz process is a paradigm for strongly chaotic behaviour. Among other important
properties ergodicity ([Si2,SCh]) and exponential decay of correlations ([Y,Ch]) have been proven for
the corresponding billiard system.

In this paper we consider the following natural modification. The scatterers are no longer hard disks,
the point particle may enter them. The particle moves according to some rotation symmetric potential
which vanishes identically outside the disks.

Even the issue of these softened Lorentz processes has a large literature. Results point into two
different directions. On the one hand, for quite general softening of the potential, the chaotic behaviour
is no longer present. Stable periodic orbits and islands appear in the phase space. This is generally the
case with smooth potentials, see [RT,Do2,Dol] and references therein.

However, in many cases, especially when the potential is not C!, the chaotic behaviour persists.
The investigation of such soft billiards dates back to the pioneer works of Sinai ([Sil]) and Kubo et.al.
([Ku] and [KM]). There are two different approaches present in the literature to this hyperbolic case. On
the one hand, under conditions on the derivatives (up to the second) of the potential the Hamiltonian
flow turned out to be equivalent to a geodesic flow on a negatively curved manifold. This point of view
is especially suitable for potentials with Coulomb type singularities, see [Knl] on details.

The approach we follow is to study dynamics as a hyperbolic system with singularities. [M] and,
especially, [DL] — which is one of our main references — are written in the spirit of this principle. Actually,
in most cases it is convenient to study the discrete time dynamics, a naturally defined Poincaré section
map of the Hamiltonian flow — this is the track we are going to take.

Hyperbolicity of the system is mainly related to the properties of the so called rotation function that
can be calculated from the potential. Being a bit technical its definition and relevant properties are
discussed in the next section. Formulation of our main theorem (Theorem 1) is likewise left to the next
section as it is in terms of the rotation function. Nevertheless, it might be useful to point out that
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— In case the rotation function (and the billiard configuration) satisfies some hyperbolicity condition
(see Definition 2), the soft billiard system is hyperbolic and ergodic. Although a little bit otherwise
stated, this fact was proved in [DL]. The condition is, essentially, necessary for ergodicity (note
however Remark 1).

— In this paper we concentrate on decay of correlations. If — in addition to those needed for hyperbolicity
— the rotation function satisfies further regularity conditions (see Definition 3), the rate of mixing is
proved to be exponential.

In most of the paper we think of the rotation function as being fixed with the desired properties. It is
only section 5 when we turn to some specific potentials. Nevertheless, two technical conditions supposed
to hold throughout the paper are:

— in order to be able to define a rotation function at all, we introduce h(r) = r2(1—2V (r)) (cf. section 5)
and require h'(r) > 0 for all but finitely many r (this condition ensures the lack of trapping zones, cf.
[DL)):

— The scattering occurs on rotation symmetric potentials of finite range — that is, potential for every
scatterer is concentrated on a circle and depends only on the distance from the center. (Note this is
the case in our references like [DL], to0o0.)

— The horizon is finite (i.e. the maximum time between two enterings of consecutive potential disks is
uniformly bounded above for any trajectory).

Proof of our main theorem is based on our second main reference, on [Ch]. In this paper, by imple-
menting the techniques of L. S. Young from [Y], N. Chernov showed that given any hyperbolic system
with singularities for which one can show the validity of certain technical properties, correlations decay
exponentially fast.

1 In [DL] there is a smooth potential example with ergodic behaviour, too, however it is unstable with respect to small
perturbations like varying the full energy level.
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What we perform below is the proof of these technical properties for our ‘soft’ billiard system. Even
though the existence of invariant cone fields is established in [DL], the wuniformity of hyperbolicity
(subsection 3.2) needs detailed investigation. An even more important new difficulty that we have to
overcome is the treatment of quantities connected to the second derivative of the dynamics, especially
while traveling through the potential. An analysis finer than before — in this sense — of the evolution of
fronts is needed. This applies especially to the self-contained proof of curvature and distortion bounds
(subsection 3.3).

It is a key aspect of our method that arguments related to expansion and distortion can be carried
out by considering motion inside and outside the potential disks separately. Actually, our choice of the
outgoing phase space and the Euclidean metric (see section 2) is related to this point of view and not
to the tradition of [Ch]. (Using the Euclidean metric with the phase space of incoming particles instead
of outgoing, our distortion bounds would no longer hold.) The splitting of motion into ‘potential’ and
‘free’ intervals is, however, slightly restrictive. Namely, certain soft billiard systems that seem ergodic
and exponentially mixing are covered neither in this paper nor in [DL] (see also section 6, especially
Remark 1).

The paper is organized as follows. In section 2 the dynamical system along with the rotation function
and its properties are defined, and our main theorem is formulated. Section 3 gives a detailed geometric
analysis of the system. After fixing notations and establishing some basic properties in subsection 3.1,
subsection 3.2 is mainly concerned with uniform hyperbolicity (Proposition 1) and related issues. In
subsection 3.3 important regularity properties of unstable manifolds are shown. Specifically, curvature
bounds, distortion bounds and absolute continuity of the holonomy map are proven (Propositions 2, 3
and 4). As a final bit of the general proof in section 4 we investigate the growth of unstable manifolds. The
fact that expansion prevails the harmful effect of singularities is quantificated in the growth formulas of
Proposition 5. As a conclusion we refer to Theorem 2.1 from [Ch]: a hyperbolic system with singularities
for which Propositions 1, 2, 3, 4 and 5 are valid enjoys exponential decay of correlations. For the reader’s
convenience, we formulate the theorem of Chernov in the Appendix. Last but not least, preceding some
concluding remarks, in section 5 we turn to the investigation of specific potentials: as corollaries of our
main theorem certain soft billiard systems are shown to exhibit exponential decay of correlations.

We note that it is not clear how sharp our results are. On the one hand, the conditions for ergodicity —
which are part of our conditions — formulated by Donnay and Liverani are more or less sharp (see [Dol]).
On the other hand, the conditions formulated for EDC by Chernov are sufficient, but most probably not
necessary. So, although we know that Chernov’s conditions (eg. the bounded curvature assumption and
the distortion bounds) are not satisfied when our regularity conditions are not met, it is well possible
that EDC still occurs. At some points of the paper we will point out why our regularity conditions are
necessary for Chernov’s method to work.

Part of the results in this paper and a sketch of the proof can also be found in the proceedings paper
[BATA].

2. Definition and basic properties of the system

The phase space.

Consider finitely many disjoint circles of radius R on the unit two-dimensional flat torus T 2. (Thinking
of a periodic array of circular disks on the Euclidean plane R? would not be very much different.) We
require that the configuration has finite horizon: there is a certain constant 7iax such that any straight
segment longer than 7,,x on R? intersects at least one of the scatterers.

Remark. As the circles are disjoint, the minimum distance between two scatterers is bigger than some
positive constant Tin-

Let the Hamiltonian motion of our point particle be described by a potential which is identically
zero outside and is some rotation symmetric function V(r) inside the circular scatterers (here r is the
distance from the center of the scatterer). For simplicity we fix the mass and the full energy of our point
particle as
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This way the free flight velocity has unit length, |[v| = 1 (in other words v € S! where S! is the unit
circle in R?).

We assume (cf. Definition 2 and the remarks following it) that the Hamiltonian flow restricted to this
surface of constant full energy is ergodic (with respect to Liouville measure). Equivalently one can say
that the map corresponding to the naturally defined Poincaré section of the flow (see below) is ergodic.
Our aim is to study the rate of mizing for this map.

Following tradition we work with the Poincaré section of outgoing velocities (particles that have just

left one of the scatterers).

Notation

Denote by M the Poincaré section of outgoing particles. Sometimes we will also use the notation M = M
to stress that this is the outgoing phase space, to avoid confusion.

The phase points are the boundary points of the scatterers, equipped with unit velocities pointing
outwards. The phase space M is a finite union of cylinders (each corresponding to one of the circular
scatterers). Coordinates for the cylinders are:

Notations

s denotes the arclength parameter along the scatterer (starting from a point arbitrarily fixed), describing
position of the outgoing particle.

¢ denotes the collision angle, the angle that the outgoing velocity makes with the normal vector of the
scatterer in the point s. Clearly ¢ € [T, T].

The position can be equivalently described by another angle parameter © € [0, 27], for which s = RO
(here R is the radius of the scatterer).

Note that M defined this way is a (finite union of) Riemannian manifold(s).
Notation
Let

|dz|. = v/ds? + dp? (2.1)

denote the Riemannian metric on M, which will be referred to as the Euclidean metric (e-metric).
Later on we will introduce another auxiliary metric quantity very common in the billiard literature,
the p-metric.

As to dynamics, let T denote the first return map onto M.

Notation for the Lebesgue measure on M is m, i.e. dm = dsdy. Furthermore, given a curve v in M
we denote the Lebesgue measure on v with m., (this is simply the length on 7).

Denote by p the natural invariant probability measure on M. p is absolutely continuous w.r.t
Lebesgue, and the density is of the form

dp = const. cos(p)dm = const. cos(ip) ds dep. (2.2)

It is this latter measure for which 7" is assumed to be ergodic and K-mixing and this is the one we
work with as well.

Remark. In a completely similar manner we could consider the Poincaré section M _ of incoming particles.
The two coordinates would be the point of income and the angle the incoming velocity makes with
the (opposite) normal vector. However, in some key steps of the proof — eg. the distortion bounds of
subsubsection 3.3.2 — we heavily use that our phase space is the outgoing, and not the incoming Poincaré
section.

With slight abuse of notation we often refer to the incoming Poincaré coordinates with the same
symbols s and ¢. That should cause no confusion.

Rotation function, its basic properties and formulation of the main theorem. To describe the
first return map 7" we decouple the motion into two parts: free flight among the scatterers and flight in
the potential of the scatterers. Free flight can be treated completely analogously to the billiard case. The
particle leaves one of the scatterers in the point sy with velocity ¢o and reaches some other scatterer
in point s (or equivalently, ©) with unit incoming velocity that makes an angle ¢ with the (opposite)
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normal vector n(s) at the point of income. After some inter-potential motion the particle leaves the circle
in some point s; = (RO;) with outgoing velocity specified by ;. Out of symmetry reasons p; = ¢, thus
the only nontrivial quantity is the angle difference A@® = @1 — ©. Again out of symmetry reasons AO
depends only on the angle ¢.

The role in the map T played by the potential is completely described by the function AG(¢p).

Definition 1. From here on we will refer to this function AO(p) as the rotation function.

Being mainly interested in the differential aspects of T we introduce one more

Notation 4A6()
_ 14
K(p) = dp

Below two important properties are defined in terms of which our main theorem is formulated.

Definition 2. The soft billiard system satisfies property H in case

1. there is some positive constant ¢ such that |2 + k(p)| > ¢ for all p;
2. the configuration of scatterers is such that the distance of any two circles is bounded below by Timin
where

cos ¢
min> _2 a7 N -
roin 2 {20003 55

Remarks.

— Although a bit otherwise formulated, it was essentially proven in [DL] that soft billiard systems
with property H are hyperbolic and ergodic. The mechanism of hyperbolicity is briefly explained in
Section 3.2.

— Note that in case k > 0 or k < —2 for all ¢, the lower bound for 7, turns out to be negative. Thus
the second assumption is only restrictive in the opposite case, and the closer k may get to —2 from
above the more restrictive it is.

— In case there is some ¢ for which 0 > k > —2, a positive lower bound on the free path is to be assumed.
Thus a planar periodic configuration of circles is needed that has finite horizon and (a possibly great)
given T, simultaneously. At first sight it seems questionable whether such configurations exist at all,
nevertheless, as proven in [B6Ta], this happens with positive probability in a random construction.

Definition 3. The rotation function is termed reqular in case the following properties hold.

1. ABO(yp) is piecewise uniformly Holder continuous. Le. there are constants C < oo and a > 0, and
furthermore, [—%, ] can be partitioned into finitely many intervals, such that for any @1 and o
(from the interiour of one of the intervals):

|A0(p1) = AO(p2)| < Clip1 — 2™

2. AB(yp) is a piecewise C? function of ¢ on the closed interval [-%, %], in the above sense. (Note,
however, that kK, in contrast to AO, can happen to have no finite one-sided limits at discontinuity
points.)

3. There is some finite constant C such that

|6"(0)] < CI(2 + ()|

where k'(p) is the derivative of k with respect to .

4. For the final property consider any discontinuity point po where k() (in contrast to AO(p)) has
no finite limit from the left. Of course, in case there is no finite limit from the right, the analogous

property is similarly assumed.
Restricted to some interval [po — €,0); w(p) = 2+6(p)

cosp s a monotonic function of .
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Remark. Note that in case & is C! (or piecewise C! with boundedness of itself and of ') regularity is
automatic. In case the asymptotics of £ near some discontinuity is some power law (¢o — ¢)~¢ (with
£ > 0), regularity means § < ¢ < 1.

We need two more definitions for the statement of our theorem:

Definition 4. Consider a phase space M with o dynamics T and a T-invariant probability measure L.
We say that the dynamical system (M, T,u) has exponential decay of correlations (EDC) , if for every
f,9: M — R Hélder-continuous pair of functions there exist constants C < oo and a > 0 such that for

every n € N
[ 1@ar ) - [ @) [ armoiue)

Definition 5. We say that (M, T, u) satisfies central limit theorem (CLT) (for Hélder continuous func-
tions) if for every n > 0 and every Holder-continuous function f : M — R with [ fdu =0, there exists
a oy >0 such that

< Ce ",

1 ; distr
—ZfOT’ — N(0,07)
Vi3
where N'(0,0¢) is the Gaussian distribution with variance afc.

Now we are ready to formulate our main theorem.

Theorem 1. Suppose that the soft billiard system (M, T, u) satisfies property H and the rotation function
is regular. Suppose furthermore that there are no corner points and the horizon is finite (0 < Tpin,
Tmaz < 00).

Then, dynamics enjoys, in addition to ergodicity and hyperbolicity, exponential decay of correlations
and the central limit theorem for Hélder-continuous functions.

Proof. Ingredients for the proof are in sections 3 and 4. Actually, following tradition (eg. [Ch]) we modify
the dynamical system in several steps (Conventions 1 and 2). We will use a phase space M, which is the
original M cut into (countably many) connected components by singularities and so called ‘secondary
singularities’. We will also use a higher iterate of the dynamics 77 = T™° with some mg to be found
later.

It is the modified dynamical system (M, Ty, ) for which the conditions for EDC and LCT given in
[Ch] are checked. Precisely, EDC and CLT for (M,T}, i) are the consequence of Propositions 1, 2, 3, 4
and 5 and Theorem 2.1 from [Ch].

Exponential decay of correlations and the central limit theorem for (M, T, i) follow easily from EDC
and CLT for (M, Ty, p).

For the reader’s convenience, we give a formulation of Theorem 2.1 from [Ch] in the Appendix.
Now we turn to the details of the above proof.

Some conventions.
Constants that depend only on the map T itself (like Tinin, Tmax; - - -) Will be called global constants.
Positive and finite global constants, whose value is otherwise not important, will be often denoted by
just ¢ or C (typically ¢ for lower bounds and C for upper). That is, in two different lines of the same
section, C' can mean two different numbers.
Two quantities f and g defined on (the tangent bundle of) M (or on some subset like the unstable
cone field, see subsection 3.1) will be called equivalent (f ~ g) if there are some global positive constants
¢ and C such that c¢f < g < Cf.
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2.1. Singularities. Just like in billiards the dynamics T is not smooth at certain one-codimensional
submanifolds (curves) of M. Consider the set of tangential reflections:

™
50={ (3;¢)€M|80=i§ }

Actually Sy = OM (the boundary of the phase space). It is not difficult to see that T is not continuous

at Sy = T~ 1Sy, i.e. at the preimages of tangential reflections. However, additional singularities appear

at
Zo={(s,9) €M | p=1p0 }

in case g is some discontinuity point for A@(p), k(@) or k'(¢)). In such a case we will consider the
phase space as if it were cut into two regions, more precisely Zy is treated as part of the boundary. As
k is not differentiable at Zo, T is not C! at the preimage of this set, at Z; = T~1Z,.

Furthermore we introduce the notations

SM =85 uT 1S U---UT "8

and Z(™, analogously. The n-th iterate of the dynamics is not smooth precisely at Z(™ U §(%),

The geometrical structure of Z(™ is much similar to that of S(™. Indeed, one can think of Z; as the
set of those trajectories that would touch tangentially a smaller disk (one of radius Rsin(|po|)) at the
next collision. The following properties of the singularity set are of crucial importance:

— ZM™ y 8™ is a finite union of C? curves.

— Continuation property. Each endpoint, zo, of every unextendable smooth curve v C Z(" U S lies
either on the extended boundary Zy U Sy or on another smooth curve ' C Z(™ U S that itself
does not terminate at xg.

— Complezity property. Let us denote by K,, the complexity of Z(™ U §(") ie. the maximal number
of smooth curves in Z(™ U S(™ that intersect or terminate at any point of Z(™ U S, K, grows
sub-exponentially with n.

For the proof of these properties in the billiard setting see the literature, especially [ChY], our case is
analogous.

One more similarity with ‘hard’ billiards is that for technical reasons later on we will introduce
countably many secondary singularities parallel to the lines of S(®). Such secondary singularities are to
be introduced parallel to Z(™ as well in case || is unbounded as ¢ — (g, at least from one side. We
will turn back to this question in subsubsection 3.2.6.

3. Fronts, u-manifolds and unstable manifolds

3.1. u-manifolds and their geometric properties. Fronts and their geometric description.
Our most important tools in describing hyperbolicity — local orthogonal manifolds or simply fronts — we
inherit from billiard theory. A front W is defined in the flow phase space rather than in the Poincaré
section.

Definition 6. Take a smooth 1-codim submanifold E of the whole configuration space, and add the unit
normal vector v(q) of this submanifold at every point q as a wvelocity, continuously. Consequently, at
every point the velocity points to the same side of the submanifold E. The set

W = {(g;v(9))lg € E} C M, (3.1)
where v : E — S is continuous (smooth) and v L E at every point of E, is called a front.

Analysis of the time evolution of fronts is the key to almost all the geometric properties of the system
that we need. For this reason, we first discuss time evolution of an arbitrary front. Later subsections will
deal with special cases.

Consider a front with a reference point just before reaching a scatterer, and another ‘perturbed’ point
nearby. With the notations introduced before (see also Figure 1), the perturbation bringing the reference
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dq+,dvy

Fig. 1. conventions for notation and signs for fronts

trajectory into the perturbed one is (dg—,dv_) just before collision, (ds_,dy_) in the incoming Poincaré
section, (dsy,dp4) in the outgoing Poincaré section, (dgy,dvy) just after collision, and (dg”,dv’ ) just
before the next collision. The evolution of the perturbations is:

ds_ = dq_
cosp_
ds_
do_ = —
R
dp_ = dv_+dO_
dOy = dO_ + kdp_ (3.2)
do :=dpy =dp_
dS+ = Rd6+
dgy = —cospdsy

d’l}+ = —d(“)+ - d(P+

while crossing the potential. For the evolution equations of free flight, we introduce the

Notation

7 = 7(z) will denote the length of free flight of the particle before reaching the next scatterer.
So, during free flight we have

dq" = dqy + Tdvy (3.3)
dv' = dvy.

Note that the angles of incidence and reflection are measured in different directions — in order to keep
them equal, as they traditionally are, — but dg_ and dg; (just like dv_ and dvy) are measured in the
same direction, unlike usually in billiards.

Based on these, we can find out about the evolution of the derivative B =

Notations

dv
dq -
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B will denote the derivative of the unit normal vector (velocity) v(q) of a front: dv = Bdg for tangent
vectors (dg,dv) of the front.
m= ‘fi—‘g will denote the slope of the (trace of the) front in the Poincaré section.

B is nothing else than the curvature of the submanifold E. Yet we will prefer to call it second
fundamental form (SFF), in order to avoid confusion with other curvatures that are coming up. The

term ‘form’ refers to higher dimensional cases when B is a symmetric operator.
(3.2) gives

1
m_ = cospB_ + =

R
1 1
—=—+ Rk (3.4)
my m_
1
cospBy =m4 + R

while crossing the potential, which can be summarized in

2+ k() + (1 + &(p))RcospB_

— 3.5
+ 7 Reoso(1 + k() + k(@)RcospB_)’ (3.5)
and (3.3) gives
1 1
B = B_+ +7 (36)
during free flight.
Notations
dq
AL = — .
1 dq_ ) (3 7)
dq’
Ay 1= —— .
2 dq+ ) (3 8)
/\ = )\1)\2.

These are exactly the expansion factors along the front, for the respective ‘pieces’ of the dynamics. (They
are also expansion factors in the Poincaré section, but in the p-metric to be introduced later.) We have

M =1+k+xRcospB_ =1+fcRm_:&, (3.9)
my
B
A =1+7By = B—f. (3.10)
To study decay of correlations, we need one more derivative.
Notation
_ dB
D=9

This is exactly the curvature of the front as of a subset of the flow phase space (and not as of a subset
of the configuration space — unlike B, cf. (3.1)).

To study the evolution of D we need to consider two small pieces of the front, one around the reference
point, and one around the perturbed one. Let the change in the SFF be

dB__ = D_dq.

before scattering, and
dB++ = D+dq
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after scattering. dB__ is not the difference of SFF-s at the points of incidence, because the perturbed
point has to travel another dr_ = tan ¢_dg_ to reach the scatterer (d7 can be negative), which changes
its SFF according to the rules (3.6)of free flight. Taking that into account, we have

dB_=dB__ —B?dr_=dB__ — B%tanyp_dq_. (3.11)
Similarly, for the fronts leaving the potential,
dByy = dB; — Bl dry = dBy — B} tany,dg,.. (3.12)

(Note our convention on the signs of dq_, dgy, ¢— and 4 .)
To follow the evolution of curvature we introduce
NOtatdigns d d dB d
Dy =92=(# D), K_=9=, Ky = 9% Dy = 92% and () = 2520,

With these we get from (3.2), (3.4), (3.7), (3.9), (3.11) and (3.12)

D, = D_ —tanpB?
K_ =cos? 9D, —sinpB_m_

1 m_\*
K,==Ki —R|— 3.13
cos’ 9Dy = —K, —sinpBym

D, = Dy —tan goBi
while crossing the potential, and, from (3.3), (3.6) and (3.8)

D =_—D, (3.14)

during free flight.

3.2. Invariance of convex fronts, u-fronts and u-manifolds. In [DL] it is shown — although not explicitely
stated in this integrated form — that if Property H (defined in Definition 2) is satisfied, then convex
fronts with suitably small SFF-s (the upper bound may be co) either remain convex, or focus before
reaching the next scatterer, and become convex again, with suitably small SFF. This property is called
the ‘invariance of convex fronts’. In the present work we also require (see Theorem 1) that T be bounded
from below by some T, > 0 even in the case when [DL] did not (the ‘no corner points’ assumption),
and an upper bound Ty (the ‘finite horizon’ assumption). In order to establish estimates that we will
need later, we must repeat some steps of the argument in [DL]. We omit details of the calculations, these
can be done by the reader or can be found in the above paper.

Notations

= max{O,mgx{—Rm(go)%}}, (3.15)

1
B* = — (OOllez(])
1

From (3.4) we get that that if 0 < B_ < B* then either . > 0 and thus By > % or By < —B*. This
— by (3.6) — implies that ¢ < B < B** with some global constants ¢ > 0 and B** < B*, assuming that
Tmin > 271, which is exactly Property H. All in all,

¢ < B_ < B** implies ¢ < B < B**. (3.16)

This motivates our
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Definition 7. A u-front is a front with ¢ < B_ < B**. A u-manifold is the trace of a u-front on the
Poincaré phase space.

and

Definition 8. An s-front is a front with ¢ < —B4 < B**. An s-manifold is the trace of an s-front on
the Poincaré phase space.

As we have seen, u-manifolds remain u-manifolds under time evolution. s-fronts are exactly the u-fronts
of the inverse dynamics.

The aim of this subsection is to show important properties of u-fronts and u-manifolds, which are
stronger than those shown for an arbitrary front in the previous subsection. In subsection 3.3 we further
restrict to the case of unstable manifolds, which are special kinds of u-manifolds.

3.2.1. Expansion estimates along u-fronts. First we work out estimates for the expansion along a front
from one moment of incidence to the next. We will use these estimates later to estimate expansion of
our dynamics 7 in our outgoing Poincaré phase space M.

Consider a u-front with the earlier notations. We start with an easy observation we will often use:
from (3.4) and (3.16) we get § < m_ < & + B**, which implies

m_ ~ 1. (3.17)

To get the order of magnitude for the expansion factor A, put the formulas in (3.5) and (3.9) together,

and get that
RcospBi )\

2+ k(p)

=1+(1 +n(¢))33_%.

1+r(p) _ 1— 1
2+k(p) 2+k(p) ©

The right hand side is trivially bounded from above since B_ is bounded, and so is
On the other hand,

— Tt is greater than 1 if ;iﬁgﬁ; > 0.
—If ;jgg; < 0 (that is, —2 < k() < —1), then
cos cosp .,
1+(1+ RB_.——— > 1+ (1+ R——
(14 R@)RB- s > 1+ (1 + n(o) Ry s B >
cos 2+ k(p) -1 1
>1 1 = > —.
2 1+ U Oy o) “Rep)cosy ~ () = 2

All in all, using A» = 2+ ~ B, (see (3.10) and (3.16)) we have

2+ K(y)

A~BiA ~
A cos

(3.18)

which is one of our key estimates. Notice that the right hand side cannot be too small due to Property
H (Definition 2).
We can also get the order of magnitude for A; and A2 separately: (3.9) and (3.17) gives

M1+ m3 = /X +m2 ~ (24 k(). (3.19)

(The last equivalence is true because both sides are bounded away from zero, and can only be big when

they grow linearly with k.) Notice that A; can be very small (even zero), and can even change signs

while 2 + k() remains positive. Of course, my has to be infinity (and change signs) simultaneously.
Putting (3.18) and (3.19) together, we get

Pof 1

cosy’
\/1+m3 ¥

(3.20)
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This last line can be rewritten as
1 [Aofcosp |Byfcosp _ Imy + %I
\/1+m3_ \/1—|—m3_ \/1—|—m?|_

which implies that there is a global constant ¢ such that

1
‘m+ + E‘ > c. (321)

3.2.2. Expansivity. To obtain hyperbolicity, we must see that u-manifolds are expanded by the dynamics.
In the first round we prove a Lemma about the expansion on u-fronts from collision to collision.

Lemma 1. There exists a global constant A > 1, such that for every u-front, |\| > A.

Proof. Besides 7 > 0 and B_ > 0 we will use that 7 > 21y + d where d := 75, — 271 > 0, and
71 > —Rr(p) 522 for every ¢ (see Definition 2 and (3.15)). Altogether:

2+k(p)

cos ¢
>d-—2 —_—. .22
T>d R/-e(c,o)2 T Ae) (3.22)

We will also use from (3.15) and Definition 7 that

2+ K(p)
0<B_ < ————F———— 3.23
< ~— —Rk(p) cosgp (3.23)

whenever the right hand side is positive, which is the —2 < k() < 0 case. Now we start by putting
together (3.9), (3.10) and (3.5) to get

A=(1+c6(p)Rm_)1+7By) =1+ k(p) + k(p)RcospB_ + T (21;;7:;(? +(1+ li((p))B_>

We estimate this taking care of the signs of the particular terms.

— If k(p) < —2 -4, then
A<1+k(p) < —1-04.
— If =2+ 6 < k(p) < —1 then both coefficients of B_ are negative, so we can use (3.23) to estimate

the right hand side from below. In the next step we find the coefficient of 7 positive, so we can use
(3.22). What we get is

2+5
A21+HWI+M@R“E¢:E%5%%E

2+ k(p) 2+k(p) \ _
T ( Rcosy + (1 +5(0) —Rk(p) cos go) B

2+ k(p)
—k(p)Rcosy
Cos ) 2+ k(p)
2+ k(p) ) —k(p)Rcosy

=-1+r

> -1+ (d — 2Rk(p)

do
>1+ —.
2 +2R
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— If —1 < k(p) <0, then the coefficient of 7 is positive, so we first use (3.22) to estimate the right
hand side from below. In the next step we find one coefficient of B_ positive, so we just use B_ > 0,
and one coefficient of B_ negative, so we can use (3.23). What we get is

A> 14+ k(p) + k(p)RcospB_ +

+ (d — 2Rk(p) 5 j—oic(Pcp)> (2R+c§s(i) +(1+ n(go))B_) =

2EEC) L 41+ r(p))B- — () - DR

=1+4+d
+ Rcosy 2+ k(p)

2 2 2
>144d +rlp) W) — = (p)Reosp 2+ K(yp)
Rcosy 2+ k(p) —Rr(p)cosp
144
—_— R-
— If 0 < k(yp), then
2d
A>1+ =
>1+ R

3.2.8. Transversality.

Lemma 2. We will see that u- and s-manifolds are uniformly transversal. ILe. there is some global
constant ag > 0 such that given any two tangent vectors (in the outgoing Poincaré phase space) dxs and
dz, of an s- and a u-manifold, respectively, we have

<(dzy,dzs) > ap.

Proof. To see this, use Definition 8 and (3.4) to get m% ~ —1 for the slope of any s-manifold. This way,
it is enough to see that the slopes of u- and s-manifolds are bounded away, that is, |m% —m?| > c. To
get this, use — again — Definition 8, Definition 7, the estimates before them and (3.4) to get

1 1
R mi > R cospB**

1
my >0or my < —p ~cos pB* (3.24)

so either mY{ —m? > % or m5 —mY > cosp(B* — B**). This implies the statement when cos ¢ is not
too small. However, when cos ¢ is small, we have to use the estimate (3.21) and (3.24) to see also that

mi>00rmi<—§—c

which completes the proof.
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3.2.4. Hyperbolicity. In what follows we will consider time evolution of vectors tangent to u-manifolds.
Notation both in the incoming and the outgoing phase space will be of the type dz = (ds, dy). In addition
to the e-metric (2.1) we will use one more metric quantity, the p-metric:

|dz]p = |ds| cos(p).

The p-metric measures distances along the corresponding u-front. It is degenerate on the whole tangent
bundle. However, when restricted a u-manifold in the incoming phase space, by (3.17) we have:

|dz|p ~ |dz]c cos(p).

According to Lemma 1, u-vectors are expanded uniformly (from collision to collision, that is, in the
incoming phase space) in the p-metric:

IDT|, =A>A>1

To obtain expansion in the e-metric and the outgoing phase space, we look at the n-th iterate of the
outgoing phase space dynamics the following way:

— switch to p-metric

— reach the next scatterer

— do n — 1 steps in the incoming phase space
— cross the potential

— switch back to Euclidean metric.

This way we get

\/HT
tn) cos
|DTn d.’L'|e = W}\l(n))\(n_l))\(n_z) .- )\(I)AZ

(n) \/1+mi

where symbols with ()-ed subscripts mean values at the appropriate iterate of the phase point. Using
(3.19), (3.20) and Lemma 1 we get

|dzx|.

2+"7((p(n))
DT™dz|e ~ Mn—1)A(n—2) --- A dz|e. 3.25
| Tle ~ Mn_1)A(n—2) D o5 o |dz|e (3.25)
This way we have
|DT™ dz|e > c1A™|dx]e (3.26)

with some global constant ¢;. Again, this is for u-vectors in the outgoing phase space.

The transversality of s- and u- vectors, stated in Proposition 1 implies that the product of (length)
expansion factors for s- and u- vectors is equivalent to the n-step (Lebesgue) volume expansion factor.
Using (2.2), and the T-invariance of u, we get that if dz is a u-vector and dy is an s-vector, then

|DT™dz|e |DT™dyle  _cosp

|dx|e |dy|e COS Y (n) .
Combinig this with (3.25) we get
cos ¢ 1
DT™dyl, ~ ayle,
| ™ w0 M Ay
which implies
DT dy < L Jaal, (3.27)

with some global constant C;. Again, this is for s-vectors in the outgoing phase space.
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Convention 1 We choose a positive integer mq the following way. First take my such that c; A™ > 1
and AC,}1 < 1. This way any enough high power of the dynamics, T™ with m > my is uniformly expanding
along u-manifolds and uniformly contracting along s-manifolds with Ay = A™ ™. Now recall the notion
and the basic properties of complexity K, from subsection 2.1. As K, grows subexponentially we may
choose myo for which we have K,, < A™~ ™t whenever m > mo. We fit mg = min(ms, ms) + 1.

The advantage of this choice is that the iterate Ty = T™° is uniformly hyperbolic (see the proposition
to come) with constant Ay for which Ay > K, + 1. This later fact we only use in section 4.

Let us summarize what we have seen so far from the hyperbolic properties in the following

Proposition 1. There exist two families of cones Cs(x) and Cy(x) — called stable and unstable cones —
in the tangent space of M such that

DT(Cy(z)) C Cu(Tx) and Cs(Tx) C DT (Cs(x)).
The stable/unstable cone is uniformly contracting/expanding:

|DT[ ' (dz)| > Ay|dz|  Vdz € Cy(z),
|DT; (dz)| > Aildz|  Vdz € Cy(z).

Furthermore, the two cone fields are uniformly transversal in the sense above.
Vectors of the stable/unstable cone are often called s- and u-vectors.

Proof. The two cones are formed by the tangent vectors of s- and u-manifolds, respectively. Invariance
is the implication (3.16), recalling Definition 7 and 8. Expansion and contraction are (3.26), (3.27) and
Convention 1. Transversality is Lemma 2.

We note that so far we have only used that our billiard satisfies property H, which is a property
already formulated in [DL], and which is known from [Dol] to be essentially necessary for ergodicity.

3.2.5. Alignment. We need to investigate the relative position of u-manifolds and singularities in order
to find out how much of a u-manifold can be ‘close’ to a singularity. Our aim is to prove the following

Lemma 3. Take any smooth component Z of T—%Zy with k > 0, where
Zo={(s,0) € M |p=10}

with any o € [—F, 5]. Given some small positive § let us denote the d-neighborhood of Z by Z81, There
are global constants C' < 0o and o > 0 such that for any u-manifold W we have

mw (z[ﬂ N W) < 08, (3.28)
where myy is the Lebesque measure — the length — on the u-manifold W.

Proof. If k > 0, then Z is an s-manifold, and is transversal to our u-manifold W according to Lemma, 2,
so the statement holds even with o = 1.
So take k = 0, then Z is described by mz = 0. If k(p) remains bounded near ¢, then for our

u-manifold W,
1 1
L L Ruy)
my m_
is bounded (see (3.4) and (3.17)), so the two curves are transversal again, we can choose @ = 1.
The interesting case is k = 0, k() — 00 as ¢ — @o. In this case (3.17) ensures that —— is negligible

— say, less than e portion — compared to Rk(p). This — through (3.4) and the definition my = % = %‘f
— implies that for u-manifolds

(1 = &)Rk(p) < —— < (1 +)Rr(p)

&
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Integrating this with respect to ¢ and using the definition of k(y), we get
(1 -e)R(A0(p) — A0(p) < 5 — 5 < (1 +&)R(A0(p) — A0(9))

which means that, close (enough) to a k() — oo singularity, a u-manifold is (arbitrarily) similar to the
graph of the rotation function A@(p). Now the Holder-continuity of AO(y) required in the regularity
condition (Definition 3) implies the statement of the Lemma.

We note that the proof of alignment is the only place where we use our assumption that the rotation
function is Holder-continuous. The above proof shows that Holder-continuity is indeed a necessary con-
dition for alignment. Alignment is not among the conditions of Chernov’s theorem which our proof is
based on, but we will use it in the proof of the growth properties (Proposition 5). At that place it seems
to be unavoidable, so we think that Holder-continuity of the rotation function is needed for Chernov’s
method to work. On the other hand, as already pointed out in the introduction, we do not claim that it
is a necessary condition for EDC.

3.2.6. Homogeneity strips, secondary singularities and homogeneous u-manifolds. Notation

w(p) = 2;7:((;0) (3.29)

We will see that expansion in the e-metric is unbounded as |w(p)| — oco. This certainly happens in
the vicinity of £7, nevertheless, there can exist other discontinuity values ¢y with the same property.
Big expansion comes together with big variations of expansion (i.e. distortion) rates along u-manifolds.
For that reason we need to partition the phase space into homogeneity layers in which w(yp) is nearly
constant. We fix a large integer ko (to be specified in section 4) and define for k£ > ko the I-strips as

I ={(s5,9) | K < |w(@)l < (k+1)*} (3.30)

Recall from Definition 3 that whenever lim,_,,, |w(¢)| = oo, there exists an interval [po — €, o)
restricted to which |w(¢)| is a monotonic function of ¢. We partition a subinterval of this interval into
I-strips, thus kg is chosen accordingly large. In case there are several discontinuity points of w(y) (with
unbounded one-sided limits) we may construct further I-strips, I ,gs), analogously. Here the index s labels
the finitely many discontinuities of this kind.

Furthermore take Iéu); u = 1---U where the index u labels the finitely many connected components
of the complement of all the above layers (that is, the ‘remaining part’ of the phase space).

We will use the notations I for the countably many boundary components of I-strips.

Convention 2 From now on, Iy — just like Sy and Zy before — is considered as part of the boundary

of the phase space. That is, we will use a modified phase space M, whose connected components are the
homogeneity strips Iy, (and Iéu)).

In complete analogy with primary singularities we introduce furthermore the notations Iy and I'® for
the corresponding preimages. The geometric properties of these secondary singularity lines are analogous
to those of primary ones (for example, (3.28) applies).

Definition 9. We will say that a u-manifold is homogeneous whenever it is contained in one of the
homogeneity strips I, (or Iéu)).

In sections 3.3.2 and 4 we will be concerned with u-manifolds that remain homogeneous for several steps
of the dynamics.
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3.8. Regularity properties of unstable manifolds.

Definition 10. An unstable manifold is a u-manifold for which all past iterates are u-manifolds as well.
Analogously, a stable manifold is an s-manifold for which all future iterates are s-manifolds as well.
From the theory of hyperbolic systems (see [Ch] and references therein) we know that there is a unique

unextendable unstable (and similarly a unique unextendable stable) manifold through (u—)almost every

point of M. Thus it makes sense to talk about the (un)stable manifold through the point.

We will also refer to unstable manifolds as ‘local unstable manifolds’ (LUMs), stressing the fact that
they are (and all their past iterates as well are) contained in some homogeneity layer Ij,. (Remember
that our phase space ends on the boundary of Iy, so Ixy1 is already another connected component.)

In this subsection we deal with properties of unstable manifolds which are stronger than those proved
before for arbitrary u-manifolds in subsection 3.2.

3.8.1. Curvature bounds. In what follows we obtain bounds on unstable manifolds that will guarantee
that their curvature is uniformly bounded from above.

First we look at u-fronts as submanifolds of the flow phase space.

Putting the formulas in (3.13) and (3.14) together, we get

D - ~D_ 2sin pB?% _ 2sin pB"? sin pB_ sin B’ B 3 n
- A3 A3 cos Az cos RX3cos2¢p  RM2cos? ¢ “A3cos?p

cosp|Aa| ~ 4/1+m?

which is bounded from below. So, in the above sum, terms number 2,3,4 and 5 are all bounded in absolute
value. The last term is bounded due to our assumption

Our key estimate (3.20) implies

n(y)
< C.
‘ (2+5(p))?
As a consequence, we have
D_
o< Blie, (3:31)

with some global constant C» and can state

Lemma 4. There is a global constant D such that for almost any point of the phase space, the front
corresponding to the LUM has

ID_| <D

Proof. Choose D= %fi Now suppose indirectly that there is a set H C M of positive measure, for the

points of which |[D_| > D + e. Then (3.31) implies that there is a ¢(¢) > 0 such that [D_| > D + ¢ + ¢
on T='H. This implies that |[D_| > D 4+ & + 2¢c on T~2H, and so on: |D_| > D + & + kc on T~*H for
all k> 0. But the T~*H-s are all sets of equal positive measure, which contradicts the finiteness of the
phase space.

As a consequence, we can give curvature bounds for local unstable manifolds in the incoming and
outgoing phase spaces. Since an unstable manifold in the Poincaré section is the graph of a function
© = (s), its curvature is given by

IO N S
I+ @6 Vitm?

We have reached
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Proposition 2. There is a global constant C' such that for almost any point of the phase space, the front
corresponding to the LUM has

lg+| < C.
Proof. Tt can be read from (3.13) that

|[K-| <C, (3.32)
thus

lg-| < C.
To find out about g4, we write

3
K+ my K_ n

9+ = 3= —5 — R 3"
J1+m3 Yi+mi) ™ 14 (G + Re(p)?

This is also bounded in absolute value due to our assumption

<C

‘ n(¥)
2+ k(p))?

(see Definition 3).
We note that this proof suggests that our condition

|6 ()] < CI(2 + 5(0))?|

is necessary for bounded curvature, and consequently for Chernov’s method to work.

3.8.2. Distortion bounds. Length of a u-manifold W is expanded by T locally with a factor

DT™dx|,
s =

where dz is the vector tangent to the curve of W at x. The aim of this subsubsection is to prove

Proposition 3. Let W be an unstable manifold on which T™ is smooth. Assume that W; = T'W is a
homogeneous unstable manifold for each 1 < i <mn. Then for all x,T € W

=

[In Jwn(z) — In Jwn(Z)| < C [distw, (T"z,T"%)]° .

Proof. Note that Jw,n(z) = 17 Jw..1(T'z). Hence, it is enough to prove the Lemma for n = 1, because
dist(T'z, T*%) grows uniformly exponentially in ¢ due to (3.26). So we put n = 1.

Denote ' = Tz and, we will use a ’ to denote quantities related to the point z'.

Recall from section 2 that the expansion factor is easily calculated in the p-metric. To obtain J :=
Jw,1(xz) we transform |dz|. to |dz|,, take the p-expansion factor from (3.7) and (3.8) and transform

back. This way:
V14+m? cos
i )\1 AQ -
cos ¢ V1 +m?2
In order to calculate the change in the logarithm of J as we move from z to Z, it is best to write it
with the help of (3.29) in the form

J = w(¢')J J2 (3.33)

\/14+m3
J=——

24 k(p)

with

1
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and
Jy= — 2% 5,
\/1+mi
(3.19) and (3.20) imply
il ~ || ~ 1. (3.3

The change in logarithm of the three terms can be calculated independently, moreover, J; and J, are
expected to change moderately, while w(¢') can be kept under good control, because it depends only on
¢'. The three terms are investigated in three sublemmas. Thus Proposition 3 is the direct consequence
of the three Sublemmas 1, 2 and 3. Of course, the first and third (concerning J; and w(p)) have to be
applied with ’-es. When applying Sublemma 3, we use the trivial fact | — @| < dist(z, ).

In the arguments below, as usual, quantities with neither + nor — in their index are meant to have
a +, that is, in the outgoing phase space.

Sublemma 1 There exists a global constant C' such that when a perturbation of size dx is performed
on the base point, we have
|[dn Ji| < C|dz|.

Proof. In many estimates, we will use — without further mention — that m_ and K_ are bounded (see
(3.17) and (3.32)).
With the help of (3.9) we choose the form

\/(1 + k(p)Rm_)2 + m?

J =
' 2+ k()
When calculating the differential, we use
m
dr(p) = n(p)dp = nehms g,

and
ds_+ K_ dx

K_
dm_=K_ds_ = K_ = — = dx
A1 A1 \/1+mi \/)\%+m2_

Calculating the differential, we get

m_ + k(Q)R + k2(p)R2m_
(@ + (o Bm )2+ m2y2 4 F
2Rm_ —1—m% + (2Rm_ — 1)BRm_k(p) n(p)m4 .

(2 + K@) (A + £(p)Rm_)> + m?) /1+m2

The coefficient of dz in the first term is obviously bounded since the denominator is one degree higher
in k(p) and is bounded away from zero. In the second term, we use (3.9) and (3.19) to get

dlnJ, =

my m_

= N‘

\/1+mi \/1+mi

s0, looking again at the degrees of polynomials (in ) in the numerator and denominator of the second
term, we have

L ‘ (3.35)

2+ k(p)

2Rm_ —1—m% + (2Rm_ — 1)Rm_x(p) n(p)m, < C‘ n(e)
(24 &(p))(1 + K(p)Rm_)2 +m?2) 1+m2
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Sublemma 2 There exists a global constant C such that when a perturbation of size dx is performed
on the base point, we have

|dln J2| < Cld='|
(note the ’ on the right hand side).

Proof. With the help of (3.4) and (3.10) we choose the form

_cosp+Tmy + 5

Jo =
\/1+mi

When calculating the differential, we use

dyp = L
1+m3
and
dz 9
dm+ = K+d8+ = K_’_i = (1 —+ m+)g+d:c.
1+mi

This way we get

—si my (% +cosp) —T
SNy gy Bl gy — TR & 2
cospAay/1+m?2 Cos pA2

Due to (3.20), the coefficient of dz in the first term is equivalent to —2227+ and in the third term to

1+m3
—%@n both of which are bounded (cf. (3.35)).
We finish by estimating dz and dr with dz'. First,

dlnJy = g+dz.

2+ k(¥

cos dz > cdz. (3.36)

de' = deN‘

Second, the triangle inequality implies |d7| < |ds| + |ds’_|. On the one hand, (3.36) implies |ds| < |dz| <
C|dz'|. On the other hand (3.19) implies,

de' = \/1+mE|A|ds" ~ |2+ k(p')|ds" > cds’_.

|dr| < Clda'].

These give

Sublemma 3 There exists a global constant C such that if © = (s,¢) and T = (5,9) are in the same
homogeneity layer

I ={(s,9) | ¥ <|w(p)| < (k+1)%},
then
In lw ()| — In lw(@)|| < Cle — @|'/°.



Correlation decay in certain soft billiards 21

Proof. We use the notation w'(p) = %w(gp). It is easy to see that the regularity of k() implies

That is, everywhere inside Jy,

‘dl I“di("”"\ - Zg)) ‘ < Clu(p)l” < 20K*.

This, together with the obvious k2 < |w(¢)|, |w(@)| < (k + 1)2, implies
|In |w(p)| — In |w(@)|| < min {2Ck*|¢ — @|,In(k + 1)* = Ink*} < min {2Ck4|cp - g, %} .
It is easy to check that for every k and every &
min {20k4|§|, %} < 201/5¢1/5,
which completes the proof.

After proving that the expansion factors vary nicely between nearby points on the same u-manifold,
we now investigate their behaviour at points of different u-manifolds that lie on the same s-manifold.
This is the absolute continuity property. Just like it was with the distortion bounds, it is important to
consider homogeneous manifolds.

We introduce the simplified notation Ji*(x) and J(z) for the k-step length expansion factor at
along the unstable and the stable manifold, respectively.

Proposition 4. Let W, be a small s-manifold, z,% € Wy, and Wy, W, two u-manifolds crossing W at
x and T, respectively. Assume that T* is smooth on W, and T'W, is a homogeneous s-manifold for each
0<i<k. Then

|In J¥(z) — In J¥(z)| < C

where C' is a global constant.

Proof. We have bounds on the change in expansion as we move along unstable manifolds. In order to
have such bounds as we move along stable manifolds, we wish to use the fact that stable manifolds are
turned into unstable ones when we revert time. However, this time reflection symmetry is not complete:
we always work in the outgoing Poincaré section, and reverting time turns this into the incoming one.
To deal with the problem, we introduce the map P which is the dynamics through the potential, and
which maps from the incoming to the outgoing Poincaré section. That is,

P((s—,¢)) := (54,p) = (s— + R3O(p), p).

We can see from (3.4) that if dz_ = (ds_, dy) is a tangent vector of the incoming phase space, then
1
|IDP(dz_)|e = \/1+ mi |\ | ———=dz_]c-
\/1+m2
Denote by v(x) the expansion factor of DP along the unstable manifold at z, that is v(z) = %

where dz is an unstable vector at . We can use (3.19) and (3.17) to get

v(z) ~ 2+ K(p)]-
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We also introduce the ‘turn back’ operator, which we will denote by a ‘—’ sign: this turns incoming phase
points into outgoing phase points which corresponds to reverting the velocity. ‘—’ is almost the identity
function from M_ to M, only the collision angle is reverted (see our sign convention in figure 1):

- M_ — M+
~(5:9.) == (54>91) = (5_, —p_).
With these notations, if x = P(y), the time reflection symmetry implies

va) 1 24 k()
Te(Tr)u(—Ta) ~ JE(=T*y) [2+ r(gn)]

Ji(z) = (3.37)

The transversality of stable and unstable vectors, stated in Proposition 1 implies that Ji(z)Jg(z) is

equivalent to the k-step (Lebesgue) volume expansion factor. Using (2.2), and the T-invariance of u, we

get
cos ¢

COS Py,

Ty (2) Jj () ~ (3.38)

Putting together (3.37) and (3.38) we get

The same is true for Z = P(§), so we have

w(pr)
w (k)

To see the boundedness of the first term of the right hand size we can apply Proposition (3), because
—T*y and —T*§ are on the same local unstable manifold. The second and third term is bounded because
W, and T*W, are homogeneous, see Section 3.2.6. Now the proof of Proposition 4 is complete.

In

[In J¢ () = In Ji(2)| < |In J¢ (=T*y) — In g (=T*y)| +

et

4. Growth properties of unstable manifolds

This last section is concerned with the growth properties of LUMs. Our aim is to show that LUMs ‘grow
large and round, on the average’. This is expressed in the formulas of Proposition 5 below.

Recall Convention 1. Throughout the section we use the higher iterate of the dynamics, 73 = T™°.
This has singularity set (secondary and primary) = = I'(™o), For the higher iterates of T} the singularity
setis (") = 5UT1EU---UT IS,
do-LUM’s. To formulate and prove further important conditions on growth of LUMs we need to recall
several notions and notations from [Ch]. Let g > 0. We call W a §p-LUM if it is a LUM and diam W < 4.
For an open subset V' C W and z € V denote by V(z) the connected component of V containing the
point . Let n > 0. We call an open subset V' C W a (8y,n)-subset if V N (5() = § (i.e., the map T
is smooth and homogeneous on V) and diam 77V (x) < &y for every x € V. Note that 77"V is then a
union of dp-LUM’s. Define a function ry , on V by

TVv,n (.CL') = dTl" V(z) (Tlnx7 aTInV('Z'))

Note that ry,(z) is the radius of the largest open ball in T*V(z) centered at T7'z. In particular,
T‘W’O(.CL') = dw(x, 6W)

One further notation we introduce is Us (for any § > 0), the d-neighborhood of the closed set = U
So U Zp.

The aim of this section is to prove the Proposition below.
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Proposition 5. There are constants ag € (0,1) and By, Do, 1, X, > 0 with the following property. For
any sufficiently small 8,8 > 0 and any do-LUM W there is an open (8o, 0)-subset VY C W NUs and an
open (8o, 1)-subset Vi C W \ Us (one of these may be empty) such that mw (W \ (VP UV{)) =0 and
that Ye > 0

mw (rya 1 <€) <agds -mw(rwo <e/A1) + 600y 'mw (W), (4.1)
mw (ryo,0 <€) < Dod™"mw (rw,o <€) (4.2)

and
mw (V5") < Domw (rwo < (6%). (4.3)

Proof of this Proposition goes along the lines of the arguments from [Ch]. First let us consider
Accumulation of singularity lines. There are two sources of accumulation of the components of the
set = that can cut LUM’s into arbitrary many pieces.

First, the set I7 consists of countably many curves stretching approximately parallel to some curves
in S; (or Z;) and approaching them. So, each set T~1I; and k # 0, is a narrow strip with curvilinear
boundaries. The expansion of unstable fibers in these strips can be estimated using (3.33), (3.34) and
(3.30). More precisely, let W C T~1I}, be a LUM, for some k # 0. Then the expansion factor, J%(z), on
W satisfies

JU(z) ~ w(p) ~k> Yz eW. (4.4)

Second, there might be multiple intersections of the curves in S; U Z;. Recall K,,, the complexity of
S Uy Z(™ and it is properties from subsection 2.1. Specifically important for us is the choice of the
higher iterate Ty} = T™° with its relevant properties, see Convention 1.

Indexing system. Before proving the proposition we introduce a handy indexing system, cf. [Ch]. Let
do > 0 and W be a §-LUM. If ¢y is small enough, then W crosses at most K,,, curves of the set
Smo) y Z(mo) ' s0 the set W \ (S(™0) U Z(m0)) consists of at most K,,, + 1 connected curves, let us call
them Wy,..., W, with p < K, + 1.

On each W; the map Ti (as a map on M) is smooth, but any W; may be cut into arbitrary many
(countably many) pieces by other curves in =, which are the preimages of the boundaries of Ij. Let
A C W be a connected component of the set W \ =. It can be identified with the (mg + 1)-tuple
(K1, .. kmq;4) such that A C W; and T°A C I, for 1 < i < mg. Note that this identification is
almost unique. Indeed, given j, (T®A C)T*W; is contained in a strip of the phase space that lies between
two horizontal lines: two components of So U Zy. It might happen that expansion factors diverge — and
consequently, homogeneity strips have been constructed — at both sides of the strip. Thus given the index
k;, we have T*A C Iy, where Iy, can be the k;th layer from one of the two homogeneity structures. In
such a case we use the following convention; the homogeneity layers at the 'upper’ and ’lower’ ends of
the phase space strip (corresponding to j) are labelled by odd and even numbers, respectively. This way
the indexing system is made unique and (4.4) remains true.

All in all, we will write A = A(ki,...,kmy;J). Of course, some strings (ki,...,km,;J) may not
correspond to any piece of W, for such strings A(ky, ..., kmy;7) = 0.

Denote by J¥(z) = J%(x)--- J*(T™ 1z) the expansion factor of unstable vectors under DT;. Let
|Al = ma(A) be the Euclidean length of a LUM A. We record two important facts:

(a) For every point « € A(ky, ..., kmn,y;j) we have

JH(&) > Liy,.. ko, :=max 4 A1, Coo [[ ¥

ki#0

[o]

where Cyg is some positive global constant. This follows from (4.4).
(b) For each A(ky,...,kmn,;J) we have

|A(kla KRR ) kmg?j)' < Mkl,...,km

0

:= min |W|, 021 H k‘,l_Z
ki7#0
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where Co; = 02_01|W|max and |W|max is the maximal length of LUMs in M. This follows from the
previous fact.
Next, put

0p:=2% k7*<d[ko
k=ko
and let us turn to the proof of our growth formulas.
Let W be a §p-LUM and § > 0 be small. For each connected component A C W \ = put A® = ANUs
and A! = int(A\ U;s) (recall Us is the §-neighborhood of = U Sy U Zp). Due to the Continuation property
(cf. subsection 2.1) and to Alignment (cf. subsubsection 3.2.5), the set A° consists of two subintervals

adjacent to the endpoints of A (they may overlap and cover A, of course). The set Al is either empty
or a subinterval of A. We put W' = UpcpynzAL.

Proof of (4.1). For each A" the set T1(A; N {ry1,; < €}) is the union of two subintervals of Ty A" of
length & adjacent to the endpoint of Ty A'. Using the above indexing system we get

mw(Twl’l < E) S Z 26L_1

kl""vkmo
kla""kmovj

< 2ep [AT' + Coo MO0 + 05 + -+ +65°)]
< 26(Kpmy + 1) (A7 + Cog 'moby) -
We now assume that kg is large enough so that
ag = (K, + 1)(AT" + Cag tmobo) < 1
and thus get
mw (rw1 1 < €) < min{|W/|, 2a0¢}.
The first term on the right hand side of (4.1) is equal to

ooy min{|W|, 2e/ A1} = min{ao A1 |W|,2a0e}.

Since apA1 > 1, we get
mw (rwi1 <€) < agdy -mw (rwo <e/Ar). (4.5)
Next, to obtain an open (g, 1)-subset V;* of W, one needs to further subdivide the intervals A' C W
such that |T1A1| > 8. Each such LUM T3 A! we divide into s equal subintervals of length < &g, with
sa < |T1AY|)do. If |[T1 AY| < Jp, then we set so = 0 and leave A! unchanged. Then the union of the
preimages under T of the above intervals will make Vj'. Now we must estimate the measure of the
e-neighborhood of the additional endpoints of the subintervals of T} Al. This gives

mw(ryay <€) —mw(rwi <e) < Z 25 26|Con A|/|TL AY|
ACW\E
S Z 20228|A1|/(50
ACW\E
S 20226(561|W|.

Here Cs2 = exp(const- |W|§nax) is an upper bound on distortions on LUM’s, see Proposition 3. Combining
the above bound with (4.5) completes the proof of (4.1) with 8y = 2Cas.

We now prove (4.2). It is enough to consider e < [W|/2, so that the right hand side of (4.2) equals
2Do6~"e. We can put VP = W\ V. Then the left hand side of (4.2) does not exceed 2Jse, where J; is

the number of nonempty connected components of the set VJO, which is at most the number of connected
components of W \ = of length > 24. Hence, clearly J5 < |W|/d < do/d. This proves (4.2) with n = 1.
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Finally, we prove the inequality (4.3). Again, let A be a connected component of W \ £ and A%, A!

be defined as above, with the set A® consisting of two subintervals adjacent to the endpoints of A. By
(3.28) — and the analogous property for the secondary singularities, see subsubsections 3.2.5 and 3.2.6
— each of these subintervals has length smaller than C'§“.

Now, the right hand side of (4.3) equals Do min{|W|,2¢8X}. So, it is enough to show that mw (V) <
BéX for some B,y > 0. We have

mw (V) < Z min{2C4é%, |A|}
ACW\E
< > min{206% My, k., }

k1, skmgsd

*
< const - §% + const, - Z min 4%, H k2
k1,--skmg ki #£0
where 3" is taken over mo-tuples that contain at least one nonzero index k; # 0. The following Lemma
— Lemma 7.2 from [Ch], which was proved in the Appendix of that paper — completes the proof of (4.3)
with x = 52

2mgo ”

Lemma 5. Let € > 0 and m > 1. Then

Z min {e, (k1 - - km) "2} < B(m) - elrzm,

k1yeeiskm>2
With the help of this Lemma Proposition 5, and consequently, Theorem 1 is proved. 0. 0.

5. Specific potentials

In this section we would like to show that, as important corollaries of Theorem 1, exponential decay
of correlations can be established for certain specific potentials. To prove such corollaries we need to
calculate the rotation function A@(yp) from the potential V (r).

As to the detailed description of the Hamiltonian flow in a circularly symmetric potential, we refer to
the literature, e.g. [DL] and references therein. Most important is that besides the full energy there is an
additional integral of motion, the angular momentum [, that can be calculated for a specific trajectory
as

l=Rsinp

where ¢ is the collision angle at income. For brevity of notation it is worth introducing the function
h(r) = (1 =2V (r))r?.

By the presence of the angular momentum motion is completely integrable and is described by the pair

of differential equations (recall our convention that the full energy is E = 1):

2
2 =r"2(h(r) = 1?)
r?0 =1.
Combining these we get
doe l
D . S
dr r/h(r) — 2

where the sign depends on whether r is increasing or decreasing. More precisely, there is a minimum
radius

(5.1)

P =7(p): h(#) = I> = R?sin® ¢,
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down to which r decreases (with negative sign in (5.1)) and from which r increases (with positive sign
in (5.1)). This results in

(5.2)

A@(¢)=2/R;dr

For a generic potential, the dependence of (5.2) on ¢ is rather implicit: ¢ is present both in the
integrand (via !) and in the limits (via 7). One possible strategy to follow is to obtain some even more
complicated formulas for the derivatives in the general case, and based on those perform estimates that
guarantee the desired dynamical properties. This is possible as long as only hyperbolicity and ergodicity
is treated — like in [DL] — and thus only the first derivative, k(p) = AO'(p) is needed. However, for
rate of mixing you need one more derivative, £'(¢) = A" (), cf. Definition 3. Finding good sufficient
conditions on the potential V' (r) that guarantee the regularity of k seems to be a very hard task, if
possible at all. Thus we have chosen instead to investigate some specific cases where A@ is directly
computable from (5.2). Of course, this way we could handle a much narrower class of potentials than
[DL], nevertheless, the established dynamical property is stronger.

Corollary 1. Consider the case of a constant potential,
V(r) =V forany r €][0,R).
Correlations decay with an exponential rate in case

— Vo > 0 and the configuration is arbitrary,
— Vo < 0 and the configuration is such that Tmin > 7_1_22@0_1,

Remarks. Actually, the analysis of this constant potential case from the point of ergodicity dates back to
the late eighties, to [Kn2] and [Ba]. Rate of mixing is, to our knowledge, discussed for the first time. For
potential values V5 > % the particle cannot enter the disks, the system is equivalent to the traditional

dispersing billiard, thus we consider the opposite case, Vy < %

Proof. Let us introduce the quantity
v=+/1-2V, (5.3)

which is less or greater than 1 depending on the sign of V4. Let us consider the case of positive Vj first
and introduce furthermore the angle ¢ for which:

v = singy.

In case |p| > o, |I| is greater than the maximum value h(r) can take, which indicates that the particle
has too large angular momentum to enter the potential, thus A@ = 0. In the opposite case of || < ¢g

R|sin |
v

it is easy to obtain 7 = and perform the integration of (5.2). All in all

AB(p) = 2arccos (sm_cp) if |o| < o,
v
0 if [o] > 0.
On the one hand, whatever a configuration we have, the system satisfies property H (cf. Definition 2),

as either k =0 or k < ’72 < —2. On the other hand, & is a piecewise C* function of ¢ and it behaves as

(¢o — )~ 2 near the discontinuity point gq. Thus & is regular (cf. Definition 3 and the remarks following
it). This means that the first statement of our Corollary follows from Theorem 1.

Now let us turn to the case of Vo < 0 (i.e. v > 1). It is even simpler to calculate the rotation function
(5.2):

ABO(p) = 2arccos (Sm@)

v
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for all ¢. As v > 1, this is a C* function on the interval [-Z, %], thus  is definitely regular. As to
property H, we have 0 > k > —% where the minimum is obtained at ¢ = 0. Thus the assumption on the
configuration from Definition 2 reads as Tiin > % and the second statement of the Corollary follows
from Theorem 1.

Remark. Note that motion in the constant potential is equivalent to the problem of diffraction form
geometric optics. More precisely, we can think of the disks as if they were made of a material optically
different from their neighborhood, where the relative diffraction coefficient is v from (5.3). In case
the disks are optically less dense than their neighborhood (i.e. v < 1, V > 0), we may observe the
phenomenon of complete reflection that corresponds to the limiting angle .

(a) V(r) = Vo (> 0) (b) V(r)=1 (1 - (%)‘*) (B> 0)

Fig. 2. rotation function for two examples

Corollary 2. Given constants A > 0 and 3 > —2, consider the potential

r\B
vin=a(1- (%) ).
m=4(1- (5
Correlations decay at an exponential rate in case:

— A=
— A=

1, 0> B(> —2) and the configuration is arbitrary,

%, B > 0 and the configuration is such that Tmin > %.

Remark. Note that according to our construction the chosen value for the constant A, A = % is exactly
the full energy. If we had a different value for A, the integration in (5.2) would be much more complicated.
In other words, Corollary 2, in contrast to Corollary 1 is unstable with respect to variations of the full
energy (see also the discussion below, following the proof). Nevertheless it is nice to have at least one
potential with exponential mixing for any kind of power law behaviour (if 8 < —2, a positive measure
set of trajectories is pulled into the center of the disk, cf. [DL]).

Proof. By straightforward calculation

r2t6

i and f:R|sin<p|%.

h(r) =

Then it is not hard to integrate in (5.2):

26(y) = ﬁ (Z-9)
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for all ¢ # 0. Thus A6 is piecewise linear (in the general case with one discontinuity of the first kind at
@ = 0) and thus
_ 4
2+

identically. Regularity (in terms of Definition 3) is automatic.

Let us consider the attracting potentials, 8 < 0 first. In such a case the potential has a singularity at
the center of the disk, resulting in the discontinuity at ¢ = 0. 2 Nevertheless, ¥ < —2, thus property H
(cf. Definition 2) and consequently the first statement of the Corollary follows.

Now if 8 > 0,as A = %, the ‘top’ of the potential is equal to the energy. As a consequence, for
the initial value ¢ = 0 the flow is not uniquely defined, resulting in the discontinuity for the rotation
function. However, in accordance with Definition 2, property H is satisfied if 75, > %. Thus the second
statement of the corollary holds.

Discussion.
As already mentioned, Corollary 2 is much sensitive to the convention E = % Though very difficult to
calculate, it is interesting to guess what happens if one perturbs the constant A (or equivalently, the full
energy level).

Let us consider the case 8 > 0 first. With A either increased or decreased from the value %, the
physical reason for the discontinuity at ¢ = 0 disappears and we expect smooth rotation functions. By
continuity of the potential at R AO@(%) = 0 seems also reasonable. As to the initial value ¢ = 0 let us
have a look at the case A < % first. There is no reason for the trajectory to deviate in direction: it slows
down, reaches the center and then speeds up following a linear track. Thus A@(0) = w. This altogether
implies on basis of Lagrange’s mean value theorem that there definitely exists at least one ¢ € (0, %)
for which k(p) = —2. In such a case, however, stable periodic orbits tend to appear and the system is
most likely not even ergodic, cf. [Dol]. One can suspect that a typical repelling potential which has a
maximum less than the total energy, leads to non-ergodic soft billiards in a similar fashion.

In the opposite case of A > % the behaviour of trajectories in the vicinity of ¢ = 0 is completely
different. As the top of the potential is higher then the full energy, the particle cannot ‘climb’ it thus
it should ‘turn back’. We expect AO(0) = 0 and a smooth rotation function with k > —2 for all ¢.
That would mean ergodicity and possibly exponential mixing in case of a suitable configuration (cf.
Definition 2). All in all, ergodic and statistical behaviour is much sensitive to perturbation of the full
energy level.

In case of B < 0 it is no so easy to guess. Nevertheless, we can say something rather surprising in
one particular case that indicates similar sensitivity. Choose 8 = —1 and A = 1. It is not difficult to
obtain h(r) = 2r — r2. The integral in (5.2) is a bit more complicated now, nevertheless, its is possible
to evaluate:

AB(p) =21 — 2¢ (5.4)

which means k = —2 identically. This corresponds to the least ergodic behaviour we can have. It
is straightforward to obtain that an identically zero potential (V(r) = 0 for all r) would result in
ABO(p) = m — 2. Thus by (5.4) in this particular case of A = 1,3 = —1 trajectories evolve as if they
passed on freely and were reflected when leaving the disc.

Thus if 3 = —1, we may have exponential mixing (4 = 1) and stability (4 = 1). As to other values
of A it is worth mentioning that ergodicity follows from [DL] in case A < 3.

6. Outlook

In this last section we list several possible interesting directions of future research.

2 However, in case f = —2(1 — %), the left and right limits coincide, this corresponds to the possibility of regularizing
the flow, cf. [DL] and [Knl].
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1. As to the possibly most direct challenge, we conjecture that there exist rapidly mixing potentials for
which the condition |k +2| > ¢ (i.e. property H from Definition 2) is not satisfied for nearly tangential
trajectories. Thus these systems are not covered by Theorem 1, even more, at least to our knowledge,
there is no result in the literature on the ergodicity or hyperbolicity of such soft billiards either. Thus
we make the following

Remark 1. Note that it is possible that x tends to —2 as ¢ — 7, nevertheless,

|c20Ls’;| > ¢ and the system can be hyperbolic (possibly ergodic or exponentially mixing). We will turn

back to this question in a separate paper.

The difficulty with the treatment of this case is, as already mentioned in section 1, that the separate
investigation of motion inside and outside the disks seems not to work at several arguments.

2. Further exciting open questions seem even more difficult. One natural direction of generalization
is of course the higher dimensional case. As to softenings of multidimensional dispersing billiards
(motivated eg. by the three dimensional Lorentz process with spherical scatterers) we are not aware
of any mathematical result. Even hyperbolicity and ergodicity seem difficult, no to mention decay of
correlations, especially in view of the recently observed pathological behaviour of singularity manifolds
in multi-dimensional billiards (see [BChSzT]).

3. Another direction of future research, motivated mainly by applications to physics, could be the fur-
ther investigation of those systems for which rapid mixing is already established. For example, as
mathematical evidence on the existence of diffusion and other transport coefficients is given, it would
be interesting to understand the dependence of these on certain parameters like the full energy level.

4. Last but not least, in contrast to the generality of Theorem 1, it is striking how narrow the class
of specific potentials is for which we could apply the result in section 5. It would be desirable to
establish — at least numerically — our reasonable regularity properties for as wide a class of potentials
as possible.
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Appendix

Here we provide, for the reader’s convenience, a very short, yet mainly self-contained formulation of
Theorem 2.1 from [Ch]. For self-containedness, many notions and notations are repeatedly introduced.
First we give the conditions PO . ..P6 which are required, and than the statement of the theorem.

P0. The dynamical system is a map T : M\I" — M, where M is an open subset in a C*° Riemannian
manifold, M is compact. I is a closed subset in M, and T is a C? diffeomorphism of its range onto its
image. I is called the singularity set.

P1. Hyperbolicity. We assume there are two families of cone fields C} and C in the tangent planes
ToeM, x € M and there exists a constant A > 1 with the following properties:

— DT(C¥) c C%, and DT(CZ) D C%., whenever DT exists;

~ DT > Ap[ Vo e 2

IDT1(0)] > Alo| Vo € Cs; )

— these families of cones are continuous on M, their axes have the same dimensions across the entire
M which we denote by d,, and ds, respectively;

— dy +ds = dim M;
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— the angles between CY¥ and C% are uniformly bounded away from zero:
3 a > 0 such that Vo € M and for any dw; € C} and dw, € C. one has
<(dwy,dws) >

The CY are called the unstable cones whereas C2 are called the stable ones.
The property that the angle between stable and unstable cones is uniformly bounded away from zero
is called transversality.

Some notation and definitions. For any 6 > 0 denote by Us the §-neighborhood of the closed set I"'UOM .
We denote by p the Riemannian metric in M and by m the Lebesgue measure (volume) in M. For any
submanifold W C M we denote by pw the metric on W induced by the Riemannian metric in M, by
my the Lebesgue measure on W generated by pw, and by diamW the diameter of W in the py metric.
LUM-s. To be able to formulate the further properties to be checked the reader is kindly reminded
of the notion of local unstable manifolds. We call a ball-like submanifold W* C M a local unstable
manifold (LUM) if — dim W* = d,,, — T~" is defined and smooth on W* for all n > 0, — Vz,y € W* we
have p(T~"x, T~ ™y) — 0 exponentially fast as n — oo.

We denote by W¥(z) (or just W(z)) a local unstable manifold containing z. Similarly, local stable
manifolds (LSM) are defined.

P2. SRB measure. The dynamics T has to have an invariant ergodic Sinai-Ruelle-Bowen (SRB)
measure (. That is, there should be an ergodic probability measure p on M such that for p-a.e. x € M
a LUM W (z) ezists, and the conditional measure on W (z) induced by p is absolutely continuous with
respect t0 My (z)-

Furthermore, the SRB-measure should have nice mizing properties: the system (T, u) is ergodic for all
finite n > 0.

In our case the SRB measure is simply the Liouville-measure defined by (2.2) in section 2. Absolute
continuity of y is straightforward, while the other above required properties (invariance, ergodicity,
mixing) are proved in [DL].

P3. Bounded curvature. The tangent plane of an unstable manifold should be a Lipschitz function of
the phase point. By this we mean that a base can be chosen in every tangent plane so that every base
vector is a Lipschitz function of the phase point.

Some notation. Denote by J*(z) = |det(DT|EY)| the Jacobian of the map T restricted to W (z) at z,
i.e. the factor of the volume expansion on the LUM W (z) at the point z.

P4. Distortion bounds. Let z,y be in one connected component of W \ =1 which we denote by
V. Then

u(zl'zz.)
1 ”7 < ny (T"x, T™
ng’:o Ju(Ty) <@ (prnv(T"z, T"y))

where () is some function, independent of W, such that p(s) — 0 as s = 0.

P5. Absolute continuity. Let W1, Wy be two sufficiently small LUM-s, such that any LSM W? inter-
sects each of W1 and Wa in at most one point. Let W| = {x € Wy : W9(x) N Wy # 0}. Then we define
a map h : W{ — Wy by sliding along stable manifolds. This map is often called a holonomy map. This
has to be absolutely continuous with respect to the Lebesgue measures mw, and mw,, and its Jacobian
(at any density point of W) should be bounded, i.e.

i o mw, (R(WY)) !
Ve S ) <©

with some C' = C'(T') > 0.

A few words are in order to discuss how our Proposition 4 implies property (P5). Let us consider the
unique ergodic SRB-measure p for the dynamical system (in our billiard dynamics this is precisely the
Liouville measure defined by (2.2)). We know that the conditional measure on any LUM induced by p is
absolutely continuous with respect to the Lebesgue measure on the unstable manifold. These conditional
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measures are often referred to as u-SRB measures and their density w.r.t. the Lebesgue measure, pw (z)
is given by the following equation (cf. [Ch]):

Actually, what directly follows from Proposition 4 is that if we consider two nearby LUM-s W and W
and points z,Z on them joint by the holonomy map along an s-manifold, then the ratio of pw(z) and
py (%), the densities for the two u-SRB measures is uniformly bounded. However, taking into account
the invariance of pu and the uniform contraction along s-manifolds, we may get the uniform bound on
the distortion of Lesbegue measures, i.e. the property we assumed in (P5).

Some further notation. Let §o > 0. We call W a §o-LUM if it is a LUM and diam W < éy. For an
open subset V C W and z € V denote by V(z) the connected component of V' containing the point z.
Let n > 0. We call an open subset V' C W a (o, n)-subset if VN I'") = § (i.e., the map T is smoothly
defined on V) and diam 7"V (z) < §g for every x € V. Note that T™V is then a union of do-LUM-s.
Define a function rv , on V by

TV,n(x) = PT"V(2) (Tnl'a aTnV(x))

Note that ry,(z) is the radius of the largest open ball in T"V (z) centered at T"z. In particular,
rw,o(x) = pw(x, OW).
Now we are able to give the last group of technical properties that have to be verified:

P6. Growth of unstable manifolds Let us assume there is o fized 6g > 0. Furthermore, there exist
constants ag € (0,1) and Bo, Do, k,0,( > 0 with the following property. For any sufficiently small 6 > 0
and any 8o-LUM W there is an open (8,0)-subset V{ C W NUs and an open (8o, 1)-subset Vit C W \Us
(one of these may be empty) such that the two sets are disjoint, mw (W \ (VS UV3')) =0 and Ve > 0

mW('f'V51’1 <e) <apgd-mw(rwoe <e/A)+ 6ﬂ0(561mw(W)

mW(rV(;o,o <€) < Dod " mw(rwo <€)

and
mw (Vy) < Domw (rw,o < (87)

Now we can formulate Theorem 2.1 from [Ch].

Theorem A.1. (Chernov, 1999) Under the conditions PO ... P6, the dynamical system enjoys ez-
ponential decay of correlations and the central limit theorem for Hélder-continuous functions.

The properties stated in the theorem are defined in definitions 4 and 5.

References

[Ba] P. R. Baldwin, Soft billiard systems, Physica D 29 (1988), 821-3/2.

[BChSzT] P. Bdlint, N. 1. Chernov, D. Szdsz and I. P. Téth, Geometry of Multi-dimensional Dispersing Billiards, to
appear in Asterisque

[BdTé] P. Bdlint and I. P. Téth, Mizing and its rate in ‘soft’ and ‘hard’ billiards motivated by the Lorentz process, to
appear in Physica D

[BéTa] K. Béréczky, Jr. and G. Tardos, The longest segment in the complement of a packing, Mathematika, to appear

[Ch] N. Chernov, Decay of correlations and dispersing billiards, J. Statist. Phys. 94 (1999), 513-556.

[ChY]  N. Chernov and L.S. Young, Decay of Correlations for Lorentz gases and hard balls, 89—120 in Hard ball systems
and the Lorentz gas, Encyclopedia Math. Sci. 101, Springer, Berlin, 2000, ed. D. Szdsz

[Do1] V. Donnay, Non-ergodicity of two particles interacting via a smooth potential, J. Statist. Phys. 96 (1999) no.
5-6, 1021-1048

[Do2] V. Donnay, Elliptic islands in generalized Simai billiards, Ergod. Th. and Dynam. Sys. 16 (1997) no. 5, 975-1010

[DL] V. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic, Commun.
Math. Phys. 135 (1991), 267-302



Péter Bélint, Imre Péter T6th

A. Knauf, Ergodic and topological properties of Coulombic periodic potentials, Commun. Math. Phys. 110
(1987), 89-112.

A. Knauf, On soft billiard systems, Physica D 36 (1989), 259-262.

I. Kubo, Perturbed billiard systems, 1., Nagoya Math. J. 61 (1976), 1-57.

I. Kubo and H. Murata, Perturbed billiard systems II, Bernoulli properties, Nagoya Math. J. 81 (1981), 1-25.
R. Markarian, Ergodic properties of plane billiards with symmetric potentials, Commun. Math. Phys. 145 (1992),
435-446

V.Rom-Kedar and D. Turaev, Big islands in dispersing billiard-like potentials, Physica D 130 (1999) no. 3-4,
187-210

Ya. G. Sinai; On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Dokl.
Akad. Nauk SSSR 153 (1963), 1262-1264.

Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math.
Surv. 25 (1970), 137-189.

Ya. G. Sinai and N. Chernov; Ergodic Properties of Certain Systems of 2—D Discs and 3—D Balls., Russ. Maith.
Surv. (3) 42 (1987), 181-201

L.S. Young, Statistical properties of dynamical systems with some hyperbolicity, Annals of Math. 147 (1998),
585-650.

Communicated by G. Gallavotti



