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Dénes Petz
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Chapter 1

The operators P and Q

1.1 The Hilbert space

The Hilbert space in this chapter is L2(R) with complex-valued functions. The well-
known formulas are

L2(R) =

{

f : R → C :

∫

|f(x)|2 dx <∞
}

,

〈f, g〉 =
∫

f(x)g(x) dx, ‖f‖ =

[
∫

|f(x)|2 dx
]1/2

.

It is important to have an orthonormal basis in the Hilbert space L2(R). We shall
use the Hermite functions which are based on the Hermite polynomials. The Hermite
polynomials

Hn(x) := (−1)nex
2 dn

dxn
e−x

2

(n = 0, 1, . . .) (1.1)

are orthogonal in the Hilbert space L2(R, e−x
2

dx), they satisfy the recursion

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0 (1.2)

and the differential equation

H ′′
n(x)− 2xH ′

n(x) + 2nHn(x) = 0. (1.3)

An important useful formula is

∞
∑

n=0

tn

n!
Hn(x) = e2xt−t

2

. (1.4)

The normalized Hermite polynomials

H̃n(x) =
1

√

2nn!
√
π
Hn(x) (1.5)

form an orthonormal basis. From this basis of L2(R, e−x
2

dx), we can get easily a basis
in L2(R):

ϕn(x) := e−x
2/2H̃n(x) (n = 0, 1, . . .). (1.6)

2



1.2. SOME UNBOUNDED OPERATORS 3

These are called Hermite functions. In terms of the Hermite functions equation (1.2)
becomes

xϕn(x) =

√
nϕn−1(x) +

√
n+ 1ϕn+1(x)√
2

. (1.7)

So the operator Q : ϕn(x) 7→ xϕn(x) has a matrix

Q =
1√
2









0 1 0 0 . . .

1 0
√
2 0 . . .

0
√
2 0

√
3 . . .

. . .









.

The Fourier transform of a function f ∈ L1(R) is defined as follows.

f̂(t) =
1√
2π

∫

e−itxf(x) dx. (1.8)

If f ∈ L1(R) ∩ L2(R), then

‖f‖2 = ‖f̂‖2

and the Fourier transform extends to a unitary F : L2(R) → L2(R). If f ∈ L1(R)∩L2(R),
then

(F−1f)(t) =
1√
2π

∫

eitxf(x) dx. (1.9)

If xnf(x) is integrable for every n ∈ N, then the Fourier transform is infinetely many
times defferentiable. It is a very useful set of functions is the Schwarz space:

S(R) = {f : lim
x→±∞

xmf (n)(x) = 0 for every n,m ∈ N}.

The Hermite functions are in the Schwarz space, it follows that the Schwarz space is
dense in L2(R). It is true that F(S(R)) ⊂ S(R).

1.2 Some unbounded operators

Let Q : L2(R) →֒ L2(R) be the multiplication by the variable: D(Q) = {f ∈ L2(R) :
xf(x) ∈ L2(R)} and for f ∈ D(Q) we have (Qf)(x) = xf(x). It follows from the
definition that the unbounded operator Q is symmetric, Q ⊂ Q∗, moreover

Q(S(R)) ⊂ S(R)

holds. We show that Q is self-adjoint.

Lemma 1.1 The operator Q is self-adjoint.

Proof. If g ∈ D(Q∗) and Q∗g = g∗, then 〈g,Qf〉 = 〈g∗, f〉 for every f ∈ D(Q). In other
words

∫

[g(x)x− g∗(x)] f(x) dx = 0 .
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In place of f let us put the function 1
¯[−n,n]

[g(x)x− g∗(x)] which is square integrable
and has compact support. Therefore, it is in D(Q). So

g(x)x− g∗(x) = 0

almost everywhere in the interval [−n, n], it follows that in R as well. We obtain that
g ∈ D(Q) and Qg = g∗. We find that Q∗ ⊂ Q and we conclude that Q is self-adjoint. �

If the operators a and a+ are defined as

aϕn =
√
nϕn−1, a+ϕn =

√
n + 1ϕn+1 (1.10)

with aϕ0 = 0, then (1.7) is

Q =
1√
2
(a+ a+). (1.11)

Example 1.2 Q is a self-adjoint operator, therefore it has a spectral decomposition

Q =

∫

λ dE(λ),

where the spectral measure of a subset H ⊂ R is defined as

E(H)f = 1
¯H
f.

It follows that
eitQf(x) = eitxf(x). (1.12)

For t ∈ R this is a one-parameter group of unitaries. �

Example 1.3 Let C∞
0 (R) be the space of infinitely many times differentiable functions

of compact support and Q0 := Q|C∞
0 (R). We show that the closure of Q0 is Q.

We have to show that for f ∈ D(Q) there is a sequence gn ∈ C∞
0 such that gn → f

and gn(x)x → xf(x) in L2-norm. Let fn := 1
¯[−n,n]

f and choose gn ∈ C∞
0 such that its

support is in [−n, n] and ‖fn − gn‖ ≤ n−2. Then gn → f and

∫ n

−n

|xgn(x)− xfn(x)|2 dx ≤ n2

∫ n

−n

|gn(x)− fn(x)|2 dx ≤ n−2.

This shows that the limit of the sequences xgn(x) and xfn(x) are the same. The latter
converges to xf(x), and so does the first one. �

Let

(Pf)(x) =
1

i
f ′(x) (f is differentiable and f, f ′ ∈ L2(R)).

The Schwarz set is in the domain and P (S(R)) ⊂ S(R) holds. From the equation

∂

∂x

(

Hn(x)e
−x2/2

)

= H ′
n(x)e

−x2/2 − xHn(x)e
−x2/2,
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one can obtain

Pϕn :=
1

i
ϕ′
n =

√
nϕn−1 −

√
n + 1ϕn+1

i
√
2

, (1.13)

that is

P =
i√
2
(a+ − a). (1.14)

Therefore,

a =
1√
2
(Q + iP ), a+ =

1√
2
(Q− iP ).

In the basis of Hermite functions P has the following matrix:

P =
−i√
2









0 1 0 0 . . .

−1 0
√
2 0 . . .

0 −
√
2 0

√
3 . . .

. . .









.

The relation of P and Q can be deduced from the formula

∂

∂t
(F−1f)(t) =

1√
2π

∫

eitxixf(x) dx.

We obtain PF−1f = F−1Qf or

Pf = F−1QFf (f ∈ S(R)). (1.15)

From this relation we can get

(eitPf)(x) = f(x+ t) (t ∈ R). (1.16)

The Schwarz space is in the domain of the linear combinations and of the product of
P and Q. From the definition the canonical commutation relation

(QP − PQ)f = if (f ∈ S(R)) (1.17)

follows.

1.3 Unitaries

The unitary operators eitQ and eiuP already appeared, the formulas (1.12) and (1.16)
are simple, but formulation in the orthonormal basis is more complicated. Next the two
unitaries will be combined.

Lemma 1.4 For every real t amd u

ei(tQ+uP ) = exp(itu/2)eitQeiuP = exp(−itu/2)eiuP eitQ

holds.
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Proof. The usual reference is to the Baker-Campbell-Hausdorff formula which says that

eAeB = eA+Be(AB−BA)/2

if A and B commute with [A,B] := AB −BA. �

For z = x+ iy ∈ C set

W (z) = exp i
√
2(xP + yQ) = exp i(za+ + z̄a). (1.18)

The previous lemma gives the following relation

W (z)W (z′) =W (z + z′) exp(i Im (z̄z′)) (z, z′ ∈ C). (1.19)

This shows that the (finite) linear combination of the unitaries W (z) is a *-algebra. If
we take the closure in B(L2(R)), then we get a C*-algebra A, in the next chapter this
will be generalized.

The proof of the next statement is in [17]. We can see that the unbounded linear
operators aP + bQ are rather simple in the orthonormal basis {ϕn : n = 0, 1, . . .}, but
the action of the unitary W (x+ iy) is much more technical.

Lemma 1.5
〈ϕn,W (z)ϕn〉 = e−|z|2/2Ln(|z|2)

holds, where

Ln(x) =

n
∑

k=0

(−1)kn!

k! (n− k)! k!
xk .

A particular case is
〈ϕ0,W (z)ϕ0〉 = e−|z|2/2. (1.20)

Since we have
∞
∑

n=0

tnLn(x) =
1

1− t
exp

(

− xt

1− t

)

(1.21)

for |t| < 1 and x ∈ R
+, it is obtained that

∞
∑

n=0

µn(1− µ)〈ϕn,W (z)ϕn〉 = exp
(

− |z|2
2

1 + µ

1− µ

)

for 0 ≤ µ < 1, or

∞
∑

n=0

1

1 + λ

(

λ

1 + λ

)n

〈ϕn,W (z)ϕn〉 = exp
(

− |z|2
2

− λ|z|2
)

(1.22)

for λ ≥ 0. Note that

D =
∞
∑

n=0

1

1 + λ

(

λ

1 + λ

)n

|ϕn〉〈ϕn| (1.23)

is a statistical operator, since the eigenvalues are positive and the sum is 1. (1.22) is
rewritten in the form

TrDW (z) = exp
(

− |z|2
2

− λ|z|2
)

.
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1.4 Exercises

1. Check that in formula (1.10) a∗ = a+ holds.

2. Compute the entropy of the density (1.23).

3. Check that

a =
Q+ iP√

2
.



Chapter 2

The C*-algebra of the canonical
commutation relation

If H is a complex Hilbert space then σ(f, g) = Im 〈f, g〉 is a nondegenerate symplectic
form on the real linear space H. (Symplectic form means σ(x, y) = −σ(y, x).) (H, σ)
will be a typical notation for a Hilbert space and it will be called symplectic space.

Let (H, σ) be a symplectic space. The C*-algebra of the canonical commutation
relation over (H, σ), written as CCR(H, σ), is by definition a C*-algebra generated by
elements {W (f) : f ∈ H} such that

(i) W (−f) =W (f)∗ (f ∈ H),

(ii) W (f)W (g) = exp(i σ(f, g))W (f + g) (f, g ∈ H).

Condition (ii) tells us that W (f)W (0) = W (0)W (f) = W (f). Hence W (0) is the unit
of the algebra and it follows that W (f) is a unitary for every f ∈ H .

The typical example comes from Lemma 1.4, see (1.18) and (1.19).

Example 2.1 If f, g ∈ H are orthogonal, then

W (f)W (g) = W (f + g) =W (g + f) =W (g)W (f).

It follows that for H = H1 ⊕H2, CCR(H) is isomorphic to CCR(H1)⊗ CCR(H2). �

Theorem 2.2 For any symplectic space (H, σ) the C*-algebra CCR(H, σ) exists and it
is unique up to isomorphism.

Proof. To establish the existence will be easier than proof of the uniqueness. Consider
H as a discrete abelian group (with the vectorspace addition).

l2(H) =

{

F : H → C :
∑

x∈H

|F (x)|2 < +∞
}

is a Hilbert space. (Any element of l2(H) is a function with countable support.) Setting

(R(x)F )(y) = exp(i σ(y, x))F (x+ y) (x, y ∈ H) (2.1)

8
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we get a unitary R(x) on l2(H) and one may check that

R(x1)R(x2) = exp(i σ(x1, x2)R(x1 + x2).

The norm closure of the set
{

n
∑

i=1

λiR(xi) : λi ∈ C , 1 ≤ i ≤ n , n ∈ N , xi ∈ H

}

in B(l2(H)) is a C*–algebra fulfulling the requirements (i) and (ii). Let us denote this
C*-algebra by A.

Assume that B ⊂ B(H) is another C*-algebra generated by elements W (x) (x ∈ H)
satisfying (i) and (ii). We have to show an isomorphism α : A → B such that α(R(x)) =
W (x) (x ∈ H). α will be constructed in several steps.

We shall need the Hilbert space

l2(H,H) =

{

A : H → H :
∑

x∈H

‖A(x)‖2 < +∞
}

.

Set x⊗ f for x ∈ H and f ∈ H as

(x⊗ f)(y) =

{

f x = y
0 x 6= y .

(Note that l2(H,H) is isomorphic to l2(H)⊗H.) The application

y 7→ π(y) π(y)(x⊗ f) = (x− y)⊗W (y)f

is a representation of the CCR on the Hilbert space l2(H,H). π is equivalent to R. If a
unitary U : l2(H,H) → l2(H,H) is defined as

U(x⊗ f) = x⊗W (x)f

then
U π(y) = (R(y)⊗ id)U (y ∈ H).

To prove our claim it is sufficient to find an isomorphism between B and the C*–algebra
generated by {π(y) : y ∈ H}. We show that for any finite linear combination

∥

∥

∥

∑

λiW (yi)
∥

∥

∥
=
∥

∥

∥

∑

λi π(yi)
∥

∥

∥
(2.2)

holds.

Let Ĥ stand for the dual group of the discrete group H . Ĥ consists of characters of
H and endowed by the topology of pointwise convergence forms a compact topological
group. We consider the normalized Haar measure on Ĥ . The spaces l2(H) and L2(Ĥ)
are isomorphic by the Fourier transformation, which establishes the unitary equivalence
between the above π and π̂ defined below.

π̂(y)Â(χ) = χ(y)W (y)Â(χ) (y ∈ H , χ ∈ Ĥ , Â ∈ L2(Ĥ,H))
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Hence
∥

∥

∥

∑

λi π(yi)
∥

∥

∥
=
∥

∥

∥

∑

λi π̂(yi)
∥

∥

∥
. (2.3)

A closer look at the definition of π̂ gives that π̂(y) is essentially a multiplication operator
(by χ(y)W (y)) and its norm is the sup norm. That is,

∥

∥

∥

∑

λi π̂(yi)
∥

∥

∥
= sup

{
∥

∥

∥

∑

λi χ(yi)W (yi)
∥

∥

∥
: χ ∈ Ĥ

}

. (2.4)

Since the right hand side is the sup of a continuous function over Ĥ , this sup may be
taken over any dense set.

Let us set
G = {exp(2i σ(x, ·) : x ∈ H}.

Clearly, G ⊂ Ĥ is a subgroup. The following result is at our disposal (see (23.26) of
[19]).

If K ⊂ Ĥ is a proper closed subgroup then there exists 0 6= h ∈ H such that k(h) = 1
for every k ∈ K.

Assume that exp(2i σ(x, y)) = 1 for every x ∈ H . Then for every t ∈ R there exists an
integer l ∈ Z such that t σ(x, y) = l π. This is possible if σ(x, y) = 0 (for every x ∈ H)
and y must be 0. According to the above cited result of harmonic analysis the closure
of G must be the whole Ĥ.

Now we are in a position to complete the proof. For

χ(·) = exp(2i σ(x, ·)) ∈ G

we have
∥

∥

∥

∑

λi χ(yi)W (yi)
∥

∥

∥
=

∥

∥

∥
W (x)

∑

λiW (yi)W (−x)
∥

∥

∥
=

=
∥

∥

∥

∑

λiW (yi)
∥

∥

∥

and this is the supremum in (4.4). Through (4.4) we arrive at (4.2). �

The previous theorem is due to Slawny [Sl]. We learnt from the proof that CCR(H, σ)
has a representation on l2(H) given by (4.1). The subalgebra

{

∑

x∈H

λ(x)R(x) : λ : H → C has finite support

}

is dense in CCR(H, σ) and there exists a state τ on CCR(H, σ) such that

τ
(

∑

λ(x)R(x)
)

= λ(0) . (2.5)

It is simple to verify that τ(ab) = τ(ba). Therefore, τ is called the tracial state of
CCR(H, σ). We can use τ to prove the following.

Proposition 2.3 If f, g ∈ H are different then

‖W (f)−W (g)‖ ≥
√
2.
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Proof. For h1 6= h2 , we have τ(W (h1)W (−h2)) = 0. Hence ‖W (f) − W (g)‖2 ≥
τ((W (f)−W (g)∗(W (f)−W (g))) = 2. �

It follows from the Proposition that the unitary group t 7→W (tf) is never normcon-
tinuous and the C*-algebra CCR(H, σ) can not be separable.

Slawny’s theorem has also a few important consequences. Clearly for (H1, σ1) ⊂
(H2, σ2) the inclusion CCR(H1, σ1) ⊂ CCR(H2, σ2) must hold. (If H1 is a proper sub-
space of H2 then CCR(H1, σ2) is a proper subalgebra of CCR(H2, σ2).) If T : H → H
is an invertible linear mapping such that

σ(f, g) = σ(Tf, Tg) (2.6)

then it may be lifted into a ∗-automorphism of CCR(H, σ). Namely, there exists an
automorphism γT of CCR(H, σ) such that

γT (W (f)) =W (Tf) (2.7)

A simple example is the parity automorphism

π(W (f)) =W (−f) (f ∈ H) . (2.8)

Let (H, σ) be a symplectic space. A real linear mapping J : H → H is called a
complex structure if

(i) J2 = −I,

(ii) σ(Jf, f) ≤ 0 (f ∈ H),

(iii) σ(f, g) = σ(Jf, Jg) (f, g ∈ H) .

If a complex structure J is given then H may be considered as a complex vectorspace
setting

(t + is)f = tf + sJf (s, t ∈ R , f ∈ H) (2.9)

The definition
〈f, g〉 = σ(f, Jg) + i σ(f, g) (2.10)

supplies us (a complex) inner product. So to have a symplectic space (over the reals)
with a complex structure is equivalent to being given a complex inner product space.

Let J be a complex structure over (H, σ). The gauge automorphism

γα(W (f)) =W (cosα f + J sinα f) (α ∈ [0, 2π] , f ∈ H) (2.11)

is another example for lifting of a mapping into an automorphism.

We shall restrict ourselves mainly to C*-algebras associated to a nondegenerate sym-
plectic space but degeneracy of the symplectic form appears in certain cases. Now this
possibility will be discussed following the paper [25].

Let σ be (a possible degenerate) symplectic form on H . We write ∆(H, σ) for the free
vectorspace generated by the symbols {W (h) : h ∈ H}. So ∆(H, σ) consists of formal
finite linear combinations like

∑

λiW (hi) .



12CHAPTER 2. THE C*-ALGEBRAOF THE CANONICAL COMMUTATION RELATION

We may endow ∆(H, σ) by a ∗-algebra structure by setting

W (h)∗ = W (−h) (h ∈ H) (2.12)

and
W (h)W (g) = exp(i σ(x, y))W (h+ y) (h, y ∈ H) (2.13)

On the ∗-algebra ∆(H, σ) we shall consider the so-called minimal regular norm (cf. [29],
Ch. IV §18.3). We take all ∗-representations π of ∆(H, σ) by bounded Hilbert space
operators and define

‖a‖ = sup{‖π(a)‖ : π is a representation} (a ∈ ∆(H, σ)) (2.14)

Another possibility is to take all positive normalized functionals (that is, states) ϕ on
∆(H, σ) and to introduce the norm

‖a‖ = sup{ϕ(a∗a)1/2 : ϕ is a state} (a ∈ ∆(H, σ)) (2.15)

One can see that (4.14) and (4.15) determine the same norm, called the minimal regular
norm. The completion of ∆(H, σ) with respect to ‖ · ‖ will be a C*–algebra and it is
CCR(H, σ) by definition. It follows from Slawny’s theorem that for nondegenerate σ the
previous and the latter definitions coincide.

Now we study the extreme case when σ ≡ 0. Then ∆(H, σ) is commutative and a
state ϕ of it corresponds to a positive-definite function F on the discrete abelian group
H . We have

ϕ
(

∑

λiW (hi)
∗
∑

λjW (hj)
)

≥ 0

for every λi ∈ C and hi ∈ H if and only if the function

F : h 7→ ϕ(W (h)) (h ∈ H)

is positive-definite. Due to Bochner’s theorem ([19], 33.1) there is a probability measure
µ on the compact dual group Ĥ such that

F (h) =

∫

χ(h) dµ(χ) (h ∈ H) .

Hence
sup

{

ϕ(a∗a)1/2 : ϕ is a state
}

= sup
{

χ(a∗a)1/2 : χ ∈ Ĥ
}

,

where for a =
∑

λiW (hi) ∈ ∆(H, σ) χ(a) (or a(χ)) is defined as

∑

λi χ(hi) .

In this way every element a of ∆(H, σ) may be viewed to be a continuous function on
Ĥ and

‖a‖ = sup
{

|a(χ)| : χ ∈ Ĥ
}

(a ∈ ∆(H, σ)) .

∆(H, σ) evidently separates the points of Ĥ and the Stone-Weierstrass theorem tells
us that CCR(H, σ) is isomorphic to the C*-algebra of all continuous functions on the
compact space Ĥ .
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The case of a vanishing symplectic form does not occur frequently, however, it may
happen that H = H0 ⊕H1 and

σ (h0 ⊕ h1 , h
′
0 ⊕ h′1) = σ1 (h1 ⊕ h′1)

with a nondegenerate symplectic form σ1 on H1. Then the ∗-algebra ∆(H, σ) is the
algebraic tensor product of ∆(H0, 0) and ∆(H1, σ1) and CCR(H, σ) will be

CCR(H0, 0)⊗ CCR(H1, σ1) . (2.16)

(Note that since CCR(H0, 0) is commutative, the C*-norm on the tensor product is
unique.)

Now we review briefly the general case. For a degenerate symplectic form σ we set

H0 = {x ∈ H : σ(x, y) = 0 for every y ∈ H}

for the kernel of σ. ∆(H0, 0) is the center of the ∗-algebra ∆(H, σ) and there exists a
natural projection E given by

E

(

∑

x∈H

λ(x)W (x)

)

=
∑

x∈H0

λ(x)W (x) (2.17)

and mapping ∆(H, σ) onto ∆(H0, 0). Having introduced the minimal regular norm we
observe that CCR(H0, 0) is the center of CCR(H, σ) and E is a conditional expecta-
tion. The maximal ∗-ideals of CCR(H, σ) are in one-to-one correspondence with those
of CCR(H0, 0). In particular, CCR(H, σ) is simple if and only if H0 = {0}, that is, σ is
nondegenerate. Concerning the details we refer to [25].

For a nondegenerate symplectic form Slawny’s theorem provides readily that CCR(H, σ)
is simple.



Chapter 3

Fock representation

3.1 The Fock state

Let H be a Hilbert space and CCR(H) be the corresponding CCR-algebra.

Theorem 3.1 There is a state ϕ on the C*-algebra CCR(H) such that

ϕ(W (f)) = exp(−‖f‖2/2). (3.1)

Proof. ϕ(I) = 1 follows from f = 0. The state ϕ exists if ϕ(A∗A) ≥ 0 when A is a linear
combination of Weyl operators. Assume that A =

∑

i λiW (fi). Then

A∗A =
∑

i

λiW (−fi)
∑

j

λjW (fj)

=
∑

i,j

λiλjW (fj − fi) exp
1
2
(−〈fi, fj〉+ 〈fj , fi〉)

and

ϕ(A∗A) =
∑

i,j

λiλj exp
1
2
(−〈fj − fi, fj − fi〉 − 〈fi, fj〉+ 〈fj , fi〉)

=
∑

i,j

λiλj exp
1
2
(−‖fj‖2 − ‖fi‖2) exp 2〈fj, fi〉).

This is positive (for all λi) if the matrx

(i, j) 7→ exp 1
2
(−‖fj‖2 − ‖fi‖2) exp 2〈fj, fi〉)

is positive. This is the entry-wise product of the matrices

(i, j) 7→ exp 1
2
(−‖fj‖2 − ‖fi‖2) and (i, j) 7→ exp 2〈fj, fi〉).

Due to the Hadamard theorem, it is enough to see that both are positive. The first one
has the form X∗X , so it is positive. The second one is the entry-wise exponential of the
positive Gram matrix (〈fj , fi〉)ij. This is positive as well.

The linear functional ϕ is defined on the linear combinations of the Weyl operators
and it is positive. By continuity, it can be extended to the whole CCR(H). �

14
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The state defined by (5.1) is called Fock state.

Next we perform the GNS-representation. Hϕ is the Hilbert space generated by
CCR(H) with the inner product 〈A,B〉 := ϕ(A∗B). The vector I is usually denoted by
Φ and called vacuum vector. The representation πϕ : CCR(H) → B(Hϕ) is defined as

πϕ(B)A = BA (A,B ∈ CCR(H)).

The represntation πϕ is the Fock representation.

The example in Chapter 1 corresponds to the Fock representation of CCR(H) when
H has dimension 1. Lemma 1.4 gives the example

W (x+ iy) = exp i
√
2(xP + yQ).

The formula (1.20) shows that ϕ0 is the vacuum vector and the Hilbert space Hϕ is
L2(R).

In the rest of this chapter W (f) and πϕ(W (f)) will be identified.

3.2 Field operators

An important property of this representation that the one-parameter group Ut := W (tf)
of unitaries is weakly continuous, since the function

t 7→ 〈W (g),W (tf)W (h)〉
is continuous for every g, h ∈ H. Due to the Stone theorem, there is a self-adjoint
operator B(f) on Hϕ such that

W (tf) = exp(itB(f)) (t ∈ R). (3.2)

It follows from Proposition 4.3 that the field operator B(f) must be unbounded.
The vectors W (g)Φ are in the domain of B(f) and more generally, in the domain of
B(f1)B(f2) . . . B(fk). The expression ϕ(B(f1)B(f2) . . .B(fk)) is defined as

〈Φ, B(f1)B(f2) . . .B(fk)Φ〉.
Proposition 3.2 Then for f, g ∈ H and t ∈ R the following relations hold in the Fock
representation.

(i) B(tf) = tB(f), B(f + g) = B(f) +B(g).

(ii) [B(f),W (g)] = 2σ(f, g)W (g), [B(f), B(g)] = −2iσ(f, g).

(iii) ϕ(B(f)B(g)) = 〈B(f)Φ, B(g)Φ〉 = 〈f, g〉.

Set

B±(f) =
1

2
(B(f)∓ iB(if)) . (3.3)

Then
B(f) = B+(f) +B−(f)) (3.4)

and
[B−(f), B+(g)] = 〈g, f〉 (f, g ∈ H) . (3.5)

B+(f) is called creation operator and B−(f) is annihilation operator.
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Lemma 3.3 B−(f)Φ = 0.

Lemma 3.4 For k ∈ Z we have

B−(f)B+(f)kΦ = k‖f‖2B+(f)k−1Φ (f ∈ H) .

Proof. We apply induction. The case k = 0 is contained in the previous lemma. Due to
the commutation relation (5.5) we have

B−(f)B+(f)k+1Φ = (B+(f)B−(f) + 〈f, f〉)B+(f)kΦ

= (k − 1)‖f‖2B+(f)kΦ+ ‖f‖2B+(f)kΦ .

�

One obtains by induction again the following.

Proposition 3.5 If n, k ∈ N and f ∈ H, then

B−(f)nB+(f)kΦ =

{

0 if n > k
k!

(k−n)!
‖f‖2nB+(f)k−nΦ if n ≤ k .

Example 3.6 We assume that H is of one dimension. Fix a unit (basis) vector η in H
and set

fn =
1√
n!
B+(η)nΦ (n ∈ Z+) . (3.6)

Then {f0, f1, . . .} is an orthonormal basis in the Fock space. If we write a+ for B+(η)
and a for B−(η) then

a+fn =
√
n+ 1fn+1 afn =

{ √
nfn−1 n ≥ 1
0 n = 0

and
[a, a+] = 1 .

With the choice

q =
1√
2
(a+ a+) and p =

i√
2
(a+ − a)

the Heisenberg commutation relation is satisfied.

The vector fn is called n-particle vector in the physics literature. Transforming fn
into fn+1 the operator a+ increases the number of particles. This is the origin of the
term creation operator. The operator a annihilates in the similar sense.

Our present formulas are very similar to those in Chapter 1. The Fock space K can be
identified with L2(R) if the vector fn corresponds to the Hermite function ϕn ∈ L2(R).
It is clear that the operators a and a+ are the same.

We compute the coordinates of the vectors W (z)Φ in the basis {fn : n ∈ Z+}. For
the sake of simplicity we choose η = 1.

〈W (z)Φ, fn〉 = 〈exp(iB+(z) + iB−(z))Φ, fn〉
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= exp

(

−1

2
[iB+(z), iB−(z)]

)

〈exp(iB+(z))Φ, fn〉

= exp

(

−1

2
|z|2
)

∑ (iz)m

m!
〈
√
m!fm, fn〉

= exp

(

−1

2
|z|2
)

(iz)n√
n!

Hence for any z ∈ C the associated exponential vector e(z) is the sequence

(

1, iz,
(iz)2√
z!
, · · · , (iz)

n

√
n!
, · · ·

)

≡
∑

n

(iz)n√
n!
fn. (3.7)

�

3.3 Fock space

Let {ηi : i ∈ I} be an orthonormal basis in the complex Hilbert space H. We set

∣

∣ηn1

i1
; ηn2

i2
; . . . ; ηnk

ik
〉 = 1√

n1! . . . nk!
B+(fi1)

n1 . . . B+(fik)
nkΦ . (3.8)

So for every choice of different indices i1, i2, . . . , ik in I and n1, n2, . . . , nk ∈ N we get to
a unit vector in K. The vectors

∣

∣ηn1

i1
; . . . , ηnk

ik
〉 and

∣

∣ηm1

j1
; . . . , ηml

jl
〉

are different if ((n1, i1), . . . , (nk, ik)) is not a permutation of ((m1, j1), . . . , (ml, jl)) and
in this case they are orthogonal. All such vectors form a canonical orthonormal basis in
K.

From ϕ(B(f)B(g)) = 〈f, g〉 we deduce

ϕ(B±(f)B±(g)) = 0

if f ⊥ g. If the sequence f1, f2, . . . , fn in H has the property that any two vectors are
orthogonal or identical then in the expansion (5.22) of

ϕ(B±(fn)B
±(fn−1) . . . B

±(f1))

we may have a nonzero term if always identical vectors are paired together. We benefit
from this observation in the next proposition.

Proposition 3.7 Assume that g1, g2, . . . , gk are pairwise orthogonal vectors in H. Then

B+(g1)
m1B+(g2)

m2 . . . B+(gk)
mkΦ

and
B+(g1)

n1B+(g2)
n2 . . . B+(gk)

nkΦ

are orthogonal whenever mj 6= nj for at least one 1 ≤ j ≤ k.
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Proof. Suppose that m1 6= n1 and n1 > m1. The inner product of the above vectors is
given by

ϕ
(

B−(gk)
nk . . . B−(g1)

n1B+(g1)
m1 . . . B+(gk)

mk
)

and equals to

ϕ
(

B−(g1)
n1B+(g2)

m1

)

ϕ
(

B−(gk)
nk . . . B−(g2)

n2B+(g2)
m2 . . . B+(gk)

mk
)

.

Here the first factor vanishes due to n1 > m1.

We are able to conclude also the formula

‖B+(g1)
n1B+(g2)

n2 . . . B+(gk)
nkΦ‖2 = n1!n2! . . . nk! (3.9)

provided that ‖g1‖ = ‖g2‖ = . . . = ‖gk‖ = 1.

Lemma 3.8 For g1, g2, . . . , gn, f ∈ H with ‖f‖ = 1 we have

‖B(f)B(g1)B(g2) . . . B(gn)Φ‖ ≤ 2
√
n+ 1‖B(g1) . . . B(gn)Φ‖ .

We consider the linear subspace spanned by the vectors f, g1, g2, . . . , gn and take an
orthonormal basis f1 = f, f2, . . . , fk. We may express B(gi) by creation and annihilation
operators corresponding to the basis vectors and get

η = B(g1) . . .B(gn)Φ =
∑

λ(n1, . . . , nk)B
+(f1)

n1 . . . B+(fk)
nkΦ

(Here the summation is over the k-triples (n1, . . . , nk) such that ni ∈ Z+ and
∑

ni ≤ n.)
Since

‖B(f)η‖ ≤ ‖B+(f1)η‖+ ‖B−(f1)η‖
it suffices to show that

‖B±(f1)η‖2 ≤ (n + 1)‖η‖2 .
Now we estimate as follows.

‖B+(f1)η‖2 = ‖
∑

λ(n1, . . . , nk)B
+(f1)

n1+1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

‖λ(n1, . . . , nk)B
+(f1)

n1+1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

(n1 + 1)‖λ(n1, . . . , nk)B
+(f1)

n1 . . . B+(fk)
nkΦ‖2

≤ (n+ 1)‖B(g1) . . . B(gn)Φ‖2 .

Similarly,

‖B−(f1)η‖2 = ‖
∑

n1≥1

λ(n1, . . . , nk)n1B
+(f1)

n1−1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

n2
1|λ(n1, . . . , nk)|2‖B+(f1)

n1−1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

n1‖λ(n1, . . . , nk)B
+(f1)

n1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

≤ n
∑

‖λ(n1, . . . , nk)B
+(f1)

n1B+(f2)
n2 . . . B+(fk)

nkΦ‖2 = n‖η‖2 .

Lemma 5.4 and the explicit norm expression (5.9) have been used.
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Let the Fock representation act on a Hilbert space H containing the vacuum vector
Φ. The linear span of the vectors B(g1)B(g2) . . . B(gn)Φ (g1, g2, . . . , gn ∈ H , n ∈ N) and
B+(g1)B

+(g2) . . .B
+(gn)Φ (g1, g2, . . . , gn ∈ H , n ∈ N) coincide. It will be denoted by

DB. So far it is not clear whether DB is complete. This is what we are going to show.

Let A be a linear operator on a Hilbert space K. A vector ξ ∈ K is called entire
analytic (for A) if ξ is in the domain of An for every n ∈ N and

∞
∑

k=0

tk

k!
‖Akξ‖ < +∞

for every t > 0. If ξ is an entire analytic vector then exp(zA)ξ makes sense for every
z ∈ C and it is an entire analytic function of z.

Theorem 3.9 DB consists of entire analytic vectors for B(f) (f ∈ H).

Proof. Let ξ = B(f1)B(f2) . . . B(fn)Φ ∈ DB. By a repeated application of Lemma 5.8
we have

‖B(f)kξ‖ ≤ 2k
√

(n+ k)!

n!
‖ξ‖

and it is straightforward to check that the power series

∞
∑

k=0

tk

k!
‖B(f)kξ‖

converges for every t. Since the entire analytic vectors form a linear subspace, the proof
is complete. �

Due to Theorem 5.9 every vector W (f)Φ = exp(iB(f))Φ can be approximated
(through the power series expansion of the exponential function) by elements of DB.
This yields, immediately that DB is dense in H. According to Nelson’s theorem on
analytic vectors (see [34] X.39), DB is a core for B(f) (f ∈ H), in other words, B(f)
is the closure of its restriction to DB. It follows also that DB is core for B±(f) and
B−(f)∗ = B+(f).

Theorem 3.10 The Fock representation is irreducible.

Proof. We have to show that for any 0 6= η ∈ H the closed linear subspace H1 generated
by {W (f)η : f ∈ H} is H itself. Let M be the von Neumann algebra generated by the
unitaries {W (f) : f ∈ H} in B(H). Clearly, Mη ⊂ H1.

We consider a canonical basis in H consisting of vectors (5.8). η ∈ H has an expansion
as (countable) linear combinations of basis vectors. Assume that a vector

|fn1

1 ; fn2

2 ; . . . ; fnk

k 〉 (3.10)

has a nonzero coefficient.

The operator

B+(f1)B
−(f1) . . . B

+(fk)B
−(fk) (3.11)
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is selfadjoint and (4.5) is its eigenvector with eigenvalue n1 + n2 + . . .+ nk. Since (5.11)
is affiliated with M, its spectral projections are in M. In this way we conclude that the
vector (5.10) lies in H1.

It is easy to see that
B±(f)H1 ⊂ H1

for every f ∈ H . By application of the annihilation operators B−(fi) (1 ≤ i ≤ k) we
obtain that the cyclic (vacuum) vector Φ is in H1. Therefore, H1 = H must hold. �

Next we introduce some vectors of special importance by means of the Weyl operators.
For f ∈ H set

e(f) = exp
(

1
2
‖f‖2

)

W (f)Φ , (3.12)

which is called exponential vector. One may compute that

〈e(f), e(g)〉 = exp〈g, f〉 (f, g ∈ H) (3.13)

Proposition 3.11 {e(f) : f ∈ H} is a linearly independent complete subset of H.

Proof. We use the fact that the family {etx : x ∈ R} of exponential functions is linearly
independent.

Let f1, f2, . . . , fn ∈ H be a sequence of different vectors and assume that
∑

λie(fi) =
0. We choose a vector g ∈ H such that the numbers

µi = 〈fi, g〉 (1 ≤ i ≤ n)

are distinct. For any t ∈ R we have

0 = 〈e(tg),
∑

λie(fi)〉 =
∑

λi exp(t〈fi, g〉)

and we may conclude that λi = 0 for every 1 ≤ i ≤ n.

Due to the cyclicity of the vacuum vector Φ the set {e(f) : f ∈ H} is complete. A
little bit more is true. The norm expression

‖e(f)− e(g)‖2 = exp(‖f‖2) + exp ‖g‖2 − 2Re exp〈f, g〉 (3.14)

tells us that the mapping f 7→ e(f) is norm continuous. Therefore {e(f) : f ∈ S} is
complete whenever S is a dense subset of H. �

Example 3.12 Assume that H has two dimension with orthogonal unit vectors η1 and
η1. We use the notation B+(ηi) = B+

i and B−(ηi) = B−
i (i = 1, 2). The vectors

f
(1)
i = B+

i Φ (i = 1, 2)

are orthonormal and orthogonal to Φ:

〈Φ, f (1)
i 〉 = 〈B−

i Φ,Φ〉 = 0 due to Lemma 5.3,

〈f (1)
i , f

(1)
j 〉 = 〈B+

i Φ, B
+
j Φ〉 = 〈BiΦ, BjΦ〉 = 〈ηi, ηj〉 due to (iii) in Proposition 5.2.
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In the previous formalism it was

f
(1)
i = |ηi〉 (i = 1, 2).

The next subspace has 3 dimension:

|η21〉 =
1√
2!
(B+

1 )
2Φ, |η22〉 =

1√
2!
(B+

2 )
2Φ, |η1, η2〉 = B+

1 B
+
2 Φ.

The subspaces of the Fock space are antisymmetric tensor powers of the Hilbert space
H which is two dimensional now. Thext subspace is the third power of H:

|η31〉 =
1√
3!
(B+

1 )
3Φ, |η21, η2〉 =

1√
2!
(B+

1 )
2B+

2 Φ,

|η1, η22〉 =
1√
2!
B+

1 (B
+
2 )

2Φ, |η32〉 =
1√
3!
(B+

2 )
3Φ.

3.4 The positivity condition

To determine a state on CCR(H, σ), it is enough to give the values on the unitariesW (f)
(f ∈ H). When the Fock state was introduced, an argument was required to show the
existence. This will be extended now.

Let X be an arbitrary (nonempty) set. A function F : X × X → C is called a
positive definite kernel if and only if

n
∑

j,k=1

cj ck F (xj, xk) ≥ 0

for all n ∈ N, {x1, x2, . . . , xn} ⊂ X and {c1, c2, . . . , cn} ⊂ C. The product of positive
definite kernels is positive definite. This statement is equivalent to the Hadamard
theorem which says that the entry-wise product of positive matrices is positive.

Proposition 3.13 Let (H, σ) be a symplectic space and G : H → C a function. There
exists a state ϕ on CCR(H, σ) such that

ϕ(W (f)) = G(f) (f ∈ H)

if and only if G(0) = 1 and the kernel

(f, g) 7→ G(f − g) exp(−i σ(f, g))

is positive definite.

Proof. For x =
∑

cjW (fj) we have

xx∗ =
∑

j,k

cj ckW (fj − fk)e
−iσ(fj ,fk) .

Since ϕ(xx∗) ≥ 0 should hold, we see that the positivity condition is necessary.

On the other hand, the positivity condition allows us to define a positive functional on
the linear hull of the Weyl operators and a continuous extension to CCR(H, σ) supplies
a state. �
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Lemma 3.14 Let (H, σ) be a symplectic space. (It might be degenerate.) If α( · , · ) is
a positive symmetric bilinear form on H then the following conditions are equivalent.

(i) The kernel (f, g) 7→ α(f, g)− i σ(f, g) is positive definite.

(ii) α(z, z)α(x, x) ≥ σ(z, x)2 for every x, z ∈ H.

Proof. Both condition (i) and (ii) hold on H if and only if they hold on all finite
dimensional subspaces. Hence we may assume that H is of finite dimension.

If α(x, x) = 0 then both condition (i) and (ii) imply that σ(x, y) = 0 for every y ∈ H .
Due to possible factorization we may assume that α is strictly positive and it will be
viewed as an inner product.

There is an operator Q such that

σ(x, y) = α(Qx, y) (x, y ∈ H) .

and Q∗ = −Q follows from σ(x, y) = −σ(y, x). According to linear algebra in a certain
basis the matrix of Q has a diagonal form Diag (A1, A2, . . . , Ak), where Ai is a 1 × 1
0-matrix or

Ai =

(

0 ai
−ai 0

)

.

(The first possibility occurs only if σ is degenerate.) It is easy to see that condition (i)
is equivalent to |ai| ≤ 1 and so is condition (ii). �

Theorem 3.15 Let (H, σ) be a symplectic space and α : H × H → R a symmetric
positive bilinear form such that

σ(f, g)2 ≤ α(f, f)α(g, g) (f, g ∈ H) . (3.15)

Then there exists a state ϕ on CCR(H, σ) such that

ϕ(W (f)) = exp
(

−1
2
α(f, f)

)

(f ∈ H) . (3.16)

Proof. We are going to apply Proposition 5.13. Due to the positivity condition
∑

j,k

cjck exp
(

−1
2
α(fj − fk, fj − fk)− iσ(fj , fk)

)

=
∑

j,k

(

cj exp
(

−1
2
α(fj , fj)

)) (

ck exp
(

−1
2
α(fk, fk)

))

× exp(α(fj, fk)− iσ(fj , fk))

=
∑

j,k

bjbk exp(α(fj , fk)− iσ(fj , fk))

should be shown to be nonnegative. According to Lemma 5.14

(α(fj, fk)− iσ(fj , fk))j;k

is positive definite and entrywise exponentiation preserves this property. �

A state ϕ on CCR(H, σ) determined in the form (5.16) is called quasifree.

A state is regular if in the GNS-representation the field operators exist.
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Proposition 3.16 Let ϕ be a state on CCR(H, σ). If

lim
t→0

ϕ(W (tf)) = 1 (f ∈ H),

then ϕ is regular.

Proof. We set G(f) = ϕ(W (f)) (f ∈ H). According to Proposition 5.13 the matrix




1 G(−f1) G(−f2)
G(f1) 1 G(f1 − f2) exp(−iσ(f1, f2))
G(f2) G(f2 − f1) exp(iσ(f1, f2)) 1





is positive definite. From this we obtain

|G(f2)−G(f1)| ≤ 4|1−G(f2 − f1) exp(−iσ(f2, f1))| . (3.17)

Combining (5.17) with the hypothesis we arrive at the continuity of the function

t 7→ G(tf + g) (t ∈ R)

for every f, g ∈ H . Let (πϕ,Hϕ,Φ) stand for the GNS-triple. We verify by computation
the continuity of the function

t 7→ 〈πϕ(W (tf))πϕ(W (g1))Φ, πϕ(W (g2))Φ〉 (t ∈ R)

and the regularity of ϕ is proven. �

It folows that a quasifree state is regular.

3.5 Analytic states

A state ϕ on CCR(H, σ) is said to be analytic if the numerical function

t 7→ ϕ(W (tf)) (t ∈ R)

is analytic. Quasifree states are obviously analytic.

Assume that π is a regular representation of CCR(H, σ). The field operator B(g)
is obtained by differentiation of the function

t 7→ π(W (tg))η = exp(itB(g))η (t ∈ R) . (3.18)

More precisely, if (5.18) is weakly differentiable at t = 0 and the derivative is ξ ∈ Hϕ,
then η is in the domain of B(g) and

iB(g)η = ξ .

Proposition 3.17 Let ϕ be an analytic state on CCR(H, σ) with GNS-triple (πϕ,Hϕ,Φ).
Then πϕ(W (g))Φ is in the domain of

B(fn)B(fn−1) . . . B(f1)

for every g, f1, f2, . . . , fn ∈ H and n ∈ N.
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Proof. We apply induction and suppose that

η = B(fn−1) . . . B(f1)πϕ(W (g))Φ

makes sense. For the sake of simpler notation we omit πϕ in the proof.

It suffices to show that

lim
t→0

t−1〈(W (fn)− I)η, ξ〉 = F (ξ) (3.19)

exists if ξ is in a dense subset D0 of Hϕ and |F (ξ)| ≤ C‖ξ‖. This ensures that

t 7→ W (tfn)η

is differentiable in the weak sense. Since for ξ = W (h)Φ the limit in (5.19) equals to

(−i)n
∂

∂t

∂n−1

∂tn−1∂tn−2 . . . ∂t1
ϕ(W (−h)W (tfn) . . .W (t1f1)W (g))

at the point t = tn−1 = tn−2 = . . . = t1 = 0, the function F is defined on the linear hull
DW of the vectors

{W (h)Φ : h ∈ H} .
F is linear on DW and by differentiation one can see that

C = lim
t→0

1

t
‖(W (tfn)− I)η‖

exists and it fulfils |F (ξ)| ≤ C‖ξ‖ for ξ ∈ DW . �

AlthoughB(f) 6∈ CCR(H, σ), it will be rather convenient to write ϕ(B(fn)B(fn−1) . . . B(f1))
instead of 〈B(fn)B(fn−1) . . .B(f1)Φ,Φ〉. We shall keep also the notation DW from the
above proof. Remember that DW as well as the superset Hilbert space Hϕ depend on
the state ϕ even if it is excluded from the notation.

Proposition 3.18 Let ϕ be an analytic state on CCR(H, σ). Then for f, g ∈ H and
t ∈ R the following relations hold on DW .

(i) B(tf) = tB(f), B(f + g) = B(f) +B(g).

(ii) [B(f),W (g)] = 2σ(f, g)W (g), [B(f), B(g)] = −2iσ(f, g).

Proof. The relations are deduced by derivation from (the Weyl form of) the CCR. �

3.6 Quasifree states

Recall that a qusifree state is defined by the formula

ϕ(W (f)) = exp(−1
2
α(f, f)),

where the real bilinear form α satisfies the positivity condition (5.15). A qusifree state
is analytic and derivation yields

ϕ(B(f)B(g)) = α(f, g)− iσ(f, g). (3.20)
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Proposition 3.19 Let ϕ be a quasifree state on CCR(H, σ) given by (5.16) and f1, f2, . . . , fn ∈
H. Then

ϕ(B(fn)B(fn−1) . . . B(f1)) = 0

if n is odd. For an even n we have

ϕ(B(fn)B(fn−1) . . . B(f1)) =
∑

n/2
∏

m=1

(α(fkm, fjm)− iσ(fkm , fjm)) ,

where the summation is over all partitions {H1, H2, . . . , Hn/2} of {1, 2, . . . , n} such that
Hm = {jm, km} with jm < km (m = 1, 2, . . . , n/2).

Proof. We benefit from the formula

ϕ(B(fn)B(fn−1) . . .B(f1)) = (−i)n ∂n

∂n . . . ∂1
ϕ(W (tnfn) . . .W (t1f1)) .

Since we have

W (tnfn)W (tn−1fn−1) . . .W (t1f1)

= W (fnfn + tn−1fn−1 + . . .+ t1f1)× exp i

(

∑

l>k

tltkσ(fl, fk)

)

(5.16) yields

ϕ(W (tnfn) . . .W (f1f1)) = exp

(

−1

2

n
∑

m=1

t2mα(fm, fm)

)

exp

(

∑

l>k

tltk(−α(fl, fk) + iσ(fl, fk))

)

. (3.21)

What we need is the coefficient of t1t2 . . . tn in the power series expansion. Such term
comes only from the second factor of (5.21) and only in the case of an even n. In the
claim it is described exactly the possibilities for getting t1t2 . . . tn as a product of factors
tltk (l > k). �

By means of (5.20) we have also

ϕ(B(fn)B(fn−1) . . . B(f1)) =
∑∏

ϕ (B(fkm)B(fjm)) , (3.22)

were summation and product are similar to those in Proposition 5.19. The expression
(5.22) makes clear that the value of a quasifree state ϕ on any polynomial of field
operators is completely determined by the two-point-functions ϕ(B(f)B(g)) (f, g ∈
H).

3.7 Purification

Let H be a real Hilbert space with inner product ( · , · ) and let σ be a nondegenerate
symplectic form on H such that

|σ(f, g)|2 ≤ (f, f)(g, g) (f, g ∈ H) (3.23)
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holds. There exists a contraction D on H such that

σ(f, g) = (Df, g) (f, g ∈ H) . (3.24)

Evidently D∗ = −D. If Df = 0 then due to the nondegeneracy of σ f = 0 and hence D
is invertible. Consider the polar decomposition

D = J |D| . (3.25)

The property D∗ = −D gives that

J |D|J∗ = −J2|D|

and the uniqueness of the polar decomposition (applied for the positive operator J |D|J∗)
guarantees that

−J2 = I and J |D| = |D|J . (3.26)

The state space of a C*-algebra is a compact convex subset of the dual space if it is
endowed with the weak topology. A state is called pure if it is an extremal point of the
state space.

Proposition 3.20 Let ϕ be a quasifree state on CCR(H, σ) so that

ϕ(W (h)) = exp
(

−1
2
(h, h)

)

(h ∈ H),

If ϕ is pure then |D| (given by (5.25) is the identity.

Proof. We shall argue by contradiction. Assume that there exists f ∈ H such that

(|D|f, f) = 1 and (|D|−1 − I)1/2f 6= 0 . (3.27)

Set L = |D|1/2(|D|−1 − I)1/2 and note that L is a contraction. We define a symmetric
bilinear form as

S(g1, g2) = (g1, g2)− (Lg1, |D|1/2f) · (Lg2, |D|1/2f)(Lf, |D|1/2f)2
(Lf, Lf)

and show that
S(g, g) ≥ (|D|g, g) (g ∈ H) (3.28)

or equivalently

((I − |D|)g, g)(Lf, Lf) ≥ (Lg, |D|1/2f)2(Lf, |D|1/2f)2 . (3.29)

(5.29) is a consequence of the Schwarz inequality :

(Lf, |D|1/2f)2 ≤ (Lf, Lf)(|D|f, f) = (Lf, Lf)

(Lg, |D|1/2f)2 ≤ (L2g, g)(|D|f, f) = ((I − |D|)g, g) .

By means of (5.24) and (5.25) we infer from (5.28) that

|σ(h, g)|2 = (J |D|h, g)2 ≤ (|D|h, h)(|D|g, g) ≤ S(h, h)S(g, g) .
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Now Theorem 5.15 tells us that there is a (quasifree) state ω on CCR(H, σ) such that

ω(W (h)) = exp

(

−1

2
S(h, h)

)

. (h ∈ H)

We can see from Proposition 5.13 that if ω is any state of CCR(H, σ) and F is a linear
functional on H then there exists a state ωF such that

ωF (W (h)) = ω(W (h)) exp(iF (h)) .

Writing a for (Lf, |D|1/2f)(Lf, Lf)−1/2 we set a state ωλ for λ ∈ R as follows.

ωλ(W (h)) = exp

(

−1

2
S(h, h) + iλ(Lh, |D|1/2f)a

)

(h ∈ H) .

With the shorthand notation b for (Lh, |D|1/2f) we have

∫ ∞

−∞

e−λ
2/2

(2π)1/2
ωλ(W (h))dλ = e−

1

2
(h,h)(2π)−1/2

×
∫ ∞

−∞

exp(−λ2/2 + b2a2/2 + iba)dλ

= e−
1

2
(h,h)(2π)−1/2

×
∫ ∞

−∞

exp

(

−1

2
(λ+ iab)2

)

dλ

= e−
1

2
(h,h)

and this means that

ϕ = (2π)−1/2

∫ ∞

−∞

exp(−λ2/2)ωλdλ .

This decomposition is in contradiction with the starting assumption on ϕ. Hence the
proof has been completed. �

Theorem 3.21 Let the quasifree state ϕ defined on CCR(H, σ) be given by a complete
inner product α( · , · ) as

ϕ(W (h)) = exp
(

−1
2
α(h, h)

)

.

Then ϕ is pure if and only if it is a Fock state.

This result makes Proposition 5.20 more complete. Remember that a state on a C*-
algebra is pure if and only if the corresponding GNS-representation is irreducible (see
[6], Thm. 2.3.19). Theorem 5.10 tells us that Fock states are pure and Proposition 5.20
yields that the other states are not so.

Now we are going to see that every quasifree state is a restriction of a Fock state of
a bigger CCR-algebra.

Theorem 3.22 Let H2 = H ⊕H be the direct sum Hilbert space and set a contraction
D2 of H2 by the matrix

D2 =

[

D J
√
I +D2

J
√
I +D2 −D

]

. (3.30)
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Then the bilinear form

σ2(W (f2)) = exp

(

−1

2
‖f2‖2

)

(f2, g2 ∈ H2)

is a symplectic form and the quasifree state

ϕ2(W (f2)) = exp

(

−1

2
‖f2‖2

)

(f2 ∈ H2) (3.31)

on CCR(H2, σ2) is a Fock state.

Proof. The proof is rather straightforward. We recall the relations

JD = DJ , D∗ = −D , J = J∗ , J2 = −id

These give that
D∗

2 = −D2 and D2
2 = −id ,

in other words, D2 is a skewadjoint unitary. Hence σ2 is an antisymmetric form and
(4.9) defines a quasifree state. By the definition at the end of Chapter 3, ϕ2 is a Fock
state. �

Since
σ2(f ⊕ 0, f ′ ⊕ 0) = (D2(f ⊕ 0), f ′ ⊕ 0) = (Df, f ′) = σ(f, f ′)

the mapping
W (f) 7→W (f ⊕ 0) (f ∈ H)

gives rise to an embedding of CCR(H, σ) into CCR(H2, σ2). Fock states are pure and
that is the reason why the procedure described in Theorem 4.9 is called purification.
Due to the direct sum H2 = H ⊕H , doubling is another used term.

Purification is a standard way to reduce assertions on arbitrary quasifree states to
those on Fock states. For example, we have

Corollary 3.23 For an arbitrary quasifree state ϕ the linear manifold Dϕ
B is dense in

the GNS Hilbert space Hϕ and consists of entire analytic vectors for every field operator
Bϕ(f) (f ∈ H).

3.8 Exercises

1. Check that in formula (1.10) a∗ = a+ holds.

2. Compute the entropy of the density (1.23).

3. Check that

a =
Q+ iP√

2
.



Chapter 4

The C*-algebra of the canonical
commutation relation

If H is a complex Hilbert space then σ(f, g) = Im 〈f, g〉 is a nondegenerate symplectic
form on the real linear space H. (Symplectic form means σ(x, y) = −σ(y, x).) (H, σ)
will be a typical notation for a Hilbert space and it will be called symplectic space.

Let (H, σ) be a symplectic space. The C*-algebra of the canonical commutation
relation over (H, σ), written as CCR(H, σ), is by definition a C*-algebra generated by
elements {W (f) : f ∈ H} such that

(i) W (−f) =W (f)∗ (f ∈ H),

(ii) W (f)W (g) = exp(i σ(f, g))W (f + g) (f, g ∈ H).

Condition (ii) tells us that W (f)W (0) = W (0)W (f) = W (f). Hence W (0) is the unit
of the algebra and it follows that W (f) is a unitary for every f ∈ H .

The typical example comes from Lemma 1.4, see (1.18) and (1.19).

Example 4.1 If f, g ∈ H are orthogonal, then

W (f)W (g) = W (f + g) =W (g + f) =W (g)W (f).

It follows that for H = H1 ⊕H2, CCR(H) is isomorphic to CCR(H1)⊗ CCR(H2). �

Theorem 4.2 For any symplectic space (H, σ) the C*-algebra CCR(H, σ) exists and it
is unique up to isomorphism.

Proof. To establish the existence will be easier than proof of the uniqueness. Consider
H as a discrete abelian group (with the vectorspace addition).

l2(H) =

{

F : H → C :
∑

x∈H

|F (x)|2 < +∞
}

is a Hilbert space. (Any element of l2(H) is a function with countable support.) Setting

(R(x)F )(y) = exp(i σ(y, x))F (x+ y) (x, y ∈ H) (4.1)

29
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we get a unitary R(x) on l2(H) and one may check that

R(x1)R(x2) = exp(i σ(x1, x2)R(x1 + x2).

The norm closure of the set
{

n
∑

i=1

λiR(xi) : λi ∈ C , 1 ≤ i ≤ n , n ∈ N , xi ∈ H

}

in B(l2(H)) is a C*–algebra fulfulling the requirements (i) and (ii). Let us denote this
C*-algebra by A.

Assume that B ⊂ B(H) is another C*-algebra generated by elements W (x) (x ∈ H)
satisfying (i) and (ii). We have to show an isomorphism α : A → B such that α(R(x)) =
W (x) (x ∈ H). α will be constructed in several steps.

We shall need the Hilbert space

l2(H,H) =

{

A : H → H :
∑

x∈H

‖A(x)‖2 < +∞
}

.

Set x⊗ f for x ∈ H and f ∈ H as

(x⊗ f)(y) =

{

f x = y
0 x 6= y .

(Note that l2(H,H) is isomorphic to l2(H)⊗H.) The application

y 7→ π(y) π(y)(x⊗ f) = (x− y)⊗W (y)f

is a representation of the CCR on the Hilbert space l2(H,H). π is equivalent to R. If a
unitary U : l2(H,H) → l2(H,H) is defined as

U(x⊗ f) = x⊗W (x)f

then
U π(y) = (R(y)⊗ id)U (y ∈ H).

To prove our claim it is sufficient to find an isomorphism between B and the C*–algebra
generated by {π(y) : y ∈ H}. We show that for any finite linear combination

∥

∥

∥

∑

λiW (yi)
∥

∥

∥
=
∥

∥

∥

∑

λi π(yi)
∥

∥

∥
(4.2)

holds.

Let Ĥ stand for the dual group of the discrete group H . Ĥ consists of characters of
H and endowed by the topology of pointwise convergence forms a compact topological
group. We consider the normalized Haar measure on Ĥ . The spaces l2(H) and L2(Ĥ)
are isomorphic by the Fourier transformation, which establishes the unitary equivalence
between the above π and π̂ defined below.

π̂(y)Â(χ) = χ(y)W (y)Â(χ) (y ∈ H , χ ∈ Ĥ , Â ∈ L2(Ĥ,H))
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Hence
∥

∥

∥

∑

λi π(yi)
∥

∥

∥
=
∥

∥

∥

∑

λi π̂(yi)
∥

∥

∥
. (4.3)

A closer look at the definition of π̂ gives that π̂(y) is essentially a multiplication operator
(by χ(y)W (y)) and its norm is the sup norm. That is,

∥

∥

∥

∑

λi π̂(yi)
∥

∥

∥
= sup

{
∥

∥

∥

∑

λi χ(yi)W (yi)
∥

∥

∥
: χ ∈ Ĥ

}

. (4.4)

Since the right hand side is the sup of a continuous function over Ĥ , this sup may be
taken over any dense set.

Let us set
G = {exp(2i σ(x, ·) : x ∈ H}.

Clearly, G ⊂ Ĥ is a subgroup. The following result is at our disposal (see (23.26) of
[19]).

If K ⊂ Ĥ is a proper closed subgroup then there exists 0 6= h ∈ H such that k(h) = 1
for every k ∈ K.

Assume that exp(2i σ(x, y)) = 1 for every x ∈ H . Then for every t ∈ R there exists an
integer l ∈ Z such that t σ(x, y) = l π. This is possible if σ(x, y) = 0 (for every x ∈ H)
and y must be 0. According to the above cited result of harmonic analysis the closure
of G must be the whole Ĥ.

Now we are in a position to complete the proof. For

χ(·) = exp(2i σ(x, ·)) ∈ G

we have
∥

∥

∥

∑

λi χ(yi)W (yi)
∥

∥

∥
=

∥

∥

∥
W (x)

∑

λiW (yi)W (−x)
∥

∥

∥
=

=
∥

∥

∥

∑

λiW (yi)
∥

∥

∥

and this is the supremum in (4.4). Through (4.4) we arrive at (4.2). �

The previous theorem is due to Slawny [Sl]. We learnt from the proof that CCR(H, σ)
has a representation on l2(H) given by (4.1). The subalgebra

{

∑

x∈H

λ(x)R(x) : λ : H → C has finite support

}

is dense in CCR(H, σ) and there exists a state τ on CCR(H, σ) such that

τ
(

∑

λ(x)R(x)
)

= λ(0) . (4.5)

It is simple to verify that τ(ab) = τ(ba). Therefore, τ is called the tracial state of
CCR(H, σ). We can use τ to prove the following.

Proposition 4.3 If f, g ∈ H are different then

‖W (f)−W (g)‖ ≥
√
2.
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Proof. For h1 6= h2 , we have τ(W (h1)W (−h2)) = 0. Hence ‖W (f) − W (g)‖2 ≥
τ((W (f)−W (g)∗(W (f)−W (g))) = 2. �

It follows from the Proposition that the unitary group t 7→W (tf) is never normcon-
tinuous and the C*-algebra CCR(H, σ) can not be separable.

Slawny’s theorem has also a few important consequences. Clearly for (H1, σ1) ⊂
(H2, σ2) the inclusion CCR(H1, σ1) ⊂ CCR(H2, σ2) must hold. (If H1 is a proper sub-
space of H2 then CCR(H1, σ2) is a proper subalgebra of CCR(H2, σ2).) If T : H → H
is an invertible linear mapping such that

σ(f, g) = σ(Tf, Tg) (4.6)

then it may be lifted into a ∗-automorphism of CCR(H, σ). Namely, there exists an
automorphism γT of CCR(H, σ) such that

γT (W (f)) =W (Tf) (4.7)

A simple example is the parity automorphism

π(W (f)) =W (−f) (f ∈ H) . (4.8)

Let (H, σ) be a symplectic space. A real linear mapping J : H → H is called a
complex structure if

(i) J2 = −I,

(ii) σ(Jf, f) ≤ 0 (f ∈ H),

(iii) σ(f, g) = σ(Jf, Jg) (f, g ∈ H) .

If a complex structure J is given then H may be considered as a complex vectorspace
setting

(t + is)f = tf + sJf (s, t ∈ R , f ∈ H) (4.9)

The definition
〈f, g〉 = σ(f, Jg) + i σ(f, g) (4.10)

supplies us (a complex) inner product. So to have a symplectic space (over the reals)
with a complex structure is equivalent to being given a complex inner product space.

Let J be a complex structure over (H, σ). The gauge automorphism

γα(W (f)) =W (cosα f + J sinα f) (α ∈ [0, 2π] , f ∈ H) (4.11)

is another example for lifting of a mapping into an automorphism.

We shall restrict ourselves mainly to C*-algebras associated to a nondegenerate sym-
plectic space but degeneracy of the symplectic form appears in certain cases. Now this
possibility will be discussed following the paper [25].

Let σ be (a possible degenerate) symplectic form on H . We write ∆(H, σ) for the free
vectorspace generated by the symbols {W (h) : h ∈ H}. So ∆(H, σ) consists of formal
finite linear combinations like

∑

λiW (hi) .
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We may endow ∆(H, σ) by a ∗-algebra structure by setting

W (h)∗ = W (−h) (h ∈ H) (4.12)

and
W (h)W (g) = exp(i σ(x, y))W (h+ y) (h, y ∈ H) (4.13)

On the ∗-algebra ∆(H, σ) we shall consider the so-called minimal regular norm (cf. [29],
Ch. IV §18.3). We take all ∗-representations π of ∆(H, σ) by bounded Hilbert space
operators and define

‖a‖ = sup{‖π(a)‖ : π is a representation} (a ∈ ∆(H, σ)) (4.14)

Another possibility is to take all positive normalized functionals (that is, states) ϕ on
∆(H, σ) and to introduce the norm

‖a‖ = sup{ϕ(a∗a)1/2 : ϕ is a state} (a ∈ ∆(H, σ)) (4.15)

One can see that (4.14) and (4.15) determine the same norm, called the minimal regular
norm. The completion of ∆(H, σ) with respect to ‖ · ‖ will be a C*–algebra and it is
CCR(H, σ) by definition. It follows from Slawny’s theorem that for nondegenerate σ the
previous and the latter definitions coincide.

Now we study the extreme case when σ ≡ 0. Then ∆(H, σ) is commutative and a
state ϕ of it corresponds to a positive-definite function F on the discrete abelian group
H . We have

ϕ
(

∑

λiW (hi)
∗
∑

λjW (hj)
)

≥ 0

for every λi ∈ C and hi ∈ H if and only if the function

F : h 7→ ϕ(W (h)) (h ∈ H)

is positive-definite. Due to Bochner’s theorem ([19], 33.1) there is a probability measure
µ on the compact dual group Ĥ such that

F (h) =

∫

χ(h) dµ(χ) (h ∈ H) .

Hence
sup

{

ϕ(a∗a)1/2 : ϕ is a state
}

= sup
{

χ(a∗a)1/2 : χ ∈ Ĥ
}

,

where for a =
∑

λiW (hi) ∈ ∆(H, σ) χ(a) (or a(χ)) is defined as

∑

λi χ(hi) .

In this way every element a of ∆(H, σ) may be viewed to be a continuous function on
Ĥ and

‖a‖ = sup
{

|a(χ)| : χ ∈ Ĥ
}

(a ∈ ∆(H, σ)) .

∆(H, σ) evidently separates the points of Ĥ and the Stone-Weierstrass theorem tells
us that CCR(H, σ) is isomorphic to the C*-algebra of all continuous functions on the
compact space Ĥ .
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The case of a vanishing symplectic form does not occur frequently, however, it may
happen that H = H0 ⊕H1 and

σ (h0 ⊕ h1 , h
′
0 ⊕ h′1) = σ1 (h1 ⊕ h′1)

with a nondegenerate symplectic form σ1 on H1. Then the ∗-algebra ∆(H, σ) is the
algebraic tensor product of ∆(H0, 0) and ∆(H1, σ1) and CCR(H, σ) will be

CCR(H0, 0)⊗ CCR(H1, σ1) . (4.16)

(Note that since CCR(H0, 0) is commutative, the C*-norm on the tensor product is
unique.)

Now we review briefly the general case. For a degenerate symplectic form σ we set

H0 = {x ∈ H : σ(x, y) = 0 for every y ∈ H}

for the kernel of σ. ∆(H0, 0) is the center of the ∗-algebra ∆(H, σ) and there exists a
natural projection E given by

E

(

∑

x∈H

λ(x)W (x)

)

=
∑

x∈H0

λ(x)W (x) (4.17)

and mapping ∆(H, σ) onto ∆(H0, 0). Having introduced the minimal regular norm we
observe that CCR(H0, 0) is the center of CCR(H, σ) and E is a conditional expecta-
tion. The maximal ∗-ideals of CCR(H, σ) are in one-to-one correspondence with those
of CCR(H0, 0). In particular, CCR(H, σ) is simple if and only if H0 = {0}, that is, σ is
nondegenerate. Concerning the details we refer to [25].

For a nondegenerate symplectic form Slawny’s theorem provides readily that CCR(H, σ)
is simple.



Chapter 5

Fock representation

5.1 The Fock state

Let H be a Hilbert space and CCR(H) be the corresponding CCR-algebra.

Theorem 5.1 There is a state ϕ on the C*-algebra CCR(H) such that

ϕ(W (f)) = exp(−‖f‖2/2). (5.1)

Proof. ϕ(I) = 1 follows from f = 0. The state ϕ exists if ϕ(A∗A) ≥ 0 when A is a linear
combination of Weyl operators. Assume that A =

∑

i λiW (fi). Then

A∗A =
∑

i

λiW (−fi)
∑

j

λjW (fj)

=
∑

i,j

λiλjW (fj − fi) exp
1
2
(−〈fi, fj〉+ 〈fj , fi〉)

and

ϕ(A∗A) =
∑

i,j

λiλj exp
1
2
(−〈fj − fi, fj − fi〉 − 〈fi, fj〉+ 〈fj , fi〉)

=
∑

i,j

λiλj exp
1
2
(−‖fj‖2 − ‖fi‖2) exp 2〈fj, fi〉).

This is positive (for all λi) if the matrx

(i, j) 7→ exp 1
2
(−‖fj‖2 − ‖fi‖2) exp 2〈fj, fi〉)

is positive. This is the entry-wise product of the matrices

(i, j) 7→ exp 1
2
(−‖fj‖2 − ‖fi‖2) and (i, j) 7→ exp 2〈fj, fi〉).

Due to the Hadamard theorem, it is enough to see that both are positive. The first one
has the form X∗X , so it is positive. The second one is the entry-wise exponential of the
positive Gram matrix (〈fj , fi〉)ij. This is positive as well.

The linear functional ϕ is defined on the linear combinations of the Weyl operators
and it is positive. By continuity, it can be extended to the whole CCR(H). �

35
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The state defined by (5.1) is called Fock state.

Next we perform the GNS-representation. Hϕ is the Hilbert space generated by
CCR(H) with the inner product 〈A,B〉 := ϕ(A∗B). The vector I is usually denoted by
Φ and called vacuum vector. The representation πϕ : CCR(H) → B(Hϕ) is defined as

πϕ(B)A = BA (A,B ∈ CCR(H)).

The represntation πϕ is the Fock representation.

The example in Chapter 1 corresponds to the Fock representation of CCR(H) when
H has dimension 1. Lemma 1.4 gives the example

W (x+ iy) = exp i
√
2(xP + yQ).

The formula (1.20) shows that ϕ0 is the vacuum vector and the Hilbert space Hϕ is
L2(R).

In the rest of this chapter W (f) and πϕ(W (f)) will be identified.

5.2 Field operators

An important property of this representation that the one-parameter group Ut := W (tf)
of unitaries is weakly continuous, since the function

t 7→ 〈W (g),W (tf)W (h)〉
is continuous for every g, h ∈ H. Due to the Stone theorem, there is a self-adjoint
operator B(f) on Hϕ such that

W (tf) = exp(itB(f)) (t ∈ R). (5.2)

It follows from Proposition 4.3 that the field operator B(f) must be unbounded.
The vectors W (g)Φ are in the domain of B(f) and more generally, in the domain of
B(f1)B(f2) . . . B(fk). The expression ϕ(B(f1)B(f2) . . .B(fk)) is defined as

〈Φ, B(f1)B(f2) . . .B(fk)Φ〉.
Proposition 5.2 Then for f, g ∈ H and t ∈ R the following relations hold in the Fock
representation.

(i) B(tf) = tB(f), B(f + g) = B(f) +B(g).

(ii) [B(f),W (g)] = 2σ(f, g)W (g), [B(f), B(g)] = −2iσ(f, g).

(iii) ϕ(B(f)B(g)) = 〈B(f)Φ, B(g)Φ〉 = 〈f, g〉.

Set

B±(f) =
1

2
(B(f)∓ iB(if)) . (5.3)

Then
B(f) = B+(f) +B−(f)) (5.4)

and
[B−(f), B+(g)] = 〈g, f〉 (f, g ∈ H) . (5.5)

B+(f) is called creation operator and B−(f) is annihilation operator.
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Lemma 5.3 B−(f)Φ = 0.

Lemma 5.4 For k ∈ Z we have

B−(f)B+(f)kΦ = k‖f‖2B+(f)k−1Φ (f ∈ H) .

Proof. We apply induction. The case k = 0 is contained in the previous lemma. Due to
the commutation relation (5.5) we have

B−(f)B+(f)k+1Φ = (B+(f)B−(f) + 〈f, f〉)B+(f)kΦ

= (k − 1)‖f‖2B+(f)kΦ+ ‖f‖2B+(f)kΦ .

�

One obtains by induction again the following.

Proposition 5.5 If n, k ∈ N and f ∈ H, then

B−(f)nB+(f)kΦ =

{

0 if n > k
k!

(k−n)!
‖f‖2nB+(f)k−nΦ if n ≤ k .

Example 5.6 We assume that H is of one dimension. Fix a unit (basis) vector η in H
and set

fn =
1√
n!
B+(η)nΦ (n ∈ Z+) . (5.6)

Then {f0, f1, . . .} is an orthonormal basis in the Fock space. If we write a+ for B+(η)
and a for B−(η) then

a+fn =
√
n+ 1fn+1 afn =

{ √
nfn−1 n ≥ 1
0 n = 0

and
[a, a+] = 1 .

With the choice

q =
1√
2
(a+ a+) and p =

i√
2
(a+ − a)

the Heisenberg commutation relation is satisfied.

The vector fn is called n-particle vector in the physics literature. Transforming fn
into fn+1 the operator a+ increases the number of particles. This is the origin of the
term creation operator. The operator a annihilates in the similar sense.

Our present formulas are very similar to those in Chapter 1. The Fock space K can be
identified with L2(R) if the vector fn corresponds to the Hermite function ϕn ∈ L2(R).
It is clear that the operators a and a+ are the same.

We compute the coordinates of the vectors W (z)Φ in the basis {fn : n ∈ Z+}. For
the sake of simplicity we choose η = 1.

〈W (z)Φ, fn〉 = 〈exp(iB+(z) + iB−(z))Φ, fn〉
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= exp

(

−1

2
[iB+(z), iB−(z)]

)

〈exp(iB+(z))Φ, fn〉

= exp

(

−1

2
|z|2
)

∑ (iz)m

m!
〈
√
m!fm, fn〉

= exp

(

−1

2
|z|2
)

(iz)n√
n!

Hence for any z ∈ C the associated exponential vector e(z) is the sequence

(

1, iz,
(iz)2√
z!
, · · · , (iz)

n

√
n!
, · · ·

)

≡
∑

n

(iz)n√
n!
fn. (5.7)

�

5.3 Fock space

Let {ηi : i ∈ I} be an orthonormal basis in the complex Hilbert space H. We set

∣

∣ηn1

i1
; ηn2

i2
; . . . ; ηnk

ik
〉 = 1√

n1! . . . nk!
B+(fi1)

n1 . . . B+(fik)
nkΦ . (5.8)

So for every choice of different indices i1, i2, . . . , ik in I and n1, n2, . . . , nk ∈ N we get to
a unit vector in K. The vectors

∣

∣ηn1

i1
; . . . , ηnk

ik
〉 and

∣

∣ηm1

j1
; . . . , ηml

jl
〉

are different if ((n1, i1), . . . , (nk, ik)) is not a permutation of ((m1, j1), . . . , (ml, jl)) and
in this case they are orthogonal. All such vectors form a canonical orthonormal basis in
K.

From ϕ(B(f)B(g)) = 〈f, g〉 we deduce

ϕ(B±(f)B±(g)) = 0

if f ⊥ g. If the sequence f1, f2, . . . , fn in H has the property that any two vectors are
orthogonal or identical then in the expansion (5.22) of

ϕ(B±(fn)B
±(fn−1) . . . B

±(f1))

we may have a nonzero term if always identical vectors are paired together. We benefit
from this observation in the next proposition.

Proposition 5.7 Assume that g1, g2, . . . , gk are pairwise orthogonal vectors in H. Then

B+(g1)
m1B+(g2)

m2 . . . B+(gk)
mkΦ

and
B+(g1)

n1B+(g2)
n2 . . . B+(gk)

nkΦ

are orthogonal whenever mj 6= nj for at least one 1 ≤ j ≤ k.
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Proof. Suppose that m1 6= n1 and n1 > m1. The inner product of the above vectors is
given by

ϕ
(

B−(gk)
nk . . . B−(g1)

n1B+(g1)
m1 . . . B+(gk)

mk
)

and equals to

ϕ
(

B−(g1)
n1B+(g2)

m1

)

ϕ
(

B−(gk)
nk . . . B−(g2)

n2B+(g2)
m2 . . . B+(gk)

mk
)

.

Here the first factor vanishes due to n1 > m1.

We are able to conclude also the formula

‖B+(g1)
n1B+(g2)

n2 . . . B+(gk)
nkΦ‖2 = n1!n2! . . . nk! (5.9)

provided that ‖g1‖ = ‖g2‖ = . . . = ‖gk‖ = 1.

Lemma 5.8 For g1, g2, . . . , gn, f ∈ H with ‖f‖ = 1 we have

‖B(f)B(g1)B(g2) . . . B(gn)Φ‖ ≤ 2
√
n+ 1‖B(g1) . . . B(gn)Φ‖ .

We consider the linear subspace spanned by the vectors f, g1, g2, . . . , gn and take an
orthonormal basis f1 = f, f2, . . . , fk. We may express B(gi) by creation and annihilation
operators corresponding to the basis vectors and get

η = B(g1) . . .B(gn)Φ =
∑

λ(n1, . . . , nk)B
+(f1)

n1 . . . B+(fk)
nkΦ

(Here the summation is over the k-triples (n1, . . . , nk) such that ni ∈ Z+ and
∑

ni ≤ n.)
Since

‖B(f)η‖ ≤ ‖B+(f1)η‖+ ‖B−(f1)η‖
it suffices to show that

‖B±(f1)η‖2 ≤ (n + 1)‖η‖2 .
Now we estimate as follows.

‖B+(f1)η‖2 = ‖
∑

λ(n1, . . . , nk)B
+(f1)

n1+1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

‖λ(n1, . . . , nk)B
+(f1)

n1+1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

(n1 + 1)‖λ(n1, . . . , nk)B
+(f1)

n1 . . . B+(fk)
nkΦ‖2

≤ (n+ 1)‖B(g1) . . . B(gn)Φ‖2 .

Similarly,

‖B−(f1)η‖2 = ‖
∑

n1≥1

λ(n1, . . . , nk)n1B
+(f1)

n1−1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

n2
1|λ(n1, . . . , nk)|2‖B+(f1)

n1−1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

=
∑

n1‖λ(n1, . . . , nk)B
+(f1)

n1B+(f2)
n2 . . . B+(fk)

nkΦ‖2

≤ n
∑

‖λ(n1, . . . , nk)B
+(f1)

n1B+(f2)
n2 . . . B+(fk)

nkΦ‖2 = n‖η‖2 .

Lemma 5.4 and the explicit norm expression (5.9) have been used.
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Let the Fock representation act on a Hilbert space H containing the vacuum vector
Φ. The linear span of the vectors B(g1)B(g2) . . . B(gn)Φ (g1, g2, . . . , gn ∈ H , n ∈ N) and
B+(g1)B

+(g2) . . .B
+(gn)Φ (g1, g2, . . . , gn ∈ H , n ∈ N) coincide. It will be denoted by

DB. So far it is not clear whether DB is complete. This is what we are going to show.

Let A be a linear operator on a Hilbert space K. A vector ξ ∈ K is called entire
analytic (for A) if ξ is in the domain of An for every n ∈ N and

∞
∑

k=0

tk

k!
‖Akξ‖ < +∞

for every t > 0. If ξ is an entire analytic vector then exp(zA)ξ makes sense for every
z ∈ C and it is an entire analytic function of z.

Theorem 5.9 DB consists of entire analytic vectors for B(f) (f ∈ H).

Proof. Let ξ = B(f1)B(f2) . . . B(fn)Φ ∈ DB. By a repeated application of Lemma 5.8
we have

‖B(f)kξ‖ ≤ 2k
√

(n+ k)!

n!
‖ξ‖

and it is straightforward to check that the power series

∞
∑

k=0

tk

k!
‖B(f)kξ‖

converges for every t. Since the entire analytic vectors form a linear subspace, the proof
is complete. �

Due to Theorem 5.9 every vector W (f)Φ = exp(iB(f))Φ can be approximated
(through the power series expansion of the exponential function) by elements of DB.
This yields, immediately that DB is dense in H. According to Nelson’s theorem on
analytic vectors (see [34] X.39), DB is a core for B(f) (f ∈ H), in other words, B(f)
is the closure of its restriction to DB. It follows also that DB is core for B±(f) and
B−(f)∗ = B+(f).

Theorem 5.10 The Fock representation is irreducible.

Proof. We have to show that for any 0 6= η ∈ H the closed linear subspace H1 generated
by {W (f)η : f ∈ H} is H itself. Let M be the von Neumann algebra generated by the
unitaries {W (f) : f ∈ H} in B(H). Clearly, Mη ⊂ H1.

We consider a canonical basis in H consisting of vectors (5.8). η ∈ H has an expansion
as (countable) linear combinations of basis vectors. Assume that a vector

|fn1

1 ; fn2

2 ; . . . ; fnk

k 〉 (5.10)

has a nonzero coefficient.

The operator

B+(f1)B
−(f1) . . . B

+(fk)B
−(fk) (5.11)
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is selfadjoint and (4.5) is its eigenvector with eigenvalue n1 + n2 + . . .+ nk. Since (5.11)
is affiliated with M, its spectral projections are in M. In this way we conclude that the
vector (5.10) lies in H1.

It is easy to see that
B±(f)H1 ⊂ H1

for every f ∈ H . By application of the annihilation operators B−(fi) (1 ≤ i ≤ k) we
obtain that the cyclic (vacuum) vector Φ is in H1. Therefore, H1 = H must hold. �

Next we introduce some vectors of special importance by means of the Weyl operators.
For f ∈ H set

e(f) = exp
(

1
2
‖f‖2

)

W (f)Φ , (5.12)

which is called exponential vector. One may compute that

〈e(f), e(g)〉 = exp〈g, f〉 (f, g ∈ H) (5.13)

Proposition 5.11 {e(f) : f ∈ H} is a linearly independent complete subset of H.

Proof. We use the fact that the family {etx : x ∈ R} of exponential functions is linearly
independent.

Let f1, f2, . . . , fn ∈ H be a sequence of different vectors and assume that
∑

λie(fi) =
0. We choose a vector g ∈ H such that the numbers

µi = 〈fi, g〉 (1 ≤ i ≤ n)

are distinct. For any t ∈ R we have

0 = 〈e(tg),
∑

λie(fi)〉 =
∑

λi exp(t〈fi, g〉)

and we may conclude that λi = 0 for every 1 ≤ i ≤ n.

Due to the cyclicity of the vacuum vector Φ the set {e(f) : f ∈ H} is complete. A
little bit more is true. The norm expression

‖e(f)− e(g)‖2 = exp(‖f‖2) + exp ‖g‖2 − 2Re exp〈f, g〉 (5.14)

tells us that the mapping f 7→ e(f) is norm continuous. Therefore {e(f) : f ∈ S} is
complete whenever S is a dense subset of H. �

Example 5.12 Assume that H has two dimension with orthogonal unit vectors η1 and
η2. We use the notation B+(ηi) = B+

i and B−(ηi) = B−
i (i = 1, 2). The vectors

f
(1)
i = B+

i Φ (i = 1, 2)

are orthonormal and orthogonal to Φ:

〈Φ, f (1)
i 〉 = 〈B−

i Φ,Φ〉 = 0 due to Lemma 5.3,

〈f (1)
i , f

(1)
j 〉 = 〈B+

i Φ, B
+
j Φ〉 = 〈BiΦ, BjΦ〉 = 〈ηi, ηj〉 due to (iii) in Proposition 5.2.



42 CHAPTER 5. FOCK REPRESENTATION

In the previous formalism it was

f
(1)
i = |ηi〉 (i = 1, 2).

The next subspace has 3 dimension:

|η21〉 =
1√
2!
(B+

1 )
2Φ, |η22〉 =

1√
2!
(B+

2 )
2Φ, |η1, η2〉 = B+

1 B
+
2 Φ.

The subspaces of the Fock space are antisymmetric tensor powers of the Hilbert space
H which is two dimensional now. Thext subspace is the third power of H:

|η31〉 =
1√
3!
(B+

1 )
3Φ, |η21, η2〉 =

1√
2!
(B+

1 )
2B+

2 Φ,

|η1, η22〉 =
1√
2!
B+

1 (B
+
2 )

2Φ, |η32〉 =
1√
3!
(B+

2 )
3Φ.

The situation can be continued. �

5.4 The positivity condition

To determine a state on CCR(H, σ), it is enough to give the values on the unitariesW (f)
(f ∈ H). When the Fock state was introduced, an argument was required to show the
existence. This will be extended now.

Let X be an arbitrary (nonempty) set. A function F : X × X → C is called a
positive definite kernel if and only if

n
∑

j,k=1

cj ck F (xj, xk) ≥ 0

for all n ∈ N, {x1, x2, . . . , xn} ⊂ X and {c1, c2, . . . , cn} ⊂ C. The product of positive
definite kernels is positive definite. This statement is equivalent to the Hadamard
theorem which says that the entry-wise product of positive matrices is positive.

Proposition 5.13 Let (H, σ) be a symplectic space and G : H → C a function. There
exists a state ϕ on CCR(H, σ) such that

ϕ(W (f)) = G(f) (f ∈ H)

if and only if G(0) = 1 and the kernel

(f, g) 7→ G(f − g) exp(−i σ(f, g))

is positive definite.
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Proof. For x =
∑

cjW (fj) we have

xx∗ =
∑

j,k

cj ckW (fj − fk)e
−iσ(fj ,fk) .

Since ϕ(xx∗) ≥ 0 should hold, we see that the positivity condition is necessary.

On the other hand, the positivity condition allows us to define a positive functional on
the linear hull of the Weyl operators and a continuous extension to CCR(H, σ) supplies
a state. �

Lemma 5.14 Let (H, σ) be a symplectic space. (It might be degenerate.) If α( · , · ) is
a positive symmetric bilinear form on H then the following conditions are equivalent.

(i) The kernel (f, g) 7→ α(f, g)− i σ(f, g) is positive definite.

(ii) α(z, z)α(x, x) ≥ σ(z, x)2 for every x, z ∈ H.

Proof. Both condition (i) and (ii) hold on H if and only if they hold on all finite
dimensional subspaces. Hence we may assume that H is of finite dimension.

If α(x, x) = 0 then both condition (i) and (ii) imply that σ(x, y) = 0 for every y ∈ H .
Due to possible factorization we may assume that α is strictly positive and it will be
viewed as an inner product.

There is an operator Q such that

σ(x, y) = α(Qx, y) (x, y ∈ H) .

and Q∗ = −Q follows from σ(x, y) = −σ(y, x). According to linear algebra in a certain
basis the matrix of Q has a diagonal form Diag (A1, A2, . . . , Ak), where Ai is a 1 × 1
0-matrix or

Ai =

(

0 ai
−ai 0

)

.

(The first possibility occurs only if σ is degenerate.) It is easy to see that condition (i)
is equivalent to |ai| ≤ 1 and so is condition (ii). �

Theorem 5.15 Let (H, σ) be a symplectic space and α : H × H → R a symmetric
positive bilinear form such that

σ(f, g)2 ≤ α(f, f)α(g, g) (f, g ∈ H) . (5.15)

Then there exists a state ϕ on CCR(H, σ) such that

ϕ(W (f)) = exp
(

−1
2
α(f, f)

)

(f ∈ H) . (5.16)

Proof. We are going to apply Proposition 5.13. Due to the positivity condition
∑

j,k

cjck exp
(

−1
2
α(fj − fk, fj − fk)− iσ(fj , fk)

)

=
∑

j,k

(

cj exp
(

−1
2
α(fj , fj)

)) (

ck exp
(

−1
2
α(fk, fk)

))

× exp(α(fj, fk)− iσ(fj , fk))

=
∑

j,k

bjbk exp(α(fj , fk)− iσ(fj , fk))
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should be shown to be nonnegative. According to Lemma 5.14

(α(fj, fk)− iσ(fj , fk))j;k

is positive definite and entrywise exponentiation preserves this property. �

A state ϕ on CCR(H, σ) determined in the form (5.16) is called quasifree.

A state is regular if in the GNS-representation the field operators exist.

Proposition 5.16 Let ϕ be a state on CCR(H, σ). If

lim
t→0

ϕ(W (tf)) = 1 (f ∈ H),

then ϕ is regular.

Proof. We set G(f) = ϕ(W (f)) (f ∈ H). According to Proposition 5.13 the matrix




1 G(−f1) G(−f2)
G(f1) 1 G(f1 − f2) exp(−iσ(f1, f2))
G(f2) G(f2 − f1) exp(iσ(f1, f2)) 1





is positive definite. From this we obtain

|G(f2)−G(f1)| ≤ 4|1−G(f2 − f1) exp(−iσ(f2, f1))| . (5.17)

Combining (5.17) with the hypothesis we arrive at the continuity of the function

t 7→ G(tf + g) (t ∈ R)

for every f, g ∈ H . Let (πϕ,Hϕ,Φ) stand for the GNS-triple. We verify by computation
the continuity of the function

t 7→ 〈πϕ(W (tf))πϕ(W (g1))Φ, πϕ(W (g2))Φ〉 (t ∈ R)

and the regularity of ϕ is proven. �

It folows that a quasifree state is regular.

5.5 Analytic states

A state ϕ on CCR(H, σ) is said to be analytic if the numerical function

t 7→ ϕ(W (tf)) (t ∈ R)

is analytic. Quasifree states are obviously analytic.

Assume that π is a regular representation of CCR(H, σ). The field operator B(g)
is obtained by differentiation of the function

t 7→ π(W (tg))η = exp(itB(g))η (t ∈ R) . (5.18)

More precisely, if (5.18) is weakly differentiable at t = 0 and the derivative is ξ ∈ Hϕ,
then η is in the domain of B(g) and

iB(g)η = ξ .
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Proposition 5.17 Let ϕ be an analytic state on CCR(H, σ) with GNS-triple (πϕ,Hϕ,Φ).
Then πϕ(W (g))Φ is in the domain of

B(fn)B(fn−1) . . . B(f1)

for every g, f1, f2, . . . , fn ∈ H and n ∈ N.

Proof. We apply induction and suppose that

η = B(fn−1) . . . B(f1)πϕ(W (g))Φ

makes sense. For the sake of simpler notation we omit πϕ in the proof.

It suffices to show that

lim
t→0

t−1〈(W (fn)− I)η, ξ〉 = F (ξ) (5.19)

exists if ξ is in a dense subset D0 of Hϕ and |F (ξ)| ≤ C‖ξ‖. This ensures that

t 7→ W (tfn)η

is differentiable in the weak sense. Since for ξ = W (h)Φ the limit in (5.19) equals to

(−i)n
∂

∂t

∂n−1

∂tn−1∂tn−2 . . . ∂t1
ϕ(W (−h)W (tfn) . . .W (t1f1)W (g))

at the point t = tn−1 = tn−2 = . . . = t1 = 0, the function F is defined on the linear hull
DW of the vectors

{W (h)Φ : h ∈ H} .
F is linear on DW and by differentiation one can see that

C = lim
t→0

1

t
‖(W (tfn)− I)η‖

exists and it fulfils |F (ξ)| ≤ C‖ξ‖ for ξ ∈ DW . �

AlthoughB(f) 6∈ CCR(H, σ), it will be rather convenient to write ϕ(B(fn)B(fn−1) . . . B(f1))
instead of 〈B(fn)B(fn−1) . . .B(f1)Φ,Φ〉. We shall keep also the notation DW from the
above proof. Remember that DW as well as the superset Hilbert space Hϕ depend on
the state ϕ even if it is excluded from the notation.

Proposition 5.18 Let ϕ be an analytic state on CCR(H, σ). Then for f, g ∈ H and
t ∈ R the following relations hold on DW .

(i) B(tf) = tB(f), B(f + g) = B(f) +B(g).

(ii) [B(f),W (g)] = 2σ(f, g)W (g), [B(f), B(g)] = −2iσ(f, g).

Proof. The relations are deduced by derivation from (the Weyl form of) the CCR. �
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5.6 Quasifree states

Recall that a qusifree state is defined by the formula

ϕ(W (f)) = exp(−1
2
α(f, f)),

where the real bilinear form α satisfies the positivity condition (5.15). A qusifree state
is analytic and derivation yields

ϕ(B(f)B(g)) = α(f, g)− iσ(f, g). (5.20)

Proposition 5.19 Let ϕ be a quasifree state on CCR(H, σ) given by (5.16) and f1, f2, . . . , fn ∈
H. Then

ϕ(B(fn)B(fn−1) . . . B(f1)) = 0

if n is odd. For an even n we have

ϕ(B(fn)B(fn−1) . . . B(f1)) =
∑

n/2
∏

m=1

(α(fkm, fjm)− iσ(fkm , fjm)) ,

where the summation is over all partitions {H1, H2, . . . , Hn/2} of {1, 2, . . . , n} such that
Hm = {jm, km} with jm < km (m = 1, 2, . . . , n/2).

Proof. We benefit from the formula

ϕ(B(fn)B(fn−1) . . .B(f1)) = (−i)n ∂n

∂n . . . ∂1
ϕ(W (tnfn) . . .W (t1f1)) .

Since we have

W (tnfn)W (tn−1fn−1) . . .W (t1f1)

= W (fnfn + tn−1fn−1 + . . .+ t1f1)× exp i

(

∑

l>k

tltkσ(fl, fk)

)

(5.16) yields

ϕ(W (tnfn) . . .W (f1f1)) = exp

(

−1

2

n
∑

m=1

t2mα(fm, fm)

)

exp

(

∑

l>k

tltk(−α(fl, fk) + iσ(fl, fk))

)

. (5.21)

What we need is the coefficient of t1t2 . . . tn in the power series expansion. Such term
comes only from the second factor of (5.21) and only in the case of an even n. In the
claim it is described exactly the possibilities for getting t1t2 . . . tn as a product of factors
tltk (l > k). �

By means of (5.20) we have also

ϕ(B(fn)B(fn−1) . . . B(f1)) =
∑∏

ϕ (B(fkm)B(fjm)) , (5.22)

were summation and product are similar to those in Proposition 5.19. The expression
(5.22) makes clear that the value of a quasifree state ϕ on any polynomial of field
operators is completely determined by the two-point-functions ϕ(B(f)B(g)) (f, g ∈
H).



5.7. PURIFICATION 47

5.7 Purification

Let H be a real Hilbert space with inner product ( · , · ) and let σ be a nondegenerate
symplectic form on H such that

|σ(f, g)|2 ≤ (f, f)(g, g) (f, g ∈ H) (5.23)

holds. There exists a contraction D on H such that

σ(f, g) = (Df, g) (f, g ∈ H) . (5.24)

Evidently D∗ = −D. If Df = 0 then due to the nondegeneracy of σ f = 0 and hence D
is invertible. Consider the polar decomposition

D = J |D| . (5.25)

The property D∗ = −D gives that

J |D|J∗ = −J2|D|

and the uniqueness of the polar decomposition (applied for the positive operator J |D|J∗)
guarantees that

−J2 = I and J |D| = |D|J . (5.26)

The state space of a C*-algebra is a compact convex subset of the dual space if it is
endowed with the weak topology. A state is called pure if it is an extremal point of the
state space.

Proposition 5.20 Let ϕ be a quasifree state on CCR(H, σ) so that

ϕ(W (h)) = exp
(

−1
2
(h, h)

)

(h ∈ H),

If ϕ is pure then |D| (given by (5.25) is the identity.

Proof. We shall argue by contradiction. Assume that there exists f ∈ H such that

(|D|f, f) = 1 and (|D|−1 − I)1/2f 6= 0 . (5.27)

Set L = |D|1/2(|D|−1 − I)1/2 and note that L is a contraction. We define a symmetric
bilinear form as

S(g1, g2) = (g1, g2)− (Lg1, |D|1/2f) · (Lg2, |D|1/2f)(Lf, |D|1/2f)2
(Lf, Lf)

and show that

S(g, g) ≥ (|D|g, g) (g ∈ H) (5.28)

or equivalently

((I − |D|)g, g)(Lf, Lf) ≥ (Lg, |D|1/2f)2(Lf, |D|1/2f)2 . (5.29)



48 CHAPTER 5. FOCK REPRESENTATION

(5.29) is a consequence of the Schwarz inequality :

(Lf, |D|1/2f)2 ≤ (Lf, Lf)(|D|f, f) = (Lf, Lf)

(Lg, |D|1/2f)2 ≤ (L2g, g)(|D|f, f) = ((I − |D|)g, g) .

By means of (5.24) and (5.25) we infer from (5.28) that

|σ(h, g)|2 = (J |D|h, g)2 ≤ (|D|h, h)(|D|g, g) ≤ S(h, h)S(g, g) .

Now Theorem 5.15 tells us that there is a (quasifree) state ω on CCR(H, σ) such that

ω(W (h)) = exp

(

−1

2
S(h, h)

)

. (h ∈ H)

We can see from Proposition 5.13 that if ω is any state of CCR(H, σ) and F is a linear
functional on H then there exists a state ωF such that

ωF (W (h)) = ω(W (h)) exp(iF (h)) .

Writing a for (Lf, |D|1/2f)(Lf, Lf)−1/2 we set a state ωλ for λ ∈ R as follows.

ωλ(W (h)) = exp

(

−1

2
S(h, h) + iλ(Lh, |D|1/2f)a

)

(h ∈ H) .

With the shorthand notation b for (Lh, |D|1/2f) we have

∫ ∞

−∞

e−λ
2/2

(2π)1/2
ωλ(W (h))dλ = e−

1

2
(h,h)(2π)−1/2

×
∫ ∞

−∞

exp(−λ2/2 + b2a2/2 + iba)dλ

= e−
1

2
(h,h)(2π)−1/2

×
∫ ∞

−∞

exp

(

−1

2
(λ+ iab)2

)

dλ

= e−
1

2
(h,h)

and this means that

ϕ = (2π)−1/2

∫ ∞

−∞

exp(−λ2/2)ωλdλ .

This decomposition is in contradiction with the starting assumption on ϕ. Hence the
proof has been completed. �

Theorem 5.21 Let the quasifree state ϕ defined on CCR(H, σ) be given by a complete
inner product α( · , · ) as

ϕ(W (h)) = exp
(

−1
2
α(h, h)

)

.

Then ϕ is pure if and only if it is a Fock state.



5.7. PURIFICATION 49

This result makes Proposition 5.20 more complete. Remember that a state on a C*-
algebra is pure if and only if the corresponding GNS-representation is irreducible (see
[6], Thm. 2.3.19). Theorem 5.10 tells us that Fock states are pure and Proposition 5.20
yields that the other states are not so.

Now we are going to see that every quasifree state is a restriction of a Fock state of
a bigger CCR-algebra.

Theorem 5.22 Let H2 = H ⊕H be the direct sum Hilbert space and set a contraction
D2 of H2 by the matrix

D2 =

[

D J
√
I +D2

J
√
I +D2 −D

]

. (5.30)

Then the bilinear form

σ2(W (f2)) = exp

(

−1

2
‖f2‖2

)

(f2, g2 ∈ H2)

is a symplectic form and the quasifree state

ϕ2(W (f2)) = exp

(

−1

2
‖f2‖2

)

(f2 ∈ H2) (5.31)

on CCR(H2, σ2) is a Fock state.

Proof. The proof is rather straightforward. We recall the relations

JD = DJ , D∗ = −D , J = J∗ , J2 = −id

These give that
D∗

2 = −D2 and D2
2 = −id ,

in other words, D2 is a skewadjoint unitary. Hence σ2 is an antisymmetric form and
(4.9) defines a quasifree state. By the definition at the end of Chapter 3, ϕ2 is a Fock
state. �

Since
σ2(f ⊕ 0, f ′ ⊕ 0) = (D2(f ⊕ 0), f ′ ⊕ 0) = (Df, f ′) = σ(f, f ′)

the mapping
W (f) 7→W (f ⊕ 0) (f ∈ H)

gives rise to an embedding of CCR(H, σ) into CCR(H2, σ2). Fock states are pure and
that is the reason why the procedure described in Theorem 4.9 is called purification.
Due to the direct sum H2 = H ⊕H , doubling is another used term.

Purification is a standard way to reduce assertions on arbitrary quasifree states to
those on Fock states. For example, we have

Corollary 5.23 For an arbitrary quasifree state ϕ the linear manifold Dϕ
B is dense in

the GNS Hilbert space Hϕ and consists of entire analytic vectors for every field operator
Bϕ(f) (f ∈ H).
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5.8 Exercises

1. Show that

ϕ(W (z)) = exp
(

− |z|2
2

− 〈z, Az〉
)

(z ∈ H)

defines a state of CCR(H) for a positive operator A ∈ H.

2. Compute the density of the state

ϕ(W (z)) = exp
(

− |z|2
2

− 〈z, Az〉
)

whenH has dimension 2 in the formalism of Example 5.12 andAηi = λiηi (i = 1, 2).

3. Show that the entropy of the previous state is

Tr κ(A), κ(t) = −t log t + (t+ 1) log(t + 1).



Chapter 6

Fluctuations and central limit

On matrix algebra Md(C) we fix a faithful state ψ, i.e. a state whose density matrix ρψ
is strictly positive definite. The algebra Md(C) becomes a complex Hilbert space with
the inner product

〈X, Y 〉ρ = ψ(Y ∗X) ≡ Tr (ρψY
∗X) (X, Y ∈Md(C)).

We consider the algebra CCR(Md(C)) of the canonical commutation relation. On this
algebra we have the Fock state ϕ defined by

ϕ(W (X)) = exp
(

− 1
2
Tr ρX∗X

)

.

By the GNS-construction, ϕ generates the Fock representation of the CCR-algebra.

The simplectic form is

σ(X, Y ) =
1

2i
ψ(X∗Y − Y ∗X).

On the subspace Md(C)
sa ⊂Md(C) of self-adjoint matrices the simplectic form is

σ(X, Y ) =
1

2i
ψ([X, Y ]) (X, Y ∈Md(C)

sa).

This simplectic form is degenerate on Md(C)
sa. The real Hilbert space

L2
R(ρ) := (Md(C))

sa, 〈 · , · 〉ρ)

is a direct sum of orthogonal subspaces: Hρ ⊕H⊥
ρ , where

Hρ =
{

A ∈ L2
R
(ρ) : [A, ρ] = 0

}

.

In particular, if B = B1 ⊕B2 ∈ L2
R
(ρ) then

ϕ(W (B)) = exp

(

−1

2
(B1, B1)ρ

)

exp

(

−1

2
(B2, B2)ρ

)

. (6.1)

Moreover, since σ(A,B) = 0 for A ∈ Hρ and B arbitrary we get the following factoriza-
tion

CCR(M(Cd)sa, σ) ∼= CCR(Hρ, σ)⊗ CCR(H⊥
ρ , σ), (6.2)

51
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and by (6.1) the state ϕ factorizes as

ϕ = ϕ1 ⊗ ϕ2. (6.3)

The left side of the tensor product is a commutative algebra which is isomorphic to
L∞

(

R|Hρ|
)

carrying a Gaussian state with covariance (A,B)ρ.

Consider the infinite tensorproduct C*-algebra B := ⊗∞
i=1Bi, where Bi’s are copies of

Md(C). Each X ∈Md(C) will be indentified with

X ⊗ I ⊗ I ⊗ . . .

and so Md(C) may be considered to be a subalgebra of B. The right shift endomorphism
γ of B is determined by the property

γ : X1 ⊗X2 ⊗ . . .⊗Xn ⊗ I ⊗ I ⊗ . . . 7→ I ⊗X1 ⊗ . . .⊗Xn ⊗ I ⊗ . . . .

On the language of algebraic probability B with the state ω = ψ ⊗ ψ ⊗ . . . forms a
probability space and Md(C) ⊂ B corresponds to a randon variable. Speaking this
language

Md(C), γ(Md(C)), γ
2(Md(C)), . . .

is a sequence of identically distributed independent randon variables, that is, a Bernoulli
process (cf. [23]). For X ∈Md(C)

Fk(X) =
1√
k

k−1
∑

i=0

(γi(X)− ψ(X)) (6.4)

is called the kth fluctuation of X .

Theorem 6.1 Let A1, . . . , Ak ∈ Md(C)
sa satisfying ϕ(Aℓ) = 0, for 1 ≤ ℓ ≤ k. Then we

have the following

lim
n→∞

ω

(

k
∏

ℓ=1

exp(iFn(Aℓ))

)

= ϕ

(

k
∏

ℓ=1

W (Aℓ)

)

.
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