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Reáltanoda utca 13-15, H-1364 Budapest, Hungary
E-mail: petz.denes@renyi.mta.hu





Preface

A part of the material of this book is based on the lectures of the authors
in the Graduate School of Information Sciences of Tohoku University and
in the Budapest University of Technology and Economics. The aim of the
lectures was to explain certain important topics on matrix analysis from the
point of view of functional analysis. The concept of Hilbert space appears
many times, but only finite-dimensional spaces are used. The book treats
some aspects of analysis related to matrices including such topics as matrix
monotone functions, matrix means, majorization, entropies, quantum Markov
triplets. There are several popular matrix applications for quantum theory.

The book is organized into seven chapters. Chapters 1-3 form an intro-
ductory part of the book and could be used as a textbook for an advanced
undergraduate special topics course. The word “matrix” started in 1848 and
applications appeared in many different areas. Chapters 4-7 contain a num-
ber of more advanced and less known topics. They could be used for an ad-
vanced specialized graduate-level course aimed at students who will specialize
in quantum information. But the best use for this part is as the reference for
active researchers in the field of quantum information theory. Researchers in
statistics, engineering and economics may also find this book useful.

Chapter 1 contains the basic subjects. We prefer the Hilbert space con-
cepts, so complex numbers are used. Spectrum and eigenvalues are impor-
tant. Determinant and trace are used later in several applications. The tensor
product has symmetric and antisymmetric subspaces. In this book “positive”
means ≥ 0, the word “non-negative” is not used here. The end of the chapter
contains many exercises.

Chapter 2 contains block-matrices, partial ordering and an elementary
theory of von Neumann algebras in finite-dimensional setting. The Hilbert
space concept requires the projections P = P 2 = P ∗. Self-adjoint matrices are
linear combinations of projections. Not only the single matrices are required,
but subalgebras are also used. The material includes Kadison’s inequality
and completely positive mappings.

Chapter 3 contains matrix functional calculus. Functional calculus pro-
vides a new matrix f(A) when a matrix A and a function f are given. This
is an essential tool in matrix theory as well as in operator theory. A typical
example is the exponential function eA =

∑∞
n=0A

n/n!. If f is sufficiently
smooth, then f(A) is also smooth and we have a useful Fréchet differential
formula.

Chapter 4 contains matrix monotone functions. A real functions defined
on an interval is matrix monotone if A ≤ B implies f(A) ≤ f(B) for Hermi-
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tian matrices A,B whose eigenvalues are in the domain interval. We have a
beautiful theory on such functions, initiated by Löwner in 1934. A highlight
is integral expression of such functions. Matrix convex functions are also con-
sidered. Graduate students in mathematics and in information theory will
benefit from a single source for all of this material.

Chapter 5 contains matrix (operator) means for positive matrices. Matrix
extensions of the arithmetic mean (a+ b)/2 and the harmonic mean

(

a−1 + b−1

2

)−1

are rather trivial, however it is non-trivial to define matrix version of the
geometric mean

√
ab. This was first made by Pusz andWoronowicz. A general

theory on matrix means developed by Kubo and Ando is closely related to
operator monotone functions on (0,∞). There are also more complicated
means. The mean transformation M(A,B) := m(LA,RB) is a mean of the
left-multiplication LA and the right-multiplication RB recently studied by
Hiai and Kosaki. Another concept is a multivariable extension of two-variable
matrix means.

Chapter 6 contains majorizations for eigenvalues and singular values of ma-
trices. Majorization is a certain order relation between two real vectors. Sec-
tion 6.1 recalls classical material that is available from other sources. There
are several famous majorizations for matrices which have strong applications
to matrix norm inequalities in symmetric norms. For instance, an extremely
useful inequality is called the Lidskii-Wielandt theorem. There are several
famous majorizations for matrices which have strong applications to matrix
norm inequalities in symmetric norms.

The last chapter contains topics related to quantum applications. Positive
matrices with trace 1 are the states in quantum theories and they are also
called density matrices. The relative entropy appeared in 1962 and the ma-
trix theory has many applications in the quantum formalism. The unknown
quantum states can be known from the use of positive operators F (x) when
∑

x F (x) = I. This is called POVM and there are a few mathematical re-
sults, but in quantum theory there are much more relevant subjects. These
subjects are close to the authors and there are some very recent results.

The authors thank several colleagues for useful communications, Professor
Tsuyoshi Ando had several remarks.

Fumio Hiai and Dénes Petz

April, 2013
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Chapter 1

Fundamentals of operators and
matrices

A linear mapping is essentially matrix if the vector space is finite dimensional.
In this book the vector space is typically finite dimensional complex Hilbert-
space.

1.1 Basics on matrices

For n,m ∈ N, Mn×m = Mn×m(C) denotes the space of all n × m complex
matrices. A matrix M ∈ Mn×m is a mapping {1, 2, . . . , n} × {1, 2, . . . , m} →
C. It is represented as an array with n rows and m columns:

M =









m11 m12 · · · m1m

m21 m22 · · · m2m
...

...
. . .

...
mn1 mn2 · · · mnm









mij is the intersection of the ith row and the jth column. If the matrix is
denoted by M , then this entry is denoted by Mij . If n = m, then we write
Mn instead of Mn×n. A simple example is the identity matrix In ∈ Mn

defined as mij = δi,j , or

In =









1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1









.

Mn×m is a complex vector space of dimension nm. The linear operations
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6 CHAPTER 1. FUNDAMENTALS OF OPERATORS AND MATRICES

are defined as follows:

[λA]ij := λAij , [A+B]ij := Aij +Bij

where λ is a complex number and A,B ∈ Mn×m.

Example 1.1 For i, j = 1, . . . , n let E(ij) be the n × n matrix such that
(i, j)-entry equals to one and all other entries equal to zero. Then E(ij) are
called matrix-units and form a basis of Mn:

A =

n
∑

i,j=1

AijE(ij).

Furthermore,

In =
n
∑

i=1

E(ii) .

If A ∈ Mn×m and B ∈ Mm×k, then product AB of A and B is defined by

[AB]ij =
m
∑

ℓ=1

AiℓBℓj,

where 1 ≤ i ≤ n and 1 ≤ j ≤ k. Hence AB ∈ Mn×k. So Mn becomes an
algebra. The most significant feature of matrices is non-commutativity of the
product AB 6= BA. For example,

[

0 1
0 0

] [

0 0
1 0

]

=

[

1 0
0 0

]

,

[

0 0
1 0

] [

0 1
0 0

]

=

[

0 0
0 1

]

.

In the matrix algebra Mn, the identity matrix In behaves as a unit: InA =
AIn = A for every A ∈ Mn. The matrix A ∈ Mn is invertible if there is a
B ∈ Mn such that AB = BA = In. This B is called the inverse of A, in
notation A−1. �

Example 1.2 The linear equations

ax+ by = u

cx+ dy = v

can be written in a matrix formalism:
[

a b
c d

] [

x
y

]

=

[

u
v

]

.
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If x and y are the unknown parameters and the coefficient matrix is invertible,
then the solution is

[

x
y

]

=

[

a b
c d

]−1 [
u
v

]

.

So the solution of linear equations is based on the inverse matrix which is
formulated in Theorem 1.33. �

The transpose At of the matrix A ∈ Mn×m is an m× n matrix,

[At]ij = Aji (1 ≤ i ≤ m, 1 ≤ j ≤ n).

It is easy to see that if the product AB is defined, then (AB)t = BtAt. The
adjoint matrix A∗ is the complex conjugate of the transpose At. The space
Mn is a *-algebra:

(AB)C = A(BC), (A+B)C = AC +BC, A(B + C) = AB + AC,

(A+B)∗ = A∗ +B∗, (λA)∗ = λ̄A∗, (A∗)∗ = A, (AB)∗ = B∗A∗.

Let A ∈ Mn. The trace of A is the sum of the diagonal entries:

TrA :=
n
∑

i=1

Aii. (1.1)

It is easy to show that TrAB = TrBA, see Theorem 1.28 .

The determinant of A ∈ Mn is slightly more complicated:

detA :=
∑

π

(−1)σ(π)A1π(1)A2π(2) . . . Anπ(n), (1.2)

where the sum is over all permutations π of the set {1, 2, . . . , n} and σ(π) is
the parity of the permutation π. Therefore

det

[

a b
c d

]

= ad− bc,

and another example is the following:

det





A11 A12 A13

A21 A22 A23

A31 A32 A33





= A11 det

[

A22 A23

A32 A33

]

− A12 det

[

A21 A23

A31 A33

]

+ A13 det

[

A21 A22

A31 A33

]

.

It can be proven that

det(AB) = (detA)(detB). (1.3)
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1.2 Hilbert space

Let H be a complex vector space. A functional 〈 · , · 〉 : H ×H → C of two
variables is called inner product

(1) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉 (x, y, z ∈ H),

(2) 〈λx, y〉 = λ〈x, y〉 (λ ∈ C, x, y ∈ H)

(3) 〈x, y〉 = 〈y, x〉 (x, y ∈ H),

(4) 〈x, x〉 ≥ 0 for every x ∈ H and 〈x, x〉 = 0 only for x = 0.

Condition (2) states that the inner product is conjugate linear in the first
variable (and it is linear in the second variable). The Schwarz inequality

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉 (1.4)

holds. The inner product determines a norm for the vectors:

‖x‖ :=
√

〈x, x〉. (1.5)

This has the properties

‖x+ y‖ ≤ ‖x‖+ ‖y‖ and |〈x, y〉| ≤ ‖x‖ · ‖y‖ .

‖x‖ is interpreted as the length of the vector x. A further requirement in
the definition of a Hilbert space is that every Cauchy sequence must be con-
vergent, that is, the space is complete. (In the finite dimensional case, the
completeness always holds.)

The linear space Cn of all n-tuples of complex numbers becomes a Hilbert
space with the inner product

〈x, y〉 =
n
∑

i=1

xiyi = [x1, x2, . . . , xn]











y1
y2
...
yn











,

where z denotes the complex conjugate of the complex number z ∈ C. An-
other example is the space of square integrable complex-valued function on
the real Euclidean space Rn. If f and g are such functions then

〈f, g〉 =
∫

Rn

f(x) g(x) dx
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gives the inner product. The latter space is denoted by L2(Rn) and it is
infinite dimensional contrary to the n-dimensional space Cn. Below we are
mostly satisfied with finite dimensional spaces.

If 〈x, y〉 = 0 for vectors x and y of a Hilbert space, then x and y are called
orthogonal, in notation x ⊥ y. When H ⊂ H, then H⊥ := {x ∈ H : x ⊥ h
for every h ∈ H}. For any subset H ⊂ H the orthogonal complement H⊥ is
a closed subspace.

A family {ei} of vectors is called orthonormal if 〈ei, ei〉 = 1 and 〈ei, ej〉 =
0 if i 6= j. A maximal orthonormal system is called a basis or orthonormal
basis. The cardinality of a basis is called the dimension of the Hilbert space.
(The cardinality of any two bases is the same.)

In the space Cn, the standard orthonormal basis consists of the vectors

δ1 = (1, 0, . . . , 0), δ2 = (0, 1, 0, . . . , 0), . . . , δn = (0, 0, . . . , 0, 1), (1.6)

each vector has 0 coordinate n− 1 times and one coordinate equals 1.

Example 1.3 The space Mn of matrices becomes Hilbert space with the
inner product

〈A,B〉 = TrA∗B (1.7)

which is called Hilbert–Schmidt inner product. The matrix units E(ij)
(1 ≤ i, j ≤ n) form an orthonormal basis.

It follows that the Hilbert–Schmidt norm

‖A‖2 :=
√

〈A,A〉 =
√
TrA∗A =

(

n
∑

i,j=1

|Aij |2
)1/2

(1.8)

is a norm for the matrices. �

Assume that in an n dimensional Hilbert space linearly independent vec-
tors {v1, v2, . . . , vn} are given. By the Gram-Schmidt procedure an or-
thonormal basis can be obtained by linear combination:

e1 :=
1

‖v1‖
v1,

e2 :=
1

‖w2‖
w2 with w2 := v2 − 〈e1, v2〉e1,

e3 :=
1

‖w3‖
w3 with w3 := v3 − 〈e1, v3〉e1 − 〈e2, v3〉e2,

...

en :=
1

‖wn‖
wn with wn := vn − 〈e1, vn〉e1 − . . .− 〈en−1, vn〉en−1.



10 CHAPTER 1. FUNDAMENTALS OF OPERATORS AND MATRICES

The next theorem tells that any vector has a unique Fourier expansion.

Theorem 1.4 Let e1, e2, . . . be a basis in a Hilbert space H. Then for any
vector x ∈ H the expansion

x =
∑

n

〈en, x〉en

holds. Moreover,

‖x‖2 =
∑

n

|〈en, x〉|2

Let H and K be Hilbert spaces. A mapping A : H → K is called linear if
it preserves linear combination:

A(λf + µg) = λAf + µAg (f, g ∈ H, λ, µ ∈ C).

The kernel and the range of A are

kerA := {x ∈ H : Ax = 0}, ranA := {Ax ∈ K : x ∈ H}.

The dimension formula familiar in linear algebra is

dimH = dim (kerA) + dim (ranA). (1.9)

The quantity dim (ranA) is called the rank of A, rankA is the notation. It
is easy to see that rankA ≤ dimH, dimK.

Let e1, e2, . . . , en be a basis of the Hilbert space H and f1, f2, . . . , fm be a
basis of K. The linear mapping A : H → K is determined by the vectors Aej ,
j = 1, 2, . . . , n. Furthermore, the vector Aej is determined by its coordinates:

Aej = c1,jf1 + c2,jf2 + . . .+ cm,jfm.

The numbers ci,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, form an m×n matrix, it is called the
matrix of the linear transformationA with respect to the bases (e1, e2, . . . , en)
and (f1, f2, . . . , fm). If we want to distinguish the linear operator A from its
matrix, then the latter one will be denoted by [A]. We have

[A]ij = 〈fi, Aej〉 (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Note that the order of the basis vectors is important. We shall mostly con-
sider linear operators of a Hilbert space into itself. Then only one basis is
needed and the matrix of the operator has the form of a square. So a linear
transformation and a basis yield a matrix. If an n×n matrix is given, then it
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can be always considered as a linear transformation of the space Cn endowed
with the standard basis (1.6).

The inner product of the vectors |x〉 and |y〉 will be often denoted as 〈x|y〉,
this notation, sometimes called bra and ket, is popular in physics. On the
other hand, |x〉〈y| is a linear operator which acts on the vector |z〉 as

(|x〉〈y|) |z〉 := |x〉 〈y|z〉 ≡ 〈y|z〉 |x〉.

Therefore,

|x〉〈y| =













x1
x2
.
.
xn













[y1, y2, . . . , yn]

is conjugate linear in |y〉, while 〈x|y〉 is linear.
The next example shows the possible use of the bra and ket.

Example 1.5 If X, Y ∈ Mn(C), then

n
∑

i,j=1

TrE(ij)XE(ji)Y = (TrX)(Tr Y ). (1.10)

Since both sides are bilinear in the variables X and Y , it is enough to check
that case X = E(ab) and Y = E(cd). Simple computation gives that the
left-hand-side is δabδcd and this is the same as the right-hand-side.

Another possibility is to use the formula E(ij) = |ei〉〈ej |. So
∑

i,j

TrE(ij)XE(ji)Y =
∑

i,j

Tr |ei〉〈ej|X|ej〉〈ei|Y =
∑

i,j

〈ej|X|ej〉〈ei|Y |ei〉

=
∑

j

〈ej |X|ej〉
∑

i

〈ei|Y |ei〉

and the right-hand-side is (TrX)(Tr Y ). �

Example 1.6 Fix a natural number n and let H be the space of polynomials
of at most n degree. Assume that the variable of these polynomials is t and
the coefficients are complex numbers. The typical elements are

p(t) =
n
∑

i=0

uit
i and q(t) =

n
∑

i=0

vit
i.
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If their inner product is defined as

〈p(t), q(t)〉 :=
n
∑

i=0

uivi,

then {1, t, t2, . . . , tn} is an orthonormal basis.

The differentiation is a linear operator:

n
∑

k=0

ukt
k 7→

n
∑

k=0

kukt
k−1 .

In the above basis, its matrix is
















0 1 0 . . . 0 0
0 0 2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . 0 n
0 0 0 . . . 0 0

















. (1.11)

This is an upper triangular matrix, the (i, j) entry is 0 if i > j. �

Let H1,H2 and H3 be Hilbert spaces and we fix a basis in each of them.
If B : H1 → H2 and A : H2 → H3 are linear mappings, then the composition

f 7→ A(Bf) ∈ H3 (f ∈ H1)

is linear as well and it is denoted by AB. The matrix [AB] of the composition
AB can be computed from the matrices [A] and [B] as follows

[AB]ij =
∑

k

[A]ik[B]kj. (1.12)

The right-hand-side is defined to be the product [A] [B] of the matrices [A]
and [B]. Then [AB] = [A] [B] holds. It is obvious that for a k ×m matrix
[A] and an m× n matrix [B], their product [A] [B] is a k × n matrix.

Let H1 and H2 be Hilbert spaces and we fix a basis in each of them. If
A,B : H1 → H2 are linear mappings, then their linear combination

(λA+ µB)f 7→ λ(Af) + µ(Bf)

is a linear mapping and

[λA+ µB]ij = λ[A]ij + µ[B]ij . (1.13)
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Let H be a Hilbert space. The linear operators H → H form an algebra.
This algebra B(H) has a unit, the identity operator denoted by I and the
product is non-commutative. Assume that H is n dimensional and fix a basis.
Then to each linear operator A ∈ B(H) an n × n matrix A is associated.
The correspondence A 7→ [A] is an algebraic isomorphism from B(H) to the
algebra Mn(C) of n×n matrices. This isomorphism shows that the theory of
linear operators on an n dimensional Hilbert space is the same as the theory
of n× n matrices.

Theorem 1.7 (Riesz-Fischer theorem) Let φ : H → C be a linear map-
ping on a finite dimensional Hilbert space H. Then there is a unique vector
v ∈ H such that φ(x) = 〈v, x〉 for every vector x ∈ H.

Proof: Let e1, e2, . . . , en be an orthonormal basis in H. Then we need a
vector v ∈ H such that φ(ei) = 〈v, ei〉. So

v =
∑

i

φ(ei)ei

will satisfy the condition. �

The linear mappings φ : H → C are called functionals. If the Hilbert
space is not finite dimensional, then in the previous theorem the condition
|φ(x)| ≤ c‖x‖ should be added, where c is a positive number.

The operator norm of a linear operator A : H → K is defined as

‖A‖ := sup{‖Ax‖ : x ∈ H, ‖x‖ = 1} .
It can be shown that ‖A‖ is finite. In addition to the common properties
‖A +B‖ ≤ ‖A‖+ ‖B‖ and ‖λA‖ = |λ|‖A‖, the submultiplicativity

‖AB‖ ≤ ‖A‖ ‖B‖
also holds.

If ‖A‖ ≤ 1, then the operator A is called contraction.

The set of linear operators H → H is denoted by B(H). The convergence
An → A means ‖A − An‖ → 0. In the case of finite dimensional Hilbert
space the norm here can be the operator norm, but also the Hilbert-Schmidt
norm. The operator norm of a matrix is not expressed explicitly by the matrix
entries.

Example 1.8 Let A ∈ B(H) and ‖A‖ < 1. Then I −A is invertible and

(I − A)−1 =

∞
∑

n=0

An.
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Since

(I − A)
N
∑

n=0

An = I − AN+1 and ‖AN+1‖ ≤ ‖A‖N+1,

we can see that the limit of the first equation is

(I − A)

∞
∑

n=0

An = I.

This shows the statement which is called Neumann series. �

Let H and K be Hilbert spaces. If T : H → K is a linear operator, then
its adjoint T ∗ : K → H is determined by the formula

〈x, Ty〉K = 〈T ∗x, y〉H (x ∈ K, y ∈ H). (1.14)

The operator T ∈ B(H) is called self-adjoint if T ∗ = T . The operator T is
self-adjoint if and only if 〈x, Tx〉 is a real number for every vector x ∈ H. For
self-adjoint operators and matrices the notations B(H)sa and Msa

n are used.

Theorem 1.9 The properties of the adjoint:

(1) (A +B)∗ = A∗ +B∗, (λA)∗ = λA∗ (λ ∈ C),

(2) (A∗)∗ = A, (AB)∗ = B∗A∗,

(3) (A−1)∗ = (A∗)−1 if A is invertible,

(4) ‖A‖ = ‖A∗‖, ‖A∗A‖ = ‖A‖2.

Example 1.10 Let A : H → H be a linear mapping and e1, e2, . . . , en be a
basis in the Hilbert space H. The (i, j) element of the matrix of A is 〈ei, Aej〉.
Since

〈ei, Aej〉 = 〈ej, A∗ei〉,
this is the complex conjugate of the (j, i) element of the matrix of A∗.

If A is self-adjoint, then the (i, j) element of the matrix of A is the con-
jugate of the (j, i) element. In particular, all diagonal entries are real. The
self-adjoint matrices are also called Hermitian matrices. �

Theorem 1.11 (Projection theorem) Let M be a closed subspace of a
Hilbert space H. Any vector x ∈ H can be written in a unique way in the
form x = x0 + y, where x0 ∈ M and y ⊥ M.
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Note that a subspace of a finite dimensional Hilbert space is always closed.

The mapping P : x 7→ x0 defined in the context of the previous theorem
is called orthogonal projection onto the subspace M. This mapping is
linear:

P (λx+ µy) = λPx+ µPy.

Moreover, P 2 = P = P ∗. The converse is also true: If P 2 = P = P ∗, then P
is an orthogonal projection (onto its range).

Example 1.12 The matrix A ∈ Mn is self-adjoint if Aji = Aij. A particular
example is the Toeplitz matrix:

















a1 a2 a3 . . . an−1 an
a2 a1 a2 . . . an−2 an−1

a3 a2 a1 . . . an−3 an−2
...

...
...

. . .
...

...
an−1 an−2 an−3 . . . a1 a2
an an−1 an−2 . . . a2 a1

















, (1.15)

where a1 ∈ R. �

An operator U ∈ B(H) is called unitary if U∗ is the inverse of U . Then
U∗U = I and

〈x, y〉 = 〈U∗Ux, y〉 = 〈Ux, Uy〉
for any vectors x, y ∈ H. Therefore the unitary operators preserve the inner
product. In particular, orthogonal unit vectors are mapped into orthogonal
unit vectors.

Example 1.13 The permutation matrices are simple unitaries. Let π
be a permutation of the set {1, 2, . . . , n}. The Ai,π(i) entries of A ∈ Mn(C)
are 1 and all others are 0. Every row and every column contain exactly one 1
entry. If such a matrix A is applied to a vector, it permutes the coordinates:





0 1 0
0 0 1
1 0 0









x1
x2
x3



 =





x2
x3
x1



 .

This shows the reason of the terminology. Another possible formalism is
A(x1, x2, x3) = (x2, x3, x1). �

An operator A ∈ B(H) is called normal if AA∗ = A∗A. It follows
immediately that

‖Ax‖ = ‖A∗x‖ (1.16)
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for any vector x ∈ H. Self-adjoint and unitary operators are normal.

The operators we need are mostly linear, but sometimes conjugate-linear
operators appear. Λ : H → K is conjugate-linear if

Λ(λx+ µy) = λΛx+ µΛy

for any complex numbers λ and µ and for any vectors x, y ∈ H. The adjoint
Λ∗ of the conjugate-linear operator Λ is determined by the equation

〈x,Λy〉K = 〈y,Λ∗x〉H (x ∈ K, y ∈ H). (1.17)

A mapping φ : H×H → C is called complex bilinear form if φ is linear
in the second variable and conjugate linear in the first variables. The inner
product is a particular example.

Theorem 1.14 On a finite dimensional Hilbert space there is a one-to-one
correspondence

φ(x, y) = 〈Ax, y〉
between the complex bilinear forms φ : H×H → C and the linear operators
A : H → H.

Proof: Fix x ∈ H. Then y 7→ φ(x, y) is a linear functional. Due to the
Riesz-Fischer theorem φ(x, y) = 〈z, y〉 for a vector z ∈ H. We set Ax = z. �

The polarization identity

4φ(x, y) = φ(x+ y, x+ y) + iφ(x+ iy, x+ iy)
−φ(x− y, x− y)− iφ(x− iy, x− iy) (1.18)

shows that a complex bilinear form φ is determined by its so-called quadratic
form x 7→ φ(x, x).

The n × n matrices Mn can be identified with the linear operators B(H)
where the Hilbert space H is n-dimensional. To make a precise identification
an orthonormal basis should be fixed in H.

1.3 Jordan canonical form

A Jordan block is a matrix

Jk(a) =













a 1 0 · · · 0
0 a 1 · · · 0
0 0 a · · · 0
...

...
...

. . .
...

0 0 0 · · · a













, (1.19)
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where a ∈ C. This is an upper triangular matrix Jk(a) ∈ Mk. We use also
the notation Jk := Jk(0). Then

Jk(a) = aIk + Jk (1.20)

and the sum consists of commuting matrices.

Example 1.15 The matrix Jk is

(Jk)ij =
{

1 if j = i+ 1,
0 otherwise.

Therefore

(Jk)ij(Jk)jk =
{

1 if j = i+ 1 and k = i+ 2,
0 otherwise.

It follows that
(J2
k)ij =

{

1 if j = i+ 2,
0 otherwise.

We observe that taking the powers of Jk the line of the 1 entries is going
upper, in particular Jkk = 0. The matrices {Jmk : 0 ≤ m ≤ k − 1} are linearly
independent.

If a 6= 0, then det Jk(a) 6= 0 and Jk(a) is invertible. We can search for the
inverse by the equation

(aIk + Jk)

(

k−1
∑

j=0

cjJ
j
k

)

= Ik.

Rewriting this equation we get

ac0Ik +
k−1
∑

j=1

(acj + cj−1)J
j
k = Ik.

The solution is
cj = −(−a)−j−1 (0 ≤ j ≤ k − 1).

In particular,





a 1 0
0 a 1
0 0 a





−1

=





a−1 −a−2 a−3

0 a−1 −a−2

0 0 a−1



 .

Computation with a Jordan block is convenient. �
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The Jordan canonical form theorem is the following.

Theorem 1.16 Given a matrix X ∈ Mn, there is an invertible matrix S ∈
Mn such that

X = S









Jk1(λ1) 0 · · · 0
0 Jk2(λ2) · · · 0
...

...
. . .

...
0 0 · · · Jkm(λm)









S−1 = SJS−1,

where k1 + k2 + · · ·+ km = n. The Jordan matrix J is uniquely determined
(up to the permutation of the Jordan blocks in the diagonal.)

Note that the numbers λ1, λ2, . . . , λm are not necessarily different. Exam-
ple 1.15 showed that it is rather easy to handle a Jordan block. If the Jordan
canonical decomposition is known, then the inverse can be obtained. The
theorem is about complex matrices.

Example 1.17 An essential application is concerning the determinant. Since
detX = det(SJS−1) = det J , it is enough to compute the determinant of the
upper-triangular Jordan matrix J . Therefore

detX =

m
∏

j=1

λ
kj
j . (1.21)

The characteristic polynomial of X ∈ Mn is defined as

p(x) := det(xIn −X)

From the computation (1.21) we have

p(x) =

m
∏

j=1

(x− λj)
kj = xn −

(

m
∑

j=1

kjλj

)

xn−1 + · · ·+ (−1)n
m
∏

j=1

λ
kj
j . (1.22)

The numbers λj are roots of the characteristic polynomial. �

The powers of a matrix X ∈ Mn are well-defined. For a polynomial p(x) =
∑m

k=0 ckx
k the matrix p(X) is

m
∑

k=0

ckX
k.

If q is a polynomial, then it is annihilating for a matrix X ∈ Mn if q(X) = 0.

The next result is the Cayley-Hamilton theorem.

Theorem 1.18 If p is the characteristic polynomial of X ∈ Mn, then p(X) =
0.
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1.4 Spectrum and eigenvalues

Let H be a Hilbert space. For A ∈ B(H) and λ ∈ C, we say that λ is an
eigenvalue of A if there is a non-zero vector v ∈ H such that Av = λv.
Such a vector v is called an eigenvector of A for the eigenvalue λ. If H is
finite-dimensional, then λ ∈ C is an eigenvalue of A if and only if A − λI is
not invertible.

Generally, the spectrum σ(A) of A ∈ B(H) consists of the numbers
λ ∈ C such that A− λI is not invertible. Therefore in the finite-dimensional
case the spectrum is the set of eigenvalues.

Example 1.19 We show that σ(AB) = σ(BA) for A,B ∈ Mn. It is enough
to prove that det(λI−AB) = det(λI−BA). Assume first that A is invertible.
We then have

det(λI −AB) = det(A−1(λI − AB)A) = det(λI −BA)

and hence σ(AB) = σ(BA).

When A is not invertible, choose a sequence εk ∈ C \ σ(A) with εk → 0
and set Ak := A− εkI. Then

det(λI −AB) = lim
k→∞

det(λI −AkB) = lim
k→∞

det(λI −BAk) = det(λI −BA).

(Another argument is in Exercise 3 of Chapter 2.) �

Example 1.20 In the history of matrix theory the particular matrix
















0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 1 0

















(1.23)

has importance. Its eigenvalues were computed by Joseph Louis Lagrange
in 1759. He found that the eigenvalues are 2 cos jπ/(n+ 1) (j = 1, 2, . . . , n).

�

The matrix (1.23) is tridiagonal. This means that Aij = 0 if |i− j| > 1.

Example 1.21 Let λ ∈ R and consider the matrix

J3(λ) =





λ 1 0
0 λ 1
0 0 λ



 . (1.24)
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Now λ is the only eigenvalue and (y, 0, 0) is the only eigenvector. The situation
is similar in the k × k generalization Jk(λ): λ is the eigenvalue of SJk(λ)S

−1

for an arbitrary invertible S and there is one eigenvector (up to constant
multiple). This has the consequence that the characteristic polynomial gives
the eigenvalues without the multiplicity.

If X has the Jordan form as in Theorem 1.16, then all λj ’s are eigenvalues.
Therefore the roots of the characteristic polynomial are eigenvalues.

For the above J3(λ) we can see that

J3(λ)(0, 0, 1) = (0, 1, λ), J3(λ)
2(0, 0, 1) = (1, 2λ, λ2),

therefore (0, 0, 1) and these two vectors linearly span the whole space C3. The
vector (0, 0, 1) is called cyclic vector.

Assume that a matrix X ∈ Mn has a cyclic vector v ∈ Cn which means
that the set {v,Xv,X2v, . . . , Xn−1v} spans Cn. Then X = SJn(λ)S

−1 with
some invertible matrix S, the Jordan canonical form is very simple. �

Theorem 1.22 Assume that A ∈ B(H) is normal. Then there exist λ1, . . . ,
λn ∈ C and u1, . . . , un ∈ H such that {u1, . . . , un} is an orthonormal basis of
H and Aui = λiui for all 1 ≤ i ≤ n.

Proof: Let us prove by induction on n = dimH. The case n = 1 trivially
holds. Suppose the assertion holds for dimension n−1. Assume that dimH =
n and A ∈ B(H) is normal. Choose a root λ1 of det(λI−A) = 0. As explained
before the theorem, λ1 is an eigenvalue of A so that there is an eigenvector
u1 with Au1 = λ1u1. One may assume that u1 is a unit vector, i.e., ‖u1‖ = 1.
Since A is normal, we have

(A− λ1I)
∗(A− λ1I) = (A∗ − λ1I)(A− λ1I)

= A∗A− λ1A− λ1A
∗ + λ1λ1I

= AA∗ − λ1A− λ1A
∗ + λ1λ1I

= (A− λ1I)(A− λ1I)
∗,

that is, A− λ1I is also normal. Therefore,

‖(A∗ − λ1I)u1‖ = ‖(A− λ1I)
∗u1‖ = ‖(A− λ1I)u1‖ = 0

so that A∗u1 = λ1u1. Let H1 := {u1}⊥, the orthogonal complement of {u1}.
If x ∈ H1 then

〈Ax, u1〉 = 〈x,A∗u1〉 = 〈x, λ1u1〉 = λ1〈x, u1〉 = 0,

〈A∗x, u1〉 = 〈x,Au1〉 = 〈x, λ1u1〉 = λ1〈x, u1〉 = 0
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so that Ax,A∗x ∈ H1. Hence we have AH1 ⊂ H1 and A∗H1 ⊂ H1. So
one can define A1 := A|H1

∈ B(H1). Then A∗
1 = A∗|H1

, which implies
that A1 is also normal. Since dimH1 = n − 1, the induction hypothesis
can be applied to obtain λ2, . . . , λn ∈ C and u2, . . . , un ∈ H1 such that
{u2, . . . , un} is an orthonormal basis ofH1 and A1ui = λiui for all i = 2, . . . , n.
Then {u1, u2, . . . , un} is an orthonormal basis of H and Aui = λiui for all
i = 1, 2, . . . , n. Thus the assertion holds for dimension n as well. �

It is an important consequence that the matrix of a normal operator is
diagonal in an appropriate orthonormal basis and the trace is the sum of the
eigenvalues.

Theorem 1.23 Assume that A ∈ B(H) is self-adjoint. If Av = λv and
Aw = µw with non-zero eigenvectors v, w and the eigenvalues λ and µ are
different, then v ⊥ w and λ, µ ∈ R.

Proof: First we show that the eigenvalues are real:

λ〈v, v〉 = 〈v, λv〉 = 〈v, Av〉 = 〈Av, v〉 = 〈λv, v〉 = λ〈v, v〉.

The 〈v, w〉 = 0 orthogonality comes similarly:

µ〈v, w〉 = 〈v, µw〉 = 〈v, Aw〉 = 〈Av, w〉 = 〈λv, w〉 = λ〈v, w〉.

�

If A is a self-adjoint operator on an n-dimensional Hilbert space, then from
the eigenvectors we can find an orthonormal basis v1, v2, . . . , vn. If Avi = λivi,
then

A =

n
∑

i=1

λi|vi〉〈vi| (1.25)

which is called the Schmidt decomposition. The Schmidt decomposition
is unique if all the eigenvalues are different, otherwise not. Another useful
decomposition is the spectral decomposition. Assume that the self-adjoint
operator A has the eigenvalues µ1 > µ2 > . . . > µk. Then

A =
k
∑

j=1

µjPj , (1.26)

where Pj is the orthogonal projection onto the subspace spanned by the eigen-
vectors with eigenvalue µj. (From the Schmidt decomposition (1.25),

Pj =
∑

i

|vi〉〈vi|,
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where the summation is over all i such that λi = µj.) This decomposition
is always unique. Actually, the Schmidt decomposition and the spectral de-
composition exist for all normal operators.

If λi ≥ 0 in (1.25), then we can set |xi〉 :=
√
λi|vi〉 and we have

A =
n
∑

i=1

|xi〉〈xi|.

If the orthogonality of the vectors |xi〉 is not assumed, then there are several
similar decompositions, but they are connected by a unitary. The next lemma
and its proof is a good exercise for the bra and ket formalism. (The result
and the proof is due to Schrödinger [73].)

Lemma 1.24 If

A =

n
∑

j=1

|xj〉〈xj | =
n
∑

i=1

|yi〉〈yi|,

then there exists a unitary matrix [Uij ]
n
i,j=1 such that

n
∑

j=1

Uij |xj〉 = |yi〉. (1.27)

Proof: Assume first that the vectors |xj〉 are orthogonal. Typically they are
not unit vectors and several of them can be 0. Assume that |x1〉, |x2〉, . . . , |xk〉
are not 0 and |xk+1〉 = . . . = |xn〉 = 0. Then the vectors |yi〉 are in the linear
span of {|xj〉 : 1 ≤ j ≤ k}, therefore

|yi〉 =
k
∑

j=1

〈xj|yi〉
〈xj|xj〉

|xj〉

is the orthogonal expansion. We can define [Uij ] by the formula

Uij =
〈xj |yi〉
〈xj|xj〉

(1 ≤ i ≤ n, 1 ≤ j ≤ k).

We easily compute that

k
∑

i=1

UitU
∗
iu =

k
∑

i=1

〈xt|yi〉
〈xt|xt〉

〈yi|xu〉
〈xu|xu〉

=
〈xt|A|xu〉

〈xu|xu〉〈xt|xt〉
= δt,u,
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and this relation shows that the k column vectors of the matrix [Uij ] are
orthonormal. If k < n, then we can append further columns to get an n× n
unitary, see Exercise 37. (One can see in (1.27) that if |xj〉 = 0, then Uij does
not play any role.)

In the general situation

A =

n
∑

j=1

|zj〉〈zj| =
n
∑

i=1

|yi〉〈yi|

we can make a unitary U from an orthogonal family to |yi〉’s and a unitary V
from the same orthogonal family to |zi〉’s and UV ∗ goes from |zi〉’s to |yi〉’s.

�

Example 1.25 Let A ∈ B(H) be a self-adjoint operator with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn (counted with multiplicity). Then

λ1 = max{〈v, Av〉 : v ∈ H, ‖v‖ = 1}. (1.28)

We can take the Schmidt decomposition (1.25). Assume that

max{〈v, Av〉 : v ∈ H, ‖v‖ = 1} = 〈w,Aw〉

for a unit vector w. This vector has the expansion

w =
n
∑

i=1

ci|vi〉

and we have

〈w,Aw〉 =
n
∑

i=1

|ci|2λi ≤ λ1.

The equality holds if and only if λi < λ1 implies ci = 0. The maximizer
should be an eigenvector with eigenvalue λ1.

Similarly,
λn = min{〈v, Av〉 : v ∈ H, ‖v‖ = 1}. (1.29)

The formulae (1.28) and (1.29) will be extended below. �

Theorem 1.26 (Poincaré’s inequality) Let A ∈ B(H) be a self-adjoint
operator with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn (counted with multiplicity) and
let K be a k-dimensional subspace of H. Then there are unit vectors x, y ∈ K
such that

〈x,Ax〉 ≤ λk and 〈y, Ay〉 ≥ λk.
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Proof: Let vk, . . . , vn be orthonormal eigenvectors corresponding to the
eigenvalues λk, . . . , λn. They span a subspace M of dimension n − k + 1
which must have intersection with K. Take a unit vector x ∈ K ∩M which
has the expansion

x =

n
∑

i=k

civi

and it has the required property:

〈x,Ax〉 =
n
∑

i=k

|ci|2λi ≤ λk

n
∑

i=k

|ci|2 = λk.

To find the other vector y, the same argument can be used with the matrix
−A. �

The next result is a minimax principle.

Theorem 1.27 Let A ∈ B(H) be a self-adjoint operator with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn (counted with multiplicity). Then

λk = min
{

max{〈v, Av〉 : v ∈ K, ‖v‖ = 1} : K ⊂ H, dimK = n+ 1− k
}

.

Proof: Let vk, . . . , vn be orthonormal eigenvectors corresponding to the
eigenvalues λk, . . . , λn. They span a subspace K of dimension n + 1 − k.
According to (1.28) we have

λk = max{〈v, Av〉 : v ∈ K}

and it follows that in the statement of the theorem ≥ is true.

To complete the proof we have to show that for any subspace K of di-
mension n + 1 − k there is a unit vector v such that λk ≤ 〈v, Av〉, or −λk ≥
〈v, (−A)v〉. The decreasing eigenvalues of −A are −λn ≥ −λn−1 ≥ · · · ≥ −λ1
where the ℓth is −λn+1−ℓ. The existence of a unit vector v is guaranteed by
the Poincaré’s inequality and we take ℓ with the property n+ 1− ℓ = k. �

1.5 Trace and determinant

When {e1, . . . , en} is an orthonormal basis of H, the trace TrA of A ∈ B(H)
is defined as

TrA :=
n
∑

i=1

〈ei, Aei〉. (1.30)
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Theorem 1.28 The definition (1.30) is independent of the choice of an or-
thonormal basis {e1, . . . , en} and TrAB = TrBA for all A,B ∈ B(H).

Proof: We have

TrAB =

n
∑

i=1

〈ei, ABei〉 =
n
∑

i=1

〈A∗ei, Bei〉 =
n
∑

i=1

n
∑

j=1

〈ej , A∗ei〉〈ej , Bei〉

=
n
∑

j=1

n
∑

i=1

〈ei, B∗ej〉〈ei, Aej〉 =
n
∑

j=1

〈ej, BAej〉 = TrBA.

Now, let {f1, . . . , fn} be another orthonormal basis of H. Then a unitary
U is defined by Uei = fi, 1 ≤ i ≤ n, and we have

n
∑

i=1

〈fi, Afi〉 =
n
∑

i=1

〈Uei, AUei〉 = TrU∗AU = TrAUU∗ = TrA,

which says that the definition of TrA is actually independent of the choice of
an orthonormal basis. �

When A ∈ Mn, the trace of A is nothing but the sum of the principal
diagonal entries of A:

TrA = A11 + A22 + · · ·+ Ann.

The trace is the sum of the eigenvalues.

Computation of the trace is very simple, the case of the determinant (1.2)
is very different. In terms of the Jordan canonical form described in Theorem
1.16, we have

TrX =
m
∑

j=1

kjλj and detX =
m
∏

j=1

λ
kj
j .

Formula (1.22) shows that trace and determinant are certain coefficients of
the characteristic polynomial.

The next example is about the determinant of a special linear mapping.

Example 1.29 On the linear space Mn we can define a linear mapping α :
Mn → Mn as α(A) = V AV ∗, where V ∈ Mn is a fixed matrix. We are
interested in detα.

Let V = SJS−1 be the canonical Jordan decomposition and set

α1(A) = S−1A(S−1)∗, α2(B) = JBJ∗, α3(C) = SCS∗.
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Then α = α3 ◦ α2 ◦ α1 and detα = detα3 × detα2 × detα1. Since α1 = α−1
3 ,

we have detα = detα2, so only the Jordan block part has influence to the
determinant.

The following example helps to understand the situation. Let

J =

[

λ1 x
0 λ2

]

and

A1 =

[

1 0
0 0

]

, A2 =

[

0 1
0 0

]

, A3 =

[

0 0
1 0

]

, A4 =

[

0 0
0 1

]

.

Then {A1, A2, A3, A4} is a basis in M2. If α(A) = JAJ∗, then from the data

α(A1) = λ21A1, α(A2) = λ1xA1 + λ1λ2A2,

α(A3) = λ1xA1 + λ1λ2A3, α(A4) = x2A1 + xλ2A2 + xλ2A3 + λ22A4

we can observe that the matrix of α is upper triangular:








λ21 xλ1 xλ1 x2

0 λ1λ2 0 xλ2
0 0 λ1λ2 xλ2
0 0 0 λ22









,

So its determinant is the product of the diagonal entries:

λ21(λ1λ2)(λ1λ2)λ
2
2 = λ41λ

4
2 = (det J)4.

Now let J ∈ Mn and assume that only the entries Jii and Ji,i+1 can be
non-zero. In Mn we choose the basis of the matrix units,

E(1, 1), E(1, 2), . . . , E(1, n), E(2, 1), . . . , E(2, n), . . . , E(3, 1), . . . , E(n, n).

We want to see that the matrix of α is upper triangular.

From the computation

JE(j, k))J∗ = Jj−1,jJk−1,k E(j − 1, k − 1) + Jj−1,jJk,k E(j − 1, k)

+JjjJk−1,k E(j, k − 1) + JjjJk,k E(j, k)

we can see that the matrix of the mapping A 7→ JAJ∗ is upper triangular. (In
the lexicographical order of the matrix units E(j−1, k−1), E(j−1, k), E(j, k−
1) are before E(j, k).) The determinant is the product of the diagonal entries:

n
∏

j,k=1

JjjJkk =
m
∏

k=1

(det J)Jkk
n
= (det J)ndet J

n
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It follows that the determinant of α(A) = V AV ∗ is (det V )n det V
n
, since

the determinant of V equals to the determinant of its Jordan block J . If
β(A) = V AV t, then the argument is similar, det β = (det V )2n, only the
conjugate is missing.

Next we deal with the space M of real symmetric n × n matrices. Set
γ : M → M, γ(A) = V AV t. The canonical Jordan decomposition holds also
for real matrices and it gives again that the Jordan block J of V determines
the determinant of γ.

To have a matrix of A 7→ JAJ t, we need a basis in M. We can take

{E(j, k) + E(k, j) : 1 ≤ j ≤ k ≤ n} .
Similarly to the above argument, one can see that the matrix is upper triangu-
lar. So we need the diagonal entries. J(E(j, k)+E(k, j))J∗ can be computed
from the above formula and the coefficient of E(j, k) +E(k, j) is JkkJjj. The
determinant is

∏

1≤j≤k≤n

JkkJjj = (det J)n+1 = (det V )n+1.

�

Theorem 1.30 The determinant of a positive matrix A ∈ Mn does not ex-
ceed the product of the diagonal entries:

detA ≤
n
∏

i=1

Aii

This is a consequence of the concavity of the log function, see Example
4.18 (or Example 1.43).

If A ∈ Mn and 1 ≤ i, j ≤ n, then in the next theorems [A]ij denotes the
(n−1)× (n−1) matrix which is obtained from A by striking out the ith row
and the jth column.

Theorem 1.31 Let A ∈ Mn and 1 ≤ j ≤ n. Then

detA =

n
∑

i=1

(−1)i+jAij det([A]
ij).

Example 1.32 Here is a simple computation using the row version of the
previous theorem.

det





1 2 0
3 0 4
0 5 6



 = 1 · (0 · 6− 5 · 4)− 2 · (3 · 6− 0 · 4) + 0 · (3 · 5− 0 · 0).
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The theorem is useful if the matrix has several 0 entries. �

The determinant has an important role in the computation of the inverse.

Theorem 1.33 Let A ∈ Mn be invertible. Then

(A−1)ki = (−1)i+k
det([A]ik)

detA

for 1 ≤ i, k ≤ n.

Example 1.34 A standard formula is

[

a b
c d

]−1

=
1

ad− bc

[

d −b
−c a

]

when the determinant ad− bc is not 0. �

The next example is about the Haar measure on some matrices. Mathe-
matical analysis is essential there.

Example 1.35 G denotes the set of invertible real 2 × 2 matrices. G is a
(non-commutative) group and G ⊂ M2(R) ∼= R4 is an open set. Therefore it
is a locally compact topological group.

The Haar measure µ is defined by the left-invariance property:

µ(H) = µ({BA : A ∈ H}) (B ∈ G)

(H ⊂ G is measurable). We assume that

µ(H) =

∫

H

p(A) dA,

where p : G → R+ is a function and dA is the Lebesgue measure in R4:

A =

[

x y
z w

]

, dA = dx dy dz dw.

The left-invariance is equivalent with the condition

∫

f(A)p(A) dA =

∫

f(BA)p(A) dA
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for all continuous functions f : G → R and for every B ∈ G. The integral can
be changed:

∫

f(BA)p(A) dA =

∫

f(A′)p(B−1A′)

∣

∣

∣

∣

∂A

∂A′

∣

∣

∣

∣

dA′ ,

BA is replaced with A′. If

B =

[

a b
c d

]

then

A′ := BA =

[

ax+ bz ay + bw
cx+ dz cy + dw

]

and the Jacobi matrix is

∂A′

∂A
=









a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d









= B ⊗ I2 .

We have
∣

∣

∣

∣

∂A

∂A′

∣

∣

∣

∣

:=

∣

∣

∣

∣

det

[

∂A

∂A′

]∣

∣

∣

∣

=
1

| det(B ⊗ I2)|
=

1

(detB)2

and
∫

f(A)p(A) dA =

∫

f(A)
p(B−1A)

(detB)2
dA.

So the condition for the invariance of the measure is

p(A) =
p(B−1A)

(detB)2
.

The solution is

p(A) =
1

(detA)2
.

This defines the left invariant Haar measure, but it is actually also right
invariant.

For n× n matrices the computation is similar, then

p(A) =
1

(detA)n
.

(Another example is in Exercise 61.) �
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1.6 Positivity and absolute value

Let H be a Hilbert space and T : H → H be a bounded linear operator. T is
called a positive mapping (or positive semidefinite matrix) if 〈x, Tx〉 ≥ 0
for every vector x ∈ H, in notation T ≥ 0. It follows from the definition
that a positive operator is self-adjoint. Moreover, if T1 and T2 are positive
operators, then T1 + T2 is positive as well.

Theorem 1.36 Let T ∈ B(H) be an operator. The following conditions are
equivalent.

(1) T is positive.

(2) T = T ∗ and the spectrum of T lies in R+.

(3) T is of the form A∗A for some operator A ∈ B(H).

An operator T is positive if and only if UTU∗ is positive for a unitary U .

We can reformulate positivity for a matrix T ∈ Mn. For (a1, a2, . . . , an) ∈
Cn the inequality

∑

i

∑

j

aiTijaj ≥ 0 (1.31)

should be true. It is easy to see that if T ≥ 0, then Tii ≥ 0 for every
1 ≤ i ≤ n. For a special unitary U the matrix UTU∗ can be diagonal
Diag(λ1, λ2, . . . , λn) where λi’s are the eigenvalues. So the positivity of T
means that it is Hermitian and the eigenvalues are positive.

Example 1.37 If the matrix

A =





a b c
b d e
c e f





is positive, then the matrices

B =

[

a b
b d

]

, C =

[

a c
c f

]

are positive as well. (We take the positivity condition (1.31) for A and the
choice a3 = 0 gives the positivity of B. Similar argument with a2 = 0 is for
C.) �
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Theorem 1.38 Let T be a positive operator. Then there is a unique positive
operator B such that B2 = T . If a self-adjoint operator A commutes with T ,
then it commutes with B as well.

Proof: We restrict ourselves to the finite dimensional case. In this case it
is enough to find the eigenvalues and the eigenvectors. If Bx = λx, then x is
an eigenvector of T with eigenvalue λ2. This determines B uniquely, T and
B have the same eigenvectors.

AB = BA holds if for any eigenvector x of B the vector Ax is an eigen-
vector, too. If TA = AT , then this follows. �

B is called the square root of T , T 1/2 and
√
T are the notations. It

follows from the theorem that the product of commuting positive operators
T and A is positive. Indeed,

TA = T 1/2T 1/2A1/2A1/2 = T 1/2A1/2A1/2T 1/2 = (A1/2T 1/2)∗A1/2T 1/2.

For each A ∈ B(H), we have A∗A ≥ 0. So, define |A| := (A∗A)1/2 that is
called the absolute value of A. The mapping

|A|x 7→ Ax

is norm preserving:

‖ |A|x‖2 = 〈|A|x, |A|x〉 = 〈x, |A|2x〉 = 〈x,A∗Ax〉 = 〈Ax,Ax〉 = ‖Ax‖2

It can be extended to a unitary U . So A = U |A| and this is called polar
decomposition.

|A| := (A∗A)1/2 makes sense if A : H1 → H2. Then |A| ∈ B(H1). The
above argument tells that |A|x 7→ Ax is norm preserving, but it is not sure
that it can be extended to a unitary. If dimH1 ≤ dimH2, then |A|x 7→ Ax
can be extended to an isometry V : H1 → H2. Then A = V |A|, where
V ∗V = I.

The eigenvalues si(A) of |A| are called the singular values of A. If
A ∈ Mn, then the usual notation is

s(A) = (s1(A), . . . , sn(A)), s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). (1.32)

Example 1.39 Let T be a positive operator acting on a finite dimensional
Hilbert space such that ‖T‖ ≤ 1. We want to show that there is a unitary
operator U such that

T =
1

2
(U + U∗).
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We can choose an orthonormal basis e1, e2, . . . , en consisting of eigenvectors
of T and in this basis the matrix of T is diagonal, say, Diag(t1, t2, . . . , tn),
0 ≤ tj ≤ 1 from the positivity. For any 1 ≤ j ≤ n we can find a real number
θj such that

tj =
1

2
(eiθj + e−iθj ).

Then the unitary operator U with matrix Diag(exp(iθ1), . . . , exp(iθn)) will
have the desired property. �

If T acts on a finite dimensional Hilbert space which has an orthonormal
basis e1, e2, . . . , en, then T is uniquely determined by its matrix

[〈ei, T ej〉]ni,j=1.

T is positive if and only if its matrix is positive (semi-definite).

Example 1.40 Let

A =









λ1 λ2 . . . λn
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0









.

Then
[A∗A]i,j = λiλj (1 ≤ i, j ≤ n)

and this matrix is positive:

∑

i

∑

j

ai[A
∗A]i,jaj =

∑

i

aiλi
∑

j

ajλj ≥ 0

Every positive matrix is the sum of matrices of this form. (The minimum
number of the summands is the rank of the matrix.) �

Example 1.41 Take numbers λ1, λ2, . . . , λn > 0 and set

Aij =
1

λi + λj
(1.33)

which is called Cauchy matrix. We have

1

λi + λj
=

∫ ∞

0

e−tλie−tλj dt

and the matrix
A(t)ij := e−tλie−tλj



1.6. POSITIVITY AND ABSOLUTE VALUE 33

is positive for every t ∈ R due to Example 1.40. Therefore

A =

∫ ∞

0

A(t) dt

is positive as well.

The above argument can be generalized. If r > 0, then

1

(λi + λj)r
=

1

Γ(r)

∫ ∞

0

e−tλie−tλj tr−1 dt.

This implies that

Aij =
1

(λi + λj)r
(r > 0) (1.34)

is positive. �

The Cauchy matrix is an example of an infinitely divisible matrix. If
A is an entrywise positive matrix, then it is called infinitely divisable if the
matrices

A(r)ij = (Aij)
r

are positive for every number r > 0.

Theorem 1.42 Let T ∈ B(H) be an invertible self-adjoint operator and
e1, e2, . . . , en be a basis in the Hilbert space H. T is positive if and only if
for any 1 ≤ k ≤ n the determinant of the k × k matrix

[〈ei, T ej〉]kij=1

is positive (that is, ≥ 0).

An invertible positive matrix is called positive definite. Such matrices
appear in probability theory in the concept of Gaussian distribution. The
work with Gaussian distributions in probability theory requires the experience
with matrices. (This is in the next example, but also in Example 2.7.)

Example 1.43 Let M be a positive definite n × n real matrix and x =
(x1, x2, . . . , xn). Then

fM(x) :=

√

detM

(2π)n
exp

(

− 1
2
〈x,Mx〉

)

(1.35)

is a multivariate Gaussian probability distribution (with 0 expectation, see,
for example, III.6 in [35]). The matrix M will be called the quadratic
matrix of the Gaussian distribution..
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For an n× n matrix B, the relation
∫

〈x, Bx〉fM(x) dx = TrBM−1. (1.36)

holds.

We first note that if (1.36) is true for a matrix M , then

∫

〈x, Bx〉fU∗MU(x) dx =

∫

〈U∗x, BU∗x〉fM(x) dx

= Tr (UBU∗)M−1

= TrB(U∗MU)−1

for a unitary U , since the Lebesgue measure on Rn is invariant under unitary
transformation. This means that (1.36) holds also for U∗MU . Therefore to
check (1.36), we may assume thatM is diagonal. Another reduction concerns
B, we may assume that B is a matrix unit Eij . Then the n variable integral
reduces to integrals on R and the known integrals

∫

R

t exp
(

− 1

2
λt2
)

dt = 0 and

∫

R

t2 exp
(

− 1

2
λt2
)

dt =

√
2π

λ

can be used.

Formula (1.36) has an important consequence. When the joint distribution
of the random variables (ξ1, ξ2, . . . , ξn) is given by (1.35), then the covariance
matrix is M−1.

The Boltzmann entropy of a probability density f(x) is defined as

h(f) := −
∫

f(x) log f(x) dx (1.37)

if the integral exists. For a Gaussian fM we have

h(fM ) =
n

2
log(2πe)− 1

2
log detM.

Assume that fM is the joint distribution of the (number-valued) random
variables ξ1, ξ2, . . . , ξn. Their joint Boltzmann entropy is

h(ξ1, ξ2, . . . , ξn) =
n

2
log(2πe) + log detM−1

and the Boltzmann entropy of ξi is

h(ξi) =
1

2
log(2πe) +

1

2
log(M−1)ii.
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The subadditivity of the Boltzmann entropy is the inequality

h(ξ1, ξ2, . . . , ξn) ≤ h(ξ1) + h(ξ2) + . . .+ h(ξn)

which is

log detA ≤
n
∑

i=1

logAii

in our particular Gaussian case, A =M−1. What we obtained is theHadamard
inequality

detA ≤
n
∏

i=1

Aii

for a positive definite matrix A, cf. Theorem 1.30. �

Example 1.44 If the matrix X ∈ Mn can be written in the form

X = SDiag(λ1, λ2, . . . , λn)S
−1,

with λ1, λ2, . . . , λn > 0, then X is called weakly positive. Such a matrix
has n linearly independent eigenvectors with strictly positive eigenvalues. If
the eigenvectors are orthogonal, then the matrix is positive definite. Since X
has the form
(

SDiag(
√

λ1,
√

λ2, . . . ,
√

λn)S
∗
)(

(S∗)−1Diag(
√

λ1,
√

λ2, . . . ,
√

λn)S
−1
)

,

it is the product of two positive definite matrices.

Although this X is not positive, but the eigenvalues are strictly positive.
Therefore we can define the square root as

X1/2 = SDiag(
√

λ1,
√

λ2, . . . ,
√

λn)S
−1.

(See also 3.16). �

The next result is calledWielandt inequality. In the proof the operator
norm will be used.

Theorem 1.45 Let A be a self-adjoint operator such that for some numbers
a, b > 0 the inequalities aI ≥ A ≥ bI hold. Then for orthogonal unit vectors
x and y the inequality

|〈x,Ay〉|2 ≤
(

a− b

a+ b

)2

〈x,Ax〉 〈y, Ay〉

holds.
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Proof: The conditions imply that A is a positive invertible operator.

The next argument holds for any real number α:

〈x,Ay〉 = 〈x,Ay〉 − α〈x, y〉 = 〈x, (A− αI)y〉

= 〈A1/2x, (I − αA−1)A1/2y〉

and
|〈x,Ay〉|2 ≤ 〈x,Ax〉‖I − αA−1‖2〈y, Ay〉.

It is enough to prove that

‖I − αA−1‖ ≤ a− b

a+ b
.

for an appropriate α.

Since A is self-adjoint, it is diagonal in a basis, A = Diag(λ1, λ2, . . . , λn)
and

I − αA−1 = Diag

(

1− α

λ1
, . . . , 1− α

λn

)

.

Recall that b ≤ λi ≤ a. If we choose

α =
2ab

a + b
,

then it is elementary to check that

−a− b

a+ b
≤ 1− α

λi
≤ a− b

a+ b

and that gives the proof. �

The description of the generalized inverse of an m × n matrix can be
described in terms of the singular value decomposition.

Let A ∈ Mm×n with strictly positive singular values σ1, σ2, . . . , σk. (Then
k ≤ m,n.) Define a matrix Σ ∈ Mm×n as

Σij =
{

σi if i = j ≤ k,
0 otherwise.

This matrix appears in the singular value decomposition described in the next
theorem.

Theorem 1.46 A matrix A ∈ Mm×n has the decomposition

A = UΣV ∗, (1.38)

where U ∈ Mm and V ∈ Mn are unitaries and Σ ∈ Mm×n is defined above.
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For the sake of simplicity we consider the case m = n. Then A has the
polar decomposition U0|A| and |A| can be diagonalized:

|A| = U1Diag(σ1, σ2, . . . , σk, 0, . . . , 0)U
∗
1 .

Therefore, A = (U0U1)ΣU
∗
1 , where U0 and U1 are unitaries.

Theorem 1.47 For a matrix A ∈ Mm×n there exists a unique matrix A† ∈
Mn×m such that the following four properties hold:

(1) AA†A = A;

(2) A†AA† = A†;

(3) AA† is self-adjoint;

(4) A†A is self-adjoint.

It is easy to describe A† in terms of the singular value decomposition (1.38).
Namely, A† = V Σ†U∗, where

Σ†
ij =







1

σi
if i = j ≤ k,

0 otherwise.

If A is invertible, then n = m and Σ† = Σ−1. Hence A† is the inverse of A.
Therefore A† is called the generalized inverse of A or the Moore-Penrose
generalized inverse. The generalized inverse has the properties

(λA)† =
1

λ
A†, (A†)† = A, (A†)∗ = (A∗)†. (1.39)

It is worthwhile to note that for a matrix A with real entries A† has real
entries as well. Another important note is the fact that the generalized inverse
of AB is not always B†A†.

Example 1.48 If M ∈ Mm is an invertible matrix and v ∈ Cm, then the
linear system

Mx = v

has the obvious solution x = M−1v. If M ∈ Mm×n, then the generalized
inverse can be used. From property (1) a necessary condition of the solvability
of the equation is MM †v = v. If this condition holds, then the solution is

x =M †v + (In −M †M)z

with arbitrary z ∈ Cn. This example justifies the importance of the general-
ized inverse. �
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1.7 Tensor product

Let H be the linear space of polynomials in the variable x and with degree
less than or equal to n. A natural basis consists of the powers 1, x, x2, . . . , xn.
Similarly, let K be the space of polynomials in y of degree less than or equal
to m. Its basis is 1, y, y2, . . . , ym. The tensor product of these two spaces
is the space of polynomials of two variables with basis xiyj, 0 ≤ i ≤ n and
0 ≤ j ≤ m. This simple example contains the essential ideas.

Let H and K be Hilbert spaces. Their algebraic tensor product consists
of the formal finite sums

∑

i,j

xi ⊗ yj (xi ∈ H, yj ∈ K).

Computing with these sums, one should use the following rules:

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, (λx)⊗ y = λ(x⊗ y) ,
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2, x⊗ (λy) = λ(x⊗ y) .

The inner product is defined as

〈

∑

i,j

xi ⊗ yj,
∑

k,l

zk ⊗ wl

〉

=
∑

i,j,k,l

〈xi, zk〉〈yj, wl〉.

When H and K are finite dimensional spaces, then we arrived at the tensor
product Hilbert space H ⊗ K, otherwise the algebraic tensor product must
be completed in order to get a Banach space.

Example 1.49 L2[0, 1] is the Hilbert space of the square integrable func-
tions on [0, 1]. If f, g ∈ L2[0, 1], then the elementary tensor f ⊗ g can be
interpreted as a function of two variables, f(x)g(y) defined on [0, 1] × [0, 1].
The computational rules (1.40) are obvious in this approach. �

The tensor product of finitely many Hilbert spaces is defined similarly.

If e1, e2, . . . and f1, f2, . . . are bases in H and K, respectively, then {ei⊗fj :
i, j} is a basis in the tensor product space. This basis is called product basis.
An arbitrary vector x ∈ H ⊗K admits an expansion

x =
∑

i,j

cij ei ⊗ fj (1.40)

for some coefficients cij ,
∑

i,j |cij |2 = ‖x‖2. This kind of expansion is general,
but sometimes it is not the best.



1.7. TENSOR PRODUCT 39

Lemma 1.50 Any unit vector x ∈ H ⊗K can be written in the form

x =
∑

k

√
pk gk ⊗ hk, (1.41)

where the vectors gk ∈ H and hk ∈ K are orthonormal and (pk) is a probability
distribution.

Proof: We can define a conjugate-linear mapping Λ : H → K as

〈Λα, β〉 = 〈x, α⊗ β〉

for every vector α ∈ H and β ∈ K. In the computation we can use the bases
(ei)i in H and (fj)j in K. If x has the expansion (1.40), then

〈Λei, fj〉 = cij

and the adjoint Λ∗ is determined by

〈Λ∗fj, ei〉 = cij .

(Concerning the adjoint of a conjugate-linear mapping, see (1.17).)

One can compute that the partial trace of the matrix |x〉〈x| is D := Λ∗Λ.
It is enough to check that

〈x|ek〉〈eℓ|x〉 = TrΛ∗Λ|ek〉〈eℓ|

for every k and ℓ.

Choose now the orthogonal unit vectors gk such that they are eigenvectors
of D with corresponding non-zero eigenvalues pk, Dgk = pkgk. Then

hk :=
1√
pk

|Λgk〉

is a family of pairwise orthogonal unit vectors. Now

〈x, gk ⊗ hℓ〉 = 〈Λgk, hℓ〉 =
1√
pℓ
〈Λgk,Λgℓ〉 =

1√
pℓ
〈gℓ,Λ∗Λgk〉 = δk,ℓ

√
pℓ

and we arrived at the orthogonal expansion (1.41). �

The product basis tells us that

dim (H⊗K) = dim (H)× dim (K).
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Example 1.51 In the quantum formalism the orthonormal basis in the two
dimensional Hilbert space H is denoted as | ↑〉, | ↓〉. Instead of | ↑〉 ⊗ | ↓〉,
the notation | ↑↓〉 is used. Therefore the product basis is

| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉.

Sometimes ↓ is replaced by 0 and ↑ by 1.

Another basis

1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉), i√

2
(|10〉 − |01〉), 1√

2
(|00〉 − |11〉)

is often used, it is called Bell basis. �

Example 1.52 In the Hilbert space L2(R2) we can get a basis if the space
is considered as L2(R)⊗ L2(R). In the space L2(R) the Hermite functions

ϕn(x) = exp(−x2/2)Hn(x)

form a good basis, where Hn(x) is the appropriately normalized Hermite
polynomial. Therefore, the two variable Hermite functions

ϕnm(x, y) := e−(x2+y2)/2Hn(x)Hm(y) (n,m = 0, 1, . . .) (1.42)

form a basis in L2(R2). �

The tensor product of linear transformations can be defined as well. If
A : V1 → W1 and B : V2 → W2 are linear transformations, then there is a
unique linear transformation A⊗ B : V1 ⊗ V2 → W1 ⊗W2 such that

(A⊗ B)(v1 ⊗ v2) = Av1 ⊗Bv2 (v1 ∈ V1, v2 ∈ V2).

Since the linear mappings (between finite dimensional Hilbert spaces) are
identified with matrices, the tensor product of matrices appears as well.

Example 1.53 Let {e1, e2, e3} be a basis in H and {f1, f2} be a basis in K.
If [Aij ] is the matrix of A ∈ B(H1) and [Bkl] is the matrix of B ∈ B(H2),
then

(A⊗ B)(ej ⊗ fl) =
∑

i,k

AijBklei ⊗ fk .

It is useful to order the tensor product bases lexicographically: e1 ⊗ f1, e1 ⊗
f2, e2 ⊗ f1, e2 ⊗ f2, e3 ⊗ f1, e3 ⊗ f2. Fixing this ordering, we can write down



1.7. TENSOR PRODUCT 41

the matrix of A⊗B and we have
























A11B11 A11B12 A12B11 A12B12 A13B11 A13B12

A11B21 A11B22 A12B21 A12B22 A13B21 A13B22

A21B11 A21B12 A22B11 A22B12 A23B11 A23B12

A21B21 A21B22 A22B21 A22B22 A23B21 A23B22

A31B11 A31B12 A32B11 A32B12 A33B11 A33B12

A31B21 A31B22 A32B21 A32B22 A33B21 A33B22

























.

In the block matrix formalism we have

A⊗ B =





A11B A12B A13B
A21B A22B A23B
A31B A32B A33B



 , (1.43)

see Chapter 2.1.

The tensor product of matrices is also called Kronecker product. �

Example 1.54 When A ∈ Mn and B ∈ Mm, the matrix

Im ⊗A +B ⊗ In ∈ Mnm

is called the Kronecker sum of A and B.

If u is an eigenvector of A with eigenvalue λ and v is an eigenvector of B
with eigenvalue µ, then

(Im ⊗ A+B ⊗ In)(u⊗ v) = λ(u⊗ v) + µ(u⊗ v) = (λ+ µ)(u⊗ v).

So u⊗ v is an eigenvector of the Kronecker sum with eigenvalue λ+ µ. �

The computation rules of the tensor product of Hilbert spaces imply straight-
forward properties of the tensor product of matrices (or linear mappings).

Theorem 1.55 The following rules hold:

(1) (A1 + A2)⊗B = A1 ⊗ B + A2 ⊗ B,

(2) B ⊗ (A1 + A2) = B ⊗ A1 +B ⊗ A2,

(3) (λA)⊗ B = A⊗ (λB) = λ(A⊗ B) (λ ∈ C),

(4) (A⊗B)(C ⊗D) = AC ⊗ BD,
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(5) (A⊗B)∗ = A∗ ⊗B∗,

(6) (A⊗B)−1 = A−1 ⊗ B−1 if A and B are invertible,

(6) ‖A⊗ B‖ = ‖A‖ ‖B‖.

For example, the tensor product of self-adjoint matrices is self-adjoint, the
tensor product of unitaries is unitary.

The linear mapping Mn ⊗Mn → Mn defined as

Tr2 : A⊗B 7→ (TrB)A

is called partial trace. The other partial trace is

Tr1 : A⊗ B 7→ (TrA)B.

Example 1.56 Assume that A ∈ Mn and B ∈ Mm. Then A ⊗ B is an
nm × nm-matrix. Let C ∈ Mnm. How can we decide if it has the form of
A⊗B for some A ∈ Mn and B ∈ Mm?

First we study how to recognize A and B from A⊗B. (Of course, A and
B are not uniquely determined, since (λA) ⊗ (λ−1B) = A ⊗ B.) If we take
the trace of all entries of (1.43), then we get




A11TrB A12TrB A13TrB
A21TrB A22TrB A23TrB
A31TrB A32TrB A33TrB



 = TrB





A11 A12 A13

A21 A22 A23

A31 A32 A33



 = (TrB)A.

The sum of the diagonal entries is

A11B + A12B + A13B = (TrA)B.

If X = A⊗B, then

(TrX)X = (Tr2X)⊗ (Tr1X).

For example, the matrix

X :=









0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0









in M2 ⊗M2 is not a tensor product. Indeed,

Tr1X = Tr2X =

[

1 0
0 1

]

and their tensor product is the identity in M4. �
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Let H be a Hilbert space. The k-fold tensor product H ⊗ · · · ⊗ H is
called the kth tensor power of H, in notation H⊗k. When A ∈ B(H), then
A(1) ⊗ A(2) · · · ⊗ A(k) is a linear operator on H⊗k and it is denoted by A⊗k.
(Here A(i)’s are copies of A.)

H⊗k has two important subspaces, the symmetric and the antisymmetric
ones. If v1, v2, · · · , vk ∈ H are vectors, then their antisymmetric tensor-
product is the linear combination

v1 ∧ v2 ∧ · · · ∧ vk :=
1√
k!

∑

π

(−1)σ(π)vπ(1) ⊗ vπ(2) ⊗ · · · ⊗ vπ(k) (1.44)

where the summation is over all permutations π of the set {1, 2, . . . , k} and
σ(π) is the number of inversions in π. The terminology “antisymmetric”
comes from the property that an antisymmetric tensor changes its sign if two
elements are exchanged. In particular, v1 ∧ v2 ∧ · · · ∧ vk = 0 if vi = vj for
different i and j.

The computational rules for the antisymmetric tensors are similar to (1.40):

λ(v1 ∧ v2 ∧ · · · ∧ vk) = v1 ∧ v2 ∧ · · · ∧ vℓ−1 ∧ (λvℓ) ∧ vℓ+1 ∧ · · · ∧ vk

for every ℓ and

(v1 ∧ v2 ∧ · · · ∧ vℓ−1 ∧ v ∧ vℓ+1 ∧ · · · ∧ vk)
+ (v1 ∧ v2 ∧ · · · ∧ vℓ−1 ∧ v′ ∧ vℓ+1 ∧ · · · ∧ vk) =
= v1 ∧ v2 ∧ · · · ∧ vℓ−1 ∧ (v + v′) ∧ vℓ+1 ∧ · · · ∧ vk .

Lemma 1.57 The inner product of v1 ∧ v2 ∧ · · · ∧ vk and w1 ∧w2 ∧ · · · ∧wk
is the determinant of the k × k matrix whose (i, j) entry is 〈vi, wj〉.

Proof: The inner product is

1

k!

∑

π

∑

κ

(−1)σ(π)(−1)σ(κ)〈vπ(1), wκ(1)〉〈vπ(2), wκ(2)〉 . . . 〈vπ(k), wκ(k)〉

=
1

k!

∑

π

∑

κ

(−1)σ(π)(−1)σ(κ)〈v1, wπ−1κ(1)〉〈v2, wπ−1κ(2)〉 . . . 〈vk, wπ−1κ(k)〉

=
1

k!

∑

π

∑

κ

(−1)σ(π
−1κ)〈v1, wπ−1κ(1)〉〈v2, wπ−1κ(2)〉 . . . 〈vk, wπ−1κ(k)〉

=
∑

π

(−1)σ(π)〈v1, wπ(1)〉〈v2, wπ(2)〉 . . . 〈vk, wπ(k)〉.

This is the determinant. �
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It follows from the previous lemma that v1∧ v2 ∧ · · ·∧ vk 6= 0 if and only if
the vectors v1, v2, · · · vk are linearly independent. The subspace spanned by
the vectors v1 ∧ v2 ∧ · · · ∧ vk is called the kth antisymmetric tensor power of
H, in notation H∧k. So H∧k ⊂ H⊗k.

Lemma 1.58 The linear extension of the map

x1 ⊗ · · · ⊗ xk 7→
1√
k!
x1 ∧ · · · ∧ xk

is the projection of H⊗k onto H∧k.

Proof: Let P be the defined linear operator. First we show that P 2 = P :

P 2(x1 ⊗ · · · ⊗ xk) =
1

(k!)3/2

∑

π

(sgn π)xπ(1) ∧ · · · ∧ xπ(k)

=
1

(k!)3/2

∑

π

(sgn π)2x1 ∧ · · · ∧ xk

=
1√
k!
x1 ∧ · · · ∧ xk = P (x1 ⊗ · · · ⊗ xk).

Moreover, P = P ∗:

〈P (x1 ⊗ · · · ⊗ xk), y1 ⊗ · · · ⊗ yk〉 =
1

k!

∑

π

(sgn π)
k
∏

i=1

〈xπ(i), yi〉

=
1

k!

∑

π

(sgn π−1)
k
∏

i=1

〈xi, yπ−1(i)〉

= 〈x1 ⊗ · · · ⊗ xk, P (y1 ⊗ · · · ⊗ yk)〉.

So P is an orthogonal projection. �

Example 1.59 A transposition is a permutation of 1, 2, . . . , n which ex-
changes the place of two entries. For a transposition κ, there is a unitary
Uκ : H⊗k → H⊗k such that

Uκ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vκ(1) ⊗ vκ(2) ⊗ · · · ⊗ vκ(n).

Then
H∧k = {x ∈ H⊗k : Uκx = −x for every κ}. (1.45)

The terminology “antisymmetric” comes from this description. �
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If e1, e2, . . . , en is a basis in H, then

{ei(1) ∧ ei(2) ∧ · · · ∧ ei(k) : 1 ≤ i(1) < i(2) < · · · < i(k)) ≤ n} (1.46)

is a basis in H∧k. It follows that the dimension of H∧k is
(

n

k

)

if k ≤ n,

otherwise for k > n the power H∧k has dimension 0. Consequently, H∧n has
dimension 1.

If A ∈ B(H), then the transformation A⊗k leaves the subspace H∧k invari-
ant. Its restriction is denoted by A∧k which is equivalently defined as

A∧k(v1 ∧ v2 ∧ · · · ∧ vk) = Av1 ∧ Av2 ∧ · · · ∧ Avk. (1.47)

For any operators A,B ∈ B(H), we have

(A∗)∧k = (A∧k)∗, (AB)∧k = A∧k B∧k (1.48)

and
A∧n = λ× identity (1.49)

The constant λ is the determinant:

Theorem 1.60 For A ∈ Mn, the constant λ in (1.49) is detA.

Proof: If e1, e2, . . . , en is a basis in H, then in the space H∧n the vector
e1 ∧ e2 ∧ . . . ∧ en forms a basis. We should compute A∧k(e1 ∧ e2 ∧ . . . ∧ en).

(A∧k)(e1 ∧ e2 ∧ · · · ∧ en) = (Ae1) ∧ (Ae2) ∧ · · · ∧ (Aen)

=
(

n
∑

i(1)=1

Ai(1),1ei(1)

)

∧
(

n
∑

i(2)=1

Ai(2),2ei(2)

)

∧ · · · ∧
(

n
∑

i(n)=1

Ai(n),nei(n)

)

=
n
∑

i(1),i(2),...,i(n)=1

Ai(1),1Ai(2),2 · · ·Ai(n),nei(1) ∧ · · · ∧ ei(n)

=
∑

π

Aπ(1),1Aπ(2),2 · · ·Aπ(n),neπ(1) ∧ · · · ∧ eπ(n)

=
∑

π

Aπ(1),1Aπ(2),2 · · ·Aπ(n),n(−1)σ(π)e1 ∧ · · · ∧ en .

Here we used that ei(1)∧· · ·∧ei(n) can be non-zero if the vectors ei(1), . . . , ei(n)
are all different, in other words, this is a permutation of e1, e2, . . . , en. �
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Example 1.61 Let A ∈ Mn be a self-adjoint matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn. The corresponding eigenvectors v1, v2, · · · , vn form a good
basis. The largest eigenvalue of the antisymmetric power A∧k is

∏k
i=1 λi:

A∧k(v1 ∧ v2 ∧ · · · ∧ vk) = Av1 ∧Av2 ∧ · · · ∧ Avk

=
(

k
∏

i=1

λi

)

(v1 ∧ v2 ∧ . . . ∧ vk).

All other eigenvalues can be obtained from the basis of the antisymmetric
product. �

The next lemma contains a relation of singular values with the antisym-
metric powers.

Lemma 1.62 For A ∈ Mn and for k = 1, . . . , n, we have

k
∏

i=1

si(A) = s1(A
∧k) = ‖A∧k‖.

Proof: Since |A|∧k = |A∧k|, we may assume that A ≥ 0. Then there exists
an orthonormal basis {u1, · · · , un} of H such that Aui = si(A)ui for all i. We
have

A∧k(ui1 ∧ · · · ∧ uik) =
(

k
∏

j=1

sij (A)
)

ui1 ∧ · · · ∧ uik ,

and so {ui1∧ . . .∧uik : 1 ≤ i1 < · · · < ik ≤ n} is a complete set of eigenvectors
of A∧k. Hence the assertion follows. �

The symmetric tensor product of the vectors v1, v2, . . . , vk ∈ H is

v1 ∨ v2 ∨ · · · ∨ vk :=
1√
k!

∑

π

vπ(1) ⊗ vπ(2) ⊗ · · · ⊗ vπ(k) ,

where the summation is over all permutations π of the set {1, 2, . . . , k} again.
The linear span of the symmetric tensors is the symmetric tensor power H∨k.
Similarly to (1.45), we have

H∨k = {x ∈ ⊗kH : Uκx = x for every κ}. (1.50)

It follows immediately, that H∨k ⊥ H∧k for any k ≥ 2. Let u ∈ H∨k and
v ∈ H∧k. Then

〈u, v〉 = 〈Uκu,−Uκv〉 = −〈u, v〉
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and 〈u, v〉 = 0.

If e1, e2, . . . , en is a basis in H, then ∨kH has the basis

{ei(1) ∨ ei(2) ∨ · · · ∨ ei(k) : 1 ≤ i(1) ≤ i(2) ≤ · · · ≤ i(k) ≤ n}. (1.51)

Similarly to the proof of Lemma 1.57 we have

〈v1 ∨ v2 ∨ · · · ∨ vk, w1 ∨w2 ∨ · · · ∨wk〉 =
∑

π

〈v1, wπ(1)〉〈v2, wπ(2)〉 . . . 〈vk, wπ(k)〉

The right-hand-side is similar to a determinant, but the sign is not changing.

The permanent is defined as

perA =
∑

π

A1,π(1)A2,π(2) . . . An,π(n). (1.52)

similarly to the determinant formula (1.2).

1.8 Notes and remarks

The history of matrices goes back to ancient times, but the term matrix was
not applied before 1850. The first appearance was in ancient China. The in-
troduction and development of the notion of a matrix and the subject of linear
algebra followed the development of determinants. Takakazu Seki Japanese
mathematician was the first person to study determinants in 1683. Gottfried
Leibnitz (1646-1716), one of the two founders of calculus, used determinants
in 1693 and Gabriel Cramer (1704-1752) presented his determinant-based
formula for solving systems of linear equations in 1750. (Today Cramer’s rule
is a usual expression.) In contrast, the first implicit use of matrices occurred in
Lagrange’s work on bilinear forms in the late 1700’s. Joseph-Louis Lagrange
(1736-1813) desired to characterize the maxima and minima of multivariate
functions. His method is now known as the method of Lagrange multipliers.
In order to do this he first required the first order partial derivatives to be
0 and additionally required that a condition on the matrix of second order
partial derivatives holds; this condition is today called positive or negative
definiteness, although Lagrange didn’t use matrices explicitly.

Johann Carl Friedrich Gauss (1777-1855) developed Gaussian elimination
around 1800 and used it to solve least squares problems in celestial compu-
tations and later in computations to measure the earth and its surface (the
branch of applied mathematics concerned with measuring or determining the
shape of the earth or with locating exactly points on the earth’s surface is
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called geodesy). Even though Gauss’ name is associated with this technique
for successively eliminating variables from systems of linear equations, Chi-
nese manuscripts found several centuries earlier explain how to solve a system
of three equations in three unknowns by “Gaussian” elimination. For years
Gaussian elimination was considered part of the development of geodesy, not
mathematics. The first appearance of Gauss-Jordan elimination in print was
in a handbook on geodesy written by Wilhelm Jordan. Many people incor-
rectly assume that the famous mathematician Camille Jordan (1771-1821) is
the Jordan in Gauss-Jordan elimination.

For matrix algebra to fruitfully develop one needed both proper notation
and the proper definition of matrix multiplication. Both needs were met at
about the same time and in the same place. In 1848 in England, James
Josep Sylvester (1814-1897) first introduced the term matrix, which was
the Latin word for womb, as a name for an array of numbers. Matrix al-
gebra was nurtured by the work of Arthur Cayley in 1855. Cayley studied
compositions of linear transformations and was led to define matrix multi-
plication so that the matrix of coefficients for the composite transformation
ST is the product of the matrix for S times the matrix for T . He went on
to study the algebra of these compositions including matrix inverses. The fa-
mous Cayley-Hamilton theorem which asserts that a square matrix is a root
of its characteristic polynomial was given by Cayley in his 1858 Memoir on
the Theory of Matrices. The use of a single letter A to represent a matrix
was crucial to the development of matrix algebra. Early in the development
the formula det(AB) = det(A) det(B) provided a connection between matrix
algebra and determinants. Cayley wrote “There would be many things to
say about this theory of matrices which should, it seems to me, precede the
theory of determinants.”

Computation of the determinant of concrete special matrices has a huge
literature, for example the book Thomas Muir, A Treatise on the Theory of
Determinants (originally published in 1928) has more than 700 pages. Theo-
rem 1.30 is the Hadamard inequality from 1893.

Matrices continued to be closely associated with linear transformations.
By 1900 they were just a finite-dimensional subcase of the emerging theory
of linear transformations. The modern definition of a vector space was intro-
duced by Giuseppe Peano (1858-1932) in 1888. Abstract vector spaces whose
elements were functions soon followed.

When the quantum physical theory appeared in the 1920’s, some matrices
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already appeared in the work of Werner Heisenberg, see

Q =
1√
2









0 1 0 0 . . .

1 0
√
2 0 . . .

0
√
2 0

√
3 . . .

. . .









.

Later the physicist Paul Adrien Maurice Dirac (1902-1984) introduced the
term bra and ket which is used sometimes in this book. The Hungarian
mathematician John von Neumann (1903-1957) introduced several concepts
in the content of matrix theory and quantum physics.

Note that the Kronecker sum is often denoted by A⊕B in the literature,
but in this book ⊕ is the notation for the direct sum.

Weakly positive matrices were introduced by Eugene P. Wigner in 1963.
He showed that if the product of two or three weakly positive matrices is
self-adjoint, then it is positive definite.

Van der Waerden conjectured in 1926 that if A is an n × n doubly
stochastic matrix then

perA ≥ n!

nn
(1.53)

and the equality holds if and only if Aij = 1/n for all 1 ≤ i, j ≤ n. (The proof
was given in 1981 by G.P. Egorychev and D. Falikman, it is also included in
the book [81].)

1.9 Exercises

1. Let A : H2 → H1, B : H3 → H2 and C : H4 → H3 be linear mappings.
Show that

rankAB + rankBC ≤ rankB + rankABC.

(This is called Frobenius inequality).

2. Let A : H → H be a linear mapping. Show that

dim kerAn+1 = dim kerA+
n
∑

k=1

dim (ranAk ∩ kerA).

3. Show that in the Schwarz inequality (1.4) the equality occurs if and
only if x and y are linearly dependent.
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4. Show that
‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2 (1.54)

for the norm in a Hilbert space. (This is called parallelogram law.)

5. Show the polarization identity (1.18).

6. Show that an orthonormal family of vectors is linearly independent.

7. Show that the vectors |x1〉, |x2, 〉, . . . , |xn〉 form an orthonormal basis in
an n-dimensional Hilbert space if and only if

∑

i

|xi〉〈xi| = I.

8. Show that Gram-Schmidt procedure constructs an orthonormal basis
e1, e2, . . . , en. Show that ek is the linear combination of v1, v2, . . . , vk
(1 ≤ k ≤ n).

9. Show that the upper triangular matrices form an algebra.

10. Verify that the inverse of an upper triangular matrix is upper triangular
if the inverse exists.

11. Compute the determinant of the matrix








1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20









.

Give an n× n generalization.

12. Compute the determinant of the matrix








1 −1 0 0
x h −1 0
x2 hx h −1
x3 hx2 hx h









.

Give an n× n generalization.

13. Let A,B ∈ Mn and

Bij = (−1)i+jAij (1 ≤ i, j ≤ n).

Show that detA = detB.
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14. Show that the determinant of the Vandermonde matrix









1 1 · · · 1
a1 a2 · · · an
...

...
. . .

...
an−1
1 an−1

2 · · · an−1
n









is
∏

i<j(aj − ai).

15. Show the following properties:

(|u〉〈v|)∗ = |v〉〈u|, (|u1〉〈v1|)(|u2〉〈v2|) = 〈v1, u2〉|u1〉〈v2|,
A(|u〉〈v|) = |Au〉〈v|, (|u〉〈v|)A = |u〉〈A∗v| for all A ∈ B(H).

16. Let A,B ∈ B(H). Show that ‖AB‖ ≤ ‖A‖ ‖B‖.

17. Let H be an n-dimensional Hilbert space. For A ∈ B(H) let ‖A‖2 :=√
TrA∗A. Show that ‖A+B‖2 ≤ ‖A‖2+‖B‖2. Is it true that ‖AB‖2 ≤

‖A‖2 × ‖B‖2?

18. Find constants c(n) and d(n) such that

c(n)‖A‖ ≤ ‖A‖2 ≤ d(n)‖A‖

for every matrix A ∈ Mn(C).

19. Show that ‖A∗A‖ = ‖A‖2 for every A ∈ B(H).

20. Let H be an n-dimensional Hilbert space. Show that given an operator
A ∈ B(H) we can choose an orthonormal basis such that the matrix of
A is upper triangular.

21. Let A,B ∈ Mn be invertible matrices. Show that A+B is invertible if
and only if A−1 +B−1 is invertible, moreover

(A+B)−1 = A−1 −A−1(A−1 +B−1)−1A−1.

22. Let A ∈ Mn be self-adjoint. Show that

U = (I − iA)(I + iA)−1

is a unitary. (U is the Cayley transform of A.)
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23. The self-adjoint matrix

0 ≤
[

a b
b c

]

has eigenvalues α and β. Show that

|b|2 ≤
(

α− β

α + β

)2

ac. (1.55)

24. Show that
[

λ+ z x− iy
x+ iy λ− z

]−1

=
1

λ2 − x2 − y2 − z2

[

λ− z −x+ iy
−x− iy λ+ z

]

for real parameters λ, x, y, z.

25. Let m ≤ n, A ∈ Mn, B ∈ Mm, Y ∈ Mn×m and Z ∈ Mm×n. Assume that
A and B are invertible. Show that A+ Y BZ is invertible if and only if
B−1 + ZA−1Y is invertible. Moreover,

(A+ Y BZ)−1 = A−1 − A−1Y (B−1 + ZA−1Y )−1ZA−1.

26. Let λ1, λ2, . . . , λn be the eigenvalues of the matrix A ∈ Mn(C). Show
that A is normal if and only if

n
∑

i=1

|λi|2 =
n
∑

i,j=1

|Aij|2.

27. Show that A ∈ Mn is normal if and only if A∗ = AU for a unitary
U ∈ Mn.

28. Give an example such that A2 = A, but A is not an orthogonal projec-
tion.

29. A ∈ Mn is called idempotent if A2 = A. Show that each eigenvalue of
an idempotent matrix is either 0 or 1.

30. Compute the eigenvalues and eigenvectors of the Pauli matrices:

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

. (1.56)

31. Show that the Pauli matrices (1.56) are orthogonal to each other (with
respect to the Hilbert–Schmidt inner product). What are the matrices
which are orthogonal to all Pauli matrices?
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32. The n× n Pascal matrix is defined as

Pij =

(

i+ j − 2

i− 1

)

(1 ≤ i, j ≤ n).

What is the determinant? (Hint: Generalize the particular relation









1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20









=









1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1









×









1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1









to n× n matrices.)

33. Let λ be an eigenvalue of a unitary operator. Show that |λ| = 1.

34. Let A be an n × n matrix and let k ≥ 1 be an integer. Assume that
Aij = 0 if j ≥ i+ k. Show that An−k is the 0 matrix.

35. Show that | detU | = 1 for a unitary U .

36. Let U ∈ Mn and u1, . . . , un be n column vectors of U , i.e., U =
[u1 u2 . . . un]. Prove that U is a unitary matrix if and only if {u1, . . . , un}
is an orthonormal basis of Cn.

37. Let a matrix U = [u1 u2 . . . un] ∈ Mn be described by column vectors.
Assume that {u1, . . . , uk} are given and orthonormal in Cn. Show that
uk+1, . . . , un can be chosen in such a way that U will be a unitary matrix.

38. Compute det(λI − A) when A is the tridiagonal matrix (1.23).

39. Let U ∈ B(H) be a unitary. Show that

lim
n→∞

1

n

n
∑

i=1

Unx

exists for every vector x ∈ H. (Hint: Consider the subspaces {x ∈ H :
Ux = x} and {Ux− x : x ∈ H}.) What is the limit

lim
n→∞

1

n

n
∑

i=1

Un ?

(This is the ergodic theorem.)
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40. Let

|β0〉 =
1√
2
(|00〉+ |11〉) ∈ C

2 ⊗ C
2

and
|βi〉 = (σi ⊗ I2)|β0〉 (i = 1, 2, 3)

by means of the Pauli matrices σi. Show that {|βi〉 : 0 ≤ i ≤ 3} is the
Bell basis.

41. Show that the vectors of the Bell basis are eigenvectors of the matrices
σi ⊗ σi, 1 ≤ i ≤ 3.

42. Show the identity

|ψ〉 ⊗ |β0〉 =
1

2

3
∑

k=0

|βk〉 ⊗ σk|ψ〉 (1.57)

in C2 ⊗ C2 ⊗ C2, where |ψ〉 ∈ C2 and |βi〉 ∈ C2 ⊗ C2 is defined above.

43. Write the so-called Dirac matrices in the form of elementary tensor
(of two 2× 2 matrices):

γ1 =









0 0 0 −i
0 0 −i 0
0 −i 0 0
−i 0 0 0









, γ2 =









0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0









,

γ3 =









0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0









, γ4 =









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









.

44. Give the dimension of H∨k if dim (H) = n.

45. Let A ∈ B(K) and B ∈ B(H) be operators on the finite dimensional
spaces H and K. Show that

det(A⊗ B) = (detA)m(detB)n,

where n = dimH and m = dimK. (Hint: The determinant is the
product of the eigenvalues.)

46. Show that ‖A⊗ B‖ = ‖A‖ · ‖B‖.
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47. Use Theorem 1.60 to prove that det(AB) = detA×detB. (Hint: Show
that (AB)∧k = (A∧k)(B∧k).)

48. Let xn + c1x
n−1 + · · ·+ cn be the characteristic polynomial of A ∈ Mn.

Show that ck = TrA∧k.

49. Show that

H⊗H = (H ∨H)⊕ (H ∧H)

for a Hilbert space H.

50. Give an example of A ∈ Mn(C) such that the spectrum of A is in R+

and A is not positive.

51. Let A ∈ Mn(C). Show that A is positive if and only if X∗AX is positive
for every X ∈ Mn(C).

52. Let A ∈ B(H). Prove the equivalence of the following assertions: (i)
‖A‖ ≤ 1, (ii) A∗A ≤ I, and (iii) AA∗ ≤ I.

53. Let A ∈ Mn(C). Show that A is positive if and only if TrXA is positive
for every positive X ∈ Mn(C).

54. Let ‖A‖ ≤ 1. Show that there are unitaries U and V such that

A =
1

2
(U + V ).

(Hint: Use Example 1.39.)

55. Show that a matrix is weakly positive if and only if it is the product of
two positive definite matrices.

56. Let V : Cn → Cn ⊗ Cn be defined as V ei = ei ⊗ ei. Show that

V ∗(A⊗B)V = A ◦B (1.58)

for A,B ∈ Mn(C). Conclude the Schur theorem.

57. Show that

|per (AB)|2 ≤ per (AA∗)per (B∗B).

58. Let A ∈ Mn and B ∈ Mm. Show that

Tr (Im ⊗A +B ⊗ In) = mTrA+ nTrB.
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59. For a vector f ∈ H the linear operator a+(f) : ∨kH → ∨k+1H is defined
as

a+(f) v1 ∨ v2 ∨ · · · ∨ vk = f ∨ v1 ∨ v2 ∨ · · · ∨ vk. (1.59)

Compute the adjoint of a+(f) which is denoted by a(f).

60. For A ∈ B(H) let F(A) : ∨kH → ∨kH be defined as

F(A) v1 ∨ v2 ∨ · · · ∨ vk =
k
∑

i=1

v1 ∨ v2 ∨ · · · ∨ vi−1 ∨Avi ∨ vi+1 ∨ . . . ∨ vk.

Show that
F(|f〉〈g|) = a+(f)a(g)

for f, g ∈ H. (Recall that a and a+ are defined in the previous exercise.)

61. The group

G =

{[

a b
0 c

]

: a, b, c ∈ R, a 6= 0, c 6= 0

}

is locally compact. Show that the left invariant Haar measure µ can be
defined as

µ(H) =

∫

H

p(A) dA,

where

A =

[

x y
0 z

]

, p(A) =
1

x2|z| , dA = dx dy dz.

Show that the right invariant Haar measure is similar, but

p(A) =
1

|x|z2 .



Chapter 2

Mappings and algebras

Mostly the statements and definitions are formulated in the Hilbert space
setting. The Hilbert space is always assumed to be finite dimensional, so
instead of operator one can consider a matrix. The idea of block-matrices
provides quite a useful tool in matrix theory. Some basic facts on block-
matrices are in Section 2.1. Matrices have two primary structures; one is of
course their algebraic structure with addition, multiplication, adjoint, etc.,
and another is the order structure coming from the partial order of positive
semidefiniteness, as explained in Section 2.2. Based on this order one can
consider several notions of positivity for linear maps between matrix algebras,
which are discussed in Section 2.6.

2.1 Block-matrices

If H1 and H2 are Hilbert spaces, then H1 ⊕ H2 consists of all the pairs
(f1, f2), where f1 ∈ H1 and f2 ∈ H2. The linear combinations of the pairs
are computed entry-wise and the inner product is defined as

〈(f1, f2), (g1, g2)〉 := 〈f1, g1〉+ 〈f2, g2〉.

It follows that the subspaces {(f1, 0) : f1 ∈ H1} and {(0, f2) : f2 ∈ H2} are
orthogonal and span the direct sum H1 ⊕H2.

Assume that H = H1 ⊕ H2, K = K1 ⊕ K2 and A : H → K is a linear
operator. A general element of H has the form (f1, f2) = (f1, 0) + (0, f2).
We have A(f1, 0) = (g1, g2) and A(0, f2) = (g′1, g

′
2) for some g1, g

′
1 ∈ K1 and

g2, g
′
2 ∈ K2. The linear mapping A is determined uniquely by the following 4

linear mappings:

Ai1 : f1 7→ gi, Ai1 : H1 → Ki (1 ≤ i ≤ 2)

57
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and

Ai2 : f2 7→ g′i, Ai2 : H2 → Ki (1 ≤ i ≤ 2).

We write A in the form
[

A11 A12

A21 A22

]

.

The advantage of this notation is the formula

[

A11 A12

A21 A22

](

f1
f2

)

=

(

A11f1 + A12f2
A21f1 + A22f2

)

.

(The right-hand side is A(f1, f2) written in the form of a column vector.)

Assume that ei1, e
i
2, . . . , e

i
m(i) is a basis in Hi and f

j
1 , f

j
2 , . . . , f

j
n(j) is a basis

in Kj , 1 ≤ i, j ≤ 2. The linear operators Aij : Hj → Ki have a matrix [Aij ]
with respect to these bases. Since

{(e1t , 0) : 1 ≤ t ≤ m(1)} ∪ {(0, e2u) : 1 ≤ u ≤ m(2)}

is a basis in H and similarly

{(f 1
t , 0) : 1 ≤ t ≤ n(1)} ∪ {(0, f 2

u) : 1 ≤ u ≤ n(2)}

is a basis in K, the operator A has an (m(1) +m(2))× (n(1) + n(2)) matrix
which is expressed by the n(i)×m(j) matrices [Aij ] as

[A] =

[

[A11] [A12]
[A21] [A22]

]

.

This is a 2× 2 matrix with matrix entries and it is called block-matrix.

The computation with block-matrices is similar to that of ordinary matri-
ces.

[

[A11] [A12]
[A21] [A22]

]∗

=

[

[A11]
∗ [A21]

∗

[A12]
∗ [A22]

∗

]

,

[

[A11] [A12]
[A21] [A22]

]

+

[

[B11] [B12]
[B21] [B22]

]

=

[

[A11] + [B11] [A12] + [B12]
[A21] + [B21] [A22] + [B22]

]

and
[

[A11] [A12]
[A21] [A22]

]

×
[

[B11] [B12]
[B21] [B22]

]

=

[

[A11] · [B11] + [A12] · [B21] [A11] · [B12] + [A12] · [B22]
[A21] · [B11] + [A22] · [B21] [A21] · [B12] + [A22] · [B22]

]

.
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In several cases we do not emphasize the entries of a block-matrix
[

A B
C D

]

.

However, if this matrix is self-adjoint we assume that A = A∗, B∗ = C
and D = D∗. (These conditions include that A and D are square matrices,
A ∈ Mn and B ∈ Mm.)

The block-matrix is used for the definition of reducible matrices. A ∈
Mn is reducible if there is a permutation matrix P ∈ Mn such that

P TAP =

[

B C
0 D

]

.

A matrix A ∈ Mn is irreducible if it is not reducible.

For a 2× 2 matrix, it is very easy to check the positivity:
[

a b
b̄ c

]

≥ 0 if and only if a ≥ 0 and bb̄ ≤ ac.

If the entries are matrices, then the condition for positivity is similar but it
is a bit more complicated. It is obvious that a diagonal block-matrix

[

A 0
0 D

]

.

is positive if and only if the diagonal entries A and D are positive.

Theorem 2.1 Assume that A is invertible. The self-adjoint block-matrix
[

A B
B∗ C

]

(2.1)

is positive if and only if A is positive and

B∗A−1B ≤ C.

Proof: First assume that A = I. The positivity of
[

I B
B∗ C

]

is equivalent to the condition

〈(f1, f2),
[

I B
B∗ C

]

(f1, f2)〉 ≥ 0
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for every vector f1 and f2. A computation gives that this condition is

〈f1, f1〉+ 〈f2, Cf2〉 ≥ −2Re 〈Bf2, f1〉.
If we replace f1 by e

iϕf1 with real ϕ, then the left-hand-side does not change,
while the right-hand-side becomes 2|〈Bf2, f1〉| for an appropriate ϕ. Choosing
f1 = Bf2, we obtain the condition

〈f2, Cf2〉 ≥ 〈f2, B∗Bf2〉
for every f2. This means that positivity implies the condition C ≥ B∗B. The
converse is also true, since the right-hand side of the equation

[

I B
B∗ C

]

=

[

I 0
B∗ 0

] [

I B
0 0

]

+

[

0 0
0 C −B∗B

]

is the sum of two positive block-matrices.

For a general positive invertible A, the positivity of (2.1) is equivalent to
the positivity of the block-matrix

[

A−1/2 0
0 I

] [

A B
B∗ C

] [

A−1/2 0
0 I

]

=

[

I A−1/2B
B∗A−1/2 C

]

.

This gives the condition C ≥ B∗A−1B. �

Another important characterization of the positivity of (2.1) is the condi-
tion that A,C ≥ 0 and B = A1/2WC1/2 with a contraction W . (Here the
invertibility of A or C is not necessary.)

Theorem 2.1 has applications in different areas, see for example the Cramér-
Rao inequality, Section 7.5.

Theorem 2.2 For an invertible A, we have the so-called Schur factoriza-
tion

[

A B
C D

]

=

[

I 0
CA−1 I

]

·
[

A 0
0 D − CA−1B

]

·
[

I A−1B
0 I

]

. (2.2)

The proof is simply the computation of the product on the right-hand side.
Since

[

I 0
CA−1 I

]−1

=

[

I 0
−CA−1 I

]

is invertible, the positivity of the left-hand-side of (2.2) is equivalent to the
positivity of the middle factor of the right-hand side. This fact gives a second
proof of Theorem 2.1.

In the Schur factorization the first factor is lower triangular, the second
factor is block diagonal and the third one is upper triangular. This structure
allows an easy computation of the determinant and the inverse.



2.1. BLOCK-MATRICES 61

Theorem 2.3 The determinant can be computed as follows.

det

[

A B
C D

]

= detA det (D − CA−1B).

If

M =

[

A B
C D

]

,

then D − CA−1B is called the Schur complement of A in M , in notation
M/A. Hence the determinant formula becomes detM = detA× det (M/A).

Theorem 2.4 Let

M =

[

A B
B∗ C

]

be a positive invertible matrix. Then

M/C = A− BC−1B∗ = sup

{

X ≥ 0 :

[

X 0
0 0

]

≤
[

A B
B∗ C

]}

.

Proof: The condition
[

A−X B
B∗ C

]

≥ 0

is equivalent to
A−X ≥ BC−1B∗

and this gives the result. �

Theorem 2.5 For a block-matrix

0 ≤
[

A X
X∗ B

]

∈ Mn,

we have
[

A X
X∗ B

]

= U

[

A 0
0 0

]

U∗ + V

[

0 0
0 B

]

V ∗

for some unitaries U, V ∈ Mn.

Proof: We can take

0 ≤
[

C Y
Y ∗ D

]

∈ Mn

such that
[

A X
X∗ B

]

=

[

C Y
Y ∗ D

] [

C Y
Y ∗ D

]

=

[

C2 + Y Y ∗ CV + Y D
Y ∗C +DY ∗ Y ∗Y +D2

]

.
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It follows that
[

A X
X∗ B

]

=

[

C 0
Y ∗ 0

] [

C Y
0 0

]

+

[

0 Y
0 D

] [

0 0
Y ∗ D

]

= T ∗T + S∗S,

where

T =

[

C Y
0 0

]

and S =

[

0 0
Y ∗ D

]

.

When T = U |T | and S = V |S| with the unitaries U, V ∈ Mn, then

T ∗T = U(TT ∗))U∗ and S∗S = V (SS∗)V ∗.

From the formulas

TT ∗ =

[

C2 + Y Y ∗ 0
0 0

]

=

[

A 0
0 0

]

, SS∗ =

[

0 0
0 Y ∗Y +D2

]

=

[

0 0
0 B

]

,

we have the result. �

Example 2.6 Similarly to the previous theorem we take a block-matrix

0 ≤
[

A X
X∗ B

]

∈ Mn.

With a unitary

W :=
1√
2

[

iI −I
iI I

]

we notice that

W

[

A X
X∗ B

]

W ∗ =

[

A+B
2

+ ImX A−B
2

+ iReX
A−B
2

− iReX A+B
2

− ImX

]

.

So Theorem 2.5 gives
[

A X
X∗ B

]

= U

[

A+B
2

+ ImX 0
0 0

]

U∗ + V

[

0 0
0 A+B

2
− ImX

]

V ∗

for some unitaries U, V ∈ Mn. �

We have two remarks. If C is not invertible, then the supremum in The-
orem 2.4 is A− BC†B∗, where C† is the Moore-Penrose generalized inverse.
The supremum of that theorem can be formulated without the block-matrix
formalism. Assume that P is an ortho-projection (see Section 2.3). Then

[P ]M := sup{N : 0 ≤ N ≤M, PN = N}. (2.3)
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If

P =

[

I 0
0 0

]

and M =

[

A B
B∗ C

]

,

then [P ]M = M/C. The formula (2.3) makes clear that if Q is another
ortho-projection such that P ≤ Q, then [P ]M ≤ [P ]QMQ.

It follows from the factorization that for an invertible block-matrix
[

A B
C D

]

,

both A and D − CA−1B must be invertible. This implies that

[

A B
C D

]−1

=

[

I −A−1B
0 I

]

×
[

A−1 0
0 (D − CA−1B)−1

]

×
[

I 0
−CA−1 I

]

.

After multiplication on the right-hand-side, we have the following.

[

A B
C D

]−1

=

[

A−1 + A−1BW−1CA−1 −A−1BW−1

−W−1CA−1 W−1

]

=

[

V −1 −V −1BD−1

−D−1CV −1 D−1 +D−1CV −1BD−1

]

, (2.4)

where W =M/A := D − CA−1B and V =M/D := A−BD−1C.

Example 2.7 Let X1, X2, . . . , Xm+k be random variables with (Gaussian)
joint probability distribution

fM(z) :=

√

detM

(2π)m+k
exp

(

− 1
2
〈z,Mz〉

)

, (2.5)

where z = (z1, z2, . . . , zm+k) andM is a positive definite real (m+k)×(m+k)
matrix, see Example 1.43. We want to compute the distribution of the random
variables X1, X2, . . . , Xm.

Let

M =

[

A B
B∗ D

]

be written in the form of a block-matrix, A is m × m and D is k × k. Let
z = (x1,x2), where x1 ∈ Rm and x2 ∈ Rk. Then the marginal of the Gaussian
probability distribution

fM (x1,x2) =

√

detM

(2π)m+k
exp

(

− 1
2
〈(x1,x2),M(x1,x2)〉

)
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on Rm is the distribution

f1(x1) =

√

detM

(2π)mdetD
exp

(

− 1
2
〈x1, (A− BD−1B∗)x1〉

)

. (2.6)

We have

〈(x1,x2),M(x1,x2)〉 = 〈Ax1 +Bx2,x1〉+ 〈B∗x1 +Dx2,x2〉
= 〈Ax1,x1〉+ 〈Bx2,x1〉+ 〈B∗x1,x2〉+ 〈Dx2,x2〉
= 〈Ax1,x1〉+ 2〈B∗x1,x2〉+ 〈Dx2,x2〉
= 〈Ax1,x1〉+ 〈D(x2 +Wx1), (x2 +Wx1)〉 − 〈DWx1,Wx1〉,

where W = D−1B∗. We integrate on Rk as
∫

exp
(

− 1
2
(x1,x2)M(x1,x2)

t
)

dx2

= exp
(

− 1
2
(〈Ax1,x1〉 − 〈DWx1,Wx1〉)

)

×
∫

exp
(

− 1
2
〈D(x2 +Wx1), (x2 +Wx1)〉

)

dx2

= exp
(

− 1

2
〈(A−BD−1B∗)x1,x1〉

)

√

(2π)k

detD

and obtain (2.6).

This computation gives a proof of Theorem 2.3 as well. If we know that
f1(x1) is Gaussian, then its quadratic matrix can be obtained from formula
(2.4). The covariance of X1, X2, . . . , Xm+k is M

−1. Therefore, the covariance
of X1, X2, . . . , Xm is (A − BD−1B∗)−1. It follows that the quadratic matrix
is the inverse: A−BD−1B∗ ≡M/D. �

Theorem 2.8 Let A be a positive n×n block-matrix with k×k entries. Then
A is the sum of block matrices B of the form [B]ij = X∗

iXj for some k × k
matrices X1, X2, . . . , Xn.

Proof: A can be written as C∗C for some

C =









C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn









.

Let Bi be the block-matrix such that its ith row is the same as in C and all
other elements are 0. Then C = B1 + B2 + · · · + Bn and for t 6= i we have
B∗
tBi = 0. Therefore,

A = (B1+B2+ · · ·+Bn)
∗(B1+B2+ · · ·+Bn) = B∗

1B1+B
∗
2B2+ · · ·+B∗

nBn.
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The (i, j) entry of B∗
tBt is C

∗
tiCtj , hence this matrix is of the required form.

�

Example 2.9 Let H be an n-dimensional Hilbert space and A ∈ B(H) be
a positive operator with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. If x, y ∈ H are
orthogonal vectors, then

|〈x,Ay〉|2 ≤
(

λ1 − λn
λ1 + λn

)2

〈x,Ax〉 〈y, Ay〉,

which is called Wielandt inequality. (It is also in Theorem 1.45.) The
argument presented here includes a block-matrix.

We can assume that x and y are unit vectors and we extend them to a
basis. Let

M =

[

〈x,Ax〉 〈x,Ay〉
〈y, Ax〉 〈y, Ay〉

]

,

and A has a block-matrix
[

M B
B∗ C

]

.

We can see that M ≥ 0 and its determinant is positive:

〈x,Ax〉 〈y, Ay〉 ≥ |〈x,Ay〉|2.

If λn = 0, then the proof is complete. Now we assume that λn > 0. Let α
and β be the eigenvalues of M . Formula (1.55) tells that

|〈x,Ay〉|2 ≤
(

α− β

α + β

)2

〈x,Ax〉 〈y, Ay〉.

We need the inequality
α− β

α + β
≤ λ1 − λn
λ1 + λn

when α ≥ β. This is true, since λ1 ≥ α ≥ β ≥ λn. �

As an application of the block-matrix technique, we consider the following
result, called UL-factorization (or Cholesky factorization).

Theorem 2.10 Let X be an n×n invertible positive matrix. Then there is a
unique upper triangular matrix T with positive diagonal such that X = TT ∗.
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Proof: The proof can be done by mathematical induction for n. For n = 1
the statement is clear. We assume that the factorization is true for (n− 1)×
(n− 1) matrices and write X in the form

[

A B
B∗ C

]

, (2.7)

where A is an (invertible) (n− 1)× (n− 1) matrix and C is a number. If

T =

[

T11 T12
0 T22

]

is written in a similar form, then

TT ∗ =

[

T11T
∗
11 + T12T

∗
12 T12T

∗
22

T22T
∗
12 T22T

∗
22

]

The condition X = TT ∗ leads to the equations

T11T
∗
11 + T12T

∗
12 = A,

T12T
∗
22 = B,

T22T
∗
22 = C.

If T22 is positive (number), then T22 =
√
C is the unique solution, moreover

T12 = BC−1/2 and T11T
∗
11 = A−BC−1B∗.

From the positivity of (2.7), we have A − BC−1B∗ ≥ 0. The induction
hypothesis gives that the latter can be written in the form of T11T

∗
11 with an

upper triangular T11. Therefore T is upper triangular, too. �

If 0 ≤ A ∈ Mn and 0 ≤ B ∈ Mm, then 0 ≤ A ⊗ B. More generally if
0 ≤ Ai ∈ Mn and 0 ≤ Bi ∈ Mm, then

k
∑

i=1

Ai ⊗ Bi

is positive. These matrices in Mn ⊗Mm are called separable positive ma-
trices. Is it true that every positive matrix in Mn ⊗ Mm is separable? A
counterexample follows.

Example 2.11 Let M4 = M2 ⊗M2 and

D :=
1

2









0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0









.
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D is a rank 1 positive operator, it is a projection. If D =
∑

iDi, then
Di = λiD. If D is separable, then it is a tensor product. If D is a tensor
product, then up to a constant factor it equals to (Tr2D)⊗ (Tr1D). We have

Tr1D = Tr2D =
1

2

[

1 0
0 1

]

.

Their tensor product has rank 4 and it cannot be λD. It follows that this D
is not separable. �

In quantum theory the non-separable positive operators are called entan-
gled. The positive operator D is maximally entangled if it has minimal
rank (it means rank 1) and the partial traces have maximal rank. The matrix
D in the previous example is maximally entangled.

It is interesting that there is no procedure to decide if a positive operator
in a tensor product space is separable or entangled.

2.2 Partial ordering

Let A,B ∈ B(H) be self-adjoint operators. The partial ordering A ≤ B
holds if B − A is positive, or equivalently

〈x,Ax〉 ≤ 〈x,Bx〉

for all vectors x. From this formulation one can easily see that A ≤ B implies
XAX∗ ≤ XBX∗ for every operator X .

Example 2.12 Assume that for the orthogonal projections P and Q the
inequality P ≤ Q holds. If Px = x for a unit vector x, then 〈x, Px〉 ≤
〈x,Qx〉 ≤ 1 shows that 〈x,Qx〉 = 1. Therefore the relation

‖x−Qx‖2 = 〈x−Qx, x−Qx〉 = 〈x, x〉 − 〈x,Qx〉 = 0

gives that Qx = x. The range of Q includes the range of P . �

Let An be a sequence of operators on a finite dimensional Hilbert space.
Fix a basis and let [An] be the matrix of An. Similarly, the matrix of the
operator A is [A]. Let the Hilbert space be m-dimensional, so the matrices
are m×m. Recall that the following conditions are equivalent:

(1) ‖A− An‖ → 0.
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(2) Anx → Ax for every vector x.

(3) 〈x,Any〉 → 〈x,Ay〉 for every vectors x and y.

(4) 〈x,Anx〉 → 〈x,Ax〉 for every vector x.

(5) Tr (A− An)
∗(A−An) → 0

(6) [An]ij → [A]ij for every 1 ≤ i, j ≤ m.

These conditions describe several ways the convergence of a sequence of
operators or matrices.

Theorem 2.13 Let An be an increasing sequence of operators with an upper
bound: A1 ≤ A2 ≤ · · · ≤ B. Then there is an operator A ≤ B such that
An → A.

Proof: Let φn(x, y) := 〈x,Any〉 be a sequence of complex bilinear function-
als. limn φn(x, x) is a bounded increasing real sequence and it is convergent.
Due to the polarization identity φn(x, y) is convergent as well and the limit
gives a complex bilinear functional φ. If the corresponding operator is denoted
by A, then

〈x,Any〉 → 〈x,Ay〉
for every vectors x and y. This is the convergence An → A. The condition
〈x,Ax〉 ≤ 〈x,Bx〉 means A ≤ B. �

Example 2.14 Assume that 0 ≤ A ≤ I for an operator A. Define a sequence
Tn of operators by recursion. Let T1 = 0 and

Tn+1 = Tn +
1

2
(A− T 2

n) (n ∈ N) .

Tn is a polynomial of A with real coefficients. So these operators commute
with each other. Since

I − Tn+1 =
1

2
(I − Tn)

2 +
1

2
(I −A) ,

induction shows that Tn ≤ I.

We show that T1 ≤ T2 ≤ T3 ≤ · · · by mathematical induction. In the
recursion

Tn+1 − Tn =
1

2
((I − Tn−1)(Tn − Tn−1) + (I − Tn)(Tn − Tn−1))
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I − Tn−1 ≥ 0 and Tn − Tn−1 ≥ 0 due to the assumption. Since they commute
their product is positive. Similarly (I − Tn)(Tn − Tn−1) ≥ 0. It follows that
the right-hand-side is positive.

Theorem 2.13 tells that Tn converges to an operator B. The limit of the
recursion formula yields

B = B +
1

2
(A− B2) ,

therefore A = B2. �

Theorem 2.15 Assume that 0 < A,B ∈ Mn are invertible matrices and
A ≤ B. Then B−1 ≤ A−1

Proof: The condition A ≤ B is equivalent to B−1/2AB−1/2 ≤ I and
the statement B−1 ≤ A−1 is equivalent to I ≤ B1/2A−1B1/2. If X =
B−1/2AB−1/2, then we have to show that X ≤ I implies X−1 ≥ I. The
condition X ≤ I means that all eigenvalues of X are in the interval (0, 1].
This implies that all eigenvalues of X−1 are in [1,∞). �

Assume that A ≤ B. It follows from (1.28) that the largest eigenvalue of
A is smaller than the largest eigenvalue of B. Let λ(A) = (λ1(A), . . . , λn(A))
denote the vector of the eigenvalues of A in decreasing order (with counting
multiplicities).

The next result is called Weyl’s monotonicity theorem.

Theorem 2.16 If A ≤ B, then λk(A) ≤ λk(B) for all k.

This is a consequence of the minimax principle, Theorem 1.27.

Corollary 2.17 Let A,B ∈ B(H) be self-adjoint operators.

(1) If A ≤ B, then TrA ≤ TrB.

(2) If 0 ≤ A ≤ B, then detA ≤ detB.

Theorem 2.18 (Schur theorem) Let A and B be positive n×n matrices.
Then

Cij = AijBij (1 ≤ i, j ≤ n)

determines a positive matrix.

Proof: If Aij = λiλj and Bij = µiµj, then Cij = λiµiλjµj and C is positive
due to Example 1.40. The general case is reduced to this one. �

The matrix C of the previous theorem is called the Hadamard (or Schur)
product of the matrices A and B. In notation, C = A ◦B.
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Corollary 2.19 Assume that 0 ≤ A ≤ B and 0 ≤ C ≤ D. Then A ◦ C ≤
B ◦D.

Proof: The equation

B ◦D = A ◦ C + (B − A) ◦ C + (D − C) ◦ A+ (B − A) ◦ (D − C)

implies the statement. �

Theorem 2.20 (Oppenheim’s inequality) If 0 ≤ A,B ∈ Mn, then

det(A ◦B) ≥
(

n
∏

i=1

Aii

)

detB.

Proof: For n = 1 the statement is obvious. The argument will be in
induction on n.

We take the Schur complementation and the block-matrix formalism

A =

[

a A1

A2 A3

]

and B =

[

b B1

B2 B3

]

,

where a, b ∈ R. From the induction we have

det(A3 ◦ (B/b)) ≥ A2,2A3,3 . . . An,n det(B/b). (2.8)

From Theorem 2.3 we have det(A ◦B) = ab det(A ◦B/ab) and

A ◦B/ab = A3 ◦B3 − (A2 ◦B2)a
−1b−1(A1 ◦B1)

= A3 ◦ (B/b) + (A/a) ◦ (B2B1b
−1).

The matrices A/a and B/b are positive, see Theorem 2.4. So the matrices

A3 ◦ (B/b) and (A/a) ◦ (B2B1b
−1)

are positive as well. So

det(A ◦B) ≥ ab det(A3 ◦ (B/b)).

Finally the inequality (2.8) gives

det(A ◦B) ≥
(

n
∏

i=1

Aii

)

b det(B/b).

Since detB = b det(B/b), the proof is complete. �
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A linear mapping α : Mn → Mn is called completely positive if it has
the form

α(B) =

k
∑

i=1

V ∗
i BVi

for some matrices Vi. The sum of completely positive mappings is completely
positive. (More details about completely positive mappings are in the Theo-
rem 2.48.)

Example 2.21 Let A ∈ Mn be a positive matrix. The mapping SA : B 7→
A ◦ B sends positive matrix to positive matrix, therefore it is a positive
mapping.

We want to show that SA is completely positive. SA is additive in A, hence
it is enough to show the case Aij = λiλj. Then

SA(B) = Diag(λ1, λ2, . . . , λn)BDiag(λ1, λ2, . . . , λn)

and SA is completely positive. �

2.3 Projections

Let K be a closed subspace of a Hilbert space H. Any vector x ∈ H can be
written in the form x0 + x1, where x0 ∈ K and x1 ⊥ K. The linear mapping
P : x 7→ x0 is called (orthogonal) projection onto K. The orthogonal
projection P has the properties P = P 2 = P ∗. If an operator P ∈ B(H)
satisfies P = P 2 = P ∗, then it is an (orthogonal) projection (onto its range).
Instead of orthogonal projection the expression ortho-projection is also
used.

The partial ordering is very simple for projections, see Example 2.12. If
P and Q are projections, then the relation P ≤ Q means that the range
of P is included in the range of Q. An equivalent algebraic formulation is
PQ = P . The largest projection in Mn is the identity I and the smallest one
is 0. Therefore 0 ≤ P ≤ I for any projection P ∈ Mn.

Example 2.22 In M2 the non-trivial ortho-projections have rank 1 and they
have the form

P =
1

2

[

1 + a3 a1 − ia2
a1 + ia2 1− a3

]

,

where a1, a2, a3 ∈ R and a21 + a22 + a23 = 1. In terms of the Pauli matrices

σ0 =

[

1 0
0 1

]

, σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ2 =

[

1 0
0 −1

]

(2.9)
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we have

P =
1

2

(

σ0 +
3
∑

i=1

aiσi

)

.

An equivalent formulation is P = |x〉〈x|, where x ∈ C2 is a unit vector. This
can be extended to an arbitrary ortho-projection Q ∈ Mn(C):

Q =

k
∑

i=1

|xi〉〈xi|,

where the set {xi : 1 ≤ i ≤ k} is a family of orthogonal unit vectors in Cn.
(k is the rank of the image of Q, or TrQ.) �

If P is a projection, then I − P is a projection as well and it is often
denoted by P⊥, since the range of I −P is the orthogonal complement of the
range of P .

Example 2.23 Let P and Q be projections. The relation P ⊥ Q means
that the range of P is orthogonal to the range of Q. An equivalent algebraic
formulation is PQ = 0. Since the orthogonality relation is symmetric, PQ = 0
if and only if QP = 0. (We can arrive at this statement by taking adjoint as
well.)

We show that P ⊥ Q if and only if P + Q is a projection as well. P + Q
is self-adjoint and it is a projection if

(P +Q)2 = P 2 + PQ+QP +Q2 = P +Q+ PQ+QP = P +Q

or equivalently
PQ+QP = 0.

This is true if P ⊥ Q. On the other hand, the condition PQ+QP = 0 implies
that PQP + QP 2 = PQP + QP = 0 and QP must be self-adjoint. We can
conclude that PQ = 0 which is the orthogonality. �

Assume that P and Q are projections on the same Hilbert space. Among
the projections which are smaller than P and Q there is a largest, it is the
orthogonal projection onto the intersection of the ranges of P and Q. This
has the notation P ∧Q.

Theorem 2.24 Assume that P and Q are ortho-projections. Then

P ∧Q = lim
n→∞

(PQP )n = lim
n→∞

(QPQ)n.
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Proof: The operator A := PQP is a positive contraction. Therefore the
sequence An is monotone decreasing and Theorem 2.13 implies that An has a
limit R. The operator R is self-adjoint. Since (An)2 → R2 we have R = R2,
in other words, R is an ortho-projection. If Px = x and Qx = x for a vector
x, then Ax = x and it follows that Rx = x. This means that R ≥ P ∧Q.

From the inequality PQP ≤ P , R ≤ P follows. Taking the limit of
(PQP )nQ(PQP )n = (PQP )2n+1, we have RQR = R. From this we have
R(I −Q)R = 0 and (I −Q)R = 0. This gives R ≤ Q.

It has been proved that R ≤ P,Q and R ≥ P ∧ Q. So R = P ∧ Q is the
only possibility. �

Corollary 2.25 Assume that P and Q are ortho-projections and 0 ≤ H ≤
P,Q. Then H ≤ P ∧Q.

Proof: One can show that PHP = H,QHQ = H . This implies H ≤
(PQP )n and the limit n→ ∞ gives the result. �

Let P and Q be ortho-projections. If the ortho-projection R has the prop-
erty R ≥ P,Q, then the image of R includes the images of P and Q. The
smallest such R projects to the linear subspace generated by the images of
P and Q. This ortho-projection is denoted by P ∨ Q. The set of ortho-
projections becomes a lattice with the operations ∧ and ∨. However, the
so-called distributivity

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)
is not true.

Example 2.26 We show that any operator X ∈ Mn(C) is a linear combina-
tion of ortho-projections. We write

X =
1

2
(X +X∗) +

1

2i
(iX − iX∗),

where X+X∗ and iX− iX∗ are self-adjoint operators. Therefore, it is enough
to find linear combination of ortho-projections for self-adjoint operators, this
is essentially the spectral decomposition (1.26).

Assume that ϕ0 is defined on projections ofMn(C) and it has the properties

ϕ0(0) = 0, ϕ0(I) = 1, ϕ0(P +Q) = ϕ0(P ) + ϕ0(Q) if P ⊥ Q.

It is a famous theorem of Gleason that in the case n > 2 the mapping ϕ0

has a linear extension ϕ : Mn(C) → C. The linearity implies the form

ϕ(X) = Tr ρX (X ∈ Mn(C)) (2.10)
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with a matrix ρ ∈ Mn(C). However, from the properties of ϕ0 we have ρ ≥ 0
and Tr ρ = 1. Such a ρ is usually called density matrix in the quantum
applications. It is clear that if ρ has rank 1, then it is a projection. �

In quantum information theory the traditional variance is

V arρ(A) = Tr ρA2 − (Tr ρA)2 (2.11)

when ρ is a density matrix and A ∈ Mn(C) is a self-adjoint operator. This is
the straightforward analogy of the variance in probability theory, a standard
notation is 〈A2〉−〈A〉2 in both formalism. We note that for more self-adjoint
operators the notation is covariance:

Covρ(A,B) = Tr ρAB − (Tr ρA)(Tr ρB)

It is rather different from probability theory that the variance (2.11) can
be strictly positive even in the case when ρ has rank 1. If ρ has rank 1, then
it is an ortho-projection of rank 1 and it is also called as pure state.

It is easy to show that

V arρ(A+ λI) = V arρ(A) for λ ∈ R

and the concavity of the variance functional ρ 7→ Varρ(A):

Varρ(A) ≥
∑

i

λiVarρi(A) if ρ =
∑

i

λiρi.

(Here λi ≥ 0 and
∑

i λi = 1.)

The formulation is easier if ρ is diagonal. We can change the basis of the
n-dimensional space such that ρ = Diag(p1, p2, . . . , pn), then we have

Varρ(A) =
∑

i,j

pi + pj
2

|Aij|2 −
(

∑

i

piAii

)2

. (2.12)

In the projection example P = Diag(1, 0, . . . , 0), formula (2.12) gives

VarP (A) =
∑

i 6=1

|A1i|2

and this can be strictly positive.



2.3. PROJECTIONS 75

Theorem 2.27 Let ρ be a density matrix. Take all the decompositions such
that

ρ =
∑

i

qiQi , (2.13)

where Qi are pure states and (qi) is a probability distribution. Then

Varρ(A) = sup

(

∑

i

qi
(

TrQiA
2 − (TrQiA)

2
)

)

, (2.14)

where the supremum is over all decompositions (2.13).

The proof will be an application of matrix theory. The first lemma contains
a trivial computation on block-matrices.

Lemma 2.28 Assume that

ρ =

[

ρ∧ 0
0 0

]

, ρi =

[

ρ∧i 0
0 0

]

, A =

[

A∧ B
B∗ C

]

and
ρ =

∑

i

λiρi, ρ∧ =
∑

i

λiρ
∧
i .

Then

(

Tr ρ∧(A∧)2 − (Tr ρ∧A∧)2
)

−
∑

i

λi
(

Tr ρ∧i (A
∧)2 − (Tr ρ∧i A

∧)2
)

= (Tr ρA2 − (Tr ρA)2)−
∑

i

λi
(

Tr ρiA
2 − (Tr ρiA)

2
)

.

This lemma shows that if ρ ∈ Mn(C) has a rank k < n, then the computa-
tion of a variance V arρ(A) can be reduced to k× k matrices. The equality in
(2.14) is rather obvious for a rank 2 density matrix and due to the previous
lemma the computation will be with 2× 2 matrices.

Lemma 2.29 For a rank 2 matrix ρ the equality holds in (2.14).

Proof: Due to Lemma 2.28 we can make a computation with 2×2 matrices.
We can assume that

ρ =

[

p 0
0 1− p

]

, A =

[

a1 b
b a2

]

.

Then
Tr ρA2 = p(a21 + |b|2) + (1− p)(a22 + |b|2).
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We can assume that

Tr ρA = pa1 + (1− p)a2 = 0.

Let

Q1 =

[

p c e−iϕ

c eiϕ 1− p

]

,

where c =
√

p(1− p). This is a projection and

TrQ1A = a1p+ a2(1− p) + bc e−iϕ + bc eiϕ = 2cRe b e−iϕ.

We choose ϕ such that Re b e−iϕ = 0. Then TrQ1A = 0 and

TrQ1A
2 = p(a21 + |b|2) + (1− p)(a22 + |b|2) = Tr ρA2.

Let

Q2 =

[

p −c e−iϕ

−c eiϕ 1− p

]

.

Then

ρ =
1

2
Q1 +

1

2
Q2

and we have

1

2
(TrQ1A

2 + TrQ2A
2) = p(a21 + |b|2) + (1− p)(a22 + |b|2) = Tr ρA2.

Therefore we have an equality. �

We denote by r(ρ) the rank of an operator ρ. The idea of the proof is to
reduce the rank and the block diagonal formalism will be used.

Lemma 2.30 Let ρ be a density matrix and A = A∗ be an observable. As-
sume the block-matrix forms

ρ =

[

ρ1 0
0 ρ2

]

, A =

[

A1 A2

A∗
2 A3

]

.

and r(ρ1), r(ρ2) > 1. We construct

ρ′ :=

[

ρ1 X∗

X ρ2

]

such that
Tr ρA = Tr ρ′A, ρ′ ≥ 0, r(ρ′) < r(ρ).
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Proof: The Tr ρA = Tr ρ′A condition is equivalent with TrXA2+TrX∗A∗
2 =

0 and this holds if and only if ReTrXA2 = 0.

We can have unitaries U andW such that Uρ1U
∗ andWρ2W

∗ are diagonal:

Uρ1U
∗ = Diag(0, . . . , 0, a1, . . . , ak), Wρ2W

∗ = Diag(b1, . . . , bl, 0, . . . , 0)

where ai, bj > 0. Then ρ has the same rank as the matrix

[

U 0
0 W

]

ρ

[

U∗ 0
0 W ∗

]

=

[

Uρ1U
∗ 0

0 Wρ2W
∗

]

,

the rank is k + l. A possible modification of this matrix is Y :=









Diag(0, . . . , 0, a1, . . . , ak−1) 0 0 0
0 ak

√
akb1 0

0
√
akb1 b1 0

0 0 0 Diag(b2, . . . , bl, 0, . . . , 0)









=

[

Uρ1U
∗ M

M Wρ2W
∗

]

and r(Y ) = k + l − 1. So Y has a smaller rank than ρ. Next we take

[

U∗ 0
0 W ∗

]

Y

[

U 0
0 W

]

=

[

ρ1 U∗MW
W ∗MU ρ2

]

which has the same rank as Y . IfX1 := W ∗MU is multiplied with eiα (α > 0),
then the positivity condition and the rank remain. On the other hand, we can
choose α > 0 such that ReTr eiαX1A2 = 0. Then X := eiαX1 is the matrix
we wanted. �

Lemma 2.31 Let ρ be a density matrix of rank m > 0 and A = A∗ be an
observable. We claim the existence of a decomposition

ρ = pρ− + (1− p)ρ+, (2.15)

such that r(ρ−) < m, r(ρ+) < m, and

TrAρ+ = TrAρ− = Tr ρA. (2.16)

Proof: By unitary transformation we can get to the formalism of the pre-
vious lemma:

ρ =

[

ρ1 0
0 ρ2

]

, A =

[

A1 A2

A∗
2 A3

]

.
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We choose

ρ+ = ρ′ =

[

ρ1 X∗

X ρ2

]

, ρ− =

[

ρ1 −X∗

−X ρ2

]

.

Then

ρ =
1

2
ρ− +

1

2
ρ+

and the requirements TrAρ+ = TrAρ− = Tr ρA also hold. �

Proof of Theorem 2.27: For rank-2 states, it is true because of Lemma 2.29.
Any state with a rank larger than 2 can be decomposed into the mixture of
lower rank states, according to Lemma 2.31, that have the same expectation
value for A, as the original ρ has. The lower rank states can then be de-
composed into the mixture of states with an even lower rank, until we reach
states of rank ≤ 2. Thus, any state ρ can be decomposed into the mixture of
pure states

ρ =
∑

pkQk (2.17)

such that TrAQk = TrAρ. Hence the statement of the theorem follows. �

2.4 Subalgebras

A unital ∗-subalgebra of Mn(C) is a subspace A that contains the identity I,
is closed under matrix multiplication and Hermitian conjugation. That is, if
A,B ∈ A, then so are AB and A∗. In what follows, for all ∗-subalgebras
we simplify the notation, we shall write subalgebra or subset.

Example 2.32 A simple subalgebra is

A =

{[

z w
w z

]

: z, w ∈ C

}

⊂ M2(C).

Since A,B ∈ A implies AB = BA, this is a commutative subalgebra. In
terms of the Pauli matrices (2.9) we have

A = {zσ0 + wσ1 : z, w ∈ C} .

This example will be generalized. �
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Assume that P1, P2, . . . , Pn are projections of rank 1 in Mn(C) such that
PiPj = 0 for i 6= j and

∑

i Pi = I. Then

A =

{

n
∑

i=1

αiPi : αi ∈ C

}

is a maximal commutative ∗-subalgebra ofMn(C). The usual name isMASA
which indicates the expression of maximal Abelian subalgebra.

Let A be any subset of Mn(C). Then A′, the commutant of A, is given
by

A′ = {B ∈ Mn(C) : BA = AB for all A ∈ A}.
It is easy to see that for any set A ⊂ Mn(C), A′ is a subalgebra. If A is a
MASA, then A′ = A.

Theorem 2.33 If A ⊂ Mn(C) is a unital ∗-subalgebra, then A′′ = A.

Proof: We first show that for any ∗-subalgebra A, B ∈ A′′ and any v ∈ Cn,
there exists an A ∈ A such that Av = Bv. Let V be the subspace of Cn given
by

V = {Av : A ∈ A}.
Let P be the orthogonal projection onto V in Cn. Since, by construction, V
is invariant under the action of A, PAP = AP for all A ∈ A. Taking the
adjoint, PA∗P = PA∗ for all A ∈ A. Since A is a ∗-algebra, this implies
PA = AP for all A ∈ A. That is, P ∈ A′. Thus, for any B ∈ A′′, BP = PB
and so V is invariant under the action of A′′ . In particular, Bv ∈ V and
hence, by the definition of V , Bv = Av for some A ∈ A.

We apply the previous statement to the ∗-subalgebra

M = {A⊗ In : A ∈ A} ⊂ Mn(C)⊗Mn(C) =Mn2(C).

It is easy to see that

M′′ = {B ⊗ In : B ∈ A′′} ⊂ Mn(C)⊗Mn(C) =Mn2(C).

Now let {v1, . . . , vn} be any basis of Cn and form the vector

v =









v1
v2
...
vn









∈ C
n2

.

Then
(A⊗ In)v = (B ⊗ In)v
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and Avj = Bvj for every 1 ≤ j ≤ n. Since {v1, . . . , vn} is a basis of Cn, this
means B = A ∈ A. Since B was an arbitrary element of A′′, this shows that
A′′ ⊂ A. Since A ⊂ A′′ is an automatic consequence of the definitions, this
shall prove that A′′ = A . �

Next we study subalgebrasA ⊂ B ⊂ Mn(C). A conditional expectation
E : B → A is a unital positive mapping which has the property

E(AB) = AE(B) for every A ∈ A and B ∈ B. (2.18)

Choosing B = I, we obtain that E acts identically on A. It follows from the
positivity of E that E(C∗) = E(C)∗. Therefore, E(BA) = E(B)A for every
A ∈ A and B ∈ B. Another standard notation for a conditional expectation
B → A is EB

A.

Theorem 2.34 Assume that A ⊂ B ⊂ Mn(C). If α : A → B is the embed-
ding, then the dual E : B → A is a conditional expectation.

Proof: From the definition

Trα(A)B = TrAE(B) (A ∈ A, B ∈ B)

of the dual we see that E : B → A is a positive unital mapping and E(A) =
A for every A ∈ A. For a contraction B, ‖E(B)‖2 = ‖E(B)∗E(B)‖ ≤
‖E(B∗B)‖ ≤ ‖E(I)‖ = 1. Therefore, we have ‖E‖ = 1.

Let P be a projection in A and B1, B2 ∈ B. We have

‖PB1 + P⊥B2‖2 = ‖(PB1 + P⊥B2)
∗(PB1 + P⊥B2)‖

= ‖B∗
1PB1 +B∗

2P
⊥B2‖

≤ ‖B∗
1PB1‖+ ‖B∗

2P
⊥B2‖

= ‖PB1||2 + ‖P⊥B2||2.

Using this, we estimate for an arbitrary t ∈ R as follows.

(t+ 1)2‖P⊥E(PB)‖2 = ‖P⊥E(PB) + tP⊥E(PB))‖2
≤ ‖PB + tP⊥E(PB)‖2
≤ ‖PB‖2 + t2‖P⊥E(PB)‖2 .

Since t can be arbitrary, P⊥E(PB) = 0, that is, PE(PB) = E(PB). We may
write P⊥ in place of P :

(I − P )E((I − P )B) = E((I − P )B), equivalently, PE(B) = PE(PB).

Therefore we conclude PE(B) = E(PB). The linear span of projections is the
full algebra A and we have AE(B) = E(AB) for every A ∈ A. This completes
the proof. �
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The subalgebras A1,A2 ⊂ Mn(C) cannot be orthogonal since I is in A1

and inA2. They are called complementary or quasi-orthogonal if Ai ∈ Ai

and TrAi = 0 for i = 1, 2 imply that TrA1A2 = 0.

Example 2.35 In M2(C) the subalgebras

Ai := {aσ0 + bσi : a, b ∈ C} (1 ≤ i ≤ 3)

are commutative and quasi-orthogonal. This follows from the facts that
Tr σi = 0 for 1 ≤ i ≤ 3 and

σ1σ2 = iσ3, σ2σ3 = iσ1 σ3σ1 = iσ2. (2.19)

So M2(C) has 3 quasi-orthogonal MASAs.

InM4(C) =M2(C)⊗M2(C) we can give 5 quasi-orthogonal MASAs. Each
MASA is the linear combimation of 4 operators:

σ0 ⊗ σ0, σ0 ⊗ σ1, σ1 ⊗ σ0, σ1 ⊗ σ1,
σ0 ⊗ σ0, σ0 ⊗ σ2, σ2 ⊗ σ0, σ2 ⊗ σ2,
σ0 ⊗ σ0, σ0 ⊗ σ3, σ3 ⊗ σ0, σ3 ⊗ σ3,
σ0 ⊗ σ0, σ1 ⊗ σ2, σ2 ⊗ σ3, σ3 ⊗ σ1,
σ0 ⊗ σ0, σ1 ⊗ σ3, σ2 ⊗ σ1, σ3 ⊗ σ2.

�

A POVM is a set {Ei : 1 ≤ i ≤ k} of positive operators such that
∑

iEi = I. (More applications will be in Chapter 7.)

Theorem 2.36 Assume that {Ai : 1 ≤ i ≤ k} is a set of quasi-orthogonal
POVMs in Mn(C). Then k ≤ n + 1.

Proof: The argument is rather simple. The traceless part of Mn(C) has
dimension n2 − 1 and the traceless part of a MASA has dimension n − 1.
Therefore k ≤ (n2 − 1)/(n− 1) = n+ 1. �

The maximal number of quasi-orthogonal POVMs is a hard problem. For
example, if n = 2m, then n+ 1 is really possible, but for an arbitrary n there
is no definite result.

The next theorem gives a characterization of complementarity.

Theorem 2.37 Let A1 and A2 be subalgebras of Mn(C) and the notation
τ = Tr /n is used. The following conditions are equivalent:

(i) If P ∈ A1 and Q ∈ A2 are minimal projections, then τ(PQ) = τ(P )τ(Q).



82 CHAPTER 2. MAPPINGS AND ALGEBRAS

(ii) The subalgebras A1 and A2 are quasi-orthogonal in Mn(C).

(iii) τ(A1A2) = τ(A1)τ(A2) if A1 ∈ A1, A2 ∈ A2.

(iv) If E1 : A → A1 is the trace preserving conditional expectation, then E1

restricted to A2 is a linear functional (times I).

Proof: Note that τ((A1 − Iτ(A1))(A2 − Iτ(A2))) = 0 and τ(A1A2) =
τ(A1)τ(A2) are equivalent. If they hold for minimal projections, they hold
for arbitrary operators as well. Moreover, (iv) is equivalent to the property
τ(A1E1(A2)) = τ(A1(τ(A2)I)) for every A1 ∈ A1 and A2 ∈ A2. �

Example 2.38 A simple example for quasi-orthogonal subalgebras can be
formulated with tensor product. If A = Mn(C) ⊗ Mn(C), A1 = Mn(C) ⊗
CIn ⊂ A and A2 = CIn ⊗Mn(C) ⊂ A, then A1 and A2 are quasi-orthogonal
subalgebras of A. This comes from the property Tr (A⊗B) = TrA · TrB.

For n = 2 we give another example formulated by the Pauli matrices. The
4 dimensional subalgebra A1 = M2(C)⊗CI2 is the linear combination of the
set

{σ0 ⊗ σ0, σ1 ⊗ σ0, σ2 ⊗ σ0, σ3 ⊗ σ0}.
Together with the identity, each of the following triplets linearly spans a
subalgebra Aj isomorphic to M2(C) (2 ≤ j ≤ 4):

{σ3 ⊗ σ1, σ3 ⊗ σ2, σ0 ⊗ σ3},
{σ2 ⊗ σ3, σ2 ⊗ σ1, σ0 ⊗ σ2},
{σ1 ⊗ σ2, σ1 ⊗ σ3, σ0 ⊗ σ1} .

It is easy to check that the subalgebras A1, . . . ,A4 are complementary.

The orthogonal complement of the four subalgebras is spanned by {σ0 ⊗
σ3, σ3 ⊗ σ0, σ3 ⊗ σ3}. The linear combination together with σ0 ⊗ σ0 is a
commutative subalgebra. �

The previous example is the general situation for M4(C), this will be the
content of the next theorem. It is easy to calculate that the number of
complementary subalgebras isomorphic to M2(C) is at most (16− 1)/3 = 5.
However, 5 is not possible, see the next theorem.

If x = (x1, x2, x3) ∈ R3, then the notation

x · σ = x1σ1 + x2σ2 + x3σ3

will be used and called Pauli triplet.
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Theorem 2.39 Assume that {Ai : 0 ≤ i ≤ 3} is a family of pairwise quasi-
orthogonal subalgebras of M4(C) which are isomorphic to M2(C). For every
0 ≤ i ≤ 3, there exists a Pauli triplet A(i, j) (j 6= i) such that A′

i ∩ Aj is the
linear span of I and A(i, j). Moreover, the subspace linearly spanned by

I and
(

3
⋃

i=0

Ai

)⊥

is a maximal Abelian subalgebra.

Proof: Since the intersection A′
0 ∩ Aj is a 2-dimensional commutative

subalgebra, we can find a self-adjoint unitary A(0, j) such that A′
0 ∩ Aj is

spanned by I and A(0, j) = x(0, j) · σ ⊗ I, where x(0, j) ∈ R3. Due to the
quasi-orthogonality of A1,A2 and A3, the unit vectors x(0, j) are pairwise
orthogonal (see (2.31)). The matrices A(0, j) are anti-commute:

A(0, i)A(0, j) = i(x(0, i)× x(0, j)) · σ ⊗ I
= −i(x(0, j)× x(0, i)) · σ ⊗ I = −A(0, j)A(0, i)

for i 6= j. Moreover,

A(0, 1)A(0, 2) = i(x(0, 1)× x(0, 2)) · σ

and x(0, 1)×x(0, 2) = ±x(0, 3) because x(0, 1)×x(0, 2) is orthogonal to both
x(0, 1) and x(0, 2). If necessary, we can change the sign of x(0, 3) such that
A(0, 1)A(0, 2) = iA(0, 3) holds.

Starting with the subalgebras A′
1, A′

2, A′
3 we can construct similarly the

other Pauli triplets. In this way, we arrive at the 4 Pauli triplets, the rows of
the following table:

⋆ A(0, 1) A(0, 2) A(0, 3)
A(1, 0) ⋆ A(1, 2) A(1, 3)
A(2, 0) A(2, 1) ⋆ A(2, 3)
A(3, 0) A(3, 1) A(3, 2) ⋆

(2.20)

When {Ai : 1 ≤ i ≤ 3} is a family of pairwise quasi-orthogonal subalge-
bras, then the commutants {A′

i : 1 ≤ i ≤ 3} are pairwise quasi-orthogonal as
well. A′′

j = Aj and A′
i have nontrivial intersection for i 6= j, actually the pre-

viously defined A(i, j) is in the intersection. For a fixed j the three unitaries
A(i, j) (i 6= j) form a Pauli triplet up to a sign. (It follows that changing
sign we can always reach the situation where the first three columns of table
(2.20) form Pauli triplets. A(0, 3) and A(1, 3) are anti-commute, but it may
happen that A(0, 3)A(1, 3) = −iA(2, 3).)
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A1’

A1

A0

A0’

A2A3’

A2’ A3
A(2,3)

A(0,3)

A(1,3)

This picture shows a family {Ai : 0 ≤ i ≤ 3} of pairwise quasi-orthogonal
subalgebras of M4(C) which are isomorphic to M2(C). The edges between
two vertices represent the one-dimensional traceless intersection of the two
subalgebras corresponding to two vertices. The three edges starting from a

vertex represent a Pauli triplet.

Let C0 := {±A(i, j)A(j, i) : i 6= j} ∪ {±I} and C := C0 ∪ iC0. We want
to show that C is a commutative group (with respect to the multiplication of
unitaries).

Note that the products in C0 have factors in symmetric position in (2.20)
with respect to the main diagonal indicated by stars. Moreover, A(i, j) ∈ A(j)
and A(j, k) ∈ A(j)′, and these operators commute.

We have two cases for a product from C. Taking the product ofA(i, j)A(j, i)
and A(u, v)A(v, u), we have

(A(i, j)A(j, i))(A(i, j)A(j, i)) = I

in the simplest case, since A(i, j) and A(j, i) are commuting self-adjoint uni-
taries. It is slightly more complicated if the cardinality of the set {i, j, u, v}
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is 3 or 4. First,

(A(1, 0)A(0, 1))(A(3, 0)A(0, 3)) = A(0, 1)(A(1, 0)A(3, 0))A(0, 3)
= ±i(A(0, 1)A(2, 0))A(0, 3)
= ±iA(2, 0)(A(0, 1)A(0, 3))
= ±A(2, 0)A(0, 2),

and secondly,

(A(1, 0)A(0, 1))(A(3, 2)A(2, 3)) = ±iA(1, 0)A(0, 2)(A(0, 3)A(3, 2))A(2, 3)
= ±iA(1, 0)A(0, 2)A(3, 2)(A(0, 3)A(2, 3))
= ±A(1, 0)(A(0, 2)A(3, 2))A(1, 3)
= ±iA(1, 0)(A(1, 2)A(1, 3))
= ±A(1, 0)A(1, 0) = ±I. (2.21)

So the product of any two operators from C is in C.

Now we show that the subalgebra C linearly spanned by the unitaries
{A(i, j)A(j, i) : i 6= j}∪{I} is a maximal Abelian subalgebra. Since we know
the commutativity of this algebra, we estimate the dimension. It follows from
(2.21) and the self-adjointness of A(i, j)A(j, i) that

A(i, j)A(j, i) = ±A(k, ℓ)A(ℓ, k)

when i, j, k and ℓ are different. Therefore C is linearly spanned by A(0, 1)A(1, 0),
A(0, 2)A(2, 0), A(0, 3)A(3, 0) and I. These are 4 different self-adjoint uni-
taries.

Finally, we check that the subalgebra C is quasi-orthogonal to A(i). If the
cardinality of the set {i, j, k, ℓ} is 4, then we have

TrA(i, j)(A(i, j)A(j, i)) = TrA(j, i) = 0

and

TrA(k, ℓ)A(i, j)A(j, i) = ±TrA(k, ℓ)A(k, l)A(ℓ, k) = ±TrA(ℓ, k) = 0.

Moreover, becauseA(k) is quasi-orthogonal toA(i), we also have A(i, k)⊥A(j, i),
so

TrA(i, ℓ)(A(i, j)A(j, i)) = ±i TrA(i, k)A(j, i) = 0.

From this we can conclude that

A(k, ℓ)⊥A(i, j)A(j, i)

for all k 6= ℓ and i 6= j. �
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2.5 Kernel functions

Let X be a nonempty set. A function ψ : X ×X → C is often called kernel.
A kernel ψ : X ×X → C is called positive definite if

n
∑

j,k=1

cjckψ(xj, xk) ≥ 0

for all finite sets {c1, c2, . . . , cn} ⊂ C and {x1, x2, . . . , xn} ⊂ X .

Example 2.40 It follows from the Schur theorem that the product of posi-
tive definite kernels is a positive definite kernel as well.

If ψ : X ×X → C is positive definite, then

eψ =

∞
∑

n=0

1

n!
ψm

and ψ̄(x, y) = f(x)ψ(x, y)f(y) are positive definite for any function f : X →
C. �

The function ψ : X × X → C is called conditionally negative definite
kernel if ψ(x, y) = ψ(y, x) and

n
∑

j,k=1

cjckψ(xj, xk) ≤ 0

for all finite sets {c1, c2, . . . , cn} ⊂ C and {x1, x2, . . . , xn} ⊂ X when
∑n

j=1 cj =
0.

The above properties of a kernel depend on the matrices








ψ(x1, x1) ψ(x1, x2) . . . ψ(x1, xn)
ψ(x2, x1) ψ(x2, x2) . . . ψ(x2, xn)

...
...

. . .
...

ψ(xn, x1) ψ(xn, x2) . . . ψ(xn, xn)









.

If a kernel is positive definite, then −f is conditionally negative definite, but
the converse is not true.

Lemma 2.41 Assume that the function ψ : X × X → C has the property
ψ(x, y) = ψ(y, x) and fix x0 ∈ X . Then

ϕ(x, y) := −ψ(x, y) + ψ(x, x0) + ψ(x0, y)− ψ(x0, x0)

is positive definite if and only if ψ is conditionally negative definite.
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The proof is rather straightforward, but an interesting particular case is
below.

Example 2.42 Assume that f : R+ → R is a C1-function with the property
f(0) = f ′(0) = 0. Let ψ : R+ × R+ → R be defined as

ψ(x, y) =











f(x)− f(y)

x− y
if x 6= y,

f ′(x) if x = y.

(This is the so-called kernel of divided difference.) Assume that this is con-
ditionally negative definite. Now we apply the lemma with x0 = ε:

−f(x)− f(y)

x− y
+
f(x)− f(ε)

x− ε
+
f(ε)− f(y)

ε− y
− f ′(ε)

is positive definite and from the limit ε → 0, we have the positive definite
kernel

−f(x)− f(y)

x− y
+
f(x)

x
+
f(y)

y
= −f(x)y

2 − f(y)x2

x(x− y)y
.

The multiplication by xy/(f(x)f(y)) gives a positive definite kernel

x2

f(x)
− y2

f(y)

x− y

which is again a divided difference of the function g(x) := x2/f(x). �

Theorem 2.43 (Schoenberg theorem) Let X be a nonempty set and let
ψ : X × X → C be a kernel. Then ψ is conditionally negative definite if and
only if exp(−tψ) is positive definite for every t > 0.

Proof: If exp(−tψ) is positive definite, then 1− exp(−tψ) is conditionally
negative definite and so is

ψ = lim
t→0

1

t
(1− exp(−tψ)).

Assume now that ψ is conditionally negative definite. Take x0 ∈ X and
set

ϕ(x, y) := −ψ(x, y) + ψ(x, x0) + ψ(x0, x)− ψ(x0, x0)

which is positive definite due to the previous lemma. Then

e−ψ(x,y) = eϕ(x,y)e−ψ(x,x0)e−ψ(y,x0)e−ψ(x0,x0)
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is positive definite. This was t = 1, for general t > 0 the argument is similar.�

The kernel functions are a kind of generalization of matrices. If A ∈ Mn,
then the corresponding kernel function has X := {1, 2, . . . , n} and

ψA(i, j) = Aij (1 ≤ i, j ≤ n).

Therefore the results of this section have matrix consequences.

2.6 Positivity preserving mappings

Let α : Mn → Mk be a linear mapping . It is called positive (or positivity
preserving) if it sends positive (semidefinite) matrices to positive (semidefi-
nite) matrices. α is unital if α(In) = Ik.

The dual α∗ : Mk → Mn of α is defined by the equation

Trα(A)B = TrAα∗(B) (A ∈ Mn, B ∈ Mk) . (2.22)

It is easy to see that α is positive if and only if α∗ is positive and α is trace
preserving if and only if α∗ is unital.

The inequality
α(AA∗) ≥ α(A)α(A)∗

is called Schwarz inequality. If the Schwarz inequality holds for a linear
mapping α, then α is positivity preserving. If α is a positive mapping, then
this inequality holds for normal matrices. This result is called Kadison
inequality.

Theorem 2.44 Let α : Mn(C) → Mk(C) be a positive unital mapping.

(1) If A ∈ Mn is a normal operator, then

α(AA∗) ≥ α(A)α(A)∗.

(2) If A ∈ Mn is positive such that A and α(A) are invertible, then

α(A−1) ≥ α(A)−1.

Proof: A has a spectral decomposition
∑

i λiPi, where Pi’s are pairwise
orthogonal projections. We have A∗A =

∑

i |λi|2Pi and
[

I α(A)
α(A)∗ α(A∗A)

]

=
∑

i

[

1 λi
λi |λi|2

]

⊗ α(Pi).
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Since α(Pi) is positive, the left-hand-side is positive as well. Reference to
Theorem 2.1 gives the first inequality.

To prove the second inequality, use the identity
[

α(A) I
I α(A−1)

]

=
∑

i

[

λi 1
1 λ−1

i

]

⊗ α(Pi)

to conclude that the left-hand-side is a positive block-matrix. The positivity
implies our statement. �

The linear mapping α : Mn → Mk is called 2-positive if
[

A B
B∗ C

]

≥ 0 implies

[

α(A) α(B)
α(B∗) α(C)

]

≥ 0

when A,B,C ∈ Mn.

Lemma 2.45 Let α : Mn(C) → Mk(C) be a 2-positive mapping. If A, α(A) >
0, then

α(B)∗α(A)−1α(B) ≤ α(B∗A−1B).

for every B ∈ Mn. Hence, a 2-positive unital mapping satisfies the Schwarz
inequality.

Proof: Since
[

A B
B∗ B∗A−1B

]

≥ 0,

the 2-positivity implies
[

α(A) α(B)
α(B∗) α(B∗A−1B)

]

≥ 0.

So Theorem 2.1 implies the statement. �

If B = B∗, then the 2-positivity condition is not necessary in the previous
lemma, positivity is enough.

Lemma 2.46 Let α : Mn → Mk be a 2-positive unital mapping. Then

Nα := {A ∈ Mn : α(A∗A) = α(A)∗α(A) and α(AA∗) = α(A)α(A)∗} (2.23)

is a subalgebra of Mn and

α(AB) = α(A)α(B) and α(BA) = α(B)α(A) (2.24)

holds for all A ∈ Nα and B ∈ Mn.



90 CHAPTER 2. MAPPINGS AND ALGEBRAS

Proof: The proof is based only on the Schwarz inequality. Assume that
α(AA∗) = α(A)α(A)∗. Then

t(α(A)α(B) + α(B)∗α(A)∗)
= α(tA∗ +B)∗α(tA∗ +B)− t2α(A)α(A)∗ − α(B)∗α(B)
≤ α((tA∗ +B)∗(tA∗ +B))− t2α(AA∗)− α(B)∗α(B)
= tα(AB +B∗A∗) + α(B∗B)− α(B)∗α(B)

for a real t. Divide the inequality by t and let t→ ±∞. Then

α(A)α(B) + α(B)∗α(A)∗ = α(AB +B∗A∗)

and similarly

α(A)α(B)− α(B)∗α(A)∗ = α(AB − B∗A∗).

Adding these two equalities we have

α(AB) = α(A)α(B).

The other identity is proven similarly. �

It follows from the previous lemma that if α is a 2-positive unital mapping
and its inverse is 2-positive as well, then α is multiplicative. Indeed, the
assumption implies α(A∗A) = α(A)∗α(A) for every A.

The linear mapping E : Mn → Mk is called completely positive if E⊗idn
is a positive mapping, when idn : Mn → Mn is the identity mapping.

Example 2.47 Consider the transpose mapping E : A 7→ At on 2× 2 matri-
ces:

[

x y
z w

]

7→
[

x z
y w

]

.

E is obviously positive. The matrix








2 0 0 2
0 1 1 0
0 1 1 0
2 0 0 2









.

is positive. The extension of E maps this to








2 0 0 1
0 1 2 0
0 2 1 0
1 0 0 2









.

This is not positive, so E is not completely positive. �
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Theorem 2.48 Let E : Mn → Mk be a linear mapping. Then the following
conditions are equivalent.

(1) E is completely positive.

(2) The block-matrix X defined by

Xij = E(E(ij)) (1 ≤ i, j ≤ n) (2.25)

is positive.

(3) There are operators Vt : C
n → Ck (1 ≤ t ≤ k2) such that

E(A) =
∑

t

VtAV
∗
t . (2.26)

(4) For finite families Ai ∈ Mn(C) and Bi ∈ Mk(C) (1 ≤ i ≤ n), the
inequality

∑

i,j

B∗
i E(A∗

iAj)Bj ≥ 0

holds.

Proof: (1) implies (2): The matrix

∑

i,j

E(ij)⊗ E(ij) =
1

n

(

∑

i,j

E(ij)⊗ E(ij)
)2

is positive. Therefore,

(idn ⊗ E)
(

∑

i,j

E(ij)⊗ E(ij)

)

=
∑

i,j

E(ij)⊗ E(E(ij)) = X

is positive as well.

(2) implies (3): Assume that the block-matrix X is positive. There are
orthogonal projections Pi (1 ≤ i ≤ n) on Cnk such that they are pairwise
orthogonal and

PiXPj = E(E(ij)).
We have a decomposition

X =

nk
∑

t=1

|ft〉〈ft|,
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where |ft〉 are appropriately normalized eigenvectors of X . Since Pi is a
partition of unity, we have

|ft〉 =
n
∑

i=1

Pi|ft〉

and set Vt : Cn → Ck by
Vt|s〉 = Ps|ft〉.

(|s〉 are the canonical basis vectors.) In this notation

X =
∑

t

∑

i,j

Pi|ft〉〈ft|Pj =
∑

i,j

Pi

(

∑

t

Vt|i〉〈j|V ∗
t

)

Pj

and
E(E(ij)) = PiXPj =

∑

t

VtE(ij)V
∗
t .

Since this holds for all matrix units E(ij), we obtained

E(A) =
∑

t

VtAV
∗
t .

(3) implies (4): Assume that E is of the form (2.26). Then

∑

i,j

B∗
i E(A∗

iAj)Bj =
∑

t

∑

i,j

B∗
i Vt(A

∗
iAj)V

∗
t Bj

=
∑

t

(

∑

i

AiV
∗
t Bi

)∗(∑

j

AjV
∗
t Bj

)

≥ 0

follows.

(4) implies (1): We have

E ⊗ idn : Mn(B(H)) → Mn(B(K)).

Since any positive operator in Mn(B(H)) is the sum of operators in the form
∑

i,j A
∗
iAj ⊗E(ij) (Theorem 2.8), it is enough to show that

X := E ⊗ idn

(

∑

i,j

A∗
iAj ⊗ E(ij)

)

=
∑

i,j

E(A∗
iAj)⊗ E(ij)

is positive. On the other hand, X ∈ Mn(B(K)) is positive if and only if

∑

i,j

B∗
iXijBj =

∑

i,j

B∗
i E(A∗

iAj)Bj ≥ 0.
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The positivity of this operator is supposed in (4), hence (1) is shown. �

The representation (2.26) is called Kraus representation. The block-
matrix X defined by (2.25) is called representing block-matrix (or Choi
matrix).

Example 2.49 We take A ⊂ B ⊂ Mn(C) and a conditional expectation
E : B → A. We can argue that this is completely positive due to conditition
(4) of the previous theorem. For Ai ∈ A and Bi ∈ B we have

∑

i,j

A∗
i E(B∗

iBj)Aj = E
((

∑

iBiAi

)∗(
∑

j BjAj

))

≥ 0

and this is enough. �

The next example will be slightly different.

Example 2.50 Let H and K be Hilbert spaces and (fi) be a basis in K. For
each i set a linear operator Vi : H → H ⊗K as Vie = e⊗ fi (e ∈ H). These
operators are isometries with pairwise orthogonal ranges and the adjoints act
as V ∗

i (e⊗ f) = 〈fi, f〉e. The linear mapping

Tr2 : B(H⊗K) → B(H), A 7→
∑

i

V ∗
i AVi (2.27)

is called partial trace over the second factor. The reason for that is the
formula

Tr2(X ⊗ Y ) = XTrY. (2.28)

The conditional expectation follows and the partial trace is actually a condi-
tional expectation up to a constant factor. �

Example 2.51 The trace Tr : Mk(C) → C is completely positive if Tr⊗idn :
Mk(C) ⊗Mn(C) → Mn(C) is a positive mapping. However, this is a partial
trace which is known to be positive (even completely positive).

It follows that any positive linear functional ψ : Mk(C) → C is completely
positive. Since ψ(A) = TrDA with a certain positive D, ψ is the composition
of the completely positive mappings A 7→ D1/2AD1/2 and Tr . �

Example 2.52 Let E : Mn → Mk be a positive linear mapping such that
E(A) and E(B) commute for any A,B ∈ Mn. We want to show that E is
completely positive.
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Any two self-adjoint matrices in the range of E commute, so we can change
the basis such that all of them become diagonal. It follows that E has the
form

E(A) =
∑

i

ψi(A)Eii,

where Eii are the diagonal matrix units and ψi are positive linear functionals.
Since the sum of completely positive mappings is completely positive, it is
enough to show that A 7→ ψ(A)F is completely positive for a positive func-
tional ψ and for a positive matrix F . The complete positivity of this mapping
means that for an m × m block-matrix X with entries Xij ∈ Mn, if X ≥ 0
then the block-matrix [ψ(Xij)F ]

n
i,j=1 should be positive. This is true, since

the matrix [ψ(Xij)]
n
i,j=1 is positive (due to the complete positivity of ψ). �

Example 2.53 A linear mapping E : M2 → M2 is defined by the formula

E :

[

1 + z x− iy
x+ iy 1− z

]

7→
[

1 + γz αx− iβy
αx+ iβy 1− γz

]

with some real parameters α, β, γ.

The condition for positivity is

−1 ≤ α, β, γ ≤ 1.

It is not difficult to compute the representing block-matrix, we have

X =
1

2









1 + γ 0 0 α+ β
0 1− γ α− β 0
0 α− β 1− γ 0

α + β 0 0 1 + γ









.

This matrix is positive if and only if

|1± γ| ≥ |α± β|. (2.29)

In quantum information theory this mapping E is called Pauli channel.
�

Example 2.54 Fix a positive definite matrix A ∈ Mn and set

TA(K) =

∫ ∞

0

(t+ A)−1K(t + A)−1 dt (K ∈ Mn).

This mapping TA : Mn → Mn is obviously positivity preserving and approxi-
mation of the integral by finite sum shows also the complete positivity.
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If A = Diag(λ1, λ2, . . . , λn), then it is seen from integration that the entries
of TA(K) are

TA(K)ij =
log λi − log λj

λi − λj
Kij.

Another integration gives that the mapping

α : L 7→
∫ 1

0

AtLA1−t dt

acts as

(α(L))ij =
λi − λj

log λi − log λj
Lij .

This shows that

T−1
A (L) =

∫ 1

0

AtLA1−t dt.

To show that T−1
A is not positive, we take n = 2 and consider

T−1
A

[

1 1
1 1

]

=









λ1
λ1 − λ2

log λ1 − log λ2
λ1 − λ2

log λ1 − log λ2
λ2









.

The positivity of this matrix is equivalent to the inequality

√

λ1λ2 ≥
λ1 − λ2

log λ1 − log λ2

between the geometric and logarithmis means. The opposite inequality holds,
see Example 5.22, therefore T−1

A is not positive. �

The next result tells that the Kraus representation of a completely
positive mapping is unique up to a unitary matrix.

Theorem 2.55 Let E : Mn(C) → Mm(C) be a linear mapping which is rep-
resented as

E(A) =
k
∑

t=1

VtAV
∗
t and E(A) =

k
∑

t=1

WtAW
∗
t .

Then there exists a k × k unitary matrix [ctu] such that

Wt =
∑

u

ctuVu .



96 CHAPTER 2. MAPPINGS AND ALGEBRAS

Proof: Let xi be a basis in Cm and yj be a basis in Cn. Consider the
vectors

vt :=
∑

i,j

xi ⊗ Vtyj and wt :=
∑

i,j

xi ⊗Wtyj .

We have
|vt〉〈vt| =

∑

i,j,i′,j′

|xi〉〈xi′| ⊗ Vt|yj〉〈yj′|V ∗
t

and
|wt〉〈wt| =

∑

i,j,i′,j′

|xi〉〈xi′| ⊗Wt|yj〉〈yj′|W ∗
t .

Our hypothesis implies that

∑

t

|vt〉〈vt| =
∑

t

|wt〉〈wt| .

Lemma 1.24 tells us that there is a unitary matrix [ctu] such that

Wt =
∑

u

ctuVu .

This implies that

〈xi|Wt|yj〉 = 〈xi|
∑

u

ctuVu|yj〉

for every i and j and the statement of the theorem can be concluded. �

2.7 Notes and remarks

Theorem 2.5 is from the paper J.-C. Bourin and E.-Y. Lee, Unitary orbits of
Hermitian operators with convex or concave functions, Bull. London Math.
Soc., in press.

The Wielandt inequality has an extension to matrices. Let A be an
n× n positive matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let X and Y be
n× p and n× q matrices such that X∗Y = 0. The generalized inequality is

X∗AY (Y ∗AY )−Y ∗AX ≤
(

λ1 − λn
λ1 + λn

)2

X∗AX,

where a generalized inverse (Y ∗AY )− is included: BB−B = B. See Song-Gui
Wang and Wai-Cheung Ip, A matrix version of the Wielandt inequality and
its applications to statistics, Linear Algebra and its Applications, 296(1999)
171–181.
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The lattice of ortho-projections has applications in quantum theory. The
cited Gleason theorem was obtained by A. M. Gleason in 1957, see also R.
Cooke, M. Keane and W. Moran: An elementary proof of Gleason’s theorem.
Math. Proc. Cambridge Philos. Soc. 98(1985), 117–128.

Theorem 2.27 is from the paper D. Petz and G. Tóth, Matrix variances
with projections, Acta Sci. Math. (Szeged), 78(2012), 683–688. An extension
of this result is in the paper Z. Léka and D. Petz, Some decompositions of
matrix variances, to be published.

Theorem 2.33 is the double commutant theorem of von Neumann from
1929, the original proof was for operators on an infinite dimensional Hilbert
space. (There is a relevant difference between finite and infinite dimensions,
in a finite dimensional space all subspaces are closed.) The conditional ex-
pectation in Theorem 2.34 was first introduced by H. Umegaki in 1954 and
it is related to the so-called Tomiyama theorem.

The maximum number of complementary MASAs in Mn(C) is a popular
subject. If n is a prime power, then n+1 MASAs can be constructed, but n =
6 is an unknown problematic case. (The expected number of complementary
MASAs is 3 here.) It is interesting that if in Mn(C) n MASAs exist, then
n = 1 is available, see M. Weiner, A gap for the maximum number of mutually
unbiased bases, http://xxx.uni-augsburg.de/pdf/0902.0635.

Theorem 2.39 is from the paper H. Ohno, D. Petz and A. Szántó, Quasi-
orthogonal subalgebras of 4 × 4 matrices, Linear Alg. Appl. 425(2007),
109–118. It was conjectured that in the case n = 2k the algebra Mn(C)
cannot have Nk := (4k − 1)/3 complementary subalgebras isomorphic to M2,
but it was proved that there are Nk − 1 copies. 2 is not a typical prime
number in this situation. If p > 2 is a prime number, then in the case n = pk

the algebra Mn(C) has Nk := (p2k − 1)/(p2 − 1) complementary subalgebras
isomorphic to Mp, see the paper H. Ohno, Quasi-orthogonal subalgebras of
matrix algebras, Linear Alg. Appl. 429(2008), 2146–2158.

Positive and conditionally negative definite kernel functions are well dis-
cussed in the book C. Berg, J.P.R. Christensen and P. Ressel: Harmonic
analysis on semigroups. Theory of positive definite and related functions.
Graduate Texts in Mathematics, 100. Springer-Verlag, New York, 1984. (It
is remarkable that the conditionally negative definite is called there negative
definite.)
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2.8 Exercises

1. Show that
[

A B
B∗ C

]

≥ 0

if and only if B = A1/2ZC1/2 with a matrix Z with ‖Z‖ ≤ 1.

2. Let X,U, V ∈ Mn and assume that U and V are unitaries. Prove that




I U X
U∗ I V
X∗ V ∗ I



 ≥ 0

if and only if X = UV .

3. Show that for A,B ∈ Mn the formula

[

I A
0 I

]−1 [
AB 0
B 0

] [

I A
0 I

]

=

[

0 0
B BA

]

holds. Conclude that AB and BA have the same eigenvectors.

4. Assume that 0 < A ∈ Mn. Show that A + A−1 ≥ 2I.

5. Assume that

A =

[

A1 B
B∗ A2

]

> 0.

Show that detA ≤ detA1 × detA2.

6. Assume that the eigenvalues of the self-ajoint matrix
[

A B
B∗ C

]

are λ1 ≤ λ2 ≤ . . . λn and the eigenvalues of A are β1 ≤ β2 ≤ · · · ≤ βm.
Show that

λi ≤ βi ≤ λi+n−m.

7. Show that a matrix A ∈ Mn is irreducible if and only if for every
1 ≤ i, j ≤ n there is a power k such that (Ak)ij 6= 0.

8. Let A,B,C,D ∈ Mn and AC = CA. Show that

det

[

A B
C D

]

= det(AD − CB).
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9. Let A,B,C ∈ Mn and
[

A B
B∗ C

]

≥ 0.

Show that B∗ ◦B ≤ A ◦ C.

10. Let A,B ∈ Mn. Show that A ◦B is a submatrix of A⊗B.

11. Assume that P and Q are projections. Show that P ≤ Q is equivalent
to PQ = P .

12. Assume that P1, P2, . . . , Pn are projections and P1 + P2 + · · ·+ Pn = I.
Show that the projections are pairwise orthogonal.

13. Let A1, A2, · · · , Ak ∈ Msa
n and A1 + A2 + . . . + Ak = I. Show that the

following statements are equivalent:

(1) All operators Ai are projections.

(2) For all i 6= j the product AiAj = 0 holds.

(3) rank (A1) + rank (A2) + · · ·+ rank (Ak) = n.

14. Let U |A| be the polar decomposition of A ∈ Mn. Show that A is normal
if and only if U |A| = |A|U .

15. The matrix M ∈ Mn(C) is defined as

Mij = min{i, j}.

Show that M is positive.

16. Let A ∈ Mn and the mapping SA : Mn → Mn is defined as SA : B 7→
A ◦B. Show that the following statements are equivalent.

(1) A is positive.

(2) SA : Mn → Mn is positive.

(3) SA : Mn → Mn is completely positive.

17. Let A,B,C be operators on a Hilbert space H and A,C ≥ 0. Show
that

[

A B
B∗ C

]

≥ 0

if and only if |〈Bx, y〉| ≤ 〈Ay, y〉 · 〈Cx, x〉 for every x, y ∈ H.

18. Let P ∈ Mn be idempotent, P 2 = P . Show that P is an ortho-
projection if and only if ‖P‖ ≤ 1.
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19. Let P ∈ Mn be an ortho-projection and 0 < A ∈ Mn. Show the
following formulae:

[P ](A2) ≤ ([P ]A)2, ([P ]A)1/2 ≤ [P ](A1/2), [P ](A−1) ≤ ([P ]A)†.

20. Show that the kernels

ψ(x, y) = cos(x− y), cos(x2 − y2), (1 + |x− y|)−1

are positive semidefinite on R× R.

21. Show that the equality

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

is not true for ortho-projections.

22. Assume that the kernel ψ : X×X → C is positive definite and ψ(x, x) >
0 for every x ∈ X . Show that

ψ̄(x, y) =
ψ(x, y)

ψ(x, x)ψ(y, y)

is positive definite kernel.

23. Assume that the kernel ψ : X×X → C is negative definite and ψ(x, x) ≥
0 for every x ∈ X . Show that

log(1 + ψ(x, y))

is negative definite kernel.

24. Show that the kernel ψ(x, y) = (sin(x− y))2 is negative semidefinite on
R× R.

25. Show that the linear mapping Ep,n : Mn → Mn defined as

Ep,n(A) = pA+ (1− p)
I

n
TrA . (2.30)

is completely positive if and only if

− 1

n2 − 1
≤ p ≤ 1 .
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26. Show that the linear mapping E : Mn → Mn defined as

E(D) =
1

n− 1
(Tr (D)I −Dt)

is completely positive unital mapping. (Here Dt denotes the transpose
of D.) Show that E has negative eigenvalue. (This mapping is called
Holevo–Werner channel.)

27. Assume that E : Mn → Mn is defined as

E(A) = 1

n− 1
(I TrA− A).

Show that E is positive but not completely positive.

28. Let p be a real number. Show that the mapping Ep,2 : M2 → M2 defined
as

Ep,2(A) = pA+ (1− p)
I

2
TrA

is positive if and only if −1 ≤ p ≤ 1. Show that Ep,2 is completely
positive if and only if −1/3 ≤ p ≤ 1.

29. Show that ‖(f1, f2)‖2 = ‖f1‖2 + ‖f2‖2.

30. Give the analogue of Theorem 2.1 when C is assumed to be invertible.

31. Let 0 ≤ A ≤ I. Find the matrices B and C such that

[

A B
B∗ C

]

.

is a projection.

32. Let dimH = 2 and 0 ≤ A,B ∈ B(H). Show that there is an orthogonal
basis such that

A =

[

a 0
0 b

]

, B =

[

c d
d e

]

with positive numbers a, b, c, d, e ≥ 0.

33. Let

M =

[

A B
B A

]

and assume that A and B are self-adjoint. Show that M is positive if
and only if −A ≤ B ≤ A.
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34. Determine the inverses of the matrices

A =

[

a −b
b a

]

and B =









a b c d
−b a −d c
−c d a b
−d c −b a









.

35. Give the analogue of the factorization (2.2) when D is assumed to be
invertible.

36. Show that the self-adjoint invertible matrix





A B C
B∗ D 0
C∗ 0 E





has inverse in the form




Q−1 −P −R
−P ∗ D−1(I +B∗P ) D−1B∗R
−R∗ R∗BD−1 E−1(I + C∗R)



 ,

where

Q = A−BD−1B∗ −CE−1C∗, P = Q−1BD−1, R = Q−1CE−1.

37. Find the determinant and the inverse of the block-matrix
[

A 0
a 1

]

.

38. Let A ∈ Mn be an invertible matrix and d ∈ C. Show that

det

[

A b
c d

]

= (d− cA−1b)detA

where c = [c1, . . . , cn] and b = [b1, . . . , nn]
t.

39. Show the concavity of the variance functional ρ 7→ Varρ(A) defined in
(2.11). The concavity is

Varρ(A) ≥
∑

i

λiVarρi(A) if ρ =
∑

i

λiρi

when λi ≥ 0 and
∑

i λi = 1.
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40. For x, y ∈ R3 and

x · σ :=
3
∑

i=1

xiσi, y · σ :=
3
∑

i=1

yiσi

show that
(x · σ)(y · σ) = 〈x, y〉σ0 + i(x× y) · σ, (2.31)

where x× y is the vectorial product in R3.



Chapter 3

Functional calculus and
derivation

Let A ∈ Mn(C) and p(x) :=
∑

i cix
i be a polynomial. It is quite obvious that

by p(A) one means the matrix
∑

i ciA
i. So the functional calculus is trivial for

polynomials. Slightly more generally, let f be a holomorphic function with
the Taylor expansion f(z) =

∑∞
k=0 ck(z − a)k. Then for every A ∈ Mn(C)

such that the operator norm ‖A − aI‖ is less than radius of convergence of
f , one can define the analytic functional calculus f(A) :=

∑∞
k=0 ck(A− aI)k.

This analytic functional calculus can be generalized by the Cauchy integral:

f(A) :=
1

2πi

∫

Γ

f(z)(zI −A)−1 dz

if f is holomorphic in a domain G containing the eigenvalues of A, where Γ is
a simple closed contour in G surrounding the eigenvalues of A. On the other
hand, when A ∈ Mn(C) is self-adjoint and f is a general function defined on
an interval containing the eigenvalues of A, the functional calculus f(A) is
defined via the spectral decomposition of A or the diagonalization of A, that
is,

f(A) =

k
∑

i=1

f(αi)Pi = UDiag(f(λ1), . . . , f(λn))U
∗

for the spectral decomposition A =
∑k

i=1 αiPi and the diagonalization A =
UDiag(λ1, . . . , λn)U

∗. In this way, one has some types of functional calculus
for matrices (also operators). When different types of functional calculus can
be defined for one A ∈ Mn(C), they are the same. The second half of this
chapter contains several formulae for derivatives

d

dt
f(A+ tT )

104
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and Fréchet derivatives of functional calculus.

3.1 The exponential function

The exponential function is well-defined for all complex numbers, it has a
convenient Taylor expansion and it appears in some differential equations. It
is important also for matrices.

The Taylor expansion can be used to define eA for a matrix A ∈ Mn(C):

eA :=
∞
∑

n=0

An

n!
. (3.1)

Here the right-hand side is an absolutely convergent series:

∞
∑

n=0

∥

∥

∥

∥

An

n!

∥

∥

∥

∥

≤
∞
∑

n=0

‖A‖n
n!

= e‖A‖

The first example is in connection with the Jordan form.

Example 3.1 We take

A =









a 1 0 0
0 a 1 0
0 0 a 1
0 0 0 a









= aI + J.

Since I and J commute and Jm = 0 for m > 3, we have

An = anI + nan−1J +
n(n− 1)

2
an−2J2 +

n(n− 1)(n− 2)

2 · 3 an−3J3

and

∞
∑

n=0

An

n!
=

∞
∑

n=0

an

n!
I +

∞
∑

n=1

an−1

(n− 1)!
J +

1

2

∞
∑

n=2

an−2

(n− 2)!
J2 +

1

6

∞
∑

n=3

an−3

(n− 3)!
J3

= eaI + eaJ +
1

2
eaJ2 +

1

6
eaJ3. (3.2)

So we have

eA = ea









1 1 1/2 1/6
0 1 1 1/2
0 0 1 1
0 0 0 1









.
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If B = SAS−1, then eB = SeAS−1.

Note that (3.2) shows that eA is a linear combination of I, A,A2, A3. (This
is contained in Theorem 3.6, the coefficients are specified by differential equa-
tions.) �

Example 3.2 It is a basic fact in analysis that

ea = lim
n→∞

(

1 +
a

n

)n

for a number a, but we have also for matrices:

eA = lim
n→∞

(

I +
A

n

)n

. (3.3)

This can be checked similarly to the previous example:

eaI+J = lim
n→∞

(

I
(

1 +
a

n

)

+
1

n
J

)n

.

From the point of view of numerical computation (3.1) is a better for-
mula, but (3.3) will be extended in the next theorem. (An extension of the
exponential function will appear later in (6.47).) �

An extension of the exponential function will appear later (6.47).

Theorem 3.3 Let

Tm,n(A) =

[ m
∑

k=0

1

k!

(A

n

)k
]n

(m,n ∈ N).

Then

lim
m→∞

Tm,n(A) = lim
n→∞

Tm,n(A) = eA.

Proof: The matrices B = e
A
n and

T =

m
∑

k=0

1

k!

(

A

n

)k

commute, so

eA − Tm,n(A) = Bn − T n = (B − T )(Bn−1 +Bn−2T + · · ·+ T n−1).



3.1. THE EXPONENTIAL FUNCTION 107

We can estimate:

‖eA − Tm,n(A)‖ ≤ ‖B − T‖n×max{‖B‖i‖T‖n−i−1 : 0 ≤ i ≤ n− 1}.

Since ‖T‖ ≤ e
‖A‖
n and ‖B‖ ≤ e

‖A‖
n , we have

‖eA − Tm,n(A)‖ ≤ n‖eA
n − T‖en−1

n
‖A‖.

By bounding the tail of the Taylor series,

‖eA − Tm,n(A)‖ ≤ n

(m+ 1)!

(‖A‖
n

)m+1

e
‖A‖
n e

n−1

n
‖A‖

converges to 0 in the two cases m→ ∞ and n→ ∞. �

Theorem 3.4 If AB = BA, then

et(A+B) = etAetB (t ∈ R). (3.4)

If this equality holds, then AB = BA.

Proof: First we assume that AB = BA and compute the product eAeB by
multiplying term by term the series:

eAeB =

∞
∑

m,n=0

1

m!n!
AmBn.

Therefore,

eAeB =
∞
∑

k=0

1

k!
Ck,

where

Ck :=
∑

m+n=k

k!

m!n!
AmBn.

Due to the commutation relation the binomial formula holds and Ck = (A+
B)k. We conclude

eAeB =
∞
∑

k=0

1

k!
(A +B)k

which is the statement.

Another proof can be obtained by differentiation. It follows from the
expansion (3.1) that the derivative of the matrix-valued function t 7→ etA

defined on R is etAA:
∂

∂t
etA = etAA = AetA (3.5)
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Therefore,
∂

∂t
etAeC−tA = etAAeC−tA − etAAeC−tA = 0

if AC = CA. It follows that the function t 7→ etAeC−tA is constant. In
particular,

eAeC−A = eC .

If we put A +B in place of C, we get the statement (3.4).

The first derivative of (3.4) is

etA+tB(A+B) = etAAetB + etAetBB

and the second derivative is

etA+tB(A +B)2 = etAA2etB + etAAetBB + etAAetBB + etAetBB2.

For t = 0 this is BA = AB. �

Example 3.5 The matrix exponential function can be used to formulate the
solution of a linear first-order differential equation. Let

x(t) =









x1(t)
x2(t)
...

xn(t)









and x0 =









x1
x2
...
xn









.

The solution of the differential equation

x(t)′ = Ax(t), x(0) = x0

is x(t) = etAx0 due to formula (3.5). �

Theorem 3.6 Let A ∈ Mn with characteristic polynomial

p(λ) = det(λI − A) = λn + cn−1λ
n−1 + · · ·+ c1λ+ c0.

Then
etA = x0(t)I + x1(t)A+ · · ·+ xn−1(t)A

n−1,

where the vector
x(t) = (x0(t), x1(t), . . . , xn−1(t))

satisfies the nth order differential equation

x(n)(t) + cn−1x
(n−1)(t) + · · ·+ c1x

′(t) + c0x = 0

with the initial condition

x(k)(0) = (0(1), . . . , 0(k−1), 1(k), 0(k+1), . . . , 0)

for 0 ≤ k ≤ n− 1.
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Proof: We can check that the matrix-valued functions

F1(t) = x0(t)I + x1(t)A + · · ·+ xn−1(t)A
n−1

and F2(t) = etA satisfy the conditions

F (n)(t) + cn−1F
(n−1)(t) + · · ·+ c1F

′(t) + c0F (t) = 0

and
F (0) = I, F ′(0) = A, . . . , F (n−1)(0) = An−1.

Therefore F1 = F2. �

Example 3.7 In case of 2× 2 matrices, the use of the Pauli matrices

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

is efficient, together with I they form an orthogonal system with respect to
Hilbert-Schmidt inner product.

Let A ∈ Msa
2 be such that

A = c1σ1 + c2σ2 + c3σ3, c21 + c22 + c23 = 1

in the representation with Pauli matrices. It is simple to check that A2 = I.
Therefore, for even powers A2n = I, but for odd powers A2n+1 = A. Choose
c ∈ R and combine the two facts with the knowledge of the relation of the
exponential to sine and cosine:

eicA =
∞
∑

n=0

incnAn

n!

=
∞
∑

n=0

(−1)nc2nA2n

(2n)!
+ i

∞
∑

n=0

(−1)nc2n+1A2n+1

(2n+ 1)!
= (cos c)I + i(sin c)A

A general matrix has the form C = c0I + cA and

eiC = eic0(cos c)I + ieic0(sin c)A.

(eC is similar, see Exercise 13.) �

The next theorem gives the so-called Lie-Trotter formula. (A general-
ization is Theorem 5.17.)
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Theorem 3.8 Let A,B ∈ Mn(C). Then

eA+B = lim
m→∞

(

eA/meB/m
)n

Proof: First we observe that the identity

Xn − Y n =
n−1
∑

j=0

Xn−1−j(X − Y )Y j

implies the norm estimate

‖Xn − Y n‖ ≤ ntn−1‖X − Y ‖ (3.6)

for the submultiplicative operator norm when the constant t is chosen such
that ‖X‖, ‖Y ‖ ≤ t.

Now we choose Xn := exp((A + B)/n) and Yn := exp(A/n) exp(B/n).
From the above estimate we have

‖Xn
n − Y n

n ‖ ≤ nu‖Xn − Yn‖, (3.7)

if we can find a constant u such that ‖Xn‖n−1, ‖Yn‖n−1 ≤ u. Since

‖Xn‖n−1 ≤ ( exp((‖A‖+ ‖B‖)/n))n−1 ≤ exp(‖A‖+ ‖B‖)
and

‖Yn‖n−1 ≤ ( exp(‖A‖/n))n−1 × ( exp(‖B‖/n))n−1 ≤ exp ‖A‖ × exp ‖B‖,
u = exp(‖A‖+ ‖B‖) can be chosen to have the estimate (3.7).

The theorem follows from (3.7) if we show that n‖Xn − Yn‖ → 0. The
power series expansion of the exponential function yields

Xn = I +
A+B

n
+

1

2

(

A +B

n

)2

+ · · ·

and

Yn =

(

I +
A

n
+

1

2

(

A

n

)2

+ . . .

)

×
(

I +
B

n
+

1

2

(

B

n

)2

+ · · ·
)

.

If Xn − Yn is computed by multiplying the two series in Yn, one can observe
that all constant terms and all terms containing 1/n cancel. Therefore

‖Xn − Yn‖ ≤ c

n2

for some positive constant c. �

If A and B are self-adjoint matrices, then it can be better to reach eA+B

as the limit of self-adjoint matrices.
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Corollary 3.9

eA+B = lim
n→∞

(

e
A
2n e

B
n e

A
2n

)n

.

Proof: We have
(

e
A
2n e

B
n e

A
2n

)n

= e−
A
2n

(

eA/neB/n
)n
e

A
2n

and the limit n→ ∞ gives the result. �

The Lie-Trotter formula can be extended to more matrices:

‖eA1+A2+...+Ak − (eA1/neA2/n · · · eAk/n)n‖

≤ 2

n

(

k
∑

j=1

‖Aj‖
)

exp
(n+ 2

n

k
∑

j=1

‖Aj‖
)

. (3.8)

Theorem 3.10 For matrices A,B ∈ Mn the Taylor expansion of the function
R ∋ t 7→ eA+tB is

∞
∑

k=0

tkAk(1) ,

where A0(s) = esA and

Ak(s) =

∫ s

0

dt1

∫ t1

0

dt2 · · ·
∫ tk−1

0

dtke
(s−t1)ABe(t1−t2)AB · · ·BetkA

for s ∈ R.

Proof: To make differentiation easier we write

Ak(s) =

∫ s

0

e(s−t1)ABAk−1(t1) dt1 = esA
∫ s

0

e−t1ABAk−1(t1) dt1

for k ≥ 1. It follows that

d

ds
Ak(s) = AesA

∫ s

0

e−t1ABAk−1(t1) dt1 + esA
d

ds

∫ s

0

e−t1ABAk−1(t1) dt1

= AAk(s) +BAk−1(s).

Therefore

F (s) :=
∞
∑

k=0

Ak(s)

satisfies the differential equation

F ′(s) = (A+B)F (s), F (0) = I.

Therefore F (s) = es(A+B). If s = 1 and we write tB in place of B, then we
get the expansion of eA+tB. �
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Corollary 3.11

∂

∂t
eA+tB

∣

∣

∣

t=0
=

∫ 1

0

euABe(1−u)A du.

�

Another important formula for the exponential function is the Baker-
Campbell-Hausdorff formula:

etAetB = exp
(

t(A+B)+
t2

2
[A,B]+

t3

12
([A, [A,B]]−[B, [A,B]])+O(t4)

)

(3.9)

where the commutator [A,B] := AB − BA is included.

A function f : R+ → R is completely monotone if the nth derivative of
f has the sign (−1)n on the whole R+ and for every n ∈ N.

The next theorem is related to a conjecture.

Theorem 3.12 Let A,B ∈ Msa
n and let t ∈ R. The following statements are

equivalent:

(i) The polynomial t 7→ Tr (A+ tB)p has only positive coefficients for every
A,B ≥ 0 and all p ∈ N.

(ii) For every A self-adjoint and B ≥ 0, the function t 7→ Tr exp (A− tB)
is completely monotone on [0,∞).

(iii) For every A > 0, B ≥ 0 and all p ≥ 0, the function t 7→ Tr (A+ tB)−p

is completely monotone on [0,∞).

Proof: (i)⇒(ii): We have

Tr exp (A− tB) = e−‖A‖
∞
∑

k=0

1

k!
Tr (A + ‖A‖I − tB)k (3.10)

and it follows from Bernstein’s theorem and (i) that the right-hand side is
the Laplace transform of a positive measure supported in [0,∞).

(ii)⇒(iii): Due to the matrix equation

(A+ tB)−p =
1

Γ(p)

∫ ∞

0

exp [−u(A+ tB)] up−1du (3.11)

we can see the signs of the derivatives.
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(iii)⇒(i): It suffices to assume (iii) only for p ∈ N. For invertible A we
observe that the rth derivative of Tr (A0 + tB0)

−p at t = 0 is related to the
coefficient of tr in Tr (A + tB)p as given by (3.39) with A,A0, B, B0 related
as in Lemma 3.31. The left side of (3.39) has the sign (−1)r because it is the
derivative of a completely monotone function. Thus the right-hand side has
the correct sign as stated in item (i). The case of non-invertible A follows
from continuity argument. �

Laplace transform of a measure µ on R+ is

f(t) =

∫ ∞

0

e−tx dµ(x) (t ∈ R
+).

According to the Bernstein theorem such a measure µ exists if and only is
f is a completely monotone function.

Bessis, Moussa and Villani conjectured in 1975 that the function t 7→
Tr exp(A − tB) is a completely monotone function if A is self-adjoint and
B is positive. Theorem 3.12 due to Lieb and Seiringer gives an equivalent
condition. Property (i) has a very simple formulation.

3.2 Other functions

All reasonable functions can be approximated by polynomials. Therefore, it
is basic to compute p(X) for a matrix X ∈ Mn and for a polynomial p. The
canonical Jordan decomposition

X = S









Jk1(λ1) 0 · · · 0
0 Jk2(λ2) · · · 0
...

...
. . .

...
0 0 · · · Jkm(λm)









S−1 = SJS−1,

gives that

p(X) = S









p(Jk1(λ1)) 0 · · · 0
0 p(Jk2(λ2)) · · · 0
...

...
. . .

...
0 0 · · · p(Jkm(λm))









S−1 = Sp(J)S−1.

The crucial point is the computation of (Jk(λ))
m. Since Jk(λ) = λIn+Jk(0) =

λIn + Jk is the sum of commuting matrices, to compute the mth power, we
can use the binomial formula:

(Jk(λ))
m = λmIn +

m
∑

j=1

(

m

j

)

λm−jJ jk .
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The powers of Jk are known, see Example 1.15. Let m > 3, then the example

J4(λ)
m =























λm mλm−1 m(m− 1)λm−2

2!

m(m− 1)(m− 2)λm−3

3!

0 λm mλm−1 m(m− 1)λm−2

2!

0 0 λm mλm−1

0 0 0 λm























.

shows the point. In another formulation,

p(J4(λ)) =























p(λ) p′(λ)
p′′(λ)

2!

p(3)(λ)

3!

0 p(λ) p′(λ)
p′′(λ)

2!

0 0 p(λ) p′(λ)

0 0 0 p(λ)























,

which is actually correct for all polynomials and for every smooth function.
We conclude that if the canonical Jordan form is known for X ∈ Mn, then
f(X) is computable. In particular, the above argument gives the following
result.

Theorem 3.13 For X ∈ Mn the relation

det eX = exp(TrX)

holds between trace and determinant.

A matrix A ∈ Mn is diagonizable if

A = SDiag(λ1, λ2, . . . , λn)S
−1

with an invertible matrix S. Observe that this condition means that in
the Jordan canonical form all Jordan blocks are 1 × 1 and the numbers
λ1, λ2, . . . , λn are the eigenvalues of A. In this case

f(A) = S Diag(f(λ1), f(λ2), . . . , f(λn))S
−1 (3.12)

when the complex-valued function f is defined on the set of eigenvalues of A.
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If the numbers λ1, λ2, . . . , λn are different, then we can have a polynomial
p(x) of order n− 1 such that p(λi) = f(λi):

p(x) =
n
∑

j=1

∏

i 6=j

x− λi
λj − λi

f(λj) .

(This is the so-called Lagrange interpolation formula.) Therefore we have

p(A) =

n
∑

j=1

∏

i 6=j

A− λiI

λj − λi
p(λj). (3.13)

(Relevant formulations are in Exercises 14 and 15.)

Example 3.14 We consider the self-adjoint matrix

X =

[

1 + z x− yi
x+ yi 1− z

]

≡
[

1 + z w
w̄ 1− z

]

when x, y, z ∈ R. From the characteristic polynomial we have the eigenvalues

λ1 = 1 +R and λ2 = 1− R,

where R =
√

x2 + y2 + z2. If R < 1, then X is positive and invertible. The
eigenvectors are

u1 =

[

R + z
w̄

]

and u2 =

[

R− z
−w̄

]

.

Set

∆ =

[

1 +R 0
0 1−R

]

, S =

[

R + z R− z
w̄ −w̄

]

.

We can check that XS = S∆, hence

X = S∆S−1.

To compute S−1 we use the formula

[

a b
c d

]−1

=
1

ad− bc

[

d −b
−c a

]

.

Hence

S−1 =
1

2w̄R

[

w̄ R− z
w̄ −R− z

]

.
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It follows that

X t = at

[

bt + z w
w̄ bt − z

]

,

where

at =
(1 +R)t − (1− R)t

2R
, bt = R

(1 +R)t + (1−R)t

(1 +R)t − (1− R)t
.

The matrix X/2 is a density matrix and has applications in quantum
theory. �

In the previous example the function f(x) = xt was used. If the eigen-
values of A are positive, then f(A) is well-defined. The canonical Jordan
decomposition is not the only possibility to use. It is known in analysis that

xp =
sin pπ

π

∫ ∞

0

xλp−1

λ+ x
dλ (x ∈ (0,∞)) (3.14)

when 0 < p < 1. It follows that for a positive matrix A we have

Ap =
sin pπ

π

∫ ∞

0

λp−1A(λI + A)−1 dλ. (3.15)

For self-adjoint matrices we can have a simple formula, but the previous
integral formula is still useful in some situations, for example for some differ-
entiation.

Remember that self-adjoint matrices are diagonalizable and they have a
spectral decomposition. Let A =

∑

i λiPi be the spectral decomposition of
a self-adjoint A ∈ Mn(C). (λi are the different eigenvalues and Pi are the
corresponding eigenprojections, the rank of Pi is the multiplicity of λi.) Then

f(A) =
∑

i

f(λi)Pi . (3.16)

Usually we assume that f is continuous on an interval containing the eigen-
values of A.

Example 3.15 Consider

f+(t) := max{t, 0} and f−(t) := max{−t, 0} for t ∈ R.

For each A ∈ B(H)sa define

A+ := f+(A) and A− := f−(A).
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Since f+(t), f−(t) ≥ 0, f+(t)− f−(t) = t and f+(t)f−(t) = 0, we have

A+, A− ≥ 0, A = A+ − A−, A+A− = 0.

These A+ and A− are called the positive part and the negative part of A,
respectively, and A = A++A− is called the Jordan decomposition of A.�

Let f be holomorphic inside and on a positively oriented simple contour Γ
in the complex plane and let A be an n× n matrix such that its eigenvalues
are inside of Γ. Then

f(A) :=
1

2πi

∫

Γ

f(z)(zI − A)−1 dz (3.17)

is defined by a contour integral. When A is self-adjoint, then (3.16) makes
sense and it is an exercise to show that it gives the same result as (3.17).

Example 3.16 We can define the square root function on the set

C
+ := {Reiϕ ∈ C : R > 0, −π/2 < ϕ < π/2}

as
√
Reiϕ :=

√
Reiϕ/2 and this is a holomorphic function on C+.

When X = S Diag(λ1, λ2, . . . , λn)S
−1 ∈ Mn is a weakly positive matrix,

then λ1, λ2, . . . , λn > 0 and to use (3.17) we can take a positively oriented
simple contour Γ in C+ such that the eigenvalues are inside. Then

√
X =

1

2πi

∫

Γ

√
z(zI −X)−1 dz

= S

(

1

2πi

∫

Γ

√
zDiag(1/(z − λ1), 1/(z − λ2), . . . , 1/(z − λn)) dz

)

S−1

= S Diag(
√

λ1,
√

λ2, . . . ,
√

λn)S
−1.

�

Example 3.17 The logarithm is a well-defined differentiable function on
positive numbers. Therefore for a strictly positive operator A formula (3.16)
gives logA. Since

log x =

∫ ∞

0

1

1 + t
− 1

x+ t
dt,

we can use

logA =

∫ ∞

0

1

1 + t
I − (A+ tI)−1 dt. (3.18)
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If we have a matrix A with eigenvalues out of R−, then we can take the
domain

D = {Reiϕ ∈ C : R > 0, −π < ϕ < π}
with the function Reiϕ 7→ logR+iϕ. The integral formula (3.17) can be used
for the calculus. Another useful formula is

logA =

∫ 1

0

(A− I) (t(A− I) + I)−1 dt (3.19)

(when A does not have eigenvalue in R−).

Note that log(ab) = log a + log b is not true for any complex numbers, so
it cannot be expected for (commuting) matrices. �

Theorem 3.18 If fk and gk are functions (α, β) → R such that for some
ck ∈ R

∑

k

ckfk(x)gk(y) ≥ 0

for every x, y ∈ (α, β), then

∑

k

ckTr fk(A)gk(B) ≥ 0

whenever A,B are self-adjoint matrices with spectrum in (α, β).

Proof: Let A =
∑

i λiPi and B =
∑

j µjQj be the spectral decompositions.
Then

∑

k

ckTr fk(A)gk(B) =
∑

k

∑

i,j

ckTrPifk(λi)gk(µj)Qj

=
∑

i,j

TrPiQj

∑

k

ckfk(λi)gk(µj) ≥ 0

due to the hypothesis. �

Example 3.19 In order to show an application of the previous theorem,
assume that f is convex. Then

f(x)− f(y)− (x− y)f ′(y) ≥ 0

and

Tr f(A) ≥ Tr f(B) + Tr (A−B)f ′(B) . (3.20)
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Replacing f by −η(t) = t log t we have

TrA logA ≥ TrB logB + Tr (A− B) + Tr (A− B) logB

or equivalently

TrA(logA− logB)− Tr (A− B) ≥ 0. (3.21)

The left-hand-side is the relative entropy of the positive matrices A and B.
(The relative entropy S(A‖B) is well-defined if kerA ⊂ kerB.)

If TrA = TrB = 1, then the lower bound is 0.

Concerning the relative entropy we can have a better estimate. If TrA =
TrB = 1, then all eigenvalues are in [0, 1]. Analysis tells us that for some
ξ ∈ (x, y)

−η(x) + η(y) + (x− y)η′(y) = −1

2
(x− y)2η′′(ξ) ≥ 1

2
(x− y)2 (3.22)

when x, y ∈ [0, 1]. According to Theorem 3.18 we have

TrA(logA− logB) ≥ 1
2
Tr (A− B)2. (3.23)

The Streater inequality (3.23) has the consequence that A = B if the
relative entropy is 0. �

3.3 Derivation

This section contains derivatives of number-valued and matrix-valued func-
tions. From the latter one number-valued can be obtained by trace, for ex-
ample.

Example 3.20 Assume that A ∈ Mn is invertible. Then A+ tT is invertible
as well for T ∈ Mn and for a small real number t. The identity

(A+ tT )−1 − A−1 = (A+ tT )−1(A− (A+ tT ))A−1 = −t(A + tT )−1TA−1,

gives

lim
t→0

1

t

(

(A+ tT )−1 − A−1
)

= −A−1TA−1.

The derivative is computed at t = 0, but if A+ tT is invertible, then

d

dt
(A + tT )−1 = −(A + tT )−1T (A+ tT )−1 (3.24)
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by a similar computation. We can continue the derivation:

d2

dt2
(A+ tT )−1 = 2(A+ tT )−1T (A+ tT )−1T (A+ tT )−1 . (3.25)

d3

dt3
(A+ tT )−1 = −6(A+ tT )−1T (A+ tT )−1T (A+ tT )−1T (A+ tT )−1 . (3.26)

So the Taylor expansion is

(A + tT )−1 = A−1 − tA−1TA−1 + t2A−1TA−1TA−1

−t3A−1TA−1TA−1TA−1 + · · ·
=

∞
∑

n=0

(−t)nA−1/2(A−1/2TA−1/2)nA−1/2. (3.27)

Since
(A + tT )−1 = A−1/2(I + tA−1/2TA−1/2)−1A−1/2

we can get the Taylor expansion also from the Neumann series of (I +
tA−1/2TA−1/2)−1, see Example 1.8. �

Example 3.21 There is an interesting formula for the joint relation of the
functional calculus and derivation:

f

([

A B
0 A

])

=

[

f(A) d
dt
f(A+ tB)

0 f(A)

]

. (3.28)

If f is a polynomial, then it is easy to check this formula. �

Example 3.22 Assume that A ∈ Mn is positive invertible. Then A + tT
is positive invertible as well for T ∈ Msa

n and for a small real number t.
Therefore log(A+ tT ) is defined and it is expressed as

log(A+ tT ) =

∫ ∞

0

(x+ 1)−1I − (xI + A+ tT )−1 dx.

This is a convenient formula for the derivation (with respect to t ∈ R):

d

dt
log(A+ tT ) =

∫ ∞

0

(xI + A)−1T (xI + A)−1 dx

from the derivative of the inverse. The derivation can be continued and we
have the Taylor expansion

log(A+ tT ) = logA + t

∫ ∞

0

(x+ A)−1T (x+ A)−1 dx
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−t2
∫ ∞

0

(x+ A)−1T (x+ A)−1T (x+ A)−1 dx+ · · ·

= logA−
∞
∑

n=1

(−t)n
∫ ∞

0

(x+ A)−1/2

×((x+ A)−1/2T (x+ A)−1/2)n(x+ A)−1/2 dx.

�

Theorem 3.23 Let A,B ∈ Mn(C) be self-adjoint matrices and t ∈ R. As-
sume that f : (α, β) → R is a continuously differentiable function defined on
an interval and assume that the eigenvalues of A+ tB are in (α, β) for small
t− t0. Then

d

dt
Tr f(A+ tB)

∣

∣

∣

t=t0
= Tr (Bf ′(A+ t0B)) .

Proof: One can verify the formula for a polynomial f by an easy direct
computation: Tr (A + tB)n is a polynomial of the real variable t. We are
interested in the coefficient of t which is

Tr (An−1B + An−2BA+ · · ·+ ABAn−2 +BAn−1) = nTrAn−1B.

We have the result for polynomials and the formula can be extended to a
more general f by means of polynomial approximation. �

Example 3.24 Let f : (α, β) → R be a continuous increasing function and
assume that the spectrum of the self-adjoint matrices A and C lie in (α, β).
We use the previous theorem to show that

A ≤ C implies Tr f(A) ≤ Tr f(C). (3.29)

We may assume that f is smooth and it is enough to show that the deriva-
tive of Tr f(A + tB) is positive when B ≥ 0. (To observe (3.29), one takes
B = C − A.) The derivative is Tr (Bf ′(A + tB)) and this is the trace of the
product of two positive operators. Therefore, it is positive. �

For a holomorphic function f , we can compute the derivative of f(A+ tB)
on the basis of (3.17), where Γ is a positively oriented simple contour satisfying
the properties required above. The derivation is reduced to the differentiation
of the resolvent (zI − (A+ tB))−1 and we obtain

X :=
d

dt
f(A+ tB)

∣

∣

∣

t=0
=

1

2πi

∫

Γ

f(z)(zI − A)−1B(zI − A)−1 dz . (3.30)
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When A is self-adjoint, then it is not a restriction to assume that it is diagonal,
A = Diag(t1, t2, . . . , tn), and we compute the entries of the matrix (3.30) using
the Frobenius formula

f [ti, tj] :=
f(ti)− f(tj)

ti − tj
=

1

2πi

∫

Γ

f(z)

(z − ti)(z − tj)
dz .

Therefore,

Xij =
1

2πi

∫

Γ

f(z)
1

z − ti
Bij

1

z − tj
dz =

f(ti)− f(tj)

ti − tj
Bij .

A C1 function can be approximated by polynomials, hence we have the fol-
lowing result.

Theorem 3.25 Assume that f : (α, β) → R is a C1 function and A =
Diag(t1, t2, . . . , tn) with α < ti < β (1 ≤ i ≤ n). If B = B∗, then the
derivative t 7→ f(A+ tB) is a Hadamard product:

d

dt
f(A+ tB)

∣

∣

∣

t=0
= D ◦B, (3.31)

where D is the divided difference matrix,

Dij =











f(ti)− f(tj)

ti − tj
if ti − tj 6= 0,

f ′(ti) if ti − tj = 0.

(3.32)

Let f : (α, β) → R be a continuous function. It is called matrix mono-
tone if

A ≤ C implies f(A) ≤ f(C) (3.33)

when the spectra of the self-adjoint matrices B and C lie in (α, β).

Theorem 2.15 tells us that f(x) = −1/x is a matrix monotone function.
Matrix monotonicity means that f(A+tB) is an increasing function when B ≥
0. The increasing property is equivalent to the positivity of the derivative.
We use the previous theorem to show that the function f(x) =

√
x is matrix

monotone.

Example 3.26 Assume that A > 0 is diagonal: A = Diag(t1, t2, . . . , tn).
Then derivative of the function

√
A + tB is D ◦B, where

Dij =















1√
ti +

√
tj

if ti − tj 6= 0,

1

2
√
ti

if ti − tj = 0.
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This is a Cauchy matrix, see Example 1.41 and it is positive. If B is positive,
then so is the Hadamard product. We have shown that the derivative is
positive, hence f(x) =

√
x is matrix monotone.

The idea of another proof is in Exercise 28. �

A subset K ⊂ Mn is convex if for any A,B ∈ K and for a real number
0 < λ < 1

λA+ (1− λ)B ∈ K.

The functional F : K → R is convex if for A,B ∈ K and for a real number
0 < λ < 1 the inequality

F (λA+ (1− λ)B) ≤ λF (A) + (1− λ)F (B)

holds. This inequality is equivalent to the convexity of the function

G : [0, 1] → R, G(λ) := F (B + λ(A− B)).

It is well-known in analysis that the convexity is related to the second deriva-
tive.

Theorem 3.27 Let K be the set of self-adjoint n×n matrices with spectrum
in the interval (α, β). Assume that the function f : (α, β) → R is a convex
C2 function. Then the functional A 7→ Tr f(A) is convex on K.

Proof: The stated convexity is equivalent to the convexity of the numerical
functions

t 7→ Tr f(tX1 + (1− t)X2) = Tr (X2 + t(X1 −X2)) (t ∈ [0, 1]).

It is enough to prove that the second derivative of t 7→ Tr f(A+tB) is positive
at t = 0.

The first derivative of the functional t 7→ Tr f(A+ tB) is Tr f ′(A+ tB)B.
To compute the second derivative we differentiate f ′(A+tB). We can assume
that A is diagonal and we differentiate at t = 0. We have to use (3.31) and
get

[ d

dt
f ′(A+ tB)

∣

∣

∣

t=0

]

ij
=
f ′(ti)− f ′(tj)

ti − tj
Bij .

Therefore,

d2

dt2
Tr f(A+ tB)

∣

∣

∣

t=0
= Tr

[ d

dt
f ′(A+ tB)

∣

∣

∣

t=0

]

B



124 CHAPTER 3. FUNCTIONAL CALCULUS AND DERIVATION

=
∑

i,k

[ d

dt
f ′(A+ tB)

∣

∣

∣

t=0

]

ik
Bki

=
∑

i,k

f ′(ti)− f ′(tk)

ti − tk
BikBki

=
∑

i,k

f ′′(sik)|Bik|2,

where sik is between ti and tk. The convexity of f means f ′′(sik) ≥ 0, hence
we conclude the positivity. �

Note that another, less analytic, proof is sketched in Exercise 22.

Example 3.28 The function

η(x) =

{

−x log x if 0 < x,
0 if x = 0

is continuous and concave on R+. For a positive matrix D ≥ 0

S(D) := Tr η(D) (3.34)

is called von Neumann entropy. It follows from the previous theorem
that S(D) is a concave function of D. If we are very rigorous, then we cannot
apply the theorem, since η is not differentiable at 0. Therefore we should
apply the theorem to f(x) := η(x+ ε), where ε > 0 and take the limit ε→ 0.

�

Example 3.29 Let a self-adjoint matrx H be fixed. The state of a quantum
system is described by a density matrix D which has the properties D ≥ 0
and TrD = 1. The equilibrium state is minimizing the energy

F (D) = TrDH − 1

β
S(D),

where β is a positive number. To find the minimizer, we solve the equation

∂

∂t
F (D + tX)

∣

∣

∣

t=0
= 0

for self-adjoint matrices X with property TrX = 0. The equation is

TrX

(

H +
1

β
logD +

1

β
I

)

= 0
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and

H +
1

β
logD +

1

β
I

must be cI. Hence the minimizer is

D =
e−βH

Tr e−βH
, (3.35)

which is called Gibbs state. �

Example 3.30 Next we restrict ourselves to the self-adjoint case A,B ∈
Mn(C)

sa in the analysis of (3.30).

The spaceMn(C)
sa can be decomposed as MA⊕M⊥

A, where MA := {C ∈
Mn(C)

sa : CA = AC} is the commutant of A and M⊥
A is its orthogonal com-

plement. When the operator LA : X 7→ i(AX −XA) ≡ i[A,X ] is considered,
MA is exactly the kernel of LA, while M⊥

A is its range.

When B ∈ MA, then

1

2πi

∫

Γ

f(z)(zI −A)−1B(zI −A)−1 dz =
B

2πi

∫

Γ

f(z)(zI −A)−2 dz = Bf ′(A)

and we have
d

dt
f(A+ tB)

∣

∣

∣

t=0
= Bf ′(A) . (3.36)

When B = i[A,X ] ∈ M⊥
A, then we use the identity

(zI −A)−1[A,X ](zI − A)−1 = [(zI − A)−1, X ]

and we conclude

d

dt
f(A+ ti[A,X ])

∣

∣

∣

t=0
= i[f(A), X ] . (3.37)

To compute the derivative in an arbitrary direction B we should decompose
B as B1 ⊕B2 with B1 ∈ MA and B2 ∈ M⊥

A. Then

d

dt
f(A+ tB)

∣

∣

∣

t=0
= B1f

′(A) + i[f(A), X ] , (3.38)

where X is the solution of the equation B2 = i[A,X ]. �

Lemma 3.31 Let A0, B0 ∈ Msa
n and assume A0 > 0. Define A = A−1

0 and

B = A
−1/2
0 B0A

−1/2
0 , and let t ∈ R. For all p, r ∈ N

dr

dtr
Tr (A0 + tB0)

−p

∣

∣

∣

∣

t=0

=
p

p+ r
(−1)r

dr

dtr
Tr (A+ tB)p+r

∣

∣

∣

∣

t=0

. (3.39)
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Proof: By induction it is easy to show that

dr

dtr
(A + tB)p+r = r!

∑

0≤i1,...,ir+1≤p
∑

j ij=p

(A+ tB)i1B · · ·B(A+ tB)ir+1 .

By taking the trace at t = 0 we obtain

I1 ≡
dr

dtr
Tr (A+ tB)p+r

∣

∣

∣

∣

t=0

= r!
∑

0≤i1,...,ir+1≤p
∑

j ij=p

TrAi1B · · ·BAir+1 .

Moreover, by similar arguments,

dr

dtr
(A0 + tB0)

−p = (−1)rr!
∑

1≤i1,...,ir+1≤p
∑

j ij=p+r

(A0 + tB0)
−i1B0 · · ·B0(A0 + tB0)

−ir+1 .

By taking the trace at t = 0 and using cyclicity, we get

I2 ≡
dr

dtr
Tr (A0 + tB0)

−p

∣

∣

∣

∣

t=0

= (−1)rr!
∑

0≤i1,...,ir+1≤p−1
∑

j ij=p−1

TrAAi1B · · ·BAir+1 .

We have to show that
I2 =

p

p+ r
(−1)rI1 .

To see this we rewrite I1 in the following way. Define p+ r matrices Mj by

Mj =

{

B for 1 ≤ j ≤ r
A for r + 1 ≤ j ≤ r + p .

Let Sn denote the permutation group. Then

I1 =
1

p!

∑

π∈Sp+r

Tr

p+r
∏

j=1

Mπ(j) .

Because of the cyclicity of the trace we can always arrange the product such
that Mp+r has the first position in the trace. Since there are p + r possible
locations for Mp+r to appear in the product above, and all products are
equally weighted, we get

I1 =
p+ r

p!

∑

π∈Sp+r−1

TrA

p+r−1
∏

j=1

Mπ(j) .
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On the other hand,

I2 = (−1)r
1

(p− 1)!

∑

π∈Sp+r−1

TrA

p+r−1
∏

j=1

Mπ(j) ,

so we arrive at the desired equality. �

3.4 Fréchet derivatives

Let f be a real-valued function on (a, b) ⊂ R, and we denote by Msa
n (a, b) the

set of all matrices A ∈ Msa
n with σ(A) ⊂ (a, b). In this section we discuss the

differentiability property of the matrix functional calculus A 7→ f(A) when
A ∈ Msa

n (a, b).

The case n = 1 corresponds to differentiation in classical analysis. There
the divided differences is important and it will appear also here. Let
x1, x2, . . . be distinct points in (a, b). Then we define

f [0][x1] := f(x1), f [1][x1, x2] :=
f(x1)− f(x2)

x1 − x2

and recursively for n = 2, 3, . . .,

f [n][x1, x2, . . . , xn+1] :=
f [n−1][x1, x2, . . . , xn]− f [n−1][x2, x3, . . . , xn+1]

x1 − xn+1

.

The functions f [1], f [2] and f [n] are called the first, the second and the nth
divided differences, respectively, of f .

From the recursive definition the symmetry is not clear. If f is a Cn-
function, then

f [n][x0, x1, . . . , xn] =

∫

S

f (n)(t0x0 + t1x1 + · · ·+ tnxn) dt1dt2 · · · dtn, (3.40)

where the integral is on the set S := {(t1, . . . , tn) ∈ Rn : ti ≥ 0,
∑

i ti ≤ 1}
and t0 = 1 −∑n

i=1 ti. From this formula the symmetry is clear and if x0 =
x1 = · · · = xn = x, then

f [n][x0, x1, . . . , xn] =
f (n)(x)

n!
. (3.41)

Next we introduce the notion of Fréchet differentiability. Assume that
mapping F : Mm →֒ Mn is defined in a neighbourhood of A ∈ Mm. The



128 CHAPTER 3. FUNCTIONAL CALCULUS AND DERIVATION

derivative ∂f(A) : Mm → Mn is a linear mapping such that

‖F (A+X)− F (A)− ∂F (A)(X)‖2
‖X‖2

−→ 0 as X ∈ Mm and X → 0,

where ‖·‖2 is the Hilbert-Schmidt norm in (1.8). This is the general definition.
In the next theorem F (A) will be the matrix functional calculus f(A) when
f : (a, b) → R and A ∈ Msa

n (a, b). Then the Fréchet derivative is a linear
mapping ∂f(A) : Msa

n → Msa
n such that

‖f(A+X)− f(A)− ∂f(A)(X)‖2
‖X‖2

−→ 0 as X ∈ Msa
n and X → 0,

or equivalently

f(A+X) = f(A) + ∂f(A)(X) + o(‖X‖2).
Since Fréchet differentiability implies Gâtaux (or directional) differentiability,
one can differentiate f(A+ tX) with respect to the real parameter t and

f(A+ tX)− f(A)

t
→ ∂f(A)(X) as t→ 0.

This notion is inductively extended to the general higher degree. To do
this, we denote by B((Msa

n )m,Msa
n ) the set of all m-multilinear maps from

(Msa
n )m := Msa

n × · · · × Msa
n (m times) to Msa

n , and introduce the norm of
Φ ∈ B((Msa

n )m,Msa
n ) as

‖Φ‖ := sup
{

‖Φ(X1, . . . , Xm)‖2 : Xi ∈ M
sa
n , ‖Xi‖2 ≤ 1, 1 ≤ i ≤ m

}

. (3.42)

Now assume that m ∈ N with m ≥ 2 and the (m − 1)th Fréchet derivative
∂m−1f(B) exists for all B ∈ Msa

n (a, b) in a neighborhood of A ∈ Msa
n (a, b).

We say that f(B) is m times Fréchet differentiable at A if ∂m−1f(B) is
one more Fréchet differentiable at A, i.e., there exists a

∂mf(A) ∈ B(Msa
n , B((Msa

n )m−1,Msa
n )) = B((Msa

n )m,Msa
n )

such that

‖∂m−1f(A+X)− ∂m−1f(A)− ∂mf(A)(X)‖
‖X‖2

−→ 0 as X ∈ Msa
n and X → 0,

with respect to the norm (3.42) of B((Msa
n )m−1,Msa

n ). Then ∂mf(A) is called
the mth Fréchet derivative of f at A. Note that the norms of Msa

n and
B((Msa

n )m,Msa
n ) are irrelevant to the definition of Fréchet derivatives since

the norms on a finite-dimensional vector space are all equivalent; we can use
the Hilbert-Schmidt norm just for convenience.
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Example 3.32 Let f(x) = xk with k ∈ N. Then (A+X)k can be expanded
and ∂f(A)(X) consists of the terms containing exactly one factor of X :

∂f(A)(X) =
k−1
∑

u=0

AuXAk−1−u .

To have the second derivative, we put A+ Y in place of A in ∂f(A)(X) and
again we take the terms containing exactly one factor of Y :

∂2f(A)(X, Y )

=

k−1
∑

u=0

(

u−1
∑

v=0

AvY Au−1−v

)

XAk−1−u +

k−1
∑

u=0

AuX

(

k−2−u
∑

v=0

AvY Ak−2−u−v

)

.

The formulation

∂2f(A)(X1, X2) =
∑

u+v+w=n−2

∑

π

AuXπ(1)A
vXπ(2)A

w

is more convenient, where u, v, w ≥ 0 and π denotes the permutations of
{1, 2}. �

Theorem 3.33 Let m ∈ N and assume that f : (a, b) → R is a Cm-function.
Then the following properties hold:

(1) f(A) is m times Fréchet differentiable at every A ∈ Msa
n (a, b). If the

diagonalization of A ∈ Msa
n (a, b) is A = UDiag(λ1, . . . , λn)U

∗, then the
mth Fréchet derivative ∂mf(A) is given as

∂mf(A)(X1, . . . , Xm) = U

[ n
∑

k1,...,km−1=1

f [m][λi, λk1, . . . , λkm−1
, λj]

×
∑

π∈Sm

(X ′
π(1))ik1(X

′
π(2))k1k2 · · · (X ′

π(m−1))km−2km−1
(X ′

π(m))km−1j

]n

i,j=1

U∗

for all Xi ∈ Msa
n with X ′

i = U∗XiU (1 ≤ i ≤ m). (Sm is the permuta-
tions on {1, . . . , m}.)

(2) The map A 7→ ∂mf(A) is a norm-continuous map from Msa
n (a, b) to

B((Msa
n )m,Msa

n ).

(3) For every A ∈ Msa
n (a, b) and every X1, . . . , Xm ∈ Msa

n ,

∂mf(A)(X1, . . . , Xm) =
∂m

∂t1 · · ·∂tm
f(A+ t1X1+ · · ·+ tmXm)

∣

∣

∣

t1=···=tm=0
.
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Proof: When f(x) = xk, it is easily verified by a direct computation that
∂mf(A) exists and

∂mf(A)(X1, . . . , Xm)

=
∑

u0,u1,...,um≥0

u0+u1+···+um=k−m

∑

π∈Sm

Au0Xπ(1)A
u1Xπ(2)A

u2 · · ·Aum−1Xπ(m)A
um ,

see Example 3.32. (If m > k, then ∂mf(A) = 0.) The above expression is
further written as

∑

u0,u1,...,um≥0

u0+u1+...+um=k−m

∑

π∈Sm

U

[

∑

k1,...,km−1=1

λu0i λ
u1
k1
· · ·λum−1

km−1
λumj

×(X ′
π(1))ik1(X

′
π(2))k1k2 · · · (X ′

π(m−1))km−2km−1
(X ′

π(m))km−1j

]n

i,j=1

U∗

= U

[ n
∑

k1,...,km−1=1

(

∑

u0,u1,...,um≥0

u0+u1+···+um=k−m

λu0i λ
u1
k1
· · ·λum−1

km−1
λumj

)

×
∑

π∈Sm

(X ′
π(1))ik1(X

′
π(2))k1k2 · · · (X ′

π(m−1))km−2km−1
(X ′

π(m))km−1j

]n

i,j=1

U∗

= U

[ n
∑

k1,...,km−1=1

f [m][λi, λk1 , . . . , λkm−1
, λj]

×
∑

π∈Sm

(X ′
π(1))ik1(X

′
π(2))k1k2 · · · (X ′

π(m−1))km−2km−1
(X ′

π(m))km−1j

]n

i,j=1

U∗

by Exercise 31. Hence it follows that ∂mf(A) exists and the expression in (1)
is valid for all polynomials f . We can extend this for all Cm functions f on
(a, b) by a continuity argument, the details are not given.

In order to prove (2), we want to estimate the norm of ∂mf(A)(X1, . . . , Xm)
and it is convenient to use the Hilbert-Schmidt norm

‖X‖2 :=
(

∑

ij

|Xij|2
)1/2

.

If the eigenvalues of A are in the interval [c, d] ⊂ (a, b) and

C := sup{|f (m)(x)| : c ≤ x ≤ d},
then it follows from the formula (3.40) that

|f [m][λi, λk1, . . . , λkm−1
, λj]| ≤

C

m!
.
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Another estimate we use is |(X ′
i)uv|2 ≤ ‖Xi‖22. So

‖∂mf(A)(X1, . . . , Xm)‖2 ≤
C

m!

( n
∑

i,j=1

( n
∑

k1,...,km−1=1

∑

π∈Sm

|(X ′
π(1))ik1(X

′
π(2))k1k2 . . . (X

′
π(m−1))km−2km−1

(X ′
π(m))km−1j |

)2)1/2

≤ C

m!

( n
∑

i,j=1

( n
∑

k1,...,km−1=1

∑

π∈Sm

‖Xπ(1)‖2‖Xπ(2)‖2 · · · ‖Xπ(m)‖2
)2)1/2

≤ Cnm‖X1‖2 ‖X2‖2 . . . ‖Xm‖2.

This implies that the norm of ∂mf(A) on (Msa
n )m is bounded as

‖∂mf(A)‖ ≤ Cnm. (3.43)

Formula (3) comes from the fact that Fréchet differentiability implies
Gâtaux (or directional) differentiability, one can differentiate f(A + t1X1 +
· · ·+ tmXm) as

∂m

∂t1 · · ·∂tm
f(A+ t1X1 + · · ·+ tmXm)

∣

∣

∣

t1=···=tm=0

=
∂m

∂t1 · · ·∂tm−1
∂f(A+ t1X1 + · · ·+ tm−1Xm−1)(Xm)

∣

∣

∣

t1=···=tm−1=0

= · · · = ∂mf(A)(X1, . . . , Xm).

�

Example 3.34 In particular, when f is C1 on (a, b) andA = Diag(λ1, . . . , λn)
is diagonal in Msa

n (a, b), then the Fréchet derivative ∂f(A) at A is written as

∂f(A)(X) = [f [1](λi, λj)]
n
i,j=1 ◦X,

where ◦ denotes the Schur product, this was Theorem 3.25.

When f is C2 on (a, b), the second Fréchet derivative ∂2f(A) at A =
Diag(λ1, . . . , λn) ∈ Msa

n (a, b) is written as

∂2f(A)(X, Y ) =

[ n
∑

k=1

f [2](λi, λk, λj)(XikYkj + YikXkj)

]n

i,j=1

.

�
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Example 3.35 The Taylor expansion

f(A+X) = f(A) +
m
∑

k=1

1

k!
∂kf(A)(X(1), . . . , X(k)) + o(‖X‖m2 )

has a simple computation for a holomorphic function f , see (3.17):

f(A+X) =
1

2πi

∫

Γ

f(z)(zI −A−X)−1 dz .

Since

zI −A−X = (zI −A)1/2(I − (zI −A)−1/2X(zI −A)−1/2)(zI − A)1/2,

we have the expansion

(zI − A−X)−1

= (zI − A)−1/2(I − (zI −A)−1/2X(zI −A)−1/2)−1(zI − A)−1/2

= (zI − A)−1/2
∞
∑

n=0

(

(zI −A)−1/2X(zI − A)−1/2
)n

(zI −A)−1/2

= (zI − A)−1 + (zI −A)−1X(zI − A)−1

+(zI −A)−1X(zI − A)−1X(zI −A)−1 + · · · .

Hence

f(A+X) =
1

2πi

∫

Γ

f(z)(zI − A)−1 dz

+
1

2πi

∫

Γ

f(z)(zI − A)−1X(zI −A)−1 dz + · · ·

= f(A) + ∂f(A)(X) +
1

2!
∂2f(A)(X,X) + · · ·

which is the Taylor expansion. �

3.5 Notes and remarks

Formula (3.8) is due to Masuo Suzuki, Generalized Trotter’s formula and
systematic approximants of exponential operators and inner derivations with
applications to many-body problems, Commun. Math. Phys., 51, 183–190
(1976).

The Bessis-Moussa-Villani conjecture (or BMV conjecture) was pub-
lished in the paper D. Bessis, P. Moussa and M. Villani: Monotonic converging
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variational approximations to the functional integrals in quantum statistical
mechanics, J. Math. Phys. 16, 2318–2325 (1975). Theorem 3.12 is from E. H.
Lieb and R. Seiringer: Equivalent forms of the Bessis-Moussa-Villani conjec-
ture, J. Statist. Phys. 115, 185–190 (2004). A proof appeared in the paper
H. R. Stahl, Proof of the BMV conjecture, http://fr.arxiv.org/abs/1107.4875.

The contour integral representation (3.17) was found by Henri Poincaré in
1899. The formula (3.40) is called Hermite-Genocchi formula.

Formula (3.18) appeared already in the work of J.J. Sylvester in 1833 and
(3.19) is due to H. Richter in 1949. It is remarkable that J. von Neumann
proved in 1929 that ‖A− I‖, ‖B − I‖, ‖AB − I‖ < 1 and AB = BA implies
logAB = logA+ logB.

Theorem 3.33 is essentially due to Daleckii and Krein, Ju. L. Daleckii and
S. G. Krein, Integration and differentiation of functions of Hermitian oper-
ators and applications to the theory of perturbations, Amer. Math. Soc.
Transl., 47(1965), 1–30. There the higher Gâteaux derivatives of the func-
tion t 7→ f(A + tX) were obtained for self-adjoint operators in an infinite-
dimensional Hilbert space.

3.6 Exercises

1. Prove that
∂

∂t
etA = etAA.

2. Compute the exponential of the matrix












0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0













.

What is the extension to the n× n case?

3. Use formula (3.3) to prove Theorem 3.4.

4. Let P and Q be ortho-projections. Give an elementary proof for the
inequality

Tr eP+Q ≤ Tr eP eQ.

5. Prove the Golden-Thompson inequality using the trace inequality

Tr (CD)n ≤ TrCnDn (n ∈ N) (3.44)
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for C,D ≥ 0.

6. Give a counterexample for the inequality

|Tr eAeBeC | ≤ Tr eA+B+C

with Hermitian matrices. (Hint: Use the Pauli matrices.)

7. Solve the equation

eA =

[

cos t − sin t
sin t cos t

]

where t ∈ R is given.

8. Show that

exp

([

A B
0 A

])

=

[

eA
∫ 1

0
etABe(1−t)A dt

0 eA

]

.

9. Let A and B be self-adjoint matrices. Show that

|Tr eA+iB| ≤ Tr eA . (3.45)

10. Show the estimate

‖eA+B − (eA/neB/n)n‖2 ≤
1

2n
‖AB − BA‖2 exp(‖A‖2 + ‖B‖2). (3.46)

11. Show that ‖A − I‖, ‖B − I‖, ‖AB − I‖ < 1 and AB = BA implies
logAB = logA+ logB for matrices A and B.

12. Find an example that AB = BA for matrices, but logAB 6= logA +
logB.

13. Let

C = c0I + c(c1σ1 + c2σ2 + c3σ3) with c21 + c22 + c23 = 1,

where σ1, σ2, σ3 are the Pauli matrices and c0, c1, c2, c3 ∈ R. Show
that

eC = ec0 ((cosh c)I + (sinh c)(c1σ1 + c2σ2 + c3σ3)) .

14. Let A ∈ M3 have eigenvalues λ, λ, µ with λ 6= µ. Show that

etA = eλt(I + t(A− λI)) +
eµt − eλt

(µ− λ)2
(A− λI)2 − teλt

µ− λ
(A− λI)2.
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15. Assume that A ∈ M3 has different eigenvalues λ, µ, ν. Show that etA is

eλt
(A− µI)(A− νI)

(λ− µ)(λ− ν)
+ eµt

(A− λI)(A− νI)

(µ− λ)(µ− ν)
+ eνt

(A− λI)(A− µI)

(ν − λ)(ν − µ)
.

16. Assume that A ∈ Mn is diagonalizable and let f(t) = tm with m ∈ N.
Show that (3.12) and (3.17) are the same matrices.

17. Prove Corollary 3.11 directly in the case B = AX −XA.

18. Let 0 < D ∈ Mn be a fixed invertible positive matrix. Show that the
inverse of the linear mapping

JD : Mn → Mn, JD(B) := 1
2
(DB +BD) (3.47)

is the mapping

J
−1
D (A) =

∫ ∞

0

e−tD/2Ae−tD/2 dt . (3.48)

19. Let 0 < D ∈ Mn be a fixed invertible positive matrix. Show that the
inverse of the linear mapping

JD : Mn → Mn, JD(B) :=

∫ 1

0

DtBD1−t dt (3.49)

is the mapping

J
−1
D (A) =

∫ ∞

0

(D + tI)−1A(D + tI)−1 dt. (3.50)

20. Prove (3.31) directly for the case f(t) = tn, n ∈ N.

21. Let f : [α, β] → R be a convex function. Show that

Tr f(B) ≥
∑

i

f(TrB pi) . (3.51)

for a pairwise orthogonal family (pi) of minimal projections with
∑

i pi =
I and for a self-ajoint matrix B with spectrum in [α, β]. (Hint: Use the
spectral decomposition of B.)

22. Prove Theorem 3.27 using formula (3.51). (Hint: Take the spectral
decomposition of B = λB1 + (1− λ)B2 and show

λTr f(B1) + (1− λ)Tr f(B2) ≥ Tr f(B).)
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23. A and B are positive matrices. Show that

A−1 log(AB−1) = A−1/2 log(A1/2B−1A1/2)A−1/2.

(Hint: Use (3.17).)

24. Show that

d2

dt2
log(A+ tK)

∣

∣

∣

t=0
= −2

∫ ∞

0

(A+ sI)−1K(A+ sI)−1K(A + sI)−1 ds.

(3.52)

25. Show that

∂2 logA(X1, X2) = −
∫ ∞

0

(A + sI)−1X1(A+ sI)−1X2(A+ sI)−1 ds

−
∫ ∞

0

(A + sI)−1X2(A+ sI)−1X1(A+ sI)−1 ds

for a positive invertible matrix A.

26. Prove the BMV conjecture for 2× 2 matrices.

27. Show that

∂2A−1(X1, X2) = A−1X1A
−1X2A

−1 + A−1X2A
−1X1A

−1

for an invertible variable A.

28. Differentiate the equation

√
A+ tB

√
A+ tB = A+ tB

and show that for positive A and B

d

dt

√
A+ tB

∣

∣

∣

t=0
≥ 0.

29. For a real number 0 < α 6= 1 the Rényi entropy is defined as

Sα(D) :=
1

1− α
log TrDα (3.53)

for a positive matrix D such that TrD = 1. Show that Sα(D) is a
decreasing function of α. What is the limit limα→1 Sα(D)? Show that
Sα(D) is a concave functional of D for 0 < α < 1.
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30. Fix a positive invertible matrix D ∈ Mn and set a linear mapping
Mn → Mn by KD(A) := DAD. Consider the differential equation

∂

∂t
D(t) = KD(t)T, D(0) = ρ0, (3.54)

where ρ0 is positive invertible and T is self-adjoint in Mn. Show that
D(t) = (ρ−1

0 − tT )−1 is the solution of the equation.

31. When f(x) = xk with k ∈ N, verify that

f [n][x1, x2, . . . , xn+1] =
∑

u1,u2,...,un+1≥0

u1+u2+...+un+1=k−n

xu11 x
u2
2 · · ·xunn xun+1

n+1 .

32. Show that for a matrix A > 0 the integral

log(I + A) =

∫ ∞

1

A(tI + A)−1t−1 dt

holds. (Hint: Use (3.19).)



Chapter 4

Matrix monotone functions and
convexity

Let (a, b) ⊂ R be an interval. A function f : (a, b) → R is said to be
monotone for n × n matrices if f(A) ≤ f(B) whenever A and B are self-
adjoint n×n matrices, A ≤ B and their eigenvalues are in (a, b). If a function
is monotone for every matrix size, then it is called matrix monotone or
operator monotone. (One can see by an approximation argument that if
a function is matrix monotone for every matrix size, then A ≤ B implies
f(A) ≤ f(B) also for operators on an infinite dimensional Hilbert space.)

The theory of operator/matrix monotone functions was initiated by Karel
Löwner, which was soon followed by Fritz Kraus on operator/matrix con-
vex functions. After further developments due to some authors (for instance,
Bendat and Sherman, Korányi), Hansen and Pedersen established a modern
treatment of matrix monotone and convex functions. A remarkable feature of
Löwner’s theory is that we have several characterizations of matrix monotone
and matrix convex functions from several different points of view. The im-
portance of complex analysis in studying matrix monotone functions is well
understood from their characterization in terms of analytic continuation as
Pick functions. Integral representations for matrix monotone and matrix con-
vex functions are essential ingredients of the theory both theoretically and in
applications. The notion of divided differences has played a vital role in the
theory from its very beginning.

Let (a, b) ⊂ R be an interval. A function f : (a, b) → R is said to be
matrix convex if

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B) (4.1)

for all self-adjoint matrices A,B with eigenvalues in (a, b) and for all 0 ≤ t ≤

138
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1. When −f is matrix convex, then f is called matrix concave.

In the real analysis the monotonicity and convexity are not related, but
in the matrix case the situation is very different. For example, a matrix
monotone function on (0,∞) is matrix concave. Matrix monotone and matrix
convex functions have several applications, but for a concrete function it is
not easy to verify the matrix monotonicity or matrix convexity. The typical
description of these functions is based on integral formulae.

4.1 Some examples of functions

Example 4.1 Let t > 0 be a parameter. The function f(x) = −(t + x)−1 is
matrix monotone on [0,∞).

Let A and B be positive matrices of the same order. Then At := tI + A
and Bt := tI +B are invertible, and

At ≤ Bt ⇐⇒ B
−1/2
t AtB

−1/2
t ≤ I ⇐⇒ ‖B−1/2

t AtB
−1/2
t ‖ ≤ 1

⇐⇒ ‖A1/2
t B

−1/2
t ‖ ≤ 1.

Since the adjoint preserves the operator norm, the latest condition is equiva-
lent to ‖B−1/2

t A
1/2
t ‖ ≤ 1 which implies that B−1

t ≤ A−1
t . �

Example 4.2 The function f(x) = log x is matrix monotone on (0,∞).

This follows from the formula

log x =

∫ ∞

0

1

1 + t
− 1

x+ t
dt ,

which is easy to verify. The integrand

ft(x) :=
1

1 + t
− 1

x+ t

is matrix monotone according to the previous example. It follows that

n
∑

i=1

cift(i)(x)

is matrix monotone for any t(i) and positive ci ∈ R. The integral is the limit
of such functions, therefore it is a matrix monotone function as well.

There are several other ways to show the matrix monotonicity of the log-
arithm. �
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Example 4.3 The function

f+(x) =
0
∑

n=−∞

(

1

(n− 1/2)π − x
− nπ

n2π + 1

)

is matrix monotone on the interval (−π/2,+∞) and

f−(x) =

∞
∑

n=1

(

1

(n− 1/2)π − x
− nπ

n2π + 1

)

is matrix monotone on the interval (−∞, π/2). Therefore,

tan x = f+(x) + f−(x) =
∞
∑

n=−∞

(

1

(n− 1/2)π − x
− nπ

n2π + 1

)

is matrix monotone on the interval (−π/2, π/2). �

Example 4.4 To show that the square root function is matrix monotone,
consider the function

F (t) :=
√
A + tX

defined for t ∈ [0, 1] and for fixed positive matrices A and X . If F is increas-
ing, then F (0) =

√
A ≤

√
A+X = F (1).

In order to show that F is increasing, it is enough to see that the eigen-
values of F ′(t) are positive. Differentiating the equality F (t)F (t) = A + tX ,
we get

F ′(t)F (t) + F (t)F ′(t) = X.

As the limit of self-adjoint matrices, F ′ is self-adjoint and let F ′(t) =
∑

i λiEi
be its spectral decomposition. (Of course, both the eigenvalues and the pro-
jections depend on the value of t.) Then

∑

i

λi(EiF (t) + F (t)Ei) = X

and after multiplication by Ej from the left and from the right, we have for
the trace

2λjTrEjF (t)Ej = TrEjXEj.

Since both traces are positive, λj must be positive as well.

Another approach is based on the geometric mean, see Theorem 5.3. As-
sume that A ≤ B. Since I ≤ I,

√
A = A#I ≤ B#I =

√
B. Repeating

this idea one can see that At ≤ Bt if 0 < t < 1 is a dyadic rational number,
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k/2n. Since every 0 < t < 1 can be approximated by dyadic rational num-
bers, the matrix monotonicity holds for every 0 < t < 1: 0 ≤ A ≤ B implies
At ≤ Bt. This is often called Löwner-Heinz inequality and another proof
is in Example 4.45.

Next we consider the case t > 1. Take the matrices

A =

[

3
2

0
0 3

4

]

and B =
1

2

[

1 1
1 1

]

.

Then A ≥ B ≥ 0 can be checked. Since B is an orthogonal projection, for
each p > 1 we have Bp = B and

Ap − Bp =

[
(

3
2

)p − 1
2

−1
2

−1
2

(

3
4

)p − 1
2

]

.

We can compute

det(Ap − Bp) =
1

2

(3

8

)p

(2 · 3p − 2p − 4p).

If Ap ≥ Bp then we must have det(Ap −Bp) ≥ 0 so that 2 · 3p − 2p − 4p ≥ 0,
which is not true when p > 1. Hence Ap ≥ Bp does not hold for any p > 1.

�

The previous example contained an important idea. To decide about the
matrix monotonicity of a function f , one has to investigate the derivative of
f(A+ tX).

Theorem 4.5 A smooth function f : (a, b) → R is matrix monotone for
n×n matrices if and only if the divided difference matrix D ∈ Mn defined as

Dij =











f(ti)− f(tj)

ti − tj
if ti − tj 6= 0,

f ′(ti) if ti − tj = 0,

(4.2)

is positive semi-definite for t1, t2, . . . , tn ∈ (a, b).

Proof: Let A be a self-adjoint and B be a positive semi-definite n × n
matrix. When f is matrix monotone, the function t 7→ f(A + tB) is an
increasing function of the real variable t. Therefore, the derivative, which
is a matrix, must be positive semi-definite. To compute the derivative, we
use formula (3.31) of Theorem 3.25. The Schur theorem implies that the
derivative is positive if the divided difference matrix is positive.
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To show the converse, take a matrix B such that all entries are 1. Then
positivity of the derivative D ◦B = D is the positivity of D. �

The assumption about the smooth property in the previous theorem is
not essential. At the beginning of the theory Löwner proved that if the
function f : (a, b) → R has the property that A ≤ B for A,B ∈ M2 implies
f(A) ≤ f(B), then f must be a C1-function.

The previous theorem can be reformulated in terms of a positive definite
kernel. The divided difference

ψ(x, y) =











f(x)− f(y)

x− y
if x 6= y,

f ′(x) if x = y

is an (a, b)× (a, b) → R kernel function. f is matrix monotone if and only if
ψ is a positive definite kernel.

Example 4.6 The function f(x) := exp x is not matrix monotone, since the
divided difference matrix







exp x
exp x− exp y

x− y
exp y − exp x

y − x
exp y







does not have positive determinant (for x = 0 and for large y). �

Example 4.7 We study the monotone function

f(x) =

{√
x if 0 ≤ x ≤ 1,

(1 + x)/2 if 1 ≤ x.

This is matrix monotone in the intervals [0, 1] and [1,∞). Theorem 4.5 helps
to show that this is monotone on [0,∞) for 2× 2 matrices. We should show
that for 0 < x < 1 and 1 < y

[

f ′(x) f(x)−f(y)
x−y

f(x)−f(y)
x−y

f ′(y)

]

=

[

f ′(x) f ′(z)
f ′(z) f ′(y)

]

(for some z ∈ [x, y])

is a positive matrix. This is true, however f is not monotone for larger
matrices. �
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Example 4.8 The function f(x) = x2 is matrix convex on the whole real
line. This follows from the obvious inequality

(

A+B

2

)2

≤ A2 +B2

2
.

�

Example 4.9 The function f(x) = (x+t)−1 is matrix convex on [0,∞) when
t > 0. It is enough to show that

(

A+B

2

)−1

≤ A−1 +B−1

2
(4.3)

which is equivalent with

(

B−1/2AB−1/2 + I

2

)−1

≤ (B−1/2AB−1/2)−1 + I

2
.

This holds, since
(

X + I

2

)−1

≤ X−1 + I

2

is true for an invertible matrix X ≥ 0.

Note that this convexity inequality is equivalent to the relation of arith-
metic and harmonic means. �

4.2 Convexity

Let V be a vector space (over the real numbers). Let u, v ∈ V . Then they
are called the endpoints of the line-segment

[u, v] := {λu+ (1− λ)v : λ ∈ R, 0 ≤ λ ≤ 1}.

A subset A ⊂ V is convex if for any u, v ∈ A the line-segment [u, v] is
contained in A. A set A ⊂ V is convex if and only if for every finite subset
v1, v2, . . . , vn and for every family of real positive numbers λ1, λ2, . . . , λn with
sum 1

n
∑

i=1

λivi ∈ A.
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For example, if ‖ · ‖ : V → R+ is a norm, then

{v ∈ V : ‖v‖ ≤ 1}

is a convex set. The intersection of convex sets is a convex set.

In the vector space Mn the self-adjoint matrices and the positive matrices
form a convex set. Let (a, b) a real interval. Then

{A ∈ M
sa
n : σ(A) ⊂ (a, b)}

is a convex set.

Example 4.10 Let

Sn := {D ∈ M
sa
n : D ≥ 0 and TrD = 1}.

This is a convex set, since it is the intersection of convex sets. (In quantum
theory the set is called the state space.)

If n = 2, then a popular parametrization of the matrices in S2 is

1

2

[

1 + λ3 λ1 − iλ2
λ1 + iλ2 1− λ3

]

=
1

2
(I + λ1σ1 + λ2σ2 + λ3σ3),

where σ1, σ2, σ3 are the Pauli matrices and the necessary and sufficient con-
dition to be in S2 is

λ21 + λ22 + λ23 ≤ 1.

This shows that the convex set S2 can be viewed as the unit ball in R3. If
n > 2, then the geometric picture of Sn is not so clear. �

If A is a subset of the vector space V , then its convex hull is the smallest
convex set containg A, it is denoted by coA.

coA =

{

n
∑

i=1

λivi : vi ∈ A, λi ≥ 0, 1 ≤ i ≤ n,
n
∑

i=1

λi = 1, n ∈ N

}

.

Let A ⊂ V be a convex set. The vector v ∈ A is an extreme point of A
if the conditions

v1, v2 ∈ A, 0 < λ < 1, λv1 + (1− λ)v2 = v

imply that v1 = v2 = v.

In the convex set S2 the extreme points correspond to the parameters
satisfying λ21 + λ22 + λ23 = 1. (If S2 is viewed as a ball in R3, then the extreme
points are in the boundary of the ball.)
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Let J ⊂ R be an interval. A function f : J → R is said to be convex if

f(ta + (1− t)b) ≤ tf(a) + (1− t)f(b) (4.4)

for all a, b ∈ J and 0 ≤ t ≤ 1. This inequality is equivalent to the positivity
of the second divided difference

f [2][a, b, c] =
f(a)

(a− b)(a− c)
+

f(b)

(b− a)(b− c)
+

f(c)

(c− a)(c− b)

=
1

c− b

(f(c)− f(a)

c− a
− f(b)− f(a)

b− a

)

(4.5)

for every different a, b, c ∈ J . If f ∈ C2(J), then for x ∈ J we have

lim
a,b,c→x

f [a, b, c] = f ′′(x).

Hence the convexity is equivalent to the positivity of the second derivative.
For a convex function f the Jensen inequality

f
(

∑

i

tiai

)

≤
∑

i

tif(ai) (4.6)

holds whenever ai ∈ J and for real numbers ti ≥ 0 and
∑

i ti = 1. This
inequality has an integral form

f

(
∫

g(x) dµ(x)

)

≤
∫

f ◦ g(x) dµ(x). (4.7)

For a discrete measure µ this is exactly the Jensen inequality, but it holds for
any normalized (probabilistic) measure µ and for a bounded Borel function
g with values in J .

Definition (4.4) makes sense if J is a convex subset of a vector space and
f is a real functional defined on it.

A functional f is concave if −f is convex.

Let V be a finite dimensional vector space and A ⊂ V be a convex subset.
The functional F : A → R ∪ {+∞} is called convex if

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y)

for every x, y ∈ A and real number 0 < λ < 1. Let [u, v] ⊂ A be a line-
segment and define the function

F[u,v](λ) = F (λu+ (1− λ)v)

on the interval [0, 1]. F is convex if and only if all functions F[u,v] : [0, 1] → R

are convex when u, v ∈ A.
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Example 4.11 We show that the functional

A 7→ log Tr eA

is convex on the self-adjoint matrices, cf. Example 4.13.

The statement is equivalent to the convexity of the function

f(t) = logTr (eA+tB) (t ∈ R) (4.8)

for every A,B ∈ Msa
n . To show this we prove that f ′′(0) ≥ 0. It follows from

Theorem 3.23 that

f ′(t) =
Tr eA+tBB

Tr eA+tB
.

In the computation of the second derivative we use Dyson’s expansion

eA+tB = eA + t

∫ 1

0

euABe(1−u)(A+tB) du . (4.9)

In order to write f ′′(0) in a convenient form we introduce the inner product

〈X, Y 〉Bo :=
∫ 1

0

Tr etAX∗e(1−t)AY dt. (4.10)

(This is frequently termed Bogoliubov inner product.) Now

f ′′(0) =
〈I, I〉Bo〈B,B〉Bo − 〈I, B〉2Bo

(Tr eA)2

which is positive due to the Schwarz inequality. �

Let V be a finite dimensional vector space with dual V ∗. Assume that the
duality is given by a bilinear pairing 〈 · , · 〉. For a convex function F : V →
R ∪ {+∞} the conjugate convex function F ∗ : V ∗ → R ∪ {+∞} is given
by the formula

F ∗(v∗) = sup{〈v, v∗〉 − F (v) : v ∈ V }.

F ∗ is sometimes called the Legendre transform of F . F ∗ is the supre-
mum of continuous linear functionals, therefore it is convex and lower semi-
continuous. The following result is basic in convex analysis.

Theorem 4.12 If F : V → R ∪ {+∞} is a lower semi-continuous convex
functional, then F ∗∗ = F .
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Example 4.13 The negative von Neumann entropy −S(D) = −Tr η(D) =
TrD logD is continuous and convex on the density matrices. Let

F (X) =

{

TrX logX if X ≥ 0 and TrX = 1,
+∞ otherwise.

This is a lower semi-continuous convex functional on the linear space of all self-
adjoint matrices. The duality is 〈X,H〉 = TrXH . The conjugate functional
is

F ∗(H) = sup{TrXH − F (X) : X ∈ M
sa
n }

= − inf{−TrXH − S(D) : D ∈ M
sa
n , D ≥ 0,TrD = 1} .

According to Example 3.29 the minimizer is D = eH/Tr eH , therefore

F ∗(H) = logTr eH .

This is a continuous convex function of H ∈ Msa
n . The duality theorem gives

that
TrX logX = sup{TrXH − log Tr eH : H = H∗}

when X ≥ 0 and TrX = 1. �

Example 4.14 Fix a density matrix ρ = eH and consider the functional
F defined on self-adjoint matrices by

F (X) :=

{

TrX(logX −H) if X ≥ 0 and TrX = 1 ,
+∞ otherwise.

F is essentially the relative entropy with respect to ρ: S(X‖ρ) := TrX(logX−
log ρ).

The duality is 〈X,B〉 = TrXB if X and B are self-adjoint matrices. We
want to show that the functional B 7→ log Tr eH+B is the Legendre transform
or the conjugate function of F :

log Tr eB+H = max{TrXB − S(X‖eH) : X is positive, TrX = 1} . (4.11)

Introduce the notation

f(X) = TrXB − S(X||eH)

for a density matrix X . When P1, . . . , Pn are projections of rank one with
∑n

i=1 Pi = I, we write

f
(

n
∑

i=1

λiPi

)

=
n
∑

i=1

(λiTrPiB + λiTrPiH − λi log λi) ,
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where λi ≥ 0,
∑n

i=1 λi = 1. Since

∂

∂λi
f
(

n
∑

i=1

λiPi

)

∣

∣

∣

∣

∣

λi=0

= +∞ ,

we see that f(X) attains its maximum at a positive matrix X0, TrX0 = 1.
Then for any self-adjoint Z, TrZ = 0, we have

0 =
d

dt
f(X0 + tZ)

∣

∣

∣

∣

t=0

= Tr Z(B +H − logX0) ,

so that B +H − logX0 = cI with c ∈ R. Therefore X0 = eB+H/Tr eB+H and
f(X0) = logTr eB+H by a simple computation.

On the other hand, if X is positive invertible with TrX = 1, then

S(X||eH) = max{TrXB − log Tr eH+B : B is self-adjoint} (4.12)

due to the duality theorem. �

Theorem 4.15 Let α : Mn → Mm be a positive unital linear mapping and
f : R → R be a convex function. Then

Tr f(α(A)) ≤ Trα(f(A))

for every A ∈ Msa
n .

Proof: Take the spectral decompositions

A =
∑

j

νjQj and α(A) =
∑

i

µiPi.

So we have

µi = Tr (α(A)Pi)/TrPi =
∑

j

νjTr (α(Qj)Pi)/TrPi

whereas the convexity of f yields

f(µi) ≤
∑

j

f(νj)Tr (α(Qj)Pi)/TrPi .

Therefore,

Tr f(α(A)) =
∑

i

f(µi)TrPi ≤
∑

i,j

f(νj)Tr (α(Qj)Pi) = Trα(f(A)) ,
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which was to be proven. �

It was stated in Theorem 3.27 that for a convex function f : (a, b) → R,
the functional A 7→ Tr f(A) is convex. It is rather surprising that in the
convexity of this functional the number coefficient 0 < t < 1 can be replaced
by a matrix.

Theorem 4.16 Let f : (a, b) → R be a convex function and Ci, Ai ∈ Mn be
such that

σ(Ai) ⊂ (a, b) and
k
∑

i=1

CiC
∗
i = I.

Then

Tr f

(

k
∑

i=1

CiAiC
∗
i

)

≤
k
∑

i=1

TrCif(Ai)C
∗
i .

Proof: We prove only the case

Tr f(CAC∗ +DBD∗) ≤ TrCf(A)C∗ + TrDf(B)D∗,

when CC∗ +DD∗ = I. (The more general version can be treated similarly.)

Set F := CAC∗ + DBD∗ and consider the spectral decomposition of A
and B as integrals:

X =
∑

i

µXi P
X
i =

∫

λdEX(λ)

where µXi are eigenvalues, PX
i are eigenprojections and the operator-valued

measure EX is defined on the Borel subsets S of R as

EX(S) =
∑

{PX
i : µXi ∈ S},

X = A,B.

Assume that A,B,C,D ∈ Mn and for a vector ξ ∈ Cn we define a measure
µξ:

µξ(S) = 〈(CEA(S)C∗ +DEB(S)D∗)ξ, ξ〉
= 〈EA(S)C∗ξ, C∗ξ〉+ 〈EA(S)D∗ξ,D∗ξ〉.

The reason of the definition of this measure is the formula

〈Fξ, ξ〉 =
∫

λdµξ(λ).
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If ξ is a unit eigenvector of F (and f(F )), then

〈f(CAC∗ +DBD∗)ξ, ξ〉 = 〈f(F )ξ, ξ〉 = f(〈Fξ, ξ〉) = f

(
∫

λdµξ(λ)

)

≤
∫

f(λ)dµξ(λ)

= 〈(Cf(A)C∗ +Df(B)D∗)ξ, ξ〉.
(The inequality follows from the convexity of the function f .) To obtain the
statement we summarize this kind of inequalities for an orthonormal basis of
eigenvectors of F . �

Example 4.17 The example is about a positive block matrix A and a con-
cave function f : R+ → R. The inequality

Tr f

([

A11 A12

A∗
12 A22

])

≤ Tr f(A11) + Tr f(A22)

is called subadditivity. We can take ortho-projections P1 and P2 such that
P1 + P2 = I and the subadditivity

Tr f(A) ≤ Tr f(P1AP1) + Tr f(P2AP2)

follows from the theorem. A stronger version of this inequality is less trivial.

Let P1, P2 and P3 be ortho-projections such that P1+P2+P3 = I. We use
the notation P12 := P1 + P2 and P23 := P2 + P3. The strong subadditivity
is the inequality

Tr f(A) + Tr f(P2AP2) ≤ Tr f(P12AP12) + Tr f(P23AP23). (4.13)

Some details about this will come later, see Theorems 4.49 and 4.50. �

Example 4.18 The log function is concave. If A ∈ Mn is positive and we
set the projections Pi := E(ii), then from the previous theorem we have

Tr log

n
∑

i=1

PiAPi ≥
n
∑

i=1

TrPi(logA)Pi.

This means
n
∑

i=1

logAii ≥ Tr logA

and the exponential is
n
∏

i=1

Aii ≥ exp(Tr logA) = detA.

This is the well-known Hadamard inequality for the determinant. �
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When F (A,B) is a real valued function of two matrix variables, then F is
called jointly concave if

F (λA1 + (1− λ)A2, λB1 + (1− λ)B2) ≥ λF (A1, B1) + (1− λ)F (A2, B2)

for 0 < λ < 1. The function F (A,B) is jointly concave if and only if the
function

A⊕ B 7→ F (A,B)

is concave. In this way the joint convexity and concavity are conveniently
studied.

Lemma 4.19 If (A,B) 7→ F (A,B) is jointly concave, then

f(A) = sup{F (A,B) : B}

is concave.

Proof: Assume that f(A1), f(A2) < +∞. Let ε > 0 be a small number.
We have B1 and B2 such that

f(A1) ≤ F (A1, B1) + ε and f(A2) ≤ F (A2, B2) + ε.

Then

λf(A1) + (1− λ)f(A2) ≤ λF (A1, B1) + (1− λ)F (A2, B2) + ε
≤ F (λA1 + (1− λ)A2, λB1 + (1− λ)B2) + ε
≤ f(λA1 + (1− λ)A2) + ε

and this gives the proof.

The infinite case of f(A1), f(A2) has a similar proof. �

Example 4.20 The quantum relative entropy of X ≥ 0 with respect to
Y ≥ 0 is defined as

S(X‖Y ) := Tr (X logX −X log Y )− Tr (X − Y ).

It is known that S(X‖Y ) ≥ 0 and equality holds if and only if X = Y . A
different formulation is

Tr Y = max {Tr (X log Y −X logX +X) : X ≥ 0}.

Selecting Y = exp(L+ logD) we obtain

Tr exp(L+ logD) = max{Tr (X(L+ logD)−X logX +X) : X ≥ 0}
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= max{Tr (XL)− S(X‖D) + TrD : X ≥ 0}.

Since the quantum relative entropy is a jointly convex function, the func-
tion

F (X,D) := Tr (XL)− S(X‖D) + TrD)

is jointly concave as well. It follows that the maximization in X is concave
and we obtain that the functional

D 7→ Tr exp(L+ logD) (4.14)

is concave on positive definite matrices. (This was the result of Lieb, but the
present proof is from [76].) �

In the next lemma the operators

JDX =

∫ 1

0

DtXD1−t dt, J
−1
D K =

∫ ∞

0

(t+D)−1K(t +D)−1 dt

for D,X,K ∈ Mn, D > 0, are used. Lieb’s concavity theorem says that
D > 0 7→ TrX∗DtXD1−t is concave for every X ∈ Mn.

Lemma 4.21 The functional

(D,K) 7→ Q(D,K) := 〈K, J−1
D K〉

is jointly convex on the domain {D ∈ Mn : D > 0} ×Mn.

Proof: Mn is a Hilbert space H with the Hilbert-Schmidt inner product.
The mapping K 7→ Q(D,K) is a quadratic form. When K := H ⊕ H and
D = λD1 + (1− λ)D2, then

M(K1 ⊕K2) := λQ(D1, K1) + (1− λ)Q(D2, K2)

N (K1 ⊕K2) := Q(D, λK1 + (1− λ)K2)

are quadratic forms on K. Note that both forms are non-degenerate. In terms
of M and N the dominance N ≤ M is to be shown.

Let m and n be the corresponding sesquilinear forms on K, that is,

M(ξ) = m(ξ, ξ), N (ξ) = n(ξ, ξ) (ξ ∈ K) .

There exists an operator X on K such that

m(ξ, η) = n(Xξ, η) (ξ, η ∈ K)
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and our aim is to show that its eigenvalues are ≥ 1. If X(K⊕L) = γ(K⊕L),
we have

m(K ⊕ L,K ′ ⊕ L′) = γn(K ⊕ L,K ′ ⊕ L′)

for every K ′, L′ ∈ H. This is rewritten in terms of the Hilbert-Schmidt inner
product as

λ〈K, J−1
D1
K ′〉+ (1− λ)〈L, J−1

D2
L′〉 = γ〈λK + (1− λ)L, J−1

D (λK ′ + (1− λ)L′)〉 ,
which is equivalent to the equations

J
−1
D1
K = γJ−1

D (λK + (1− λ)L)
and

J
−1
D2
L = γJ−1

D (λK + (1− λ)L) .

We infer
JDM = λJD1

(γM) + (1− λ)JD2
(γM) (4.15)

with the new notation M := J
−1
D (λK + (1− λ)L). It follows that

〈M, JDM〉 = γ (λ〈M, JD1
M〉 + (1− λ)〈M, JD2

M〉) .
On the other hand, the concavity assumption tells the inequality

〈M, JDM〉 ≥ λ〈M, JD1
M〉+ (1− λ)〈M, JD2

M〉
and we arrive at γ ≥ 1. �

Let J ⊂ R be an interval. As introduced at the beginning of the chapter,
a function f : J → R is said to be matrix convex if

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B) (4.16)

for all self-adjoint matrices A and B whose spectra are in J and for all numbers
0 ≤ t ≤ 1. (The function f is matrix convex if the functional A 7→ f(A) is
convex.) f is matrix concave if −f is matrix convex.

The classical result is about matrix convex functions on the interval (−1, 1).
They have integral decomposition

f(x) = β0 + β1x+
1

2
β2

∫ 1

−1

x2(1− αx)−1 dµ(α), (4.17)

where µ is a probability measure and β2 ≥ 0. (In particular, f must be an
analytic function.)

Since self-adjoint operators on an infinite dimensional Hilbert space may
be approximated by self-adjoint matrices, (4.16) holds for operators when
it holds for matrices. The point in the next theorem is that in the convex
combination tA+(1−t)B the numbers t and 1−t can be replaced by matrices.
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Theorem 4.22 Let f : (a, b) → R be a matrix convex function and Ci, Ai =
A∗
i ∈ Mn be such that

σ(Ai) ⊂ (a, b) and
k
∑

i=1

CiC
∗
i = I.

Then

f

(

k
∑

i=1

CiAiC
∗
i

)

≤
k
∑

i=1

Cif(Ai)C
∗
i . (4.18)

Proof: The essential idea is in the case

f(CAC∗ +DBD∗) ≤ Cf(A)C∗ +Df(B)D∗,

when CC∗ +DD∗ = I.

The condition CC∗ + DD∗ = I implies that we can find a unitary block
matrix

U :=

[

C D
X Y

]

when the entries X and Y are chosen properly. Then

U

[

A 0
0 B

]

U∗ =

[

CAC∗ +DBD∗ CAX∗ +DBY ∗

XAC∗ + Y BD∗ XAX∗ + Y BY ∗

]

.

It is easy to check that

1

2
V

[

A11 A12

A21 A22

]

V +
1

2

[

A11 A12

A21 A22

]

=

[

A11 0
0 A22

]

for

V =

[

−I 0
0 I

]

.

It follows that the matrix

Z :=
1

2
V U

[

A 0
0 B

]

U∗V +
1

2
U

[

A 0
0 B

]

U∗

is diagonal, Z11 = CAC∗ +DBD∗ and f(Z)11 = f(CAC∗ +DBD∗).

Next we use the matrix convexity of the function f :

f(Z) ≤ 1

2
f

(

V U

[

A 0
0 B

]

U∗V

)

+
1

2
f

(

U

[

A 0
0 B

]

U∗

)
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=
1

2
V Uf

([

A 0
0 B

])

U∗V +
1

2
Uf

([

A 0
0 B

])

U∗

=
1

2
V U

[

f(A) 0
0 f(B)

]

U∗V +
1

2
U

[

f(A) 0
0 f(B)

]

U∗

The right-hand side is diagonal with Cf(A)C∗ +Df(B)D∗ as (1, 1) element.
The inequality implies the inequality between the (1, 1) elements and this is
exactly the inequality (4.18). �

In the proof of (4.18) for n × n matrices, the ordinary matrix convexity
was used for (2n)× (2n) matrices. That is an important trick. The theorem
is due to Hansen and Pedersen [38].

Theorem 4.23 Let f : [a, b] → R and a ≤ 0 ≤ b.

If f is a matrix convex function, ‖V ‖ ≤ 1 and f(0) ≤ 0, then f(V ∗AV ) ≤
V ∗f(A)V holds if A = A∗ and σ(A) ⊂ [a, b].

If f(PAP ) ≤ Pf(A)P holds for an orthogonal projection P and A = A∗

with σ(A) ⊂ [a, b], then f is a matrix convex function and f(0) ≤ 0.

Proof: If f is matrix convex, we can apply Theorem 4.22. Choose B = 0
and W such that V ∗V +W ∗W = I. Then

f(V ∗AV +W ∗BW ) ≤ V ∗f(A)V +W ∗f(B)W

holds and gives our statement.

Let A and B be self-adjoint matrices with spectrum in [a, b] and 0 < λ < 1.
Define

C :=

[

A 0
0 B

]

, U :=

[ √
λ I −

√
1− λ I√

1− λ I
√
λ I

]

, P :=

[

I 0
0 0

]

.

Then C = C∗ with σ(C) ⊂ [a, b], U is a unitary and P is an orthogonal
projection. Since

PU∗CUP =

[

λA+ (1− λ)B 0
0 0

]

,

the assumption implies

[

f(λA+ (1− λ)B) 0
0 f(0)I

]

= f(PU∗CUP )

≤ Pf(U∗CU)P = PU∗f(C)UP
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=

[

λf(A) + (1− λ)f(B) 0
0 0

]

.

This implies that f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B) and f(0) ≤ 0. �

Example 4.24 From the previous theorem we can deduce that if f : [0, b] →
R is a matrix convex function and f(0) ≤ 0, then f(x)/x is matrix monotone
on the interval (0, b].

Assume that 0 < A ≤ B. Then B−1/2A1/2 =: V is a contraction, since

‖V ‖2 = ‖V V ∗‖ = ‖B−1/2AB−1/2‖ ≤ ‖B−1/2BB−1/2‖ = 1.

Therefore the theorem gives

f(A) = f(V ∗BV ) ≤ V ∗f(B)V = A1/2B−1/2f(B)B−1/2A1/2

which is equivalent to A−1f(A) ≤ B−1f(B).

Now assume that g : [0, b] → R is matrix monotone. We want to show
that f(x) ≡ xg(x) is matrix convex. Due to the previous theorem we need to
show

PAPg(PAP ) ≤ PAg(A)P

for an orthogonal projection P and A ≥ 0. From the monotonicity

g(A1/2PA1/2) ≤ g(A)

and this implies

PA1/2g(A1/2PA1/2)A1/2P ≤ PA1/2g(A)A1/2P.

Since g(A1/2PA1/2)A1/2P = A1/2Pg(PAP ) and A1/2g(A)A1/2 = Ag(A) we
finished the proof. �

Example 4.25 Heuristically we can say that Theorem 4.22 replaces all the
numbers in the Jensen inequality f(

∑

i tiai) ≤
∑

i tif(ai) by matrices. There-
fore

f

(

∑

i

aiAi

)

≤
∑

i

f(ai)Ai (4.19)

holds for a matrix convex function f if
∑

iAi = I for the positive matrices
Ai ∈ Mn and for the numbers ai ∈ (a, b).

We want to show that the property (4.19) is equivalent to the matrix
convexity

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B).
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Let

A =
∑

i

λiPi and B =
∑

j

µjQj

be the spectral decompositions. Then

∑

i

tPi +
∑

j

(1− t)Qj = I

and from (4.19) we obtain

f(tA+ (1− t)B) = f

(

∑

i

tλiPi +
∑

j

(1− t)µjQj

)

≤
∑

i

f(λi)tPi +
∑

j

f(µj)(1− t)Qj

= tf(A) + (1− t)f(B).

This inequality was the aim. �

An operator Z ∈ B(H) is called a contraction if Z∗Z ≤ I and an ex-
pansion if Z∗Z ≥ I. For an A ∈ Mn(C)

sa let λ(A) = (λ1(A), . . . , λn(A))
denote the eigenvalue vector of A in decreasing order with multiplicities.

Theorem 4.23 says that, for a function f : [a, b] → R with a ≤ 0 ≤ b, the
matrix inequality f(Z∗AZ) ≤ Z∗f(A)Z for every A = A∗ with σ(A) ⊂ [a, b]
and every contraction Z characterizes the matrix convexity of f with f(0) ≤ 0.
Now we take some similar inequalities in the weaker senses of eigenvalue
dominance or eigenvalue majorization under the simple convexity or concavity
condition of f .

The first theorem presents the eigenvalue dominance involving a contrac-
tion when f is a monotone convex function with f(0) ≤ 0.

Theorem 4.26 Assume that f is a monotone convex function on [a, b] with
a ≤ 0 ≤ b and f(0) ≤ 0. Then, for every A ∈ Mn(C)

sa with σ(A) ⊂ [a, b]
and for every contraction Z ∈ Mn(C), there exists a unitary U such that

f(Z∗AZ) ≤ U∗Z∗f(A)ZU,

or equivalently,

λk(f(Z
∗AZ)) ≤ λk(Z

∗f(A)Z) (1 ≤ k ≤ n).
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Proof: We may assume that f is increasing; the other case is covered by
taking f(−x) and −A. First, note that for every B ∈ Mn(C)

sa and for every
vector x with ‖x‖ ≤ 1 we have

f(〈x,Bx〉) ≤ 〈x, f(B)x〉. (4.20)

Indeed, taking the spectral decomposition B =
∑n

i=1 λi|ui〉〈ui| we have

f(〈x,Bx〉) = f

( n
∑

i=1

λi|〈x, ui〉|2
)

≤
n
∑

i=1

f(λi)|〈x, ui〉|2 + f(0)(1− ‖x‖2)

≤
n
∑

i=1

f(λi)|〈x, ui〉|2 = 〈x, f(B)x〉

thanks to convexity of f and f(0) ≤ 0. By the mini-max expression in
(6.6) there exists a subspace M of Cn with dimM = k − 1 such that

λk(Z
∗f(A)Z) = max

x∈M⊥, ‖x‖=1
〈x, Z∗f(A)Zx〉 = max

x∈M⊥, ‖x‖=1
〈Zx, f(A)Zx〉.

Since Z is a contraction and f is non-decreasing, we apply (4.20) to obtain

λk(Z
∗f(A)Z) ≥ max

x∈M⊥, ‖x‖=1
f(〈Zx,AZx〉) = f

(

max
x∈M⊥, ‖x‖=1

〈x, Z∗AZx〉
)

≥ f(λk(Z
∗AZ)) = λk(f(Z

∗AZ)).

In the second inequality above we have used the mini-max expression again.
�

The following corollary was originally proved by Brown and Kosaki [21] in
the von Neumann algebra setting.

Corollary 4.27 Let f be a function on [a, b] with a ≤ 0 ≤ b, and let A ∈
Mn(C)

sa, σ(A) ⊂ [a, b], and Z ∈ Mn(C) be a contraction. If f is a convex
function with f(0) ≤ 0, then

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z.

If f is a concave function on R with f(0) ≥ 0, then

Tr f(Z∗AZ) ≥ TrZ∗f(A)Z.

Proof: Obviously, the two assertions are equivalent. To prove the first,
by approximation we may assume that f(x) = αx + g(x) with α ∈ R and a
monotone and convex function g on [a, b] with g(0) ≤ 0. Since Tr g(Z∗AZ) ≤
TrZ∗gf(A)Z by Theorem 4.26, we have Tr f(Z∗AZ) ≤ TrZ∗f(A)Z. �

The next theorem is the eigenvalue dominance version of Theorem 4.23 for
under the simple convexity condition of f .
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Theorem 4.28 Assume that f is a monotone convex function on [a, b]. Then,
for every A1, . . . , Am ∈ Mn(C)

sa with σ(Ai) ⊂ [a, b] and every C1, . . . , Cm ∈
Mn(C) with

∑m
i=1C

∗
i Ci = I, there exists a unitary U such that

f

( m
∑

i=1

C∗
i AiCi

)

≤ U∗

( m
∑

i=1

C∗
i f(Ai)Ci

)

U.

Proof: Letting f0(x) := f(x)− f(0) we have

f
(

∑

i

C∗
i AiCi

)

= f(0)I + f0

(

∑

i

C∗
i AiCi

)

,

∑

i

C∗
i f(Ai)Ci = f(0)I +

∑

i

C∗
i f0(Ai)Ci.

So it may be assumed that f(0) = 0. Set

A :=









A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am









and Z :=









C1 0 · · · 0
C2 0 · · · 0
...

...
. . .

...
Cm 0 · · · 0









For the block-matrices f(Z∗AZ) and Z∗f(A)Z, we can take the (1,1)-blocks:
f(
∑

i C
∗
i AiCi) and

∑

i C
∗
i f(Ai)Ci. Moreover, 0 is for all other blocks. Hence

Theorem 4.26 implies that

λk

(

f
(

∑

i

C∗
i AiCi

))

≤ λk

(

∑

i

C∗
i f(Ai)Ci

)

(1 ≤ k ≤ n),

as desired. �

A special case of Theorem 4.28 is that if f and A1, . . . , Am are as above,
α1, . . . , αm > 0 and

∑m
i=1 αi = 1, then there exists a unitary U such that

f

( m
∑

i=1

αiAi

)

≤ U∗

( m
∑

i=1

αif(Ai)

)

U.

From this inequality we have a proof of Theorem 4.16.

4.3 Pick functions

Let C+ denote the upper half-plane,

C
+ := {z ∈ C : Im z > 0} = {reiϕ ∈ C : 0 < r, 0 < ϕ < π}.



160 CHAPTER 4. MONOTONE FUNCTIONS AND CONVEXITY

Now we concentrate on analytic functions f : C+ → C. Recall that the range
f(C+) is a connected open subset of C unless f is a constant. An analytic
function f : C+ → C+ is called a Pick function.

The next examples show that this concept is in connection with the matrix
monotonicity property.

Example 4.29 Let z = reiθ with r > 0 and 0 < θ < π. For a real parameter
0 < p the function

fp(z) = zp := rpeipθ (4.21)

has the range in P if and only if p ≤ 1.

This function fp(z) is a continuous extension of the real function 0 ≤ x 7→
xp. The latter is matrix monotone if and only if p ≤ 1. The similarity to the
Pick function concept is essential.

Recall that the real function 0 < x 7→ log x is matrix monotone as well.
The principal branch of log z defined as

Log z := log r + iθ (4.22)

is a continuous extension of the real logarithm function and it is in P as well.
�

The next Nevanlinna’s theorem provides the integral representation of
Pick functions.

Theorem 4.30 A function f : C+ → C is in P if and only if there exists an
α ∈ R, a β ≥ 0 and a positive finite Borel measure ν on R such that

f(z) = α + βz +

∫ ∞

−∞

1 + λz

λ− z
dν(λ), z ∈ C

+. (4.23)

The integral representation (4.23) is also written as

f(z) = α+ βz +

∫ ∞

−∞

( 1

λ− z
− λ

λ2 + 1

)

dµ(λ), z ∈ C
+, (4.24)

where µ is a positive Borel measure on R given by dµ(λ) := (λ2 + 1) dν(λ)
and so

∫ ∞

−∞

1

λ2 + 1
dµ(λ) < +∞.

Proof: The proof of the “if ” part is easy. Assume that f is defined on C+

as in (4.23). For each z ∈ C+, since

f(z +∆z)− f(z)

∆z
= β +

∫

R

λ2 + 1

(λ− z)(λ− z −∆z)
dν(λ)
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and

sup
{∣

∣

∣

λ2 + 1

(λ− z)(λ− z −∆z)

∣

∣

∣
: λ ∈ R, |∆z| < Im z

2

}

< +∞,

it follows from the Lebesgue dominated convergence theorem that

lim
∆→0

f(z +∆z)− f(z)

∆z
= β +

∫

R

λ2 + 1

(λ− z)2
dν(λ).

Hence f is analytic in C+. Since

Im
(1 + λz

λ− z

)

=
(λ2 + 1) Im z

|λ− z|2 , z ∈ C
+,

we have

Im f(z) =
(

β +

∫

R

λ2 + 1

|λ− z|2 dν(λ)
)

Im z ≥ 0

for all z ∈ C+. Therefore, we have f ∈ P. The equivalence between the two
representations (4.23) and (4.24) is immediately seen from

1 + λz

λ− z
= (λ2 + 1)

( 1

λ− z
− λ

λ2 + 1

)

.

The “only if ” is the significant part, whose proof is skipped here. �

Note that α, β and ν in Theorem 4.30 are uniquely determined by f . In
fact, letting z = i in (4.23) we have α = Re f(i). Letting z = iy with y > 0
we have

f(iy) = α + iβy +

∫ ∞

−∞

λ(1− y2) + iy(λ2 + 1)

λ2 + y2
dν(λ)

so that
Im f(iy)

y
= β +

∫ ∞

−∞

λ2 + 1

λ2 + y2
dν(λ).

By the Lebesgue dominated convergence theorem this yields

β = lim
y→∞

Im f(iy)

y
.

Hence α and β are uniquely determined by f . By (4.24), for z = x + iy we
have

Im f(x+ iy) = βy +

∫ ∞

−∞

y

(x− λ)2 + y2
dµ(λ), x ∈ R, y > 0. (4.25)
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Thus the uniqueness of µ (hence ν) is a consequence of the so-called Stieltjes
inversion formula. (For details omitted here, see [34, pp. 24–26] and [18,
pp. 139–141]).

For any open interval (a, b), −∞ ≤ a < b ≤ ∞, we denote by P(a, b) the
set of all Pick functions which admits continues extension to C+ ∪ (a, b) with
real values on (a, b).

The next theorem is a specialization of Nevanlinna’s theorem to functions
in P(a, b).

Theorem 4.31 A function f : C+ → C is in P(a, b) if and only if f is
represented as in (4.23) with α ∈ R, β ≥ 0 and a positive finite Borel measure
ν on R \ (a, b).

Proof: Let f ∈ P be represented as in (4.23) with α ∈ R, β ≥ 0 and a
positive finite Borel measure ν on R. It suffices to prove that f ∈ P(a, b) if
and only if ν((a, b)) = 0. First, assume that ν((a, b)) = 0. The function f
expressed by (4.23) is analytic in C+∪C− so that f(z) = f(z) for all z ∈ C+.
For every x ∈ (a, b), since

sup
{∣

∣

∣

λ2 + 1

(λ− x)(λ− x−∆z)

∣

∣

∣
: λ ∈ R \ (a, b), |∆z| < 1

2
min{x− a, b− x}

}

is finite, the above proof of the “if ” part of Theorem 4.30 by using the
Lebesgue dominated convergence theorem can work for z = x as well, and so
f is differentiable (in the complex variable z) at z = x. Hence f ∈ P(a, b).

Conversely, assume that f ∈ P(a, b). It follows from (4.25) that

∫ ∞

−∞

1

(x− λ)2 + y2
dµ(λ) =

Im f(x+ iy)

y
− β, x ∈ R, y > 0.

For any x ∈ (a, b), since f(x) ∈ R, we have

Im f(x+ iy)

y
= Im

f(x+ iy)− f(x)

y
= Re

f(x+ iy)− f(x)

iy
−→ Re f ′(x)

as y ց 0 and so the monotone convergence theorem yields
∫ ∞

−∞

1

(x− λ)2
dµ(λ) = Re f ′(x), x ∈ (a, b).

Hence, for any closed interval [c, d] included in (a, b), we have

R := sup
x∈[c,d]

∫ ∞

−∞

1

(x− λ)2
dµ(λ) = sup

x∈[c,d]

Re f ′(x) < +∞.
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For each m ∈ N let ck := c+ (k/m)(d− c) for k = 0, 1, . . . , m. Then

µ([c, d)) =

m
∑

k=1

µ([ck−1, ck)) ≤
m
∑

k=1

∫

[ck−1,ck)

(ck − ck−1)
2

(ck − λ)2
dµ(λ)

≤
m
∑

k=1

(d− c

m

)2
∫ ∞

−∞

1

(ck − λ)2
dµ(λ) ≤ (d− c)2R

m
.

Letting m → ∞ gives µ([c, d)) = 0. This implies that µ((a, b)) = 0 and
therefore ν((a, b)) = 0. �

Now let f ∈ P(a, b). The above theorem says that f(x) on (a, b) admits
the integral representation

f(x) = α + βx+

∫

R\(a,b)

1 + λx

λ− x
dν(λ)

= α + βx+

∫

R\(a,b)

(λ2 + 1)
( 1

λ− x
− λ

λ2 + 1

)

dν(λ), x ∈ (a, b),

where α, β and ν are as in the theorem. For any n ∈ N and A,B ∈ Msa
n

with σ(A), σ(B) ⊂ (a, b), if A ≥ B then (λI − A)−1 ≥ (λI − B)−1 for all
λ ∈ R \ (a, b) (see Example 4.1) and hence we have

f(A) = αI + βA+

∫

R\(a,b)

(λ2 + 1)
(

(λI − A)−1 − λ

λ2 + 1
I
)

dν(λ)

≥ αI + βB +

∫

R\(a,b)

(λ2 + 1)
(

(λI − B)−1 − λ

λ2 + 1
I
)

dν(λ) = f(B).

Therefore, f ∈ P(a, b) is operator monotone on (a, b). It will be shown in the
next section that f is operator monotone on (a, b) if and only if f ∈ P(a, b).

The following are examples of integral representations for typical Pick
functions from Example 4.29.

Example 4.32 The principal branch Log z of the logarithm in Example 4.29
is in P(0,∞). Its integral representation in the form (4.24) is

Log z =

∫ 0

−∞

( 1

λ− z
− λ

λ2 + 1

)

dλ, z ∈ C
+.

To show this, it suffices to verify the above expression for z = x ∈ (0,∞),
that is,

log x =

∫ ∞

0

(

− 1

λ+ x
+

λ

λ2 + 1

)

dλ, x ∈ (0,∞),

which is immediate by a direct computation. �
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Example 4.33 If 0 < p < 1, then zp defined in Example 4.29 is in P(0,∞).
Its integral representation in the form (4.24) is

zp = cos
pπ

2
+

sin pπ

π

∫ 0

−∞

( 1

λ− z
− λ

λ2 + 1

)

|λ|p dλ, z ∈ C
+.

For this it suffices to verify that

xp = cos
pπ

2
+

sin pπ

π

∫ ∞

0

(

− 1

λ + x
+

λ

λ2 + 1

)

λp dλ, x ∈ (0,∞), (4.26)

which is computed as follows.

The function

zp−1

1 + z
:=

rp−1ei(p−1)θ

1 + reiθ
, z = reiθ, 0 < θ < 2π,

is analytic in the cut plane C \ (−∞, 0] and we integrate it along the contour

z =















reiθ (ε ≤ r ≤ R, θ = +0),
Reiθ (0 < θ < 2π),
reiθ (R ≥ r ≥ ε, θ = 2π − 0),
εeiθ (2π > θ > 0),

where 0 < ε < 1 < R. Apply the residue theorem and let εց 0 and Rր ∞
to show that

∫ ∞

0

tp−1

1 + t
dt =

π

sin pπ
. (4.27)

For each x > 0, substitute λ/x for t in (4.27) to obtain

xp =
sin pπ

π

∫ ∞

0

xλp−1

λ+ x
dλ, x ∈ (0,∞).

Since
x

λ+ x
=

1

λ2 + 1
+
( λ

λ2 + 1
− 1

λ+ x

)

λ,

it follows that

xp =
sin pπ

π

∫ ∞

0

λp−1

λ2 + 1
dλ+

sin pπ

π

∫ ∞

0

( λ

λ2 + 1
− 1

λ+ x

)

λp dλ, x ∈ (0,∞).

Substitute λ2 for t in (4.27) with p replaced by p/2 to obtain
∫ ∞

0

λp−1

λ2 + 1
dλ =

π

2 sin pπ
2

.

Hence (4.26) follows. �
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4.4 Löwner’s theorem

The main aim of this section is to prove the primary result in Löwner’s theory
saying that an operator monotone function on (a, b) belongs to P(a, b).

Operator monotone functions on a finite open interval (a, b) are trans-
formed into those on a symmetric interval (−1, 1) via an affine function. So
it is essential to analyze operator monotone functions on (−1, 1). They are
C∞-functions and f ′(0) > 0 unless f is constant. We denote by K the set of
all operator monotone functions on (−1, 1) such that f(0) = 0 and f ′(0) = 1.

Lemma 4.34 Let f ∈ K. Then

(1) For every α ∈ [−1, 1], (x+ α)f(x) is operator convex on (−1, 1).

(2) For every α ∈ [−1, 1], (1 + α
x
)f(x) is operator monotone on (−1, 1).

(3) f is twice differentiable at 0 and

f ′′(0)

2
= lim

x→0

f(x)− f ′(0)x

x2
.

Proof: (1) The proof is based on Example 4.24, but we have to change
the argument of the function. Let ε ∈ (0, 1). Since f(x − 1 + ε) is operator
monotone on [0, 2− ε), it follows that xf(x−1+ ε) is operator convex on the
same interval [0, 2− ε). So (x+1− ε)f(x) is operator convex on (−1 + ε, 1).
By letting ε ց 0, (x+ 1)f(x) is operator convex on (−1, 1).

We repeat the same argument with the operator monotone function−f(−x)
and get the operator convexity of (x− 1)f(x). Since

(x+ α)f(x) =
1 + α

2
(x+ 1)f(x) +

1− α

2
(x− 1)f(x),

this function is operator convex as well.

(2) (x+ α)f(x) is already known to be operator convex and divided by x
it is operator monotone.

(3) To prove this, we use the continuous differentiability of matrix mono-
tone functions. Then, by (2), (1 + 1

x
)f(x) as well as f(x) is C1 on (−1, 1)

so that the function h on (−1, 1) defined by h(x) := f(x)/x for x 6= 0 and
h(0) := f ′(0) is C1. This implies that

h′(x) =
f ′(x)x− f(x)

x2
−→ h′(0) as x→ 0.
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Therefore,
f ′(x)x = f(x) + h′(0)x2 + o(|x|2)

so that

f ′(x) = h(x) + h′(0)x+ o(|x|) = h(0) + 2h′(0)x+ o(|x|) as x→ 0,

which shows that f is twice differentiable at 0 with f ′′(0) = 2h′(0). Hence

f ′′(0)

2
= h′(0) = lim

x→0

h(x)− h(0)

x
= lim

x→0

f(x)− f ′(0)x

x2

and the proof is ready. �

Lemma 4.35 If f ∈ K, then

x

1 + x
≤ f(x) for x ∈ (−1, 0), f(x) ≤ x

1− x
for x ∈ (0, 1).

and |f ′′(0)| ≤ 2.

Proof: For every x ∈ (−1, 1), Theorem 4.5 implies that
[

f [1](x, x) f [1](x, 0)
f [1](x, 0) f [1](0, 0)

]

=

[

f ′(x) f(x)/x
f(x)/x 1

]

≥ 0,

and hence
f(x)2

x2
≤ f ′(x). (4.28)

By Lemma 4.34 (1),

d

dx
(x± 1)f(x) = f(x) + (x± 1)f ′(x)

is increasing on (−1, 1). Since f(0)± f ′(0) = ±1, we have

f(x) + (x− 1)f ′(x) ≥ −1 for 0 < x < 1, (4.29)

f(x) + (x+ 1)f ′(x) ≤ 1 for −1 < x < 0, (4.30)

By (4.28) and (4.29) we have

f(x) + 1 ≥ (1− x)f(x)2

x2
.

If f(x) > x
1−x

for some x ∈ (0, 1), then

f(x) + 1 >
(1− x)f(x)

x2
· x

1− x
=
f(x)

x
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so that f(x) < x
1−x

, a contradiction. Hence f(x) ≤ x
1−x

for all x ∈ [0, 1).
A similar argument using (4.28) and (4.30) yields that f(x) ≥ x

1+x
for all

x ∈ (−1, 0].

Moreover, by Lemma 4.34 (3) and the two inequalities just proved,

f ′′(0)

2
≤ lim

xց0

x
1−x

− x

x2
= lim

xց0

1

1− x
= 1

and
f ′′(0)

2
≥ lim

xր0

x
1+x

− x

x2
= lim

xց0

−1

1 + x
= −1

so that |f ′′(0)| ≤ 2. �

Lemma 4.36 The set K is convex and compact if it is considered as a subset
of the topological vector space consisting of real functions on (−1, 1) with the
locally convex topology of pointwise convergence.

Proof: It is obvious that K is convex. Since {f(x) : f ∈ K} is bounded
for each x ∈ (−1, 1) thanks to Lemma 4.35, it follows that K is relatively
compact. To prove that K is closed, let {fi} be a net in K converging to a
function f on (−1, 1). Then it is clear that f is operator monotone on (−1, 1)
and f(0) = 0. By Lemma 4.34 (2), (1 + 1

x
)fi(x) is operator monotone on

(−1, 1) for every i. Since limx→0(1 +
1
x
)fi(x) = f ′

i(0) = 1, we thus have

(

1− 1

x

)

fi(−x) ≤ 1 ≤
(

1 +
1

x

)

fi(x), x ∈ (0, 1).

Therefore,

(

1− 1

x

)

f(−x) ≤ 1 ≤
(

1 +
1

x

)

f(x), x ∈ (0, 1).

Since f is C1 on (−1, 1), the above inequalities yield f ′(0) = 1. �

Lemma 4.37 The extreme points of K have the form

f(x) =
x

1− λx
, where λ =

f ′′(0)

2
.

Proof: Let f be an extreme point of K. For each α ∈ (−1, 1) define

gα(x) :=
(

1 +
α

x

)

f(x)− α, x ∈ (−1, 1).
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By Lemma 4.34 (2), gα is operator monotone on (−1, 1). Notice that

gα(0) = f(0) + αf ′(0)− α = 0

and

g′α(0) = lim
x→0

(1 + α
x
)f(x)− α

x
= f ′(0) + α lim

x→0

f(x)− f ′(0)x

x2
= 1 +

1

2
αf ′′(0)

by Lemma 4.34 (3). Since 1 + 1
2
αf ′′(0) > 0 by Lemma 4.35, the function

hα(x) :=
(1 + α

x
)f(x)− α

1 + 1
2
αf ′′(0)

is in K. Since

f =
1

2

(

1 +
1

2
αf ′′(0)

)

hα +
1

2

(

1− 1

2
αf ′′(0)

)

h−α,

the extremality of f implies that f = hα so that

(

1 +
1

2
αf ′′(0)

)

f(x) =
(

1 +
α

x

)

f(x)− α

for all α ∈ (−1, 1). This immediately implies that f(x) = x/(1 − 1
2
f ′′(0)x).

�

Theorem 4.38 Let f be an operator monotone function on (−1, 1). Then
there exists a probability Borel measure µ on [−1, 1] such that

f(x) = f(0) + f ′(0)

∫ 1

−1

x

1− λx
dµ(λ), x ∈ (−1, 1). (4.31)

Proof: The essential case is f ∈ K. Let φλ(x) := x/(1−λx) for λ ∈ [−1, 1].
By Lemmas 4.36 and 4.37, the Krein-Milman theorem says that K is the
closed convex hull of {φλ : λ ∈ [−1, 1]}. Hence there exists a net {fi} in the
convex hull of {φλ : λ ∈ [−1, 1]} such that fi(x) → f(x) for all x ∈ (−1, 1).

Each fi is written as fi(x) =
∫ 1

−1
φλ(x) dµi(λ) with a probability measure µi

on [−1, 1] with finite support. Note that the set M1([−1, 1]) of probability
Borel measures on [−1, 1] is compact in the weak* topology when considered
as a subset of the dual Banach space of C([−1, 1]). Taking a subnet we may
assume that µi converges in the weak* topology to some µ ∈ M1([−1, 1]).
For each x ∈ (−1, 1), since φλ(x) is continuous in λ ∈ [−1, 1], we have

f(x) = lim
i
fi(x) = lim

i

∫ 1

−1

φλ(x) dµi(λ) =

∫ 1

−1

φλ(x) dµ(λ).
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To prove the uniqueness of the representing measure µ, let µ1, µ2 be prob-
ability Borel measures on [−1, 1] such that

f(x) =

∫ 1

−1

φλ(x) dµ1(λ) =

∫ 1

−1

φλ(x) dµ2(λ), x ∈ (−1, 1).

Since φλ(x) =
∑∞

k=0 x
k+1λk is uniformly convergent in λ ∈ [−1, 1] for any

x ∈ (−1, 1) fixed, it follows that

∞
∑

k=0

xk+1

∫ 1

−1

λk dµ1(λ) =
∞
∑

k=0

xk+1

∫ 1

−1

λk dµ2(λ), x ∈ (−1, 1).

Hence
∫ 1

−1
λk dµ1(λ) =

∫ 1

−1
λk dµ2(λ) for all k = 0, 1, 2, . . ., which implies that

µ1 = µ2. �

The integral representation of the above theorem is an example of the so-
called Choquet’s theorem while we proved it in a direct way. The uniqueness
of the representing measure µ shows that {φλ : λ ∈ [−1, 1]} is actually the
set of extreme points of K. Since the pointwise convergence topology on
{φλ : λ ∈ [−1, 1]} agrees with the usual topology on [−1, 1], we see that K is
a so-called Bauer simplex.

Theorem 4.39 (Löwner theorem) Let −∞ ≤ a < b ≤ ∞ and f be a
real-valued function on (a, b). Then f is operator monotone on (a, b) if and
only if f ∈ P(a, b). Hence, an operator monotone function is analytic.

Proof: The “if ” part was shown after Theorem 4.31. To prove the “only
if ”, it is enough to assume that (a, b) is a finite open interval. Moreover,
when (a, b) is a finite interval, by transforming f into an operator monotone
function on (−1, 1) via a linear function, it suffices to prove the “only if ” part
when (a, b) = (−1, 1). If f is a non-constant operator monotone function on
(−1, 1), then by using the integral representation (4.31) one can define an
analytic continuation of f by

f(z) = f(0) + f ′(0)

∫ 1

−1

z

1− λz
dµ(λ), z ∈ C

+.

Since

Im f(z) = f ′(0)

∫ 1

−1

Im z

|1− λz|2 dµ(λ),

it follows that f maps C+ into itself. Hence f ∈ P(−1, 1). �
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Theorem 4.40 Let f be a non-linear operator convex function on (−1, 1).
Then there exists a unique probability Borel measure µ on [−1, 1] such that

f(x) = f(0) + f ′(0)x+
f ′′(0)

2

∫ 1

−1

x2

1− λx
dµ(λ), x ∈ (−1, 1).

Proof: To prove this statement, we use the result due to Kraus that if f is a
matrix convex function on (a, b), then f is C2 and f [1][x, α] is matrix monotone
on (a, b) for every α ∈ (a, b). Then we may assume that f(0) = f ′(0) = 0
by considering f(x) − f(0) − f ′(0)x. Since g(x) := f [1][x, 0] = f(x)/x is a
non-constant operator monotone function on (−1, 1). Hence by Theorem 4.38
there exists a probability Borel measure µ on [−1, 1] such that

g(x) = g′(0)

∫ 1

−1

x

1− λx
dµ(λ), x ∈ (−1, 1).

Since g′(0) = f ′′(0)/2 is easily seen, we have

f(x) =
f ′′(0)

2

∫ 1

−1

x2

1− λx
dµ(λ), x ∈ (−1, 1).

Moreover, the uniqueness of µ follows from that of the representing measure
for g. �

Theorem 4.41 Matrix monotone functions on R+ have a special integral
representation

f(x) = f(0) + βx+

∫ ∞

0

λx

λ+ x
dµ(λ) , (4.32)

where µ is a measure such that
∫ ∞

0

λ

λ+ 1
dµ(λ)

is finite and β ≥ 0.

Since the integrand
λx

λ+ x
= λ− λ2

λ+ x

is a matrix monotone function of x, see Example 4.1, one part of the Löwner
theorem is straightforward. It follows from the theorem that a matrix mono-
tone function on R+ is matrix concave.

Theorem 4.42 If f : R+ → R is matrix monotone, then xf(x) is matrix
convex.
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Proof: Let λ > 0. First we check the function f(x) = −(x+ λ)−1. Then

xf(x) = − x

λ+ x
= −1 +

λ

λ+ x

and it is well-known that x 7→ (x+ λ)−1 is matrix convex.

For a general matrix monotone f , we use the integral decomposition (4.32)
and the statement follows from the previous special case. �

Theorem 4.43 If f : (0,∞) → (0,∞), then the following conditions are
equivalent:

(1) f is matrix monotone;

(2) x/f(x) is matrix monotone;

(3) f is matrix concave.

Proof: For ε > 0 the functionfε(x) := f(x+ ε) is defined on [0,∞). If the
statement is proved for this function, then the limit ε → 0 gives the result.
So we assume f : [0,∞) → (0,∞).

Recall that (1) ⇒ (3) was already remarked above.

The implication (3) ⇒ (2) is based on Example 4.24. It says that −f(x)/x
is matrix monotone. Therefore x/f(x) is matrix monotone as well.

(2) ⇒ (1): Assume that x/f(x) is matrix monotone on (0,∞). Let α :=
limxց0 x/f(x). Then it follows from the Löwner representation that divided
by x we have

1

f(x)
=
α

x
+ β +

∫ ∞

0

λ

λ+ x
dµ(λ).

This multiplied with −1 is the matrix monotone −1/f(x). Therefore f(x) is
matrix monotone as well. �

It was proved that the matrix monotonicity is equivalent to the positive
definiteness of the divided difference kernel. Matrix concavity has a somewhat
similar property.

Theorem 4.44 Let f : [0,∞) → [0,∞) be a smooth function. If the divided
difference kernel function is conditionally negative definite, then f is matrix
convex.

Proof: Example 2.42 and Theorem 4.5 give that g(x) = x2/f(x) is matrix
monotone. Then x/g(x) = f(x)/x is matrix monotone due to Theorem 4.43.
Multiplying by x we get a matrix convex function, Theorem 4.42. �
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It is not always easy to decide if a function is matrix monotone. An efficient
method is based on holomorphic extension. The set C+ := {a + ib : a, b ∈
R and b > 0} is called upper half-plane. A function R+ → R is matrix
monotone if and only if it has a holomorphic extension to the upper half-plane
such that its range is in the closure of C+ [18]. (Such functions are studied
in the next section.) It is surprising that a matrix monotone function is very
smooth and connected with functions of a complex variable.

Example 4.45 The representation

xt =
sin πt

π

∫ ∞

0

λt−1x

λ+ x
dλ (4.33)

shows that f(x) = xt is matrix monotone when 0 < t < 1. In other words,

0 ≤ A ≤ B imply At ≤ Bt,

which is often called Löwner-Heinz inequality.

We can arrive at the same conclusion by holomorphic extension. If

a + ib = Reϕi with 0 ≤ ϕ ≤ π,

then a + ib 7→ Rt etϕi is holomorphic and it maps C+ into itself when 0 ≤
t ≤ 1. This shows that f(x) = xt is matrix monotone for these values of the
parameter but not for any other value. �

4.5 Some applications

If the complex extension of a function f : R+ → R is rather natural, then it
can be checked numerically that the upper half-plane remains in the upper
half-plane and the function is expected to be matrix monotone. For example,
x 7→ xp has a natural complex extension.

Theorem 4.46 Let

fp(x) :=

(

p(x− 1)

xp − 1

)
1

1−p

(x > 0). (4.34)

In particular, f2(x) = (x+ 1)/2, f−1(x) =
√
x and

f1(x) := lim
p→1

fp(x) = e−1x
x

x−1 , f0(x) := lim
p→0

fp(x) =
x− 1

log x
.

Then fp is matrix monotone if −2 ≤ p ≤ 2.
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Proof: First note that f2(x) = (x+1)/2 is the arithmetic mean, the limiting
case f0(x) = (x − 1)/ log x is the logarithmic mean and f−1(x) =

√
x is the

geometric mean, their matrix monotonicity is well-known. If p = −2 then

f−2(x) =
(2x)

2

3

(x+ 1)
1

3

which will be shown to be matrix monotone at the end of the proof.

Now let us suppose that p 6= −2,−1, 0, 1, 2. By Löwner’s theorem fp is
matrix monotone if and only if it has a holomorphic continuation mapping the
upper half plane into itself. We define log z as log 1 := 0 then in case−2 < p <
2, since zp−1 6= 0 in the upper half plane, the real function p(x−1)/(xp−1) has
a holomorphic continuation to the upper half plane, moreover it is continuous
in the closed upper half plane, further, p(z − 1)/(zp − 1) 6= 0 (z 6= 1) so fp
also has a holomorphic continuation to the upper half plane and it is also
continuous in the closed upper half plane.

Assume −2 < p < 2 then it suffices to show that fp maps the upper half
plane into itself. We show that for every ε > 0 there is R > 0 such that the
set {z : |z| ≥ R, Im z > 0} is mapped into {z : 0 ≤ arg z ≤ π+ε}, further, the
boundary (−∞,+∞) is mapped into the closed upper half plane. Then by
the well-known fact that the image of a connected open set by a holomorphic
function is either a connected open set or a single point it follows that the
upper half plane is mapped into itself by fp.

Clearly, [0,+∞) is mapped into [0,∞) by fp.

Now first suppose 0 < p < 2. Let ε > 0 be sufficiently small and z ∈ {z :
|z| = R, Im z > 0} where R > 0 is sufficiently large. Then

arg(zp − 1) = arg zp ± ε = p arg z ± ε,

and similarly arg z − 1 = arg z ± ε so that

arg
z − 1

zp − 1
= (1− p) arg z ± 2ε.

Further,
∣

∣

∣

∣

z − 1

zp − 1

∣

∣

∣

∣

≥ |z| − 1

|z|p + 1
=

R− 1

Rp + 1
,

which is large for 0 < p < 1 and small for 1 < p < 2 if R is sufficiently large,
hence

arg

(

z − 1

zp − 1

) 1

1−p

=
1

1− p
arg

(

z − 1

zp − 1

)

± 2ε = arg z ± 2ε
2− p

1− p
.
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Since ε > 0 was arbitrary it follows that {z : |z| = R, Im z > 0} is mapped
into the upper half plane by fp if R > 0 is sufficiently large.

Now, if z ∈ [−R, 0) then arg(z− 1) = π, further, pπ ≤ arg(zp− 1) ≤ π for
0 < p < 1 and π ≤ arg(zp − 1) ≤ pπ for 1 < p < 2 whence

0 ≤ arg

(

z − 1

zp − 1

)

≤ (1− p)π for 0 < p < 1,

and

(1− p)π ≤ arg

(

z − 1

zp − 1

)

≤ 0 for 1 < p < 2.

Thus by

π arg

(

z − 1

zp − 1

)
1

1−p

=
1

1− p
arg

(

z − 1

zp − 1

)

it follows that

0 ≤ arg

(

z − 1

zp − 1

) 1

1−p

≤ π

so z is mapped into the closed upper half plane.

The case −2 < p < 0 can be treated similarly by studying the arguments
and noting that

fp(x) =

(

p(x− 1)

xp − 1

) 1

1−p

=

( |p|x|p|(x− 1)

x|p| − 1

)

1

1+|p|

.

Finally, we show that f−2(x) is matrix monotone. Clearly f−2 has a holo-
morphic continuation to the upper half plane (which is not continuous in

the closed upper half plane). If 0 < arg z < π then arg z
2

3 = 2
3
arg z and

0 < arg(z + 1) < arg z so

0 < arg

(

z
2

3

(z + 1)
1

3

)

< π

thus the upper half plane is mapped into itself by f−2. �

Theorem 4.47 The function

fp(x) =

(

xp + 1

2

)
1

p

(4.35)

is matrix monotone if and only if −1 ≤ p ≤ 1.
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Proof: Observe that f−1(x) = 2x/(x + 1) and f1(x) = (x + 1)/2, so fp
could be matrix monotone only if −1 ≤ p ≤ 1. We show that it is indeed
matrix monotone. The case p = 0 is well-known. Further, note that if fp is
matrix monotone for 0 < p < 1 then

f−p(x) =

(

(

x−p + 1

2

)
1

p

)−1

is also matrix monotone since x−p is matrix monotone decreasing for 0 < p ≤
1.

So let us assume that 0 < p < 1. Then, since zp + 1 6= 0 in the upper half
plane, fp has a holomorphic continuation to the upper half plane (by defining
log z as log 1 = 0). By Löwner’s theorem it suffices to show that fp maps the
upper half plane into itself. If 0 < arg z < π then 0 < arg(zp + 1) < arg zp =
p arg z so

0 < arg

(

zp + 1

2

)
1

p

=
1

p
arg

(

zp + 1

2

)

< arg z < π

thus z is mapped into the upper half plane. �

In the special case p = 1
n
,

fp(x) =

(

x
1

n + 1

2

)n

=
1

2n

n
∑

k=0

(

n

k

)

x
k
n ,

and it is well-known that xα is matrix monotone for 0 < α < 1 thus fp is also
matrix monotone.

Theorem 4.48 For −1 ≤ p ≤ 2 the function

fp(x) = p(1− p)
(x− 1)2

(xp − 1)(x1−p − 1)
. (4.36)

is matrix monotone.

Proof: The special cases p = −1, 0, 1, 2 are well-known. For 0 < p < 1 we
can use an integral representation

1

fp(x)
=

sin pπ

π

∫ ∞

0

dλ λp−1

∫ 1

0

ds

∫ 1

0

dt
1

x((1− t)λ+ (1− s)) + (tλ+ s)

and this shows that 1/fp is matrix monotone decreasing since so is the inte-
grand as a function of all variables. It follows that fp(x) is matrix monotone
for 0 < p < 1.
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We use the Löwner’s theorem for 1 < p < 2 and −1 < p < 0 can be treated
similarly. We should prove that if a complex number z is in the upper half
plane, then so is fp(z). We have

fp(z) = p(p− 1)zp−1 (z − 1)2

(zp − 1)(zp−1 − 1)
.

Then

arg f(z) = arg zp−1 + arg(z − 1)2 − arg(zp − 1)− arg(zp−1 − 1).

Assume that |z| = R and Im z > 0. Let ε > 0 be arbitrarily given. If R is
large enough then

arg f(z) = (p− 1) arg z + 2 arg z +O(ε)− p arg z +O(ε)

−(p− 1) arg z +O(ε)

= (2− p) arg z +O(ε).

This means Im f(z) > 0.

At last consider the image of [−R, 0). We obtain

arg zp−1 = (p− 1) arg z = (p− 1)π,

π ≤ arg(zp − 1) ≤ pπ,

(p− 1)π ≤ arg(zp−1 − 1) ≤ π.

Hence

pπ ≤ arg(zp − 1) + arg(zp−1 − 1) ≤ (p+ 1)π.

Thus we have

−2π = (p− 1)π − (p+ 1)π ≤ arg zp−1 − arg(zp − 1)− arg(zp−1 − 1)

≤ (p− 1)π − pπ = −π,

or equivalently

0 ≤ arg zp−1 − arg(zp − 1)− arg(zp−1 − 1) ≤ π.

It means Im f(z) > 0. �

The strong subadditive functions are defined by the inequality (4.13). The
next theorem tells that f(x) = log x is a strong subadditive function, since
log detA = Tr logA for a positive definite matrix A.
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Theorem 4.49 Let

S =





S11 S12 S13

S∗
12 S22 S23

S∗
13 S∗

23 S33





be a positive definite block matrix. Then

detS × detS22 ≤ det

[

S11 S12

S∗
12 S22

]

× det

[

S22 S23

S∗
23 S33

]

and the condition for equality is S13 = S12S
−1
22 S23.

Proof: Take the ortho-projections

P =





I 0 0
0 0 0
0 0 0



 and Q =





I 0 0
0 I 0
0 0 0



 .

Since P ≤ Q, we have the matrix inequality

[P ]S ≤ [P ]QSQ

which implies the determinant inequality

det [P ]S ≤ det [P ]QSQ .

According to the Schur determinant formula, this is exactly the determinant
inequality of the theorem.

The equality in the determinant inequality implies [P ]S = [P ]QSQ which
is

S11 − [S12, S13 ]

[

S22 S23

S32 S33

]−1 [
S21

S31

]

= S11 − S12S
−1
22 S21.

This can be written as

[S12, S13 ]

(

[

S22 S23

S32 S33

]−1

−
[

S−1
22 0
0 0

]

)

[

S21

S31

]

= 0 . (4.37)

For a moment, let
[

S22 S23

S32 S33

]−1

=

[

C22 C23

C32 C33

]

.

Then
[

S22 S23

S32 S33

]−1

−
[

S−1
22 0
0 0

]

=

[

C23C
−1
33 C32 C23

C32 C33

]
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=

[

C23C
−1/2
33

C
1/2
33

]

[

C
−1/2
33 C32 C

1/2
33

]

.

Comparing this with (4.37) we arrive at

[S12, S13 ]

[

C23C
−1/2
33

C
1/2
33

]

= S12C23C
−1/2
33 + S13C

1/2
33 = 0.

Equivalently,
S12C23C

−1
33 + S13 = 0.

Since the concrete form of C23 and C33 is known, we can compute that
C23C

−1
33 = −S−1

22 S23 and this gives the condition stated in the theorem. �

The next theorem gives a sufficient condition for the strong subadditivity
(4.13) of functions.

Theorem 4.50 Let f : (0,+∞) → R be a function such that −f ′ is matrix
monotone. Then the inequality (4.13) holds.

Proof: A matrix monotone function has the representation

a + bx+

∫ ∞

0

(

λ

λ2 + 1
− 1

λ+ x

)

dµ(λ),

where b ≥ 0, see (V.49) in [18]. Therefore, we have the representation

f(t) = c−
∫ t

1

(

a+ bx +

∫ ∞

0

(

λ

λ2 + 1
− 1

λ+ x

)

dµ(λ)

)

dx.

By integration we have

f(t) = d− at− b

2
t2 +

∫ ∞

0

(

λ

λ2 + 1
(1− t) + log

( λ

λ+ 1
+

t

λ+ 1

)

)

dµ(λ).

The first quadratic part satisfies the strong subadditivity and we have to check
the integral. Since log x is a strongly subadditive function due to Theorem
4.49, so is the integrand. The integration keeps the property. �

In the previous theorem the conditon for f is

Tr f(A) + Tr f(A22) ≤ Tr f(B) + Tr f(C), (4.38)

where

A =





A11 A12 A13

A∗
12 A22 A23

A∗
13 A∗

23 A33
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and

B =

[

A11 A12

A∗
12 A22

]

, C =

[

A22 A23

A∗
23 A33

]

.

Example 4.51 By differentiation we can see that f(x) = −(x+ t) log(x+ t)
with t ≥ 0 satisfies the strongly subadditivity. Similarly, f(x) = −xt satisfies
the strongly subadditivity if 1 ≤ t ≤ 2.

In some applications the matrix monotone functions

fp(x) = p(1− p)
(x− 1)2

(xp − 1)(x1−p − 1)
(0 < p < 1)

appear.

For p = 1/2 this is a strongly subadditivity function. Up to a constant
factor, the function is

(
√
x+ 1)2 = x+ 2

√
x+ 1

and all terms are known to be strongly subadditive. The function −f ′
1/2 is

evidently matrix monotone.

Numerical computation shows that −f ′
p seems to be matrix monotone, but

proof is not known. �

For K,L ≥ 0 and a matrix monotone function f , there is a very particular
relation between f(K) and f(L). This is in the next theorem.

Theorem 4.52 Let f : R+ → R be a matrix monotone function. For positive
matrices K and L, let P be the projection onto the range of (K −L)+. Then

TrPL(f(K)− f(L)) ≥ 0. (4.39)

Proof: From the integral representation

f(x) =

∫ ∞

0

x(1 + s)

x+ s
dµ(s)

we have

TrPL(f(K)− f(L)) =

∫ ∞

0

(1 + s)sTrPL(K + s)−1(K − L)(L+ s)−1 dµ(s).

Hence it is sufficient to prove that

TrPL(K + s)−1(K − L)(L+ s)−1 ≥ 0
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for s > 0. Let ∆0 := K − L and observe the integral representation

(K + s)−1∆0(L+ s)−1 =

∫ 1

0

s(L+ t∆0 + s)−1∆0(L+ t∆0 + s)−1 dt.

So we can make another reduction:

TrPL(L+ t∆0 + s)−1t∆0(L+ t∆0 + s)−1 ≥ 0

is enough to be shown. If C := L+ t∆0 and ∆ := t∆0, then L = C −∆ and
we have

TrP (C −∆)(C + s)−1∆(C + s)−1 ≥ 0. (4.40)

We write our operators in the form of 2× 2 block matrices:

V = (C + s)−1 =

[

V1 V2
V ∗
2 V3

]

, P =

[

I 0
0 0

]

, ∆ =

[

∆+ 0
0 −∆−

]

.

The left-hand-side of the inequality (4.40) can then be rewritten as

TrP (C −∆)(V∆V ) = Tr [(C −∆)(V∆V )]11
= Tr [(V −1 −∆− s)(V∆V )]11
= Tr [∆V − (∆ + s)(V∆V )]11
= Tr (∆+V11 − (∆+ + s)(V∆V )11)
= Tr (∆+(V − V∆V )11 − s(V∆V )11). (4.41)

Because of the positivity of L, we have V −1 ≥ ∆ + s, which implies V =
V V −1V ≥ V (∆ + s)V = V∆V + sV 2. As the diagonal blocks of a positive
operator are themselves positive, this further implies

V1 − (V∆V )11 ≥ s(V 2)11.

Inserting this in (4.41) gives

Tr [(V −1 −∆− s)(V∆V )]11 = Tr (∆+(V − V∆V )11 − s(V∆V )11)

≥ Tr (∆+s(V
2)11 − s(V∆V )11)

= sTr (∆+(V
2)11 − (V∆V )11)

= sTr (∆+(V1V1 + V2V
∗
2 )− (V1∆+V1

−V2∆−V
∗
2 )

= sTr (∆+V2V
∗
2 + V2∆−V

∗
2 ).

This quantity is positive. �
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Theorem 4.53 Let A and B be positive operators, then for all 0 ≤ s ≤ 1,

2TrAsB1−s ≥ Tr (A+B − |A−B|). (4.42)

Proof: For a self-adjoint operator X , X± denotes its positive and negative
parts. Decomposing A−B = (A−B)+ − (A− B)− one gets

TrA + TrB − Tr |A− B| = 2TrA− 2Tr (A− B)+,

and (4.42) is equivalent to

TrA− TrBsA1−s ≤ Tr (A−B)+.

From B ≤ B + (A−B)+,

A ≤ A+ (A− B)− = B + (A− B)+

and matrix monotonicity of the function x 7→ xs, we can write

TrA− TrBsA1−s = Tr (As − Bs)A1−s ≤ Tr ((B + (A−B)+)
s − Bs)A1−s

≤ Tr ((B + (A− B)+)
s − Bs)(B + (A−B)+)

1−s

= TrB + Tr (A− B)+ − TrBs(B + (A−B)+)
1−s

≤ TrB + Tr (A− B)+ − TrBsB1−s

= Tr (A−B)+

and the statement is obtained. �

Theorem 4.54 If 0 ≤ A,B and f : [0,∞) → R is a matrix monotone
function, then

2Af(A) + 2Bf(B) ≥
√
A +B

(

f(A) + f(B)
)√

A +B.

The following result is Lieb’s extension of the Golden-Thompson in-
equality.

Theorem 4.55 (Golden-Thompson-Lieb) Let A, B and C be self-adjoint
matrices. Then

Tr eA+B+C ≤
∫ ∞

0

Tr eA(t+ e−C)−1eB(t+ e−C)−1 dt .
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Proof: Another formulation of the statement is

Tr eA+B−logD ≤ Tr eA J
−1
D (eB),

where

J
−1
D K =

∫ ∞

0

(t+D)−1K(t+D)−1 dt

(which is the formulation of (3.50)). We choose L = − logD+A, β = eB and
conclude from (4.14) that the functional

F : β 7→ −Tr eL+log β

is convex on the cone of invertible positive matrices. It is also homogeneous
of order 1 and the hypothesis of Lemma 4.56 (from below) is fulfilled. So

−Tr eA+B−logD = −Tr exp(L+ log β) = F (β)

≥ − d

dx
Tr exp(L+ log(D + xβ))

∣

∣

∣

x=0

= −Tr eA J−1
D (β) = −Tr eA J−1

D (eB).

This is the statement with a − sign. �

Lemma 4.56 Let C be a convex cone in a vector space and F : C → R be
a convex function such that F (λA) = λF (A) for every λ > 0 and A ∈ C. If
the limit

lim
x→+0

F (A+ xB)− F (A)

x
≡ ∂BF (A)

exists, then
F (B) ≥ ∂BF (A) .

If the equality holds here, then F (A + xB) = (1 − x)F (A) + xF (A + B) for
0 ≤ x ≤ 1.

Proof: Set a function f : [0, 1] → R by f(x) = F (A + xB). This function
is convex:

f(λx1 + (1− λ)x2) = F (λ(A+ x1B) + (1− λ)(A+ x2B))
≤ λF (A+ x1B) + (1− λ)F (A+ x2B))
= λf(x1) + (1− λ)f(x2) .

The assumption is the existence of the derivative f ′(0). From the convexity

F (A+B) = f(1) ≥ f(0) + f ′(0) = F (A) + ∂BF (A).
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Actually, F is subadditive,

F (A+B) = 2F (A/2 +B/2) ≤ F (A) + F (B)

and the stated inequality follows.

If f ′(0) + f(0) = f(1), then f(x) − f(0) is linear. (This has also the
description that f ′′(x) = 0.) �

When C = 0 in Theorem 4.55, then we have

Tr eA+B ≤ Tr eAeB (4.43)

which is the original Golden-Thompson inequality. If BC = CB, then
in the right-hand-side, the integral

∫ ∞

0

(t+ e−C)−2 dt

appears. This equals to eC and we have Tr eA+B+C ≤ Tr eAeBeC . Without
the assumption BC = CB, this inequality is not true.

The Golden-Thompson inequality is equivalent to a kind of monotonicity
of the relative entropy, see [68]. An example of the application of the Golden-
Thompson-Lieb inequality is the strong subadditivity of the von Neumann
entropy.

4.6 Notes and remarks

About convex analysis R. Tyrell Rockafellar has a famous book: Convex
Analysis. Princeton: Princeton University Press, 1970.

The matrix monotonicity of the function (4.36) for 0 < p < 1 was recog-
nized in [69], a proof for p ∈ [−1, 2] is in the paper V.E. Sándor Szabó, A
class of matrix monotone functions, Linear Algebra Appl. 420(2007), 79–85.
Another relevant subject is [15] and there is an extension:

(x− a)(x− b)

(f(x)− f(a))(x/f(x)− b/f(b))

in the paper M. Kawasaki and M. Nagisa, Some operator monotone functions
related to Petz-Hasegawa’s functions. (a = b = 1 and f(x) = xp covers
(4.36).)

The original result of Karl Löwner is from 1934 (and he changed his name
to Charles Loewner when he emigrated to the US). Apart from Löwner’s
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original proof, three different proofs, for example by Bendat and Sherman
based on the Hamburger moment problem, by Korányi based on the spectral
theorem of self-adjoint operators, and by Hansen and Pedersen based on
the Krein-Milman theorem. In all of them, the integral representation of
operator monotone functions was obtained to prove Löwner’s theorem. The
proof presented here is based on [38].

The integral representation (4.17) was obtained by Julius Bendat and Sey-
mur Sherman [14]. Theorems 4.16 and 4.22 are from the paper of Frank
Hansen and Gert G. Pedersen [38]. Theorem 4.26 is from the papers of J.-C.
Bourin [26, 27].

Theorem 4.46 is from the paper Ádám Besenyei and Dénes Petz, Com-
pletely positive mappings and mean matrices, Linear Algebra Appl. 435
(2011), 984–997. Theorem 4.47 was already given in the paper Fumio Hiai
and Hideki Kosaki, Means for matrices and comparison of their norms, Indi-
ana Univ. Math. J. 48 (1999), 899–936.

Theorem 4.50 is from the paper [13]. It is an interesting question if the
opposite statement is true.

Theorem 4.52 was obtained by Koenraad Audenaert, see the paper K.
M. R. Audenaert, J. Calsamiglia, L. Masanes, R. Munoz-Tapia, A. Acin, E.
Bagan, F. Verstraete, The quantum Chernoff bound, Phys. Rev. Lett. 98,
160501 (2007). The quantum information application is contained in the same
paper and also in the book [68].

4.7 Exercises

1. Prove that the function κ : R+ → R, κ(x) = −x log x+(x+1) log(x+1)
is matrix monotone.

2. Give an example that f(x) = x2 is not matrix monotone on any positive
interval.

3. Show that f(x) = ex is not matrix monotone on [0,∞).

4. Show that if f : R+ → R is a matrix monotone function, then −f is a
completely monotone function.

5. Let f be a differentiable function on the interval (a, b) such that for
some a < c < b the function f is matrix monotone for 2×2 matrices on
the intervals (a, c] and [c, b). Show that f is matrix monotone for 2× 2
matrices on (a,b).
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6. Show that the function

f(x) =
ax+ b

cx+ d
(a, b, c, d ∈ R, ad > bc)

is matrix monotone on any interval which does not contain −d/c.

7. Use the matrices

A =

[

1 1
1 1

]

and B =

[

2 1
1 1

]

to show that f(x) =
√
x2 + 1 is not a matrix monotone function on R+.

8. Let f : R+ → R be a matrix monotone function. Prove the inequality

Af(A) +Bf(B) ≤ 1

2
(A +B)1/2(f(A) + f(B))(A+B)1/2 (4.44)

for positive matrices A and B. (Hint: Use that f is matrix concave and
xf(x) is matrix convex.)

9. Show that the canonical representing measure in (5.46) for the standard
matrix monotone function f(x) = (x− 1)/ logx is the measure

dµ(λ) =
2

(1 + λ)2
dλ .

10. The function

logα(x) =
x1−α − 1

1− α
(x > 0, α > 0, α 6= 1) (4.45)

is called α-logaritmic function. Is it matrix monotone?

11. Give an example of a matrix convex function such that the derivative
is not matrix monotone.

12. Show that f(z) = tan z := sin z/ cos z is in P, where cos z := (eiz +
e−iz)/2 and sin z := (eiz − e−iz)/2i.

13. Show that f(z) = −1/z is in P.

14. Show that the extreme points of the set

Sn := {D ∈ M
sa
n : D ≥ 0 and TrD = 1}

are the orthogonal projections of trace 1. Show that for n > 2 not all
points in the boundary are extreme.
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15. Let the block matrix

M =

[

A B
B∗ C

]

be positive and f : R+ → R be a convex function. Show that

Tr f(M) ≥ Tr f(A) + Tr f(C).

16. Show that for A,B ∈ Msa
n the inequality

log Tr eA+B ≥ log Tr eA +
TrBeA

Tr eA

holds. (Hint: Use the function (4.8).)

17. Let the block matrix

M =

[

A B
B∗ C

]

be positive and invertible. Show that

detM ≤ detA · detC.

18. Show that for A,B ∈ Msa
n the inequality

| log Tr eA+B − log Tr eA| ≤ ‖B‖

holds. (Hint: Use the function (4.8).)

19. Is it true that the function

ηα(x) =
xα − x

1− α
(x > 0) (4.46)

is matrix concave if α ∈ (0, 2)?



Chapter 5

Matrix means and inequalities

The means of numbers is a popular subject. The inequality

2ab

a+ b
≤

√
ab ≤ a+ b

2

is well-known for the harmonic, geometric and arithmetic means of positive
numbers. If we move from 1 × 1 matrices to n × n matrices, then arith-
metic mean does not require any theory. Historically the harmonic mean was
the first essential subject for matrix means, from the point of view of some
applications the name parallel sum was popular.

Carl Friedrich Gauss worked about an iteration in the period 1791 until
1828:

a0 := a, b0 := b,

an+1 :=
an + bn

2
, bn+1 :=

√

anbn,

then the (joint) limit is called Gauss arithmetic-geometric mean AG(a, b)
today. It has a non-trivial characterization:

1

AG(a, b)
=

2

π

∫ ∞

0

dt
√

(a2 + t2)(b2 + t2)
. (5.1)

In this chapter, first the geometric mean will be generalized for positive
matrices and several other means will be studied in terms of operator mono-
tone functions. There is also a natural (limit) definition for the mean of
several matrices, but explicit description is rather hopeless.

187



188 CHAPTER 5. MATRIX MEANS AND INEQUALITIES

5.1 The geometric mean

The geometric mean will be introduced by a motivation including a Rieman-
nian manifold.

The positive definite matrices might be considered as the variance of multi-
variate normal distributions and the information geometry of Gaussians yields
a natural Riemannian metric. Those distributions (with 0 expectation) are
given by a positive definite matrix A ∈ Mn in the form

fA(x) :=
1

(2π)n detA
exp (− 〈A−1x, x〉/2) (x ∈ C

n). (5.2)

The set P of positive definite matrices can be considered as an open subset
of the Euclidean space Rn2

and they form a manifold. The tangent vectors
at a footpoint A ∈ P are the self-adjoint matrices Msa

n .

A standard way to construct an information geometry is to start with an
information potential function and to introduce the Riemannian metric
by the Hessian of the potential. The information potential is the Boltzmann
entropy

S(fA) := −
∫

fA(x) log fA(x) dx = C+Tr logA (C is a constant). (5.3)

The Hessian is

∂2

∂s∂t
S(fA+tH1+sH2

)
∣

∣

∣

t=s=0
= TrA−1H1A

−1H2

and the inner product on the tangent space at A is

gA(H1, H2) = TrA−1H1A
−1H2 . (5.4)

We note here that this geometry has many symmetries, each congruence
transformation of the matrices becomes a symmetry. Namely for any invert-
ible matrix S,

gSAS∗(SH1S
∗, SH2S

∗) = gA(H1, H2). (5.5)

A C1 differentiable function γ : [0, 1] → P is called a curve, its tangent
vector at t is γ′(t) and the length of the curve is

∫ 1

0

√

gγ(t)(γ′(t), γ′(t)) dt.

Given A,B ∈ P the curve

γ(t) = A1/2(A−1/2BA−1/2)tA1/2 (0 ≤ t ≤ 1) (5.6)

connects these two points: γ(0) = A, γ(1) = B. This is the shortest curve
connecting the two points, it is called a geodesic.
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Lemma 5.1 The geodesic connecting A,B ∈ P is (5.6) and the geodesic
distance is

δ(A,B) = ‖ log(A−1/2BA−1/2)‖2 ,
where ‖ · ‖2 stands for the Hilbert–Schmidt norm.

Proof: Due to the property (5.5) we may assume that A = I, then γ(t) =
Bt. Let ℓ(t) be a curve in Msa

n such that ℓ(0) = ℓ(1) = 0. This will be used
for the perturbation of the curve γ(t) in the form γ(t) + εℓ(t).

We want to differentiate the length

∫ 1

0

√

gγ(t)+εℓ(t)(γ′(t) + εℓ′(t), γ′(t) + εℓ′(t)) dt

with respect to ε at ε = 0. Note that

gγ(t)(γ
′(t), γ′(t)) = TrB−tBt(logB)B−tBt logB = Tr (logB)2

does not depend on t. When γ(t) = Bt (0 ≤ t ≤ 1), the derivative of the
above integral at ε = 0 is

∫ 1

0

1

2

(

gγ(t)(γ
′(t), γ′(t)

)−1/2 ∂

∂ε
gγ(t)+εℓ(t)(γ

′(t) + εℓ′(t), γ′(t) + εℓ′(t))
∣

∣

∣

ε=0
dt

=
1

2
√

Tr (logB)2
×
∫ 1

0

∂

∂ε
Tr

(Bt + εℓ(t))−1(Bt logB + εℓ′(t))(Bt + εℓ(t))−1(Bt logB + εℓ′(t))
∣

∣

∣

ε=0
dt

=
1

√

Tr (logB)2

∫ 1

0

Tr (−B−t(logB)2ℓ(t) +B−t(logB)ℓ′(t)) dt.

To remove ℓ′(t), we integrate by part the second term:

∫ 1

0

TrB−t(logB)ℓ′(t) dt =
[

TrB−t(logB)ℓ(t)
]1

0
+

∫ 1

0

TrB−t(logB)2ℓ(t) dt .

Since ℓ(0) = ℓ(1) = 0, the first term vanishes here and the derivative at ε = 0
is 0 for every perturbation ℓ(t). Thus we can conclude that γ(t) = Bt is the
geodesic curve between I and B. The distance is

∫ 1

0

√

Tr (logB)2 dt =
√

Tr (logB)2.

The lemma is proved. �
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The midpoint of the curve (5.6) will be called the geometric mean of
A,B ∈ P and denoted by A#B, that is,

A#B := A1/2(A−1/2BA−1/2)1/2A1/2. (5.7)

The motivation is the fact that in case of AB = BA the midpoint is
√
AB.

This geodesic approach will give an idea for the geometric mean of three
matrices as well.

Let A,B ≥ 0 and assume that A is invertible. We want to study the
positivity of the matrix

[

A X
X B

]

. (5.8)

for a positive X . The positivity of the block-matrix implies

B ≥ XA−1X,

see Theorem 2.1. From the matrix monotonicity of the square root function
(Example 3.26), we obtain (A−1/2BA−1/2)1/2 ≥ A−1/2XA−1/2, or

A1/2(A−1/2BA−1/2)1/2A1/2 ≥ X.

It is easy to see that for X = A#B, the block matrix (5.8) is positive.
Therefore, A#B is the largest positive matrix X such that (5.8) is positive.

(5.7) is the definition for invertible A. For a non-invertible A, an equivalent
possibility is

A#B := lim
ε→+0

(A + εI)#B.

(The characterization with (5.8) remains true in this general case.) If AB =
BA, then A#B = A1/2B1/2(= (AB)1/2). The inequality between geometric
and arithmetic means holds also for matrices, see Exercise 1.

Example 5.2 The partial ordering ≤ of operators has a geometric interpre-
tation for projections. The relation P ≤ Q is equivalent to RanP ⊂ RanQ,
that is P projects to a smaller subspace than Q. This implies that any two
projections P and Q have a largest lower bound denoted by P ∧Q. This op-
erator is the orthogonal projection to the (closed) subspace RanP ∩ RanQ.

We want to show that P#Q = P ∧Q. First we show that the block-matrix
[

P P ∧Q
P ∧Q Q

]

is positive. This is equivalent to the relation
[

P + εP⊥ P ∧Q
P ∧Q Q

]

≥ 0 (5.9)
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for every constant ε > 0. Since

(P ∧Q)(P + εP⊥)−1(P ∧Q) = P ∧Q

is smaller thanQ, the positivity (5.9) is true due to Theorem 2.1. We conclude
that P#Q ≥ P ∧Q.

The positivity of
[

P + εP⊥ X
X Q

]

gives the condition

Q ≥ X(P + ε−1P⊥)X = XPX + ε−1XP⊥X.

Since ε > 0 is arbitrary, XP⊥X = 0. The latter condition gives X = XP .
Therefore, Q ≥ X2. Symmetrically, P ≥ X2 and Corollary 2.25 tells us that
P ∧Q ≥ X2 and so P ∧Q ≥ X . �

Theorem 5.3 Assume that A1, A2, B1, B2 are positive matrices and A1 ≤
B1, A2 ≤ B2. Then A1#A2 ≤ B1#B2.

Proof: The statement is equivalent to the positivity of the block-matrix

[

B1 A1#A2

A1#A2 B2

]

.

This is a sum of positive matrices:

[

A1 A1#A2

A1#A2 A2

]

+

[

B1 −A1 0
0 B2 − A2

]

.

The proof is complete. �

The next theorem says that the function f(x) = xt is matrix monotone
for 0 < t < 1. The present proof is based on the geometric mean, the result
is called the Löwner-Heinz inequality.

Theorem 5.4 Assume that for the matrices A and B the inequalities 0 ≤
A ≤ B hold and 0 < t < 1 is a real number. Then At ≤ Bt.

Proof: Due to the continuity, it is enough to show the case t = k/2n, that
is, t is a dyadic rational number. We use Theorem 5.3 to deduce from the
inequalities A ≤ B and I ≤ I the inequality

A1/2 = A#I ≤ B#I = B1/2.
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A second application of Theorem 5.3 gives similarly A1/4 ≤ B1/4 and A3/4 ≤
B3/4. The procedure can be continued to cover all dyadic rational powers.
Arbitrary t ∈ [0, 1] can be the limit of dyadic numbers. �

Theorem 5.5 The geometric mean of matrices is jointly concave, that is,

A1 + A2

2
#
A3 + A4

2
≥ A1#A3 + A2#A4

2
.

Proof: The block-matrices
[

A1 A1#A2

A1#A2 A2

]

and

[

A3 A3#A4

A4#A3 A4

]

are positive and so is there arithmetic mean,
[

1
2
(A1 + A3)

1
2
(A1#A2 + A3#A4)

1
2
(A1#A2 + A3#A4)

1
2
(A2 + A4)

]

.

Therefore the off-diagonal entry is smaller than the geometric mean of the
diagonal entries. �

Note that the jointly concave property is equivalent with the slightly sim-
pler formula

(A1 + A2)#(A3 + A4) ≥ (A1#A3) + (A2#A4). (5.10)

Later this inequality will be used.

The next theorem of Ando [6] is a generalization of Example 5.2. For the
sake of simplicity the formulation is in block-matrices.

Theorem 5.6 Take an ortho-projection P and a positive invertible matrix
R:

P =

[

I 0
0 0

]

, R =

[

R11 R12

R21 R22

]

.

The geometric mean is the following:

P#R = (PR−1P )−1/2 =

[

(R11 − R12R
−1
22 R21)

−1/2 0
0 0

]

.

Proof: We have already P and R in block-matrix form. Due to (5.8) we
are looking for positive matrices

X =

[

X11 X12

X21 X22

]
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such that

[

P X
X R

]

=









I 0 X11 X12

0 0 X21 X22

X11 X12 R11 R12

X21 X22 R21 R22









should be positive. From the positivity X12 = X21 = X22 = 0 follows and the
necessary and sufficient condition is

[

I 0
0 0

]

≥
[

X11 0
0 0

]

R−1

[

X11 0
0 0

]

,

or
I ≥ X11(R

−1)11X11.

It was shown at the beginning of the section that this implies that

X11 ≤
(

(R−1)11

)−1/2

.

The inverse of a block-matrix is described in (2.4) and the proof is complete.
�

For projections P and Q, the theorem gives

P#Q = P ∧Q = lim
ε→+0

(P (Q+ εI)−1P )−1/2.

The arithmetic mean of several matrices is simpler, than the geometric
mean: for (positive) matrices A1, A2, . . . , An it is

A(A1, A2, . . . , An) :=
A1 + A2 + · · ·+ An

n
.

Only the linear structure plays a role. The arithmetic mean is a good example
to show how to move from the means of two variables to three variables.

Suppose we have a device which can compute the mean of two matrices.
How to compute the mean of three? Assume that we aim to obtain the mean
of A,B and C. For the case of arithmetic mean, we can make a new device

W : (A,B,C) 7→ (A(A,B),A(A,C),A(B,C)) (5.11)

which, applied to (A,B,C) many times, gives the mean of A,B and C:

W n(A,B,C) → A(A,B,C) as n→ ∞. (5.12)

Indeed, W n(A,B,C) is a convex combination of A,B and C,

W n(A,B,C) = (An, Bn, Cn) = λ
(n)
1 A+ λ

(n)
2 B + λ

(n)
3 C.

One can compute the coefficients λ
(n)
i explicitly and show that λ

(n)
i → 1/3.

The idea is shown by a picture and will be extended to the geometric mean.
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Figure 5.1: The triangles ∆0, ∆1 and ∆2.

Theorem 5.7 Let A,B,C ∈ Mn be positive definite matrices and set a re-
cursion as

A0 = A, B0 = B, C0 = C,

Am+1 = Am#Bm, Bm+1 = Am#Cm, Cm+1 = Bm#Cm.

Then the limits

G3(A,B,C) := lim
m
Am = lim

m
Bm = lim

m
Cm (5.13)

exist.

Proof: First we assume that A ≤ B ≤ C.

From the monotonicity property of the geometric mean, see Theorem 5.3,
we obtain that Am ≤ Bm ≤ Cm. It follows that the sequence (Am) is increas-
ing and (Cm) is decreasing. Therefore, the limits

L := lim
m→∞

Am and U = lim
m→∞

Cm

exist. We claim that L = U .

Assume that L 6= U . By continuity, Bm → L#U =: M , where L ≤ M ≤
U . Since

Bm#Cm = Cm+1,
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the limit m → ∞ gives M#U = U . Therefore M = U and so U = L. This
contradicts L 6= U .

The general case can be reduced to the case of ordered triplet. If A,B,C
are arbitrary, we can find numbers λ and µ such that A ≤ λB ≤ µC and use
the formula

(αX)#(βY ) =
√

αβ(X#Y ) (5.14)

for positive numbers α and β.

Let

A′
1 = A, B′

1 = λB, C ′
1 = µC,

and

A′
m+1 = A′

m#B
′
m, B′

m+1 = A′
m#C

′
m, C ′

m+1 = B′
m#C

′
m.

It is clear that for the numbers

a := 1, b := λ and c := µ

the recursion provides a convergent sequence (am, bm, cm) of triplets:

(λµ)1/3 = lim
m
am = lim

m
bm = lim

m
cm.

Since

Am = A′
m/am, Bm = B′

m/bm and Cm = C ′
m/cm

due to property (5.14) of the geometric mean, the limits stated in the theorem
must exist and equal G(A′, B′, C ′)/(λµ)1/3. �

The geometric mean of the positive definite matrices A,B,C ∈ Mn is
defined as G3(A,B,C) in (5.13). Explicit formula is not known and the same
kind of procedure can be used to make definition of the geometric mean of k
matrices. If P1, P2, . . . , Pk are ortho-projections, then Example 5.2 gives the
limit

Gk(P1, P2, . . . , Pk) = P1 ∧ P2 ∧ · · · ∧ Pk . (5.15)

5.2 General theory

The first example is the parallel sum which is a constant multiple of the
harmonic mean.
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Example 5.8 It is well-known in electricity that if two resistors with re-
sistance a and b are connected parallelly, then the total resistance q is the
solution of the equation

1

q
=

1

a
+

1

b
.

Then

q = (a−1 + b−1)−1 =
ab

a + b

is the harmonic mean up to a factor 2. More generally, one can consider
n-point network, where the voltage and current vectors are connected by a
positive matrix. The parallel sum

A : B = (A−1 +B−1)−1

of two positive definite matrices represents the combined resistance of two
n-port networks connected in parallel.

One can check that

A : B = A− A(A+B)−1A.

Therefore A : B is the Schur complement of A+B in the block-matrix

[

A A
A A+B

]

,

see Theorem 2.4.

It is easy to see that for 0 < A ≤ C and 0 < B ≤ D, then A : B ≤ C : D.
The parallel sum can be extended to all positive matrices:

A : B = lim
εց0

(A+ εI) : (B + εI) .

Note that all matrix means can be expressed as an integral of parallel sums
(see Theorem 5.11 below). �

On the basis of the previous example, the harmonic mean of the positive
matrices A and B is defined as

H(A,B) := 2(A : B) (5.16)

Assume that for all positive matrices A,B (of the same size) the matrix
AσB is defined. Then σ is called an operator connection if it satisfies
the following conditions:
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Upper part: An n-point network with the input and output voltage vectors.
Below: Two parallelly connected networks

(i) 0 ≤ A ≤ C and 0 ≤ B ≤ D imply

AσB ≤ C σD (joint monotonicity), (5.17)

(ii) if 0 ≤ A,B and C = C∗, then

C(AσB)C ≤ (CAC) σ (CBC) (transformer inequality), (5.18)

(iii) if 0 ≤ An, Bn and An ց A, Bn ց B then

(An σ Bn) ց (AσB) (upper semicontinuity). (5.19)

The parallel sum is an example of operator connections.
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Lemma 5.9 Assume that σ is an operator connection. If C = C∗ is invert-
ible, then

C(AσB)C = (CAC) σ (CBC) (5.20)

and for every α ≥ 0

α(AσB) = (αA) σ (αB) (positive homogeneity) (5.21)

holds.

Proof: In the inequality (5.18) A and B are replaced by C−1AC−1 and
C−1BC−1, respectively:

AσB ≥ C(C−1AC−1 σ C−1BC−1)C.

Replacing C with C−1, we have

C(AσB)C ≥ CAC σCBC.

which gives equality with (5.18).

When α > 0, letting C := α1/2I in (5.20) implies (5.21). When α = 0, let
0 < αn ց 0. Then (αnI) σ (αnI) ց 0 σ 0 by (iii) above while (αnI) σ (αnI) =
αn(I σ I) ց 0. Hence 0 = 0 σ 0, which is (5.21) for α = 0. �

The next fundamental theorem of Kubo and Ando says that there is a one-
to-one correspondence between operator connections and operator monotone
functions on [0,∞).

Theorem 5.10 (Kubo-Ando theorem) For each operator connection σ
there exists a unique matrix monotone function f : [0,∞) → [0,∞) such that

f(t)I = I σ (tI) (t ∈ R
+) (5.22)

and for 0 < A and 0 ≤ B the formula

AσB = A1/2f(A−1/2BA−1/2)A1/2 = f(BA−1)A (5.23)

holds.

Proof: Let σ be an operator connection. First we show that if an ortho-
projection P commutes with A and B, then P commutes AσB and

((AP ) σ (BP ))P = (AσB)P. (5.24)

Since PAP = AP ≤ A and PBP = BP ≤ B, it follows from (ii) and (i)
of the definition of σ that

P (AσB)P ≤ (PAP ) σ (PBP ) = (AP ) σ (BP ) ≤ AσB. (5.25)
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Hence (AσB − P (AσB)P )1/2 exists so that

∣

∣

∣

∣

(

AσB − P (AσB)P
)1/2

P

∣

∣

∣

∣

2

= P
(

AσB − P (AσB)P
)

P = 0.

Therefore, (AσB − P (AσB)P )1/2P = 0 and so (AσB)P = P (AσB)P .
This implies that P commutes with AσB. Similarly, P commutes with
(AP ) σ (BP ) as well, and (5.24) follows from (5.25). Hence we see that there
is a function f ≥ 0 on [0,∞) satisfying (5.22). The uniqueness of such
function f is obvious, and it follows from (iii) of the definition of the operator
connection that f is right-continuous for t ≥ 0. Since t−1f(t)I = (t−1I) σ I
for t > 0 thanks to (5.21), it follows from (iii) of the definition again that
t−1f(t) is left-continuous for t > 0 and so is f(t). Hence f is continuous on
[0,∞).

To show the operator monotonicity of f , let us prove that

f(A) = I σ A. (5.26)

Let A =
∑m

i=1 αiPi, where αi > 0 and Pi are projections with
∑m

i=1 Pi = I.
Since each Pi commute with A, using (5.24) twice we have

I σ A =
m
∑

i=1

(I σ A)Pi =
m
∑

i=1

(Pi σ (APi))Pi =
m
∑

i=1

(Pi σ (αiPi))Pi

=

m
∑

i=1

(I σ (αiI))Pi =

m
∑

i=1

f(αi)Pi = f(A).

For general A ≥ 0 choose a sequence 0 < An of the above form such that
An ց A. By the upper semicontinuity we have

I σ A = lim
n→∞

I σ An = lim
n→∞

f(An) = f(A).

So (5.26) is shown. Hence, if 0 ≤ A ≤ B, then

f(A) = I σ A ≤ I σ B = f(B)

and we conclude that f is matrix monotone.

When A is invertible, we can use (5.20):

AσB = A1/2(I σ A−1/2BA−1/2)A1/2 = A1/2f(A−1/2BA−1/2)A1/2

and the first part of (5.23) is obtained, the rest is a general property. �
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Note that the general formula is

AσB = lim
εց0

Aε σ Bε = lim
εց0

A1/2
ε f(A−1/2

ε BεA
−1/2
ε )A1/2

ε ,

where Aε := A+εI and Bε := B+εI. We call f the representing function
of σ. For scalars s, t > 0 we have s σ t = sf(t/s).

The next theorem comes from the integral representation of matrix mono-
tone functions and from the previous theorem.

Theorem 5.11 Every operator connection σ has an integral representation

AσB = aA + bB +

∫

(0,∞)

1 + λ

λ

(

(λA) : B
)

dµ(λ) (A,B ≥ 0), (5.27)

where µ is a positive finite Borel measure on [0,∞).

Due to this integral expression, one can often derive properties of general
operator connections by checking them for parallel sum.

Lemma 5.12 For every vector z,

inf{〈x,Ax〉 + 〈y, By〉 : x+ y = z} = 〈z, (A : B)z〉 .

Proof: When A,B are invertible, we have

A : B =
(

B−1(A+B)A−1
)−1

=
(

(A+B)−B
)

(A+B)−1B = B−B(A+B)−1B.

For all vectors x, y we have

〈x,Ax〉 + 〈z − x,B(z − x)〉 − 〈z, (A : B)z〉
= 〈z, Bz〉 + 〈x, (A+B)x〉 − 2Re 〈x,Bz〉 − 〈z, (A : B)z〉
= 〈z, B(A +B)−1Bz〉 + 〈x, (A+B)x〉 − 2Re 〈x,Bz〉
= ‖(A+B)−1/2Bz‖2 + ‖(A+B)1/2x‖2
−2Re 〈(A+B)1/2x, (A +B)−1/2Bz〉 ≥ 0.

In particular, the above is equal to 0 if x = (A+B)−1Bz. Hence the assertion
is shown when A,B > 0. For general A,B,

〈z, (A : B)z〉 = inf
ε>0

〈z,
(

(A+ εI) : (B + εI)
)

z〉

= inf
ε>0

inf
y

{

〈x, (A+ εI)x〉+ 〈z − x, (B + εI)(z − x)〉
}

= inf
y

{

〈x,Ax〉+ 〈z − x,B(z − x)〉
}

.
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The proof is complete. �

The next result is called the transformer inequality, it is a stronger
version of (5.18).

Theorem 5.13
S∗(AσB)S ≤ (S∗AS) σ (S∗BS) (5.28)

and equality holds if S is invertible.

Proof: For z = x+ y Lemma 5.12 implies

〈z, S∗(A : B)Sz〉 = 〈Sz, (A : B)Sz〉 ≤ 〈Sx,ASx〉+ 〈Sy,BSy〉
= 〈x, S∗ASx〉+ 〈y, S∗BSy〉.

Hence S∗(A : B)S ≤ (S∗AS) : (S∗BS) follows. The statement of the theorem
is true for the parallel sum and by Theorem 5.11 we obtain for any operator
connection. �

A very similar argument gives the joint concavity:

(AσB) + (C σD) ≤ (A+ C) σ (B +D) . (5.29)

The next theorem is about a recursively defined double sequence.

Theorem 5.14 Let σ1 and σ2 be operator connections dominated by the
arithmetic mean. For positive matrices A and B set a recursion

A1 = A, B1 = B, Ak+1 = Akσ1Bk, Bk+1 = Akσ2Bk. (5.30)

Then (Ak) and (Bk) converge to the same operator connection AσB.

Proof: First we prove the convergence of (Ak) and (Bk). From the inequal-
ity

XσiY ≤ X + Y

2
(5.31)

we have
Ak+1 +Bk+1 = Akσ1Bk + Akσ2Bk ≤ Ak + Bk.

Therefore the decreasing positive sequence has a limit:

Ak +Bk → X as k → ∞. (5.32)

Moreover,

ak+1 := ‖Ak+1‖22 + ‖Bk+1‖22 ≤ ‖Ak‖22 + ‖Bk‖22 −
1

2
‖Ak −Bk‖22,
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where ‖X‖2 = (TrX∗X)1/2, the Hilbert-Schmidt norm. The numerical se-
quence ak is decreasing, it has a limit and it follows that

‖Ak −Bk‖22 → 0

and Ak, Bk → X/2 as k → ∞.

Ak and Bk are operator connections of the matrices A and B and the limit
is an operator connection as well. �

Example 5.15 At the end of the 18th century J.-L. Lagrange and C.F.
Gauss became interested in the arithmetic-geometric mean of positive num-
bers. Gauss worked on this subject in the period 1791 until 1828.

If the initial conditions

a1 = a, b1 = b

and

an+1 =
an + bn

2
, bn+1 =

√

anbn (5.33)

then the (joint) limit is the so-called Gauss arithmetic-geometric mean
AG(a, b) with the characterization

1

AG(a, b)
=

2

π

∫ ∞

0

dt
√

(a2 + t2)(b2 + t2)
, (5.34)

see [32]. It follows from Theorem 5.14 that the Gauss arithmetic-geometric
mean can be defined also for matrices. Therefore the function f(x) = AG(1, x)
is an operator monotone function. �

It is an interesting remark, that (5.30) can have a small modification:

A1 = A, B1 = B, Ak+1 = Akσ1Bk, Bk+1 = Ak+1σ2Bk. (5.35)

A similar proof gives the existence of the limit. (5.30) is called Gaussian
double-mean process, while (5.35) is Archimedean double-mean pro-
cess.

The symmetric matrix means are binary operations on positive matrices.
They are operator connections with the properties AσA = A and AσB =
B σA. For matrix means we shall use the notation m(A,B). We repeat the
main properties:

(1) m(A,A) = A for every A,
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(2) m(A,B) = m(B,A) for every A and B,

(3) if A ≤ B, then A ≤ m(A,B) ≤ B,

(4) if A ≤ A′ and B ≤ B′, then m(A,B) ≤ m(A′, B′),

(5) m is continuous,

(6) C m(A,B)C∗ ≤ m(CAC∗, CBC∗).

It follows from the Kubo-Ando theorem, Theorem 5.10, that the operator
means are in a one-to-one correspondence with operator monotone functions
satisfying conditions f(1) = 1 and tf(t−1) = f(t). Given an operator mono-
tone function f , the corresponding mean is

mf (A,B) = A1/2f(A−1/2BA−1/2)A1/2 (5.36)

when A is invertible. (When A is not invertible, take a sequence An of
invertible operators approximating A such that An ց A and let mf (A,B) =
limnmf(An, B).) It follows from the definition (5.36) of means that

if f ≤ g, then mf (A,B) ≤ mg(A,B). (5.37)

Theorem 5.16 If f : R+ → R+ is a standard matrix monotone function,
then

2x

x+ 1
≤ f(x) ≤ x+ 1

2
.

Proof: From the differentiation of the formula f(x) = xf(x−1), we obtain
f ′(1) = 1/2. Since f(1) = 1, the concavity of the function f gives f(x) ≤
(1 + x)/2.

If f is a standard matrix monotone function, then so is f(x−1)−1. The
inequality f(x−1)−1 ≤ (1 + x)/2 gives f(x) ≥ 2x/(x+ 1). �

If f(x) is a standard matrix monotone function with the matrix mean
m( · , · ), then the matrix mean of x/f(x) is called the dual of m( · , · ), the
notation is m⊥( · , · ).

The next theorem is a Trotter-like product formula for matrix means.

Theorem 5.17 For a symmetric matrix mean m and for self-adjoint A,B
we have

lim
n→∞

m(eA/n, eB/n)n = exp
A +B

2
.
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Proof: It is an exercise to prove that

lim
t→0

m(etA, etB)− I

t
=
A+B

2
.

The choice t = 1/n gives

exp
(

− n(I −m(eA/n, eB/n))
)

→ exp
A+B

2
.

So it is enough to show that

Dn := m(eA/n, eB/n)n − exp
(

− n(I −m(eA/n, eB/n))
)

→ 0

as n → ∞. If A is replaced by A + aI and B is replaced by B + aI with a
real number a, then Dn does not change. Therefore we can assume A,B ≤ 0.

We use the abbreviation F (n) := m(eA/n, eB/n), so

Dn = F (n)n − exp (−n(I − F (n))) = F (n)n − e−n
∞
∑

k=0

nk

k!
F (n)k

= e−n
∞
∑

k=0

nk

k!
F (n)n − e−n

∞
∑

k=0

nk

k!
F (n)k = e−n

∞
∑

k=0

nk

k!

(

F (n)n − F (n)k
)

.

Since F (n) ≤ I, we have

‖Dn‖ ≤ e−n
∞
∑

k=0

nk

k!
‖F (n)n − F (n)k‖ ≤ e−n

∞
∑

k=0

nk

k!
‖I − F (n)|k−n|‖.

Since
0 ≤ I − F (n)|k−n| ≤ |k − n|(I − F (n)),

it follows that

‖Dn‖ ≤ e−n‖I − F (n)‖
∞
∑

k=0

nk

k!
|k − n|.

The Schwarz inequality gives that

∞
∑

k=0

nk

k!
|k − n| ≤

(

∞
∑

k=0

nk

k!

)1/2( ∞
∑

k=0

nk

k!
(k − n)2

)1/2

= n1/2en.

So we have
‖Dn‖ ≤ n−1/2‖n(I − F (n))‖.

Since ‖n(I − F (n))‖ is bounded, the limit is really 0. �
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For the geometric mean the previous theorem gives the Lie-Trotter for-
mula, see Theorem 3.8.

Theorem 5.7 is about the geometric mean of several matrices and it can be
extended for arbitrary symmetric means. The proof is due to Miklós Pálfia
and the Hilbert-Schmidt norm ‖X‖22 = TrX∗X will be used.

Theorem 5.18 Let m( · , · ) be a symmetric matrix mean and 0 ≤ A,B,C ∈
Mn. Set a recursion:

(1) A(0) := A, B(0) := B, C(0) := C,

(2) A(k+1) := m(A(k), B(k)), B(k+1) := m(A(k), C(k)) and C(k+1) :=
m(B(k), C(k)).

Then the limits limmA
(m) = limmB

(m) = limmC
(m) exist and this can be

defined as m(A,B,C).

Proof: From the well-known inequality

m(X, Y ) ≤ X + Y

2
(5.38)

we have
A(k+1) +B(k+1) + C(k+1) ≤ A(k) +B(k) + C(k).

Therefore the decreasing positive sequence has a limit:

A(k) +B(k) + C(k) → X as k → ∞. (5.39)

It follows also from (5.38) that

‖m(C,D)‖22 ≤
‖C‖22 + ‖D‖22

2
− 1

4
‖C −D‖22.

Therefore,

ak+1 := ‖A(k+1)‖22 + ‖B(k+1)‖22 + ‖C(k+1)‖22

≤ ‖A(k)‖22 + ‖B(k)‖22 + ‖C(k)‖22

−1

4

(

‖A(k) − B(k)‖22 + ‖B(k) − C(k)‖22 + ‖C(k) −A(k)‖22
)

=: ak − ck.

The numerical sequence ak is decreasing, it has a limit and it follows that
ck → 0. Therefore,

Ak − Bk → 0, Ak − Ck → 0.
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If we add these formulas and (5.39), then

A(k) → 1

3
X as k → ∞.

Similar convergence holds for B(k) and C(k). �

Theorem 5.19 The mean m(A,B,C) defined in Theorem 5.18 has the fol-
lowing properties:

(1) m(A,A,A) = A for every A,

(2) m(A,B,C) = m(B,A,C) = m(C,A,B) for every A,B and C,

(3) if A ≤ B ≤ C, then A ≤ m(A,B,C) ≤ C,

(4) if A ≤ A′, B ≤ B′ and C ≤ C ′, then m(A,B,C) ≤ m(A′, B′, C ′),

(5) m is continuous,

(6) Dm(A,B,C)D∗ ≤ m(DAD∗, DBD∗, DCD∗) and for an invertible ma-
trix D the equality holds.

Example 5.20 If P1, P2, P3 are ortho-projections, then

m(P1, P2, P3) = P1 ∧ P2 ∧ P3

holds for several means, see Example 5.23.

Now we consider the geometric mean G3(A,A,B). If A > 0, then

G3(A,A,B) = A1/2G3(I, I, A
−1/2BA−1/2)A1/2.

Since I, I, A−1/2BA−1/2 are commuting matrices, it is easy to compute the
geometric mean. So

G3(A,A,B) = A1/2(A−1/2BA−1/2)1/3A1/2.

This is an example of a weighted geometric mean:

Gt(A,B) = A1/2(A−1/2BA−1/2)tA1/2 (0 < t < 1). (5.40)

There is a general theory for the weighted means. �
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5.3 Mean examples

The matrix monotone function f : R+ → R+ will be called standard if
f(1) = 1 and tf(t−1) = f(t). Standard functions are used to define matrix
means in (5.36).

Here are the popular standard matrix monotone functions:

2x

x+ 1
≤ √

x ≤ x− 1

log x
≤ x+ 1

2
. (5.41)

The corresponding increasing means are the harmonic, geometric, logarithmic
and arithmetic. By Theorem 5.16 we see that the harmonic mean is the
smallest and the arithmetic mean is the largest among the symmetric matrix
means.

First we study the harmonic mean H(A,B), a variational expression is
expressed in terms of a 2× 2 block-matrices.

Theorem 5.21

H(A,B) = max

{

X ≥ 0 :

[

2A 0
0 2B

]

≥
[

X X
X X

]}

.

Proof: The inequality of the two block-matrices is equivalently written as

〈x, 2Ax〉+ 〈y, 2By〉 ≥ 〈(x+ y), X(x+ y)〉.

Therefore the proof is reduced to Lemma 5.12, where x + y is written by z
and H(A,B) = 2(A : B). �

Recall the geometric mean

G(A,B) = A#B = A1/2(A−1/2BA−1/2)1/2A1/2 (5.42)

which corresponds to f(x) =
√
x. The mean A#B is the unique positive

solution of the equation XA−1X = B and therefore (A#B)−1 = A−1#B−1.

Example 5.22 The function

f(x) =
x− 1

log x

is matrix monotone due to the formula
∫ 1

0

xt dt =
x− 1

log x
.
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The standard property is obvious. The matrix mean induced by the function
f(x) is called the logarithmic mean. The logarithmic mean of positive
operators A and B is denoted by L(A,B).

From the inequality

x− 1

log x
=

∫ 1

0

xt dt =

∫ 1/2

0

(xt + x1−t) dt ≥
∫ 1/2

0

2
√
x dt =

√
x

of the real functions we have the matrix inequality

A#B ≤ L(A,B).

It can be proved similarly that L(A,B) ≤ (A+B)/2.

From the integral formula

1

L(a, b)
=

log a− log b

a− b
=

∫ ∞

0

1

(a + t)(b+ t)
dt

one can obtain

L(A,B)−1 =

∫ ∞

0

(tA+B)−1

t+ 1
dt.

�

In the next example we study the means of ortho-projections.

Example 5.23 Let P and Q be ortho-projections. It was shown in Example
5.2 that P#Q = P ∧Q. The inequality

[

2P 0
0 2Q

]

≥
[

P ∧Q P ∧Q
P ∧Q P ∧Q

]

is true since
[

P 0
0 Q

]

≥
[

P ∧Q 0
0 P ∧Q

]

,

[

P −P ∧Q
−P ∧Q Q

]

≥ 0.

This gives that H(P,Q) ≥ P ∧ Q and from the other inequality H(P,Q) ≤
P#Q, we obtain H(P,Q) = P ∧Q.

It is remarkable that H(P,Q) = G(P,Q) for every ortho-projection P,Q.

The general matrix mean mf(P,Q) has the integral

mf (P,Q) = aP + bQ +

∫

(0,∞)

1 + λ

λ

(

(λP ) : Q
)

dµ(λ).
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Since

(λP ) : Q =
λ

1 + λ
(P ∧Q),

we have
mf (P,Q) = aP + bQ + c(P ∧Q).

Since m(I, I) = I, a = f(0), b = limx→∞ f(x)/x we have a = 0, b = 0, c = 1
and m(P,Q) = P ∧Q. �

Example 5.24 The power difference means are determined by the func-
tions

ft(x) =
t− 1

t

xt − 1

xt−1 − 1
(−1 ≤ t ≤ 2), (5.43)

where the values t = −1, 1/2, 1, 2 correspond to the well-known means as
harmonic, geometric, logarithmic and arithmetic. The functions (5.43) are
standard operator monotone [37] and it can be shown that for fixed x > 0 the
value ft(x) is an increasing function of t. The case t = n/(n − 1) is simple,
then

ft(x) =
1

n

n−1
∑

k=0

xk/(n−1)

and the matrix monotonicity is obvious. �

Example 5.25 The Heinz mean

Ht(x, y) =
xty1−t + x1−tyt

2
(0 ≤ t ≤ 1/2) (5.44)

approximates between the arithmetic and geometric means. The correspond-
ing standard function

ft(x) =
xt + x1−t

2
is obviously matrix monotone and a decreasing function of the parameter t.
Therefore we can have Heinz mean for matrices, the formula is essentially the
from (5.44):

Ht(A,B) = A1/2 (A
−1/2BA−1/2)t + (A−1/2BA−1/2)1−t

2
A1/2.

This is between geometric and arithmetic means:

A#B ≤ Ht(A,B) ≤ A+B

2
(t ∈ [0, 1/2]) .

�
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Example 5.26 For x 6= y the Stolarsky mean is

mp(x, y) =











(

p x−y
xp−yp

)
1

1−p
=
(

1
y−x

∫ y

x
tp−1 dt

)
1

p−1

if p 6= 1 ,

1
e

(

xx

yy

) 1

x−y
if p = 1 .

If −2 ≤ p ≤ 2, then fp(x) = mp(x, 1) is a matrix monotone function (see
Theorem 4.46), so it can make a matrix mean. The case of p = 1 is called
identric mean and p = 0 is the well-known logarithmic mean. �

It follows from the next theorem that the harmonic mean is the smallest
and the arithmetic mean is the largest mean for matrices.

Theorem 5.27 Let f : R+ → R+ be a standard matrix monotone function.
Then f admits a canonical representation

f(x) =
1 + x

2
exp

∫ 1

0

(λ− 1)(1− x)2

(λ+ x)(1 + λx)(1 + λ)
h(λ) dλ (5.45)

where h : [0, 1] → [0, 1] is a measurable function.

Example 5.28 In the function (5.45) we take

h(λ) =
{

1 if a ≤ λ ≤ b,
0 otherwise

where 0 ≤ a ≤ b ≤ 1.

Then an easy calculation gives

(λ− 1)(1− t)2

(λ+ t)(1 + λt)(1 + λ)
=

2

1 + λ
− 1

λ+ t
− t

1 + λt
.

Thus

∫ b

a

(λ− 1)(1− t)2

(λ+ t)(1 + λt)(1 + λ)
dλ =

[

log(1 + λ)2 − log(λ+ t)− log(1 + λt)
]b

λ=a

= log
(1 + b)2

(1 + a)2
− log

b+ t

a + t
− log

1 + bt

1 + at

So

f(t) =
(b+ 1)2

2(a+ 1)2
(1 + t)(a+ t)(1 + at)

(b+ t)(1 + bt)
.
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For h ≡ 0 the largest function f(t) = (1 + t)/2 comes and h ≡ 1 gives the
smallest function f(t) = 2t/(1 + t). If

∫ 1

0

h(λ)

λ
dλ = +∞,

then f(0) = 0. �

Hansen’s canonical representation is true for any standard matrix
monotone function [39]:

Theorem 5.29 If f : R+ → R+ be a standard matrix monotone function,
then

1

f(x)
=

∫ 1

0

1 + λ

2

(

1

x+ λ
+

1

1 + xλ

)

dµ(λ), (5.46)

where µ is a probability measure on [0, 1].

Theorem 5.30 Let f : R+ → R+ be a standard matrix monotone function.
Then

f̃(x) :=
1

2

(

(x+ 1)− (x− 1)2
f(0)

f(x)

)

(5.47)

is standard matrix monotone as well.

Example 5.31 Let A,B ∈ Mn be positive definite matrices and M be a
matrix mean. The block-matrix

[

A m(A,B)
m(A,B) B

]

is positive if and only if m(A,B) ≤ A#B. Similarly,
[

A−1 m(A,B)−1

m(A,B)−1 B−1

]

≥ 0

if and only m(A,B) ≥ A#B.

If λ1, λ2, . . . , λn are positive numbers, then the matrix A ∈ Mn defined as

Aij =
1

L(λi, λj)

is positive for n = 2 according to the above argument. However, this is true
for every n due to the formula

1

L(x, y)
=

∫ 1

0

1

(x+ t)(y + t)
dt. (5.48)
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(Another argument is in Example 2.54.)

From the harmonic mean we obtain the mean matrix

Bij =
2λiλj
λi + λj

.

This is positive, being the Hadamard product of two positive matrices, one
of them is the Cauchy matrix.

There are many examples of positive mean matrices, the book [41] is rele-
vant. �

5.4 Mean transformation

If 0 ≤ A,B ∈ Mn, then a matrix mean mf (A,B) ∈ Mn has a slightly com-
plicated formula expressed by the function f : R+ → R+ of the mean. If
AB = BA, then the situation is simpler: mf (A,B) = f(AB−1)B. The mean
introduced here will be a linear mapping Mn → Mn. If n > 1, then this is
essentially different from mf(A,B).

From A and B we have the linear mappings Mn → Mn defined as

LAX = AX, RBX = XB (X ∈ Mn).

So LA is the left-multiplication by A and RB is the right-multiplication by
B. Obviously, they are commuting operators, LARB = RBLA, and they can
be considered as matrices in Mn2 .

The definition of the mean transformation is

Mf (A,B) = mf(LA,RB) .

Sometime the notation J
f
A,B is used for this.

For f(x) =
√
x we have the geometric mean which is a simple example.

Example 5.32 Since LA and RB commute, the example of geometric mean
is the following:

LA#RB = (LA)
1/2(RB)

1/2 = LA1/2RB1/2 , X 7→ A1/2XB1/2 .

It is not true thatM(A,B)X ≥ 0 if X ≥ 0, but as a linear mappingM(A,B)
is positive:

〈X,M(A,B)X〉 = TrX∗A1/2XB1/2 = TrB1/4X∗A1/2XB1/4 ≥ 0
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for every X ∈ Mn.

Let A,B > 0. The equality M(A,B)A = M(B,A)A immediately implies
that AB = BA. From M(A,B) = M(B,A) we can find that A = λB
with some number λ > 0. Therefore M(A,B) = M(B,A) is a very special
situation for the mean transformation. �

The logarithmic mean transformation is

Mlog(A,B)X =

∫ 1

0

AtXB1−t dt. (5.49)

In the next example we have a formula for general M(A,B).

Example 5.33 Assume that A and B act on a Hilbert space which has two
orthonormal bases |x1〉, . . . , |xn〉 and |y1〉, . . . , |yn〉 such that

A =
∑

i

λi|xi〉〈xi|, B =
∑

j

µj|yj〉〈yj|.

Then for f(x) = xk we have

f(LAR
−1
B )RB|xi〉〈yj| = Ak|xi〉〈yj|B−k+1 = λki µ

−k+1
j |xi〉〈yj|

= f(λi/µj)µj|xi〉〈yj| = mf (λi, µj)|xi〉〈yj|
and for a general f

Mf(A,B)|xi〉〈yj| = mf (λi, µj)|xi〉〈yj|. (5.50)

This shows also thatMf (A,B) ≥ 0 with respect to the Hilbert-Schmidt inner
product.

Another formulation is also possible. Let A = UDiag(λ1, . . . , λn)U
∗, B =

VDiag(µ1, . . . , µn)V
∗ with unitaries U , V . Let |e1〉, . . . , |en〉 be the basis

vectors. Then

Mf (A,B)X = U ([mf(λi, µj)]ij ◦ (U∗XV )) V ∗. (5.51)

It is enough to check the case X = |xi〉〈yj|. Then
U ([mf (λi, µj)]ij ◦ (U∗|xi〉〈yj|V ))V ∗ = U ([mf (λi, µj)]ij ◦ |ei〉〈ej|) V ∗

= mf (λi, µj)U |ei〉〈ej|V ∗ = mf (λi, µj)|xi〉〈yj|.

For the matrix means we have m(A,A) = A, but M(A,A) is rather dif-
ferent, it cannot be A since it is a transformation. If A =

∑

i λi|xi〉〈xi|,
then

M(A,A)|xi〉〈xj| = m(λi, λj)|xi〉〈xj|.
(This is related to the so-called mean matrix.) �
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Example 5.34 Here we show a very special inequality between the geometric
mean MG(A,B) and the arithmetic mean MA(A,B). They are

MG(A,B)X = A1/2XB1/2, MA(A,B)X = 1
2
(AX +XB).

There is an integral formula

MG(A,B)X =

∫ ∞

−∞

AitMA(A,B)XB−it dµ(t), (5.52)

where the probability measure is

dµ(t) =
1

cosh(πt)
dt.

From (5.52) it follows that

‖MG(A,B)X‖ ≤ ‖MA(A,B)X‖ (5.53)

which is an operator norm inequality. �

The next theorem gives the transformer inequality.

Theorem 5.35 Let f : [0,+∞) → [0,+∞) be an operator monotone func-
tion and M( · , · ) be the corresponding mean transformation. If β : Mn →
Mm is a 2-positive trace-preserving mapping and the matrices A,B ∈ Mn,
β(A), β(B) ∈ Mm are positive, then

βM(A,B)β∗ ≤M(β(A), β(B)). (5.54)

Proof: By approximation we may assume that A,B, β(A), β(B) > 0. In-
deed, assume that the conclusion holds under this positive definiteness con-
dition. For each ε > 0 let

βε(X) :=
β(X) + ε(TrX)Im

1 +mε
, X ∈ Mn,

which is 2-positive and trace-preserving. If A,B > 0, then βε(A), βε(B) > 0
as well and hence (5.54) holds for βǫ. Letting ε ց 0 implies that (5.54) for β
is true for all A,B > 0. Then by taking the limit from A + εIn, B + εIn as
ε ց, we have (5.54) for all A,B ≥ 0. Now assume A,B, β(A), β(B) > 0.

Based on the Löwner theorem, we may consider f(x) = x/(λ+x) (λ > 0).
Then

M(A,B) =
LA

λI + LAR
−1
B

, M(A,B)−1 = (λI + LAR
−1
B )L−1

A .
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The statement (5.54) has the equivalent form

β∗M(β(A), β(B))−1β ≤M(A,B)−1, (5.55)

which means

〈β(X), (λI + Lβ(A)R
−1
β(B))L

−1
β(A)β(X)〉 ≤ 〈X, (λI + LAR

−1
B )L−1

A X〉

or

λTr β(X∗)β(A)−1β(X)+Trβ(X)β(B)−1β(X∗) ≤ λTrX∗A−1X+TrXB−1X∗.

This inequality is true due to the matrix inequality

β(X∗)β(Y )−1β(X) ≤ β(X∗Y −1X) (Y > 0),

see Lemma 2.45. �

If β−1 has the same properties as β in the previous theorem, then we have
equality in formula (5.54).

Theorem 5.36 Let f : [0,+∞) → [0,+∞) be an operator monotone func-
tion with f(1) = 1 and M( · , · ) be the corresponding mean transformation.
Assume that 0 < A,B ∈ Mn and A ≤ A′, B ≤ B′. Then M(A,B) ≤
M(A′, B′).

Proof: Based on the Löwner theorem, we may consider f(x) = x/(λ + x)
(λ > 0). Then the statement is

LA(λI + LAR
−1
B )−1 ≤ LA′(λI + LA′R

−1
B′ )

−1,

which is equivalent to the relation

λL−1
A′ + R

−1
B′ = (λI + LA′R

−1
B′ )L

−1
A′ ≤ (λI + LAR

−1
B )L−1

A = λL−1
A + R

−1
B .

This is true, since L
−1
A′ ≤ L

−1
A and R

−1
B′ ≤ R

−1
B due to the assumption. �

Theorem 5.37 Let f be an operator monotone function with f(1) = 1 and
Mf be the corresponding transformation mean. It has the following properties:

(1) Mf (λA, λB) = λMf (A,B) for a number λ > 0.

(2) (Mf (A,B)X)∗ =Mf (B,A)X
∗.

(3) Mf (A,A)I = A.
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(4) TrMf (A,A)
−1Y = TrA−1Y .

(5) (A,B) 7→ 〈X,Mf (A,B)Y 〉 is continuous.

(6) Let

C :=

[

A 0
0 B

]

≥ 0.

Then

Mf (C,C)

[

X Y
Z W

]

=

[

Mf (A,A)X Mf (A,B)Y
Mf(B,A)Z Mf (B,B)Z

]

. (5.56)

The proof of the theorem is an elementary computation. Property (6) is
very essential. It tells that it is sufficient to know the mean transformation
for two identical matrices.

The next theorem is an axiomatic characterization of the mean transfor-
mation.

Theorem 5.38 Assume that for all 0 ≤ A,B ∈ Mn the linear operator
L(A,B) : Mn → Mn is defined. L(A,B) = Mf (LA,RB) with an operator
monotone function f if and only if L has the following properties:

(i) (X, Y ) 7→ 〈X,L(A,B)Y 〉 is an inner product on Mn.

(ii) (A,B) 7→ 〈X,L(A,B)Y 〉 is continuous.

(iii) For a trace-preserving completely positive mapping β

β L(A,B) β∗ ≤ L(βA, βB)

holds.

(iv) Let

C :=

[

A 0
0 B

]

> 0.

Then

L(C,C)

[

X Y
Z W

]

=

[

L(A,A)X L(A,B)Y
L(B,A)Z L(B,B)Z

]

. (5.57)

The proof needs a few lemmas. Recall that H+
n = {A ∈ Mn : A > 0}.
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Lemma 5.39 If U, V ∈ Mn are arbitrary unitary matrices then for every
A,B ∈ H+

n and X ∈ Mn we have

〈X,L(A,B)X〉 = 〈UXV ∗, L(UAU∗, V BV ∗)UXV ∗〉.

Proof: For a unitary matrix U ∈ Mn define β(A) = U∗AU . Then β:Mn →
Mn is trace-preserving completely positive, further, β∗(A) = β−1(A) = UAU∗.
Thus by double application of (iii) we obtain

〈X,L(A,A)X〉 = 〈X,L(ββ−1A, ββ−1A)X〉
≥ 〈X, βL(β−1A, β−1A)β∗X〉
= 〈β∗X,L(β−1A, β−1Aβ∗X〉
≥ 〈β∗X, β−1L(A,A)(β−1)∗β∗X〉
= 〈X,L(A,A)X〉,

hence
〈X,L(A,A)X〉 = 〈UAU∗, L(UAU∗, UAU∗)UXU∗〉.

Now for the matrices

C =

[

A 0
0 B

]

∈ H+
2n, Y =

[

0 X
0 0

]

∈ M2n and W =

[

U 0
0 V

]

∈ M2n

it follows by (iv) that

〈X,L(A,B)X〉 = 〈Y, L(C,C)Y 〉
= 〈WYW ∗, L(WCW ∗,WCW ∗)WYW ∗〉
= 〈UXV ∗L(UAU∗, V BV ∗)UXV ∗〉

and we have the statement. �

Lemma 5.40 Suppose that L(A,B) is defined by the axioms (i)–(iv). Then
there exists a unique continuous function d:R+ × R+ → R+ such that

d(rλ, rµ) = rd(λ, µ) (r, λ, µ > 0)

and for every A = Diag(λ1, . . . , λn) ∈ H+
n , B = Diag(µ1, . . . , µn) ∈ H+

n

〈X,L(A,B)X〉 =
n
∑

j,k=1

d(λj, µk)|Xjk|2.

Proof: The uniqueness of such a function d is clear, we concentrate on the
existence.
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Denote by E(jk)(n) and In the n×nmatrix units and the n×n unit matrix,
respectively. We assume A = Diag(λ1, . . . , λn) ∈ H+

n , B = Diag(µ1, . . . , µn) ∈
H+
n .

We first show that

〈E(jk)(n), L(A,A)E(lm)(n)〉 = 0 if (j, k) 6= (l, m). (5.58)

Indeed, if j 6= k, l,m we let Uj = Diag(1, . . . , 1, i, 1, . . . , 1) where the imagi-
nary unit is the jth entry and j 6= k, l,m. Then by Lemma 5.39 one has

〈E(jk)(n), L(A,A)E(lm)(n)〉
= 〈UjE(jk)(n)U∗

j , L(UjAU
∗
j , UjAU

∗
j )UjE(lm)(n)U∗

j 〉
= 〈iE(jk)(n), L(A,A)E(lm)(n)〉 = −i〈E(jk)(n), L(A,A)E(lm)(n)〉

hence 〈E(jk)(n), L(A,A)E(lm)(n)〉 = 0. If one of the indices j, k, l,m is dif-
ferent from the others then (5.58) follows analogously. Finally, applying con-
dition (iv) we obtain that

〈E(jk)(n), L(A,B)E(lm)(n)〉 = 〈E(j, k + n)(2n), m(C,C)E(l, m+ n)(2n)〉 = 0

if (j, k) 6= (l, m), because C = Diag(λ1, . . . , λn, µ1, . . . , µn) ∈ H+
2n and one of

the indices j, k + n, l, m+ n are different from the others.

Now we claim that 〈E(jk)(n), L(A,B)E(jk)(n)〉 is determined by λj, and
µk. More specifically,

‖E(jk)(n)‖2A,B = ‖E(12)(2)‖2Diag(λj ,µk)
, (5.59)

where for brevity we introduced the notations

‖X‖2A,B = 〈X,L(A,B)X〉 and ‖X‖2A = ‖X‖2A,A.

Indeed, if Uj,k+n ∈ M2n denotes the unitary matrix which interchanges the
first and the jth, further, the second and the (k + n)th coordinates, then by
condition (iv) and Lemma 5.39 it follows that

‖E(jk)(n)‖2A,B = ‖E(j, k + n)(2n)‖2C
= ‖Uj,k+nE(j, k + n)(2n)U∗

j,k+n‖2Uj,k+nCU
∗
j,k+n

= ‖E(12)(2n)‖2Diag(λj ,µk,λ3,...,µn)
.

Thus it suffices to prove

‖E(12)(2n)‖2Diag(η1,η2,...,η2n) = ‖E(12)(2)‖2Diag(η1,η2). (5.60)
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Condition (iv) with X = E(12)(n) and Y = Z = W = 0 yields

‖E(12)(2n)‖2Diag(η1,η2,...,η2n)
= ‖E(12)(n)‖2Diag(η1,η2,...,ηn)

. (5.61)

Further, consider the following mappings (n ≥ 4): βn:Mn → Mn−1,

βn(E(jk)
(n)) :=







E(jk)(n−1), if 1 ≤ j, k ≤ n− 1,
E(n− 1, n− 1)(n−1), if j = k = n,
0, otherwise,

and β̃n:Mn−1 → Mn, β̃n(E(jk)
(n−1)) := E(jk)(n−1) if 1 ≤ j, k ≤ n− 2,

β̃n(E(n− 1, n− 1)(n−1)) :=
ηn−1E(n− 1, n− 1)(n) + ηnE(nn)

(n)

ηn−1 + ηn

and in the other cases β̃n(E(jk)
(n−1)) = 0.

Clearly, βn and β̃n are trace-preserving completely positive mappings hence
by (iii)

‖E(12)(n)‖2Diag(η1,...,ηn)
= ‖E(12)(n)‖2

β̃nβnDiag(η1,...,ηn)

≥ ‖β̃∗
nE(12)

(n)‖2βnDiag(η1,...,ηn)

≥ ‖β∗
nβ̃

∗
nE(12)

(n)‖2Diag(η1,...,ηn)

= ‖E(12)(n)‖2Diag(η1,...,ηn).

Thus equality holds, which implies

‖E(12)(n)‖2Diag(η1,...,ηn−1,ηn) = ‖E(12)(n−1)‖2Diag(η1,...,ηn−2,ηn−1+ηn). (5.62)

Now repeated application of (5.61) and (5.62) yields (5.60) and therefore also
(5.59) follows.

For 0 < λ, µ let

d(λ, µ) := ‖E(12)(2)‖2Diag(λ,µ).

Condition (ii) implies the continuity of d. We further claim that d is homo-
geneous of order one, that is,

d(rλ, rµ) = rd(λ, µ) (0 < λ, µ, r).

First let r = k ∈ N+. Then the mappings αk:M2 → M2k, α̃k:M2k → Mk

defined by

αk(X) =
1

k
Ik ⊗X
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and

α̃k









X11 X12 . . . X1k

X21 X22 . . . X2k
...

...
. . .

Xk1 Xk2 . . . Xkk









= X11 +X22 + . . .+Xkk

are trace-preserving completely positive, further, α̃∗
k = kαk. So applying

condition (iii) twice it follows that

‖E(12)(2)‖2Diag(λ,µ) = ‖E(12)(2)‖2α̃kαkDiag(λ,µ)

≥ ‖α̃∗
kE(12)

(2)‖2αkDiag(λ,µ)

≥ ‖α∗
kα̃

∗
kE(12)

(2)‖2Diag(λ,µ)

= ‖E(12)(2)‖2Diag(λ,µ) .

Hence equality holds, which means

‖E(12)(2)‖2Diag(λ,µ) = ‖Ik ⊗E(12)(2)‖21
k
Ik⊗Diag(λ,µ)

.

Thus by applying (5.58) and (5.59) we obtain

d(λ, µ) = ‖Ik ⊗ E(12)(2)‖21
k
Ik⊗Diag(λ,µ)

=

k
∑

j=1

‖E(jj)(k) ⊗ E(12)(2)‖21
k
Ik⊗Diag(λ,µ)

= k‖E(11)(k) ⊗ E(12)(2)‖21
k
Ik⊗Diag(λ,µ)

= kd

(

λ

k
,
µ

k

)

.

If r = ℓ/k where ℓ, k are positive natural numbers then

d(rλ, rµ) = d

(

ℓ

k
λ,
ℓ

k
µ

)

=
1

k
d(ℓλ, ℓµ) =

ℓ

k
d(λ, µ).

By condition (ii), the homogeneity follows for every r > 0.

We finish the proof by using (5.58) and (5.59) and obtain

‖X‖2A,B =

n
∑

j,k=1

d(λj, µk)|Xjk|2.

�

If we require the positivity ofM(A,B)X for X ≥ 0, then from the formula

(M(A,B)X)∗ =M(B,A)X∗
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we need A = B. If A =
∑

i λi|xi〉〈xi| and X =
∑

i,j |xi〉〈xj| with an orthonor-
mal basis {|xi〉 : i}, then

(

M(A,A)X
)

ij
=M(λi, λj).

The positivity of this matrix is necessary.

Given the positive numbers {λi : 1 ≤ i ≤ n}, the matrix

Kij = m(λi, λj)

is called an n×n mean matrix. From the previous argument the positivity
of M(A,A) : Mn → Mn implies the positivity of the n × n mean matrices
of the mean M . It is easy to see that if the mean matrices of any size are
positive, then M(A,A) : Mn → Mn is a completely positive mapping.

Example 5.41 If the mean matrix
[

λ1 m(λ1, λ2)
m(λ1, λ2) λ1

]

is positive, then m(λ1, λ2) ≤
√
λ1λ2. It follows that to have a positive mean

matrix, the mean m should be smaller than the geometric mean.

The power mean or binomial mean

mt(x, y) =

(

xt + yt

2

)1/t

(5.63)

is an increasing function of t when x and y are fixed. The limit t → 0 gives
the geometric mean. Therefore the positivity of the matrix mean may appear
only for −t ≥ 0. Then

m−t(x, y) = 21/t
xy

(xt + yt)1/t

and this matrix is positive due to the infinitely divisible Cauchy matrix, see
Example 1.41. �

5.5 Notes and remarks

The geometric mean of operators first appeared in the paper of Wieslaw Pusz
and Stanislav L. Woronowicz (Functional calculus for sesquilinear forms and
the purification map, Rep. Math. Phys., (1975), 159–170) and the detailed
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study was in the paper Tsuyoshi Ando and Fumio Kubo [53]. The ge-
ometric mean for more matrices is from the paper [9]. A popularization of
the subject is the paper Rajendra Bhatia and John Holbrook: Noncom-
mutative geometric means. Math. Intelligencer 28(2006), 32–39. The mean
transformations are in the book of Fumio Hiai and Hideki Kosaki [41].
Theorem 5.38 is from the paper [16]. There are several examples of positive
mean matrices in the paper Rajendra Bhatia and Hideki Kosaki, Mean matri-
ces and infinite divisibility, Linear Algebra Appl. 424(2007), 36–54. (Actually
the positivity of matrices Aij = m(λi, λj)

t are considered, t > 0.)

Theorem 5.18 is from the paper Miklós Pálfia, A multivariable extension
of two-variable matrix means, SIAM J. Matrix Anal. Appl. 32(2011), 385–
393. There is a different definition of the geometric mean X of the positive
matrices A1, A2, . . . .Ak as defined by the equation

n
∑

k=1

logA−1
i X = 0.

See the papers Y. Lim, M. Pálfia, Matrixpower means and the Karcher mean,
J. Functional Analysis 262(2012), 1498–1514 or M. Moakher, A differential
geometric approach to the geometric mean of symmetric positive-definite ma-
trices, SIAM J. Matrix Anal. Appl. 26(2005), 735–747.

Lajos Molnár proved that if a bijection α : M+
n → M+

n preserves the
geometric mean, then for n ≥ 2 α(A) = SAS∗ for a linear or conjugate linear
mapping S (Maps preserving the geometric mean of positive operators, Proc.
Amer. Math. Soc. 137(2009), 1763–1770.)

Theorem 5.27 is from the paper F. Hansen, Characterization of symmetric
monotone metrics on the state space of quantum systems, Quantum Infor-
mation and Computation 6(2006), 597–605.

The norm inequality (5.53) was obtained by R. Bhatia and C. Davis: A
Cauchy-Schwarz inequality for operators with applications, Linear Algebra
Appl. 223/224 (1995), 119–129. The integral formula (5.52) is due to H.
Kosaki: Arithmetic-geometric mean and related inequalities for operators, J.
Funct. Anal. 156 (1998), 429–451.

5.6 Exercises

1. Show that for positive invertible matrices A and B the inequalities

2(A−1 +B−1)−1 ≤ A#B ≤ 1

2
(A+B)
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hold. What is the condition for equality? (Hint: Reduce the general
case to A = I.)

2. Show that

A#B =
1

π

∫ 1

0

(tA−1 + (1− t)B−1)−1

√

t(1− t)
dt.

3. Let A,B > 0. Show that A#B = A implies A = B.

4. Let 0 < A,B ∈ Mm. Show that the rank of the matrix
[

A A#B
A#B B

]

is smaller than 2m.

5. Show that for any matrix mean m,

m(A,B)#m⊥(A,B) = A#B.

6. Let A ≥ 0 and P be a projection of rank 1. Show that A#P =√
TrAPP .

7. Argue that natural map

(A,B) 7−→ exp
( logA+ logB

2

)

would not be a good definition for geometric mean.

8. Show that for positive matrices A : B = A− A(A+B)−1A.

9. Show that for positive matrices A : B ≤ A.

10. Show that 0 < A ≤ B imply A ≤ 2(A : B) ≤ B.

11. Show that L(A,B) ≤ (A+B)/2.

12. Let A,B > 0. Show that if for a matrix mean mf (A,B) = A, then
A = B.

13. Let f, g : R+ → R+ be matrix monotone functions. Show that their
arithmetic and geometric means are matrix monotone as well.

14. Show that the matrix

Aij =
1

Ht(λi, λj)

defined by the Heinz mean is positive.
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15. Show that
∂

∂t
m(etA, etB)

∣

∣

∣

t=0
=
A +B

2

for a symmetric mean. (Hint: Check the arithmetic and harmonic
means, reduce the general case to these examples.)

16. Let A and B be positive matrices and assume that there is a unitary U
such that A1/2UB1/2 ≥ 0. Show that A#B = A1/2UB1/2.

17. Show that
S∗(A : B)S ≤ (S∗AS) : (S∗BS)

for any invertible matrix S and A,B ≥ 0.

18. Show the property

(A : B) + (C : D) ≤ (A+ C) : (B +D)

of the parallel sum.

19. Show the logarithmic mean formula

L(A,B)−1 =

∫ ∞

0

(tA +B)−1

t + 1
dt

for positive definite matrices A,B.

20. Let A and B be positive definite matrices. Set A0 := A, B0 := B and
define recurrently

An =
An−1 +Bn−1

2
and Bn = 2(A−1

n−1 +B−1
n−1)

−1 (n = 1, 2, . . .).

Show that
lim
n→∞

An = lim
n→∞

Bn = A#B.

21. Show that the function ft(x) defined in (5.43) has the property

√
x ≤ ft(x) ≤

1 + x

2

when 1/2 ≤ t ≤ 2.

22. Let P and Q be ortho-projections. What is their Heinz mean?

23. Show that
det (A#B) =

√
detA detB.
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24. Assume that A and B are invertible positive matrices. Show that

(A#B)−1 = A−1#B−1.

25. Let

A :=

[

3/2 0
0 3/4

]

and B :=

[

1/2 1/2
1/2 1/2

]

.

Show that A ≥ B ≥ 0 and for p > 1 the inequality Ap ≥ Bp does not
hold.

26. Show that

det
(

G(A,B,C)
)

=
(

det A det B det C
)1/3

.

27. Show that
G(αA, βB, γC) = (αβγ)1/3G(A,B,C)

for positive numbers α, β, γ.

28. Show that A1 ≥ A2, B1 ≥ B2, C1 ≥ C2 imply

G(A1, B1, C1) ≥ G(A2, B2, C2).

29. Show that
G(A,B,C) = G(A−1, B−1, C−1)−1.

30. Show that

3(A−1 +B−1 + C−1)−1 ≤ G(A,B,C) ≤ 1

3
(A +B + C).

31. Show that
fγ(x) = 22γ−1xγ(1 + x)1−2γ

is a matrix monotone function for 0 < γ < 1.

32. Let P and Q be ortho-projections. Prove that L(P,Q) = P ∧Q.

33. Show that the function

fp(x) =

(

xp + 1

2

)1/p

(5.64)

is matrix monotone if and only if −1 ≤ p ≤ 1.
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34. For positive numbers a and b

lim
p→0

(

ap + bp

2

)1/p

=
√
ab.

Is it true that for 0 < A,B ∈ Mn(C)

lim
p→0

(

Ap +Bp

2

)1/p

is the geometric mean of A and B?



Chapter 6

Majorization and singular
values

A citation from von Neumann: “The object of this note is the study of certain
properties of complex matrices of nth order together with them we shall use
complex vectors of nth order.” This classical subject in matrix theory is
exposed in Sections 2 and 3 after discussions on vectors in Section 1. The
chapter contains also several matrix norm inequalities as well as majorization
results for matrices, which were mostly developed rather recently.

Basic properties of singular values of matrices are given in Section 2. The
section also contains several fundamental majorizations, notably the Lidskii-
Wielandt and Gel’fand-Naimark theorems, for the eigenvalues of Hermitian
matrices and the singular values of general matrices. Section 3 is an impor-
tant subject on symmetric or unitarily invariant norms for matrices. Sym-
metric norms are written as symmetric gauge-functions of the singular values
of matrices (the von Neumann theorem). So they are closely connected with
majorization theory as manifestly seen from the fact that the weak majoriza-
tion s(A) ≺w s(B) for the singular value vectors s(A), s(B) of matrices A,B is
equivalent to the inequality |||A||| ≤ |||B||| for all symmetric norms (as sum-
marized in Theorem 6.24. Therefore, the majorization method is of particular
use to obtain various symmetric norm inequalities for matrices.

Section 4 further collects several majorization results (hence symmetric
norm inequalities), mostly developed rather recently, for positive matrices in-
volving concave or convex functions, or operator monotone functions, or cer-
tain matrix means. For instance, the symmetric norm inequalities of Golden-
Thompson type and of its complementary type are presented.

227
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6.1 Majorization of vectors

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be vectors in Rn. The decreasing
rearrangement of a is a↓ = (a↓1, . . . , a

↓
n) and b↓ = (b↓1, . . . , b

↓
n) is similarly

defined. The majorization a ≺ b means that

k
∑

i=1

a↓i ≤
k
∑

i=1

b↓i (1 ≤ k ≤ n) (6.1)

and the equality is required for k = n. The weak majorization a ≺w b is
defined by the inequality (6.1), where the equality for k = n is not required.
The concepts were introduced by Hardy, Littlewood and Pólya.

The majorization a ≺ b is equivalent to the statement that a is a convex
combination of permutations of the components of the vector b. This can be
written as

a =
∑

U

λUUb,

where the summation is over the n× n permutation matrices U and λU ≥ 0,
∑

U λU = 1. The n×n matrix D =
∑

U λUU has the property that all entries
are positive and the sums of rows and columns are 1. Such a matrix D is
called doubly stochastic. So a = Db. The proof is a part of the next
theorem.

Theorem 6.1 The following conditions for a, b ∈ Rn are equivalent:

(1) a ≺ b ;

(2)
∑n

i=1 |ai − r| ≤∑n
i=1 |bi − r| for all r ∈ R ;

(3)
∑n

i=1 f(ai) ≤
∑n

i=1 f(bi) for any convex function f on an interval con-
taining all ai, bi ;

(4) a is a convex combination of coordinate permutations of b ;

(5) a = Db for some doubly stochastic n× n matrix D.

Proof: (1) ⇒ (4). We show that there exist a finite number of matrices
D1, . . . , DN of the form λI+(1−λ)Π where 0 ≤ λ ≤ 1 and Π is a permutation
matrix interchanging two coordinates only such that a = DN · · ·D1b. Then
(4) follows because DN · · ·D1 becomes a convex combination of permutation
matrices. We may assume that a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn. Suppose
a 6= b and choose the largest j such that aj < bj . Then there exists a k with
k > j such that ak > bk. Choose the smallest such k. Let λ1 := 1−min{bj −



6.1. MAJORIZATION OF VECTORS 229

aj , ak − bk}/(bj − bk) and Π1 be the permutation matrix interchanging the
jth and kth coordinates. Then 0 < λ1 < 1 since bj > aj ≥ ak > bk. Define
D1 := λ1I + (1 − λ1)Π1 and b(1) := D1b. Now it is easy to check that

a ≺ b(1) ≺ b and b
(1)
1 ≥ · · · ≥ b

(1)
n . Moreover the jth or kth coordinates of a

and b(1) are equal. When a 6= b(1), we can apply the above argument to a and
b(1). Repeating finite times we reach the conclusion.

(4) ⇒ (5) is trivial from the fact that any convex combination of permu-
tation matrices is doubly stochastic.

(5) ⇒ (2). For every r ∈ R we have

n
∑

i=1

|ai − r| =
n
∑

i=1

∣

∣

∣

∣

n
∑

j=1

Dij(bj − r)

∣

∣

∣

∣

≤
n
∑

i,j=1

Dij|bj − r| =
n
∑

j=1

|bj − r|.

(2) ⇒ (1). Taking large r and small r in the inequality of (2) we have
∑n

i=1 ai =
∑n

i=1 bi. Noting that |x| + x = 2x+ for x ∈ R, where x+ =
max{x, 0}, we have

n
∑

i=1

(ai − r)+ ≤
n
∑

i=1

(bi − r)+, r ∈ R. (6.2)

Now prove that (6.2) implies that a ≺w b. When b↓k ≥ r ≥ b↓k+1,
∑k

i=1 a
↓
i ≤

∑k
i=1 b

↓
i follows since

n
∑

i=1

(ai − r)+ ≥
k
∑

i=1

(a↓i − r)+ ≥
k
∑

i=1

a↓i − kr,
n
∑

i=1

(bi − r)+ =
k
∑

i=1

b↓i − kr.

(4) ⇒ (3). Suppose that ai =
∑N

k=1 λkbπk(i), 1 ≤ i ≤ n, where λk > 0,
∑N

k=1 λk = 1, and πk are permutations on {1, . . . , n}. Then the convexity of
f implies that

n
∑

i=1

f(ai) ≤
n
∑

i=1

N
∑

k=1

λkf(bπk(i)) =
n
∑

i=1

f(bi).

(3) ⇒ (5) is trivial since f(x) = |x− r| is convex. �

Note that the implication (5)⇒ (4) is seen directly from the well-known
theorem of Birkhoff saying that any doubly stochastic matrix is a convex
combination of permutation matrices [25].

Example 6.2 Let DAB ∈ Mn⊗Mm be a density matrix which is the convex
combination of tensor product of density matrices: DAB =

∑

i λiD
A
i ⊗ DB

i .
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We assume that the matrices DA
i are acting on the Hilbert space HA and DB

i

acts on HB.

The eigenvalues of DAB form a probability vector r = (r1, r2, . . . , rnm).
The reduced density matrix DA =

∑

i λi(TrD
B
i )D

A
i has n e igenvalues and

we add nm − n zeros to get a probability vector q = (q1, q2, . . . , qnm). We
want to show that there is a doubly stochastic matrix S which transform q
into r. This means r ≺ q.

Let
DAB =

∑

k

rk|ek〉〈ek| =
∑

j

pj|xj〉〈xj| ⊗ |yj〉〈yj|

be decompositions of a density matrix in terms of unit vectors |ek〉 ∈ HA ⊗
HB, |xj〉 ∈ HA and |yj〉 ∈ HB. The first decomposition is the Schmidt de-
composition and the second one is guaranteed by the assumed separability
condition. For the reduced density DA we have the Schmidt decomposition
and another one:

DA =
∑

l

ql|fl〉〈fl| =
∑

j

pj|xj〉〈xj|,

where fj is an orthonormal family in HA. According to Lemma 1.24 we have
two unitary matrices V and W such that

∑

k

Vkj
√
pj |xj〉 ⊗ |yj〉 =

√
rk|ek〉

∑

l

Wjl
√
ql|fl〉 =

√
pj |xj〉.

Combine these equations to have

∑

k

Vkj
∑

l

Wjl
√
ql|fl〉 ⊗ |yj〉 =

√
rk|ek〉

and take the squared norm:

rk =
∑

l

(

∑

j1,j2

V kj1Vkj2W j1lWj2l〈yj1, yj2〉
)

ql

Introduce a matrix

Skl =
(

∑

j1,j2

V kj1Vkj2W j1lWj2l〈yj1, yj2〉
)

and verify that it is doubly stochastic. �
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The weak majorization a ≺w b is defined by the inequality (6.1). A
matrix S is called doubly substochastic n × n matrix if

∑n
j=1 Sij ≤ 1 for

1 ≤ i ≤ n and
∑n

i=1 Sij ≤ 1 for 1 ≤ j ≤ n.

The previous theorem was about majorization and the next one is about
weak majorization.

Theorem 6.3 The following conditions for a, b ∈ Rn are equivalent:

(1) a ≺w b;

(2) there exists a c ∈ Rn such that a ≤ c ≺ b, where a ≤ c means that
ai ≤ ci, 1 ≤ i ≤ n;

(3)
∑n

i=1(ai − r)+ ≤∑n
i=1(bi − r)+ for all r ∈ R;

(4)
∑n

i=1 f(ai) ≤ ∑n
i=1 f(bi) for any increasing convex function f on an

interval containing all ai, bi.

Moreover, if a, b ≥ 0, then the above conditions are equivalent to the next one:

(5) a = Sb for some doubly substochastic n× n matrix S.

Proof: (1) ⇒ (2). By induction on n. We may assume that a1 ≥ · · · ≥ an
and b1 ≥ · · · ≥ bn. Let α := min1≤k≤n(

∑k
i=1 bi−

∑k
i=1 ai) and define ã := (a1+

α, a2, . . . , an). Then a ≤ ã ≺w b and
∑k

i=1 ãi =
∑k

i=1 bi for some 1 ≤ k ≤ n.
When k = n, a ≤ ã ≺ b. When k < n, we have (ã1, . . . , ãk) ≺ (b1, . . . , bk)
and (ãk+1, . . . , ãn) ≺w (bk+1, . . . , bn). Hence the induction assumption implies
that (ãk+1, . . . , ãn) ≤ (ck+1, . . . , cn) ≺ (bk+1, . . . , bn) for some (ck+1, . . . , cn) ∈
Rn−k. Then a ≤ (ã1, . . . , ãk, ck+1, . . . , cn) ≺ b is immediate from ãk ≥ bk ≥
bk+1 ≥ ck+1.

(2) ⇒ (4). Let a ≤ c ≺ b. If f is increasing and convex on an interval
[α, β] containing ai, bi, then ci ∈ [α, β] and

n
∑

i=1

f(ai) ≤
n
∑

i=1

f(ci) ≤
n
∑

i=1

f(bi)

by Theorem 6.1.

(4) ⇒ (3) is trivial and (3) ⇒ (1) was already shown in the proof (2) ⇒
(1) of Theorem 6.1.

Now assume a, b ≥ 0 and prove that (2) ⇔ (5). If a ≤ c ≺ b, then we have,
by Theorem 6.1, c = Db for some doubly stochastic matrix D and ai = αici
for some 0 ≤ αi ≤ 1. So a = Diag(α1, . . . , αn)Db and Diag(α1, . . . , αn)D is a
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doubly substochastic matrix. Conversely if a = Sb for a doubly substochastic
matrix S, then a doubly stochastic matrix D exists so that S ≤ D entrywise,
whose proof is left for the Exercise 1 and hence a ≤ Db ≺ b. �

Example 6.4 Let a, b ∈ Rn and f be a convex function on an interval con-
taining all ai, bi. We use the notation f(a) := (f(a1), . . . , f(an)) and similarly
f(b). Assume that a ≺ b. Since f is a convex function, so is (f(x)− r)+ for
any r ∈ R. Hence f(a) ≺w f(b) follows from Theorems 6.1 and 6.3.

Next assume that a ≺w b and f is an increasing convex function, then
f(a) ≺w f(b) can be proved similarly. �

Let a, b ∈ Rn and a, b ≥ 0. We define the weak log-majorization
a ≺w(log) b when

k
∏

i=1

a↓i ≤
k
∏

i=1

b↓i (1 ≤ k ≤ n) (6.3)

and the log-majorization a ≺(log) b when a ≺w(log) b and equality holds for
k = n in (6.3). It is obvious that if a and b are strictly positive, then a ≺(log) b
(resp., a ≺w(log) b) if and only if log a ≺ log b (resp., log a ≺w log b), where
log a := (log a1, . . . , log an).

Theorem 6.5 Let a, b ∈ Rn with a, b ≥ 0 and suppose a ≺w(log) b. If f is
a continuous increasing function on [0,∞) such that f(ex) is convex, then
f(a) ≺w f(b). In particular, a ≺w(log) b implies a ≺w b.

Proof: First assume that a, b ∈ Rn are strictly positive and a ≺w(log) b, so
that log a ≺w log b. Since g ◦ h is convex when g and h are convex with g
increasing, the function (f(ex)− r)+ is increasing and convex for any r ∈ R.
Hence by Theorem 6.3 we have

n
∑

i=1

(f(ai)− r)+ ≤
n
∑

i=1

(f(bi)− r)+,

which implies f(a) ≺w f(b) by Theorem 6.3 again. When a, b ≥ 0 and
a ≺w(log) b, we can choose a(m), b(m) > 0 such that a(m) ≺w(log) b

(m), a(m) → a,
and b(m) → b. Since f(a(m)) ≺w f(b(m)) and f is continuous, we obtain
f(a) ≺w f(b). �
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6.2 Singular values

In this section we discuss the majorization theory for eigenvalues and sin-
gular values of matrices. Our goal is to prove the Lidskii-Wielandt and the
Gel’fand-Naimark theorems for singular values of matrices. These are the
most fundamental majorizations for matrices.

When A is self-adjoint, the vector of the eigenvalues of A in decreasing
order with counting multiplicities is denoted by λ(A). The majorization re-
lation of self-adjoint matrices appears also in quantum theory.

Example 6.6 In quantum theory the states are described by density matri-
ces, they are positive with trace 1. Let D1 and D2 be density matrices. The
relation λ(D1) ≺ λ(D2) has the interpretation that D1 is more mixed than
D2. Among the n× n density matrices the “most mixed” has all eigenvalues
1/n.

Let f : R+ → R+ be an increasing convex function with f(0) = 0. We
show that

λ(D) ≺ λ(f(D)/Tr f(D)) (6.4)

for a density matrix D.

Set λ(D) = (λ1, λ2, . . . , λn). Under the hypothesis on f the inequality
f(y)x ≥ f(x)y holds for 0 ≤ x ≤ y. Hence for i ≤ j we have λjf(λi) ≥
λif(λj) and

(f(λ1) + · · ·+ f(λk))(λk+1 + · · ·+ λn)

≥ (λ1 + · · ·+ λk)(f(λk+1) + · · ·+ f(λn)) .

Adding to both sides the term (f(λ1) + · · ·+ f(λk))(λ1 + · · ·+ λk) we arrive
at

(f(λ1) + · · ·+ f(λk))
n
∑

i=1

λi ≥ (λ1 + · · ·+ λk)
n
∑

i=1

f(λi) .

This shows that the sum of the k largest eigenvalues of f(D)/Tr f(D) must
exceed that of D (which is λ1 + · · ·+ λk).

The canonical (Gibbs) state at inverse temperature β = (kT )−1 possesses
the density e−βH/Tr e−βH . Choosing f(x) = xβ

′/β with β ′ > β the formula
(6.4) tells us that

e−βH/Tr e−βH ≺ e−β
′H/Tr e−β

′H

that is, at higher temperature the canonical density is more mixed. �
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Let H be an n-dimensional Hilbert space and A ∈ B(H). Let s(A) =
(s1(A), . . . , sn(A)) denote the vector of the singular values of A in decreas-
ing order, i.e., s1(A) ≥ · · · ≥ sn(A) are the eigenvalues of |A| = (A∗A)1/2

with counting multiplicities.

The basic properties of the singular values are summarized in the next
theorem. Recall that ‖ · ‖ is the operator norm. The next theorem includes
the definition of the mini-max expression.

Theorem 6.7 Let A,B,X, Y ∈ B(H) and k,m ∈ {1, . . . , n}. Then

(1) s1(A) = ‖A‖.

(2) sk(αA) = |α|sk(A) for α ∈ C.

(3) sk(A) = sk(A
∗).

(4) Mini-max expression:

sk(A) = min{‖A(I − P )‖ : P is a projection, rankP = k − 1}. (6.5)

If A ≥ 0 then

sk(A) = min
{

max{〈x,Ax〉 : x ∈ M⊥, ‖x‖ = 1} :
M is a subspace of H, dim M = k − 1} . (6.6)

(5) Approximation number expression:

sk(A) = inf{‖A−X‖ : X ∈ B(H), rankX < k}. (6.7)

(6) If 0 ≤ A ≤ B then sk(A) ≤ sk(B).

(7) sk(XAY ) ≤ ‖X‖‖Y ‖sk(A).

(8) sk+m−1(A +B) ≤ sk(A) + sm(B) if k +m− 1 ≤ n.

(9) sk+m−1(AB) ≤ sn(A)sm(B) if k +m− 1 ≤ n.

(10) |sk(A)− sk(B)| ≤ ‖A−B‖.

(11) sk(f(A)) = f(sk(A)) if A ≥ 0 and f : R+ → R+ is an increasing
function.
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Proof: Let A = U |A| be the polar decomposition of A and we write the
Schmidt decomposition of |A| as

|A| =
n
∑

i=1

si(A)|ui〉〈ui|,

where U is a unitary and {u1, . . . , un} is an orthonormal basis of H. From the
polar decomposition of A and the diagonalization of |A| one has the expression

A = UDiag(s1(A), . . . , sn(A))V (6.8)

with unitaries U, V ∈ B(H), which is called the singular value decompo-
sition of A.

(1) follows since s1(A) = ‖ |A| ‖ = ‖A‖. (2) is clear from |αA| = |α| |A|.
Also, (3) immediately follows since the Schmidt decomposition of |A∗| is given
as

|A∗| = U |A|U∗ =

n
∑

i=1

si(A)|Uui〉〈Uui|.

(4) Let αk be the right-hand side of (6.5). For 1 ≤ k ≤ n define Pk :=
∑k

i=1 |ui〉〈ui|, which is a projection of rank k. We have

αk ≤ ‖A(I − Pk−1)‖ =

∥

∥

∥

∥

n
∑

i=k

si(A)|ui〉〈ui|
∥

∥

∥

∥

= sk(A).

Conversely, for any ε > 0 choose a projection P with rankP = k − 1 such
that ‖A(I −P )‖ < αk+ ε. Then there exists a y ∈ H with ‖y‖ = 1 such that
Pky = y but Py = 0. Since y =

∑k
i=1〈ui, y〉ui, we have

αk + ε > ‖ |A|(I − P )y‖ = ‖ |A|y‖ =

∥

∥

∥

∥

k
∑

i=1

〈ui, y〉si(A)ui
∥

∥

∥

∥

=

(

k
∑

i=1

|〈ui, y〉|2si(A)2
)1/2

≥ sk(A).

Hence sk(A) = αk and the infimum αk is attained by P = Pk−1.

When A ≥ 0, we have

sk(A) = sk(A
1/2)2 = min{‖A1/2(I−P )‖2 : P is a projection, rankP = k − 1}.

Since ‖A1/2(I − P )‖2 = maxx∈M⊥, ‖x‖=1〈x,Ax〉 with M := ranP , the latter
expression follows.
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(5) Let βk be the right-hand side of (6.7). Let X := APk−1, where Pk−1

is as in the above proof of (1). Then we have rankX ≤ rankPk−1 = k − 1 so
that βk ≤ ‖A(I − Pk−1)‖ = sk(A). Conversely, assume that X ∈ B(H) has
rank < k. Since rankX = rank |X| = rankX∗, the projection P onto ranX∗

has rank < k. Then X(I − P ) = 0 and by (6.5) we have

sk(A) ≤ ‖A(I − P )‖ = ‖(A−X)(I − P )‖ ≤ ‖A−X‖,

implying that sk(A) ≤ βk. Hence sk(A) = βk and the infimum βk is attained
by APk−1.

(6) is an immediate consequence of (6.6). It is immediate from (6.5) that
sn(XA) ≤ ‖X‖sn(A). Also sn(AY ) = sn(Y

∗A∗) ≤ |Y ‖sn(A) by (3). Hence
(7) holds.

Next we show (8)–(10). By (6.7) there exist X, Y ∈ B(H) with rankX <
k, rankY < m such that ‖A − X‖ = sk(A) and ‖B − Y ‖ = sm(B). Since
rank (X + Y ) ≤ rankX + rankY < k +m− 1, we have

sk+m−1(A+B) ≤ ‖(A+B)− (X + Y )‖ < sk(A) + sm(B),

implying (8). For Z := XB + (A−X)Y we get

rankZ ≤ rankX + rankY < k +m− 1,

‖AB − Z‖ = ‖(A−X)(B − Y )‖ ≤ sk(A)sm(B).

These imply (9). Letting m = 1 and replacing B by B −A in (8) we get

sk(B) ≤ sk(A) + ‖B − A‖,

which shows (10).

(11) When A ≥ 0 has the Schmidt decomposition A =
∑n

i=1 si(A)|ui〉〈ui|,
we have f(A) =

∑n
i=1 f(si(A))|ui〉〈ui|. Since f(s1(A)) ≥ · · · ≥ f(sn(A)) ≥ 0,

sk(f(A)) = f(sk(A)) follows. �

The next result is called Weyl majorization theorem and we can see
the usefulness of the antisymmetric tensor technique.

Theorem 6.8 Let A ∈ Mn and λ1(A), · · · , λn(A) be the eigenvalues of A
arranged as |λ1(A)| ≥ · · · ≥ |λn(A)| with counting algebraic multiplicities.
Then

k
∏

i=1

|λi(A)| ≤
k
∏

i=1

si(A) (1 ≤ k ≤ n).
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Proof: If λ is an eigenvalue of A with algebraic multiplicity m, then there
exists a set {y1, . . . , ym} of independent vectors such that

Ayj − λyj ∈ span{y1, . . . , yj−1} (1 ≤ j ≤ m).

Hence one can choose independent vectors x1, . . . , xn such that Axi = λi(A)xi+
zi with zi ∈ span{x1, . . . , xi−1} for 1 ≤ i ≤ n. Then it is readily checked that

A∧k(x1 ∧ · · · ∧ xk) = Ax1 ∧ · · · ∧Axk =
(

k
∏

i=1

λi(A)
)

x1 ∧ · · · ∧ xk

and x1∧· · ·∧xk 6= 0, implying that
∏k

i=1 λi(A) is an eigenvalue of A∧k. Hence
Lemma 1.62 yields that

∣

∣

∣

∣

k
∏

i=1

λi(A)

∣

∣

∣

∣

≤ ‖A∧k‖ =

k
∏

i=1

si(A).

�

Note that another formulation of the previous theorem is

(|λ1(A)|, . . . , |λn(A)|) ≺w(log) s(A).

The following majorization results are the celebrated Lidskii-Wielandt
theorem for the eigenvalues of self-adjoint matrices as well as for the singular
values of general matrices.

Theorem 6.9 If A,B ∈ Msa
n , then

λ(A)− λ(B) ≺ λ(A−B),

or equivalently
(λi(A) + λn−i+1(B)) ≺ λ(A+B).

Proof: What we need to prove is that for any choice of 1 ≤ i1 < i2 < · · · <
ik ≤ n we have

k
∑

j=1

(λij (A)− λij (B)) ≤
k
∑

j=1

λj(A−B). (6.9)

Choose the Schmidt decomposition of A− B as

A− B =
n
∑

i=1

λi(A− B)|ui〉〈ui|
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with an orthonormal basis {u1, . . . , un} of Cn. We may assume without loss of
generality that λk(A−B) = 0. In fact, we may replace B by B+λk(A−B)I,
which reduces both sides of (6.9) by kλk(A−B). In this situation, the Jordan
decomposition A− B = (A−B)+ − (A− B)− is given as

(A−B)+ =
k
∑

i=1

λi(A−B)|ui〉〈ui|, (A−B)− = −
n
∑

i=k+1

λi(A−B)|ui〉〈ui|.

Since A = B+(A−B)+− (A−B)− ≤ B+(A−B)+, it follows from Exercise
3 that

λi(A) ≤ λi(B + (A−B)+), 1 ≤ i ≤ n.

Since B ≤ B + (A−B)+, we also have

λi(B) ≤ λi(B + (A−B)+), 1 ≤ i ≤ n.

Hence

k
∑

j=1

(λij (A)− λij(B)) ≤
k
∑

j=1

(λij(B + (A− B)+)− λij (B))

≤
n
∑

i=1

(λi(B + (A− B)+)− λi(B))

= Tr (B + (A− B)+)− TrB

= Tr (A−B)+ =
k
∑

j=1

λj(A−B),

proving (6.9). Moreover,

n
∑

i=1

(λi(A)− λi(B)) = Tr (A−B) =

n
∑

i=1

λi(A− B).

The latter expression is obvious since λi(B) = −λn−i+1(−B) for 1 ≤ i ≤ n.
�

Theorem 6.10 For every A,B ∈ Mn

|s(A)− s(B)| ≺w s(A−B)

holds, that is,
k
∑

j=1

|sij(A)− sij(B)| ≤
k
∑

j=1

sj(A− B)

for any choice of 1 ≤ i1 < i2 < · · · < ik ≤ n.
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Proof: Define

A :=

[

0 A∗

A 0

]

, B :=

[

0 B∗

B 0

]

.

Since

A∗A =

[

A∗A 0
0 AA∗

]

, |A| =
[

|A| 0
0 |A∗|

]

,

it follows from Theorem 6.7 (3) that

s(A) = (s1(A), s1(A), s2(A), s2(A), . . . , sn(A), sn(A)).

On the other hand, since
[

I 0
0 −I

]

A

[

I 0
0 −I

]

= −A,

we have λi(A) = λi(−bA) = −λ2n−i+1(A) for n ≤ i ≤ 2n. Hence one can
write

λ(A) = (λ1, . . . , λn,−λn, . . . ,−λ1),
where λ1 ≥ . . . ≥ λn ≥ 0. Since

s(A) = λ(|A|) = (λ1, λ1, λ2, λ2, . . . , λn, λn),

we have λi = si(A) for 1 ≤ i ≤ n and hence

λ(A) = (s1(A), . . . , sn(A),−sn(A), . . . ,−s1(A)).
Similarly,

λ(B) = (s1(B), . . . , sn(B),−sn(B), . . . ,−s1(B)),

λ(A−B) = (s1(A−B), . . . , sn(A− B),−sn(A− B), . . . ,−s1(A− B)).

Theorem 6.9 implies that

λ(A)− λ(B) ≺ λ(A−B).

Now we note that the components of λ(A)− λ(B) are

|s1(A)− s1(B)|, . . . , |sn(A)− sn(B)|,−|s1(A)− s1(B)|, . . . ,−|sn(A)− sn(B)|.
Therefore, for any choice of 1 ≤ i1 < i2 < · · · < ik ≤ n with 1 ≤ k ≤ n, we
have

k
∑

j=1

|sij(A)− sij(B)| ≤
k
∑

i=1

λi(A−B) =
k
∑

j=1

sj(A−B),

the proof is complete. �

The following results due to Ky Fan are consequences of the above theo-
rems, which are weaker versions of the Lidskii-Wielandt theorem.
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Corollary 6.11 If A,B ∈ Msa
n , then

λ(A+B) ≺ λ(A) + λ(B).

Proof: Apply Theorem 6.9 to A +B and B. Then

k
∑

i=1

(

λi(A +B)− λi(B)
)

≤
k
∑

i=1

λi(A)

so that
k
∑

i=1

λi(A+B) ≤
k
∑

i=1

(

λi(A) + λi(B)
)

.

Moreover,
∑n

i=1 λi(A+B) = Tr (A+B) =
∑n

i=1 (λi(A) + λi(B)). �

Corollary 6.12 If A,B ∈ Mn, then

s(A+B) ≺w s(A) + s(B).

Proof: Similarly, by Theorem 6.10,

k
∑

i=1

|si(A+B)− si(B)| ≤
k
∑

i=1

si(A)

so that
k
∑

i=1

si(A+B) ≤
k
∑

i=1

(

si(A) + si(B)
)

.

�

Another important majorization for singular values of matrices is the
Gel’fand-Naimark theorem as follows.

Theorem 6.13 For every A,B ∈ Mn

(si(A)sn−i+1(B)) ≺(log) s(AB), (6.10)

holds, or equivalently

k
∏

j=1

sij (AB) ≤
k
∏

j=1

(sj(A)sij(B)) (6.11)

for every 1 ≤ i1 < i2 < · · · < ik ≤ n with equality for k = n.
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Proof: First assume that A and B are invertible matrices and let A =
UDiag(s1, . . . , sn)V be the singular value decomposition (see (6.8) with the
singular values s1 ≥ · · · ≥ sn > 0 of A and unitaries U, V . Write D :=
Diag(s1, . . . , sn). Then s(AB) = s(UDV B) = s(DVB) and s(B) = s(V B),
so we may replace A,B by D, V B, respectively. Hence we may assume that
A = D = Diag(s1, . . . , sn). Moreover, to prove (6.11), it suffices to assume
that sk = 1. In fact, when A is replaced by s−1

k A, both sides of (6.11) are
multiplied by same s−kk . Define Ã := Diag(s1, . . . , sk, 1, . . . , 1); then Ã

2 ≥ A2

and Ã2 ≥ I. We notice that from Theorem 6.7 that we have

si(AB) = si((B
∗A2B)1/2) = si(B

∗A2B)1/2

≤ si(B
∗Ã2B)1/2 = si(ÃB)

for every i = 1, . . . , n and

si(ÃB) = si(B
∗Ã2B)1/2 ≥ si(B

∗B)1/2 = si(B).

Therefore, for any choice of 1 ≤ i1 < · · · < ik ≤ n, we have

k
∏

j=1

sij(AB)

sij (B)
≤

k
∏

j=1

sij (ÃB)

sij (B)
≤

n
∏

i=1

si(ÃB)

si(B)
=

det |ÃB|
det |B|

=

√

det(B∗Ã2B)
√

det(B∗B)
=

det Ã · | detB|
| detB| = det Ã =

k
∏

j=1

sj(A),

proving (6.11). By replacing A and B by AB and B−1, respectively, (6.11) is
rephrased as

k
∏

j=1

sij(A) ≤
k
∏

j=1

(

sj(AB)sij (B
−1)
)

.

Since si(B
−1) = sn−i+1(B)−1 for 1 ≤ i ≤ n as readily verified, the above

inequality means that

k
∏

j=1

(

sij(A)sn−ij+1(B)
)

≤
k
∏

j=1

sj(AB).

Hence (6.11) implies (6.10) and vice versa (as long as A,B are invertible).

For general A,B ∈ Mn choose a sequence of complex numbers αl ∈ C \
(σ(A) ∪ σ(B)) such that αl → 0. Since Al := A− αlI and Bl := B − αlI are
invertible, (6.10) and (6.11) hold for those. Then si(Al) → si(A), si(Bl) →
si(B) and si(AlBl) → si(AB) as l → ∞ for 1 ≤ i ≤ n. Hence (6.10) and
(6.11) hold for general A,B. �
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An immediate corollary of this theorem is the majorization result due to
Horn.

Corollary 6.14 For every matrices A and B,

s(AB) ≺(log) s(A)s(B),

where s(A)s(B) = (si(A)si(B)).

Proof: A special case of (6.11) is

k
∏

i=1

si(AB) ≤
k
∏

i=1

(

si(A)si(B)
)

for every k = 1, . . . , n. Moreover,

n
∏

i=1

si(AB) = det |AB| = det |A| · det |B| =
n
∏

i=1

(

si(A)si(B)
)

.

�

6.3 Symmetric norms

A norm Φ : Rn → R+ is said to be symmetric if

Φ(a1, a2, . . . , an) = Φ(ε1aπ(1), ε2aπ(2), . . . , εnaπ(n)) (6.12)

for every (a1, . . . , an) ∈ Rn, for any permutation π on {1, . . . , n} and εi = ±1.
The normalization is Φ(1, 0, . . . , 0) = 1. Condition (6.12) is equivalently
written as

Φ(a) = Φ(a∗1, a
∗
2, . . . , a

∗
n) (6.13)

for a = (a1, . . . , an) ∈ Rn, where (a∗1, . . . , a
∗
n) is the decreasing rearrangement

of (|a1|, . . . , |an|). A symmetric norm is often called a symmetric gauge
function.

Typical examples of symmetric gauge functions on Rn are the ℓp-norms
Φp defined by

Φp(a) :=











(

∑n
i=1 |ai|p

)1/p

if 1 ≤ p <∞,

max{|ai| : 1 ≤ i ≤ n} if p = ∞.

(6.14)

The next lemma characterizes the minimal and maximal normalized sym-
metric norms.
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Lemma 6.15 Let Φ be a normalized symmetric norm on Rn. If a = (ai),
b = (bi) ∈ Rn and |ai| ≤ |bi| for 1 ≤ i ≤ n, then Φ(a) ≤ Φ(b). Moreover,

max
1≤i≤n

|ai| ≤ Φ(a) ≤
n
∑

i=1

|ai| (a = (ai) ∈ R
n),

which means Φ∞ ≤ Φ ≤ Φ1.

Proof: In view of (6.12) we may show that

Φ(αa1, a2, . . . , an) ≤ Φ(a1, a2, . . . , an) for 0 ≤ α ≤ 1.

This is seen as follows:

Φ(αa1, a2, . . . , an)

= Φ
(1 + α

2
a1 +

1− α

2
(−a1),

1 + α

2
a2 +

1− α

2
a2, . . . ,

1 + α

2
an +

1− α

2
an

)

≤ 1 + α

2
Φ(a1, a2, . . . , an) +

1− α

2
Φ(−a1, a2, . . . , an)

= Φ(a1, a2, . . . , an).

(6.12) and the previous inequality imply that

|ai| = Φ(ai, 0, . . . , 0) ≤ Φ(a).

This means Φ∞ ≤ Φ. From

Φ(a) ≤
n
∑

i=1

Φ(ai, 0, . . . , 0) =

n
∑

i=1

|ai|

we have Φ ≤ Φ1. �

Lemma 6.16 If a = (ai), b = (bi) ∈ Rn and (|a1|, . . . , |an|) ≺w (|b1|, . . . , |bn|),
then Φ(a) ≤ Φ(b).

Proof: Theorem 6.3 gives that there exists a c ∈ Rn such that

(|a1|, . . . , |an|) ≤ c ≺ (|b1|, . . . , |bn|).
Theorem 6.1 says that c is a convex combination of coordinate permutations
of (|b1|, . . . , |bn|). Lemma 6.15 and (6.12) imply that Φ(a) ≤ Φ(c) ≤ Φ(b). �

Let H be an n-dimensional Hilbert space. A norm ||| · ||| on B(H) is said
to be unitarily invariant if

|||UAV ||| = |||A|||
for all A ∈ B(H) and all unitaries U, V ∈ B(H). A unitarily invariant norm
on B(H) is also called a symmetric norm. The following fundamental
theorem is due to von Neumann.
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Theorem 6.17 There is a bijective correspondence between symmetric gauge
functions Φ on Rn and unitarily invariant norms ||| · ||| on B(H) determined
by the formula

|||A||| = Φ(s(A)), A ∈ B(H). (6.15)

Proof: Assume that Φ is a symmetric gauge function on Rn. Define |||·||| on
B(H) by the formula (6.15). Let A,B ∈ B(H). Since s(A+B) ≺w s(A)+s(B)
by Corollary 6.12, it follows from Lemma 6.16 that

|||A+B||| = Φ(s(A+B)) ≤ Φ(s(A) + s(B))
≤ Φ(s(A)) + Φ(s(B)) = |||A|||+ |||B|||.

Also it is clear that |||A||| = 0 if and only if s(A) = 0 or A = 0. For α ∈ C

we have

|||αA||| = Φ(|α|s(A)) = |α| |||A|||

by Theorem 6.7. Hence ||| · ||| is a norm on B(H), which is unitarily invariant
since s(UAV ) = s(A) for all unitaries U, V .

Conversely, assume that ||| · ||| is a unitarily invariant norm on B(H).
Choose an orthonormal basis {e1, . . . , en} of H and define Φ : Rn → R by

Φ(a) :=
∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

ai|ei〉〈ei|
∣

∣

∣

∣

∣

∣

∣

∣

∣
, a = (ai) ∈ R

n.

Then it is immediate to see that Φ is a norm on Rn. For any permutation π
on {1, . . . , n} and εi = ±1, one can define unitaries U, V onH by Ueπ(i) = εiei
and V eπ(i) = ei, 1 ≤ i ≤ n, so that

Φ(a) =
∣

∣

∣

∣

∣

∣

∣

∣

∣
U
(

n
∑

i=1

aπ(i)|eπ(i)〉〈eπ(i)|
)

V ∗
∣

∣

∣

∣

∣

∣

∣

∣

∣
=
∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

aπ(i)|Ueπ(i)〉〈V eπ(i)|
∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

n
∑

i=1

εiaπ(i)|ei〉〈ei|
∣

∣

∣

∣

∣

∣

∣

∣

∣
= Φ(ε1aπ(1), ε2aπ(2), . . . , εnaπ(n)).

Hence Φ is a symmetric gauge function. For any A ∈ B(H) let A = U |A| be
the polar decomposition of A and |A| = ∑n

i=1 si(A)|ui〉〈ui| be the Schmidt
decomposition of |A| with an orthonormal basis {u1, . . . , un}. We have a
unitary V defined by V ei = ui, 1 ≤ i ≤ n. Since

A = U |A| = UV

( n
∑

i=1

si(A)|ei〉〈ei|
)

V ∗,
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we have

Φ(s(A)) =
∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

si(A)|ei〉〈ei|
∣

∣

∣

∣

∣

∣

∣

∣

∣
=
∣

∣

∣

∣

∣

∣

∣

∣

∣
UV
(

n
∑

i=1

si(A)|ei〉〈ei|
)

V ∗
∣

∣

∣

∣

∣

∣

∣

∣

∣
= |||A|||,

and so (6.15) holds. Therefore, the assertion is obtained. �

The next theorem summarizes properties of unitarily invariant (or sym-
metric) norms on B(H).

Theorem 6.18 Let ||| · ||| be a unitarily invariant norm on B(H) correspond-
ing to a symmetric gauge function Φ on Rn and A,B,X, Y ∈ B(H). Then

(1) |||A||| = |||A∗|||.

(2) |||XAY ||| ≤ ‖X‖ · ‖Y ‖ · |||A|||.

(3) If s(A) ≺w s(B), then |||A||| ≤ |||B|||.

(4) Under the normalization we have ‖A‖ ≤ |||A||| ≤ ‖A‖1.

Proof: By the definition (6.15), (1) follows from Theorem 6.7. By Theorem
6.7 and Lemma 6.15 we have (2) as

|||XAY ||| = Φ(s(XAY )) ≤ Φ(‖X‖ ‖Y ‖s(A)) = ‖X‖ ‖Y ‖ |||A|||.

Moreover, (3) and (4) follow from Lemmas 6.16 and 6.15, respectively. �

For instance, for 1 ≤ p ≤ ∞, we have the unitarily invariant norm ‖ · ‖p
on B(H) corresponding to the ℓp-norm Φp in (6.14), that is, for A ∈ B(H),

‖A‖p := Φp(s(A)) =











(

∑n
i=1 si(A)

p
)1/p

= (Tr |A|p)1/p if 1 ≤ p <∞,

s1(A) = ‖A‖ if p = ∞.

The norm ‖·‖p is called the Schatten-von Neumann p-norm. In particular,
‖A‖1 = Tr |A| is the trace-norm, ‖A‖2 = (TrA∗A)1/2 is the Hilbert-
Schmidt norm ‖A‖HS and ‖A‖∞ = ‖A‖ is the operator norm. (For
0 < p < 1, we may define ‖ · ‖p by the same expression as above, but this is
not a norm, and is called quasi-norm.)

Example 6.19 For the positive matrices 0 ≤ X ∈ Mn(C) and 0 ≤ Y ∈
Mk(C) assume that ||X||p, ||Y ||p ≤ 1 for p ≥ 1. Then the inequality

||(X ⊗ Ik + In ⊗ Y − In ⊗ Ik)+||p ≤ 1 (6.16)
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is proved here.

It is enough to compute in the case ||X||p = ||Y ||p = 1. Since X ⊗ Ik
and In ⊗ Y are commuting positive matrices, they can be diagonalized. Let
the obtained diagonal matrices have diagonal entries xi and yj, respectively.
These are positive real numbers and the condition

∑

i,j

((xi + yj − 1)+)
p ≤ 1 (6.17)

should be proved.

The function a 7→ (a+ b− 1)+ is convex for any real value of b:
(

a1 + a2
2

+ b− 1

)

+

≤ 1

2
(a1 + b− 1)+ +

1

2
(a2 + b− 1)+

It follows that the vector-valued function

a 7→ ((a+ yj − 1)+ : 1 ≤ j ≤ k)

is convex as well. Since the ℓq norm for positive real vectors is convex and
monotone increasing, we conclude that

f(a) :=
(

∑

j

((yj + a− 1)+)
q
)1/q

is a convex function. We have f(0) = 0 and f(1) ≤ 1 and the inequality
f(a) ≤ a follows for 0 ≤ a ≤ 1. Actually, we need this for xi. Since 0 ≤ xi ≤
1, f(xi) ≤ xi follows and

∑

i

∑

j

((xi + yj − 1)+)
p =

∑

i

f(xi)
p ≤

∑

i

xpi ≤ 1.

So the statement is proved. �

Another important class of unitarily invariant norms for n× n matrices is
the Ky Fan norm ‖ · ‖(k) defined by

‖A‖(k) :=
k
∑

i=1

si(A) for k = 1, . . . , n.

Obviously, ‖ · ‖(1) is the operator norm and ‖ · ‖(n) is the trace-norm. In
the next theorem we give two variational expressions for the Ky Fan norms,
which are sometimes quite useful since the Ky Fan norms are essential in
majorization and norm inequalities for matrices.

The right-hand side of the second expression in the next theorem is known
as the K-functional in the real interpolation theory.
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Theorem 6.20 Let H be an n-dimensional space. For A ∈ B(H) and k =
1, . . . , n, we have

(1) ‖A‖(k) = max{‖AP‖1 : P is a projection, rankP = k},
(2) ‖A‖(k) = min{‖X‖1 + k‖Y ‖ : A = X + Y }.
Proof: (1) For any projection P of rank k, we have

‖AP‖1 =
n
∑

i=1

si(AP ) =
k
∑

i=1

si(AP ) ≤
k
∑

i=1

si(A)

by Theorem 6.7. For the converse, take the polar decomposition A = U |A|
with a unitary U and the spectral decomposition |A| = ∑n

i=1 si(A)Pi with

mutually orthogonal projections Pi of rank 1. Let P :=
∑k

i=1 Pi. Then

‖AP‖1 = ‖U |A|P‖1 =
∥

∥

∥

∥

k
∑

i=1

si(A)Pi

∥

∥

∥

∥

1

=
k
∑

i=1

si(A) = ‖A‖(k).

(2) For any decomposition A = X + Y , since si(A) ≤ si(X) + ‖Y ‖ by
Theorem 6.7 (10), we have

‖A‖(k) ≤
k
∑

i=1

si(X) + k‖Y ‖ ≤ ‖X‖1 + k‖Y ‖

for any decomposition A = X + Y . Conversely, with the same notations as
in the proof of (1), define

X := U
k
∑

i=1

(si(A)− sk(A))Pi,

Y := U
(

sk(A)
k
∑

i=1

Pi +
n
∑

i=k+1

si(A)Pi

)

.

Then X + Y = A and

‖X‖1 =
k
∑

i=1

si(A)− ksk(A), ‖Y ‖ = sk(A).

Hence ‖X‖1 + k‖Y ‖ =
∑k

i=1 si(A). �

The following is a modification of the above expression in (1):

‖A‖(k) = max{|Tr (UAP )| : U a unitary, P a projection, rankP = k}.

Here we show the Hölder inequality for matrices to illustrate the use-
fulness of the majorization technique.
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Theorem 6.21 Let 0 < p, p1, p2 ≤ ∞ and 1/p = 1/p1 + 1/p2. Then

‖AB‖p ≤ ‖A‖p1‖B‖p2, A, B ∈ B(H).

Proof: When p1 = ∞ or p2 = ∞, the result is obvious. Assume that
0 < p1, p2 <∞. Since Corollary 6.14 implies that

(si(AB)p) ≺(log) (si(A)
psi(B)p),

it follows from Theorem 6.5 that

(si(AB)p) ≺w (si(A)
psi(B)p).

Since (p1/p)
−1 + (p2/p)

−1 = 1, the usual Hölder inequality for vectors shows
that

‖AB‖p =
(

n
∑

i=1

si(AB)p
)1/p

≤
(

n
∑

i=1

si(A)
psi(B)p

)1/p

≤
(

n
∑

i=1

si(A)
p1
)1/p1(

n
∑

i=1

si(B)p2
)1/p2

≤ ‖A‖p1‖B‖p2.

�

Corresponding to each symmetric gauge function Φ, define Φ′ : Rn → R

by

Φ′(b) := sup
{

n
∑

i=1

aibi : a = (ai) ∈ R
n, Φ(a) ≤ 1

}

(6.18)

for b = (bi) ∈ Rn.

Then Φ′ is a symmetric gauge function again, which is said to be dual to
Φ. For example, when 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1, the ℓp-norm Φp is dual
to the ℓq-norm Φq.

The following is another generalized Hölder inequality, which can be shown
as Theorem 6.21.

Lemma 6.22 Let Φ, Φ1 and Φ2 be symmetric gauge functions with the cor-
responding unitarily invariant norms ||| · |||, ||| · |||1 and ||| · |||2 on B(H),
respectively. If

Φ(ab) ≤ Φ1(a)Φ2(b), a, b ∈ R
n,

then
|||AB||| ≤ |||A|||1|||B|||2, A, B ∈ B(H).

In particular, if ||| · |||′ is the unitarily invariant norm corresponding to Φ′

dual to Φ, then

‖AB‖1 ≤ |||A||| |||B|||′, A, B ∈ B(H).
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Proof: By Corollary 6.14, Theorem 6.5, and Lemma 6.16, we have

Φ(s(AB)) ≤ Φ(s(A)s(B)) ≤ Φ1(s(A))Φ2(s(B)) ≤ |||A|||1|||B|||2,

showing the first assertion. For the second part, note by definition of Φ′ that
Φ1(ab) ≤ Φ(a)Φ′(b) for a, b ∈ Rn. �

Theorem 6.23 Let Φ and Φ′ be dual symmetric gauge functions on Rn with
the corresponding norms ||| · ||| and ||| · |||′ on B(H), respectively. Then
||| · ||| and ||| · |||′ are dual with respect to the duality (A,B) 7→ TrAB for
A,B ∈ B(H), that is,

|||B|||′ = sup{|TrAB| : A ∈ B(H), |||A||| ≤ 1}, B ∈ B(H). (6.19)

Proof: First note that any linear functional on B(H) is represented as
A ∈ B(H) 7→ TrAB for some B ∈ B(H). We write |||B|||◦ for the right-hand
side of (6.19). From Lemma 6.22 we have

|TrAB| ≤ ‖AB||1 ≤ |||A||| |||B|||′

so that |||B|||◦ ≤ |||B|||′ for all B ∈ B(H). On the other hand, let B = V |B|
be the polar decomposition and |B| =

∑n
i=1 si(B)|vi〉〈vi| be the Schmidt

decomposition of |B|. For any a = (ai) ∈ Rn with Φ(a) ≤ 1, let A :=
(
∑n

i=1 ai|vi〉〈vi|)V ∗. Then s(A) = s(
∑n

i=1 ai|vi〉〈vi|) = (a∗1, . . . , a
∗
n), the de-

creasing rearrangement of (|a1|, . . . , |an|), and hence |||A||| = Φ(s(A)) =
Φ(a) ≤ 1. Moreover,

TrAB = Tr

( n
∑

i=1

ai|vi〉〈vi|
)( n
∑

i=1

si(B)|vi〉〈vi|
)

= Tr

( n
∑

i=1

aisi(B)|vi〉〈vi|
)

=
n
∑

i=1

aisi(B)

so that
n
∑

i=1

aisi(B) ≤ |TrAB| ≤ |||A||| |||B|||◦ ≤ |||B|||◦.

This implies that |||B|||′ = Φ′(s(B)) ≤ |||B|||◦. �

As special cases we have ‖ · ‖′p = ‖ · ‖q when 1 ≤ p ≤ ∞ and 1/p+1/q = 1.

The close relation between the (log-)majorization and the unitarily invari-
ant norm inequalities is summarized in the following proposition.

Theorem 6.24 Consider the following conditions for A,B ∈ B(H).
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(i) s(A) ≺w(log) s(B);

(ii) |||f(|A|)||| ≤ |||f(|B|)||| for every unitarily invariant norm ||| · ||| and
every continuous increasing function f : R+ → R+ such that f(ex) is
convex;

(iii) s(A) ≺w s(B);

(iv) ‖A‖(k) ≤ ‖B‖(k) for every k = 1, . . . , n;

(v) |||A||| ≤ |||B||| for every unitarily invariant norm ||| · |||;

(vi) |||f(|A|)||| ≤ |||f(|B|)||| for every unitarily invariant norm ||| · ||| and
every continuous increasing convex function f : R+ → R+.

Then

(i) ⇐⇒ (ii) =⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi).

Proof: (i) ⇒ (ii). Let f be as in (ii). By Theorems 6.5 and 6.7 (11) we
have

s(f(|A|)) = f(s(A)) ≺w f(s(B)) = s(f(|B|)). (6.20)

This implies by Theorem 6.18 (3) that |||f(|A|)||| ≤ |||f(|B|)||| for any uni-
tarily invariant norm.

(ii)⇒ (i). Take |||·||| = ‖·‖(k), the Ky Fan norms, and f(x) = log(1+ε−1x)
for ε > 0. Then f satisfies the condition in (ii). Since

si(f(|A|)) = f(si(A)) = log(ε+ si(A))− log ε,

the inequality ‖f(|A|)‖(k) ≤ ‖f(|B|)‖(k) means that

k
∏

i=1

(ε+ si(A)) ≤
k
∏

i=1

(ε+ si(B)).

Letting ε ց 0 gives
∏k

i=1 si(A) ≤
∏k

i=1 si(B) and hence (i) follows.

(i) ⇒ (iii) follows from Theorem 6.5. (iii) ⇔ (iv) is trivial by definition of
‖ · ‖(k) and (vi) ⇒ (v) ⇒ (iv) is clear. Finally assume (iii) and let f be as in
(vi). Theorem 6.7 yields (6.20) again, so that (vi) follows. Hence (iii) ⇒ (vi)
holds. �

By Theorems 6.9, 6.10 and 6.24 we have:
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Corollary 6.25 For A,B ∈ Mn and a unitarily invariant norm ||| · |||, the
inequality

|||Diag(s1(A)− s1(B), . . . , sn(A)− sn(B))||| ≤ |||A−B|||
holds. If A and B are self-adjoint, then

|||Diag(λ1(A)− λ1(B), . . . , λn(A)− λn(B))||| ≤ |||A− B|||.

The following statements are particular cases for self-adjoint matrices:

( n
∑

i=1

|λi(A)− λi(B)|p
)1/p

≤ ‖A−B‖p (1 ≤ p <∞)

The following is called Weyl’s inequality:

max
1≤i≤n

|λi(A)− λi(B)| ≤ ‖A− B‖

There are similar inequalities in the general case, where λi is replaced by
si.

In the rest of this section we show symmetric norm inequalities (or eigen-
value majorizations) involving convex/concave functions and expansions. An
operator Z is called an expansion if ZZ ≥ I.

Theorem 6.26 Let f : [0,∞) → [0,∞) be a concave function. If A ∈ M+
n

and Z ∈ Mn is an expansion, then

|||f(Z∗AZ)||| ≤ |||Z∗f(A)Z|||
for every unitarily invariant norm ||| · |||, or equivalently,

λ(f(Z∗AZ)) ≺w λ(Z
∗f(A)Z).

Proof: Note that f is automatically non-decreasing. Due to Theorem 6.23
it suffices to prove the inequality for the Ky Fan k-norms ‖ · ‖(k), 1 ≤ k ≤ n.
Letting f0(x) := f(x)− f(0) we have

f(Z∗AZ) = f(0)I + f0(Z
∗AZ),

Z∗f(A)Z = f(0)Z∗Z + Z∗f0(A)Z ≥ f(0)I + Z∗f0(A)Z,

which show that we may assume that f(0) = 0. Then there is a spectral
projection E of rank k for Z∗AZ such that

‖f(Z∗AZ)‖(k) =
k
∑

j=1

f(λj(Z
∗AZ)) = Tr f(Z∗AZ)E.
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When we show that

Tr f(Z∗AZ)E ≤ TrZ∗f(A)ZE, (6.21)

it follows that

‖f(Z∗AZ)‖(k) ≤ TrZ∗f(A)ZE ≤ ‖Z∗f(A)Z‖(k)
by Theorem 6.20. For (6.21) we may show that

Tr g(Z∗AZ)E ≥ TrZ∗g(A)ZE (6.22)

for every convex function on [0,∞) with g(0) = 0. Such a function g can be
approximated by functions of the type

αx+

m
∑

i=1

αi(x− βi)+ (6.23)

with α ∈ R and αi, βi > 0, where (x− β)+ := max{0, x− β}. Consequently,
it suffices to show (6.22) for gβ(x) := (x− β)+ with β > 0. From the lemma
below we have a unitary U such that

gβ(Z
∗AZ) ≥ U∗Z∗gβ(A)ZU.

We hence have

Tr gβ(Z
∗AZ)E =

k
∑

j=1

λj(gβ(Z
∗AZ)) ≥

k
∑

j=1

λj(U
∗Z∗gβ(A)ZU)

=
k
∑

j=1

λj(Z
∗gβ(A)Z) ≥ TrZ∗gβ(A)ZE,

that is (6.22) for g = gβ. �

Lemma 6.27 Let A ∈ M+
n , Z ∈ M be an expansion, and β > 0. Then there

exists a unitary U such that

(Z∗AZ − βI)+ ≥ U∗Z∗(A− βI)+ZU.

Proof: Let P be the support projection of (A − βI)+ and set Aβ := PA.
Let Q be the support projection of Z∗AβZ. Since Z∗AZ ≥ Z∗AβZ and
(x− β)+ is a non-decreasing function, for 1 ≤ j ≤ n we have

λj((Z
∗AZ − βI)+) = (λj(Z

∗AZ)− β)+

≥ (λj(Z
∗AβZ)− β)+

= λj((Z
∗AβZ − βI)+).
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So there exists a unitary U such that

(Z∗AZ − βI)+ ≥ U∗(Z∗AβZ − βI)+U.

It is obvious that Q is the support projection of Z∗PZ. Also, note that
Z∗PZ is unitarily equivalent to PZZ∗P . Since Z∗Z ≥ I, it follows that
ZZ∗ ≥ I and so PZZ∗P ≥ P . Therefore, we have Q ≤ Z∗PZ. Since
ZAβZ ≥= βZPZ ≥ βQ, we see that

(Z∗AβZ − βI)+ = Z∗AβZ − βQ ≥ Z∗AβZ − βZ∗PZ

= Z∗(Aβ − βP )Z = Z∗(A− βI)+Z,

which gives the conclusion. �

When f is convex with f(0) = 0, the inequality in Theorem 6.26 is re-
versed.

Theorem 6.28 Let f : [0,∞) → [0,∞) be a convex function with f(0) = 0.
If A ∈ M+

n and Z ∈ Mn is an expansion, then

|||f(Z∗AZ)||| ≥ |||Z∗f(A)Z|||

for every unitarily invariant norm ||| · |||.

Proof: By approximation we may assume that f is of the form (6.23) with
α ≥ 0 and αi, βi > 0. By Lemma 6.27 we have

Z∗f(A)Z = αZ∗AZ +
∑

i

αiZ
∗(A− βiI)+Z

≤ αZ∗AZ +
∑

i

αiUi(Z
∗AZ − βiI)+U

∗
i

for some unitaries Ui, 1 ≤ i ≤ m. We now consider the Ky Fan k-norms
‖ · ‖(k). For each k = 1, . . . , n there is a projection E of rank k so that

∥

∥

∥
αZ∗AZ +

∑

i

αiUi(Z
∗AZ − βiI)+U

∗
i

∥

∥

∥

(k)

= Tr
{

αZ∗AZ +
∑

i

αiUi(Z
∗AZ − βiI)+U

∗
i

}

E

= αTrZ∗AZE +
∑

i

αiTr (Z
∗AZ − βiI)+U

∗
i EUi

≤ α‖Z∗AZ‖(k) +
∑

i

αi‖(Z∗AZ − βiI)+‖(k)
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=

k
∑

j=1

{

αλj(Z
∗AZ) +

∑

i

αi(λj(Z
∗AZ)− βi)+

}

=

k
∑

j=1

f(λj(Z
∗AZ)) = ‖f(Z∗AZ)‖(k),

and hence ‖Z∗f(A)Z‖(k) ≤ ‖f(Z∗AZ)‖(k). This implies the conclusion. �

For the trace function the non-negativity assumption of f is not necessary
so that we have

Theorem 6.29 Let A ∈ Mn(C)
+ and Z ∈ Mn(C) be an expansion. If f is a

concave function on [0,∞) with f(0) ≥ 0, then

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z.

If f is a convex function on [0,∞) with f(0) ≤ 0, then

Tr f(Z∗AZ) ≥ TrZ∗f(A)Z.

Proof: The two assertions are obviously equivalent. To prove the second,
by approximation we may assume that f is of the form (6.23) with α ∈ R

and αi, βi > 0. Then, by Lemma 6.27,

Tr f(Z∗AZ) = Tr
{

αZ∗AZ +
∑

i

αi(Z
∗AZ − βiI)+

}

≥ Tr
{

αZ∗AZ +
∑

i

αiZ
∗(A− βiI)+Z

}

= TrZ∗f(A)Z

and the statement is proved. �

6.4 More majorizations for matrices

In the first part of this section, we prove a subadditivity property for certain
symmetric norm functions. Let f : R+ → R+ be a concave function. Then f
is increasing and it is easy to show that f(a + b) ≤ f(a) + f(b) for positive
numbers a and b. The Rotfel’d inequality

Tr f(A+B) ≤ Tr (f(A) + f(B)) (A,B ∈ M
+
n )

is a matrix extension. Another extension is

|||f(A+B)||| ≤ |||f(A) + f(B)||| (6.24)

for all A,B ∈ M+
n and for any unitarily invariant norm ||| · |||, which will be

proved in Theorem 6.34 below.
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Lemma 6.30 Let g : R+ → R+ be a continuous function. If g is decreasing
and xg(x) is increasing, then

λ((A+B)g(A+B)) ≺w λ(A
1/2g(A+B)A1/2 +B1/2g(A+B)B1/2)

for all A,B ∈ M+
n .

Proof: Let λ(A + B) = (λ1, . . . , λn) be the eigenvalue vector arranged in
decreasing order and u1, . . . , un be the corresponding eigenvectors forming an
orthonormal basis of Cn. For 1 ≤ k ≤ n let Pk be the orthogonal projection
onto the subspace spanned by u1, . . . , uk. Since xg(x) is increasing, it follows
that

λ((A+B)g(A+B)) = (λ1g(λ1), . . . , λng(λn)).

Hence, what we need to prove is

Tr (A+B)g(A+B)Pk ≤ Tr
(

A1/2g(A+B)A1/2 +B1/2g(A+B)B1/2
)

Pk,

since the left-hand side is equal to
∑k

i=1 λig(λi) and the right-hand side is

less than or equal to
∑k

i=1 λi(A
1/2g(A + B)A1/2 + B1/2g(A + B)B1/2). The

above inequality immediately follows by summing the following two:

Tr g(A+B)1/2Ag(A+B)1/2Pk ≤ TrA1/2g(A+B)A1/2Pk, (6.25)

Tr g(A+B)1/2Bg(A+B)1/2Pk ≤ TrB1/2g(A+B)B1/2Pk. (6.26)

To prove (6.25), we write Pk, H := g(A+B) and A1/2 as

Pk =

[

IK 0
0 0

]

, H =

[

H1 0
0 H2

]

, A1/2 =

[

A11 A12

A∗
12 A22

]

in the form of 2 × 2 block-matrices corresponding to the orthogonal decom-
position Cn = K ⊕K⊥ with K := PkC

n. Then

Pkg(A+B)1/2Ag(A+B)1/2Pk =

[

H
1/2
1 A2

11H
1/2
1 +H

1/2
1 A12A

∗
12H

1/2
1 0

0 0

]

,

PkA
1/2g(A+B)A1/2Pk =

[

A11H1A11 + A12H2A
∗
12 0

0 0

]

.

Since g is decreasing, we notice that

H1 ≤ g(λk)IK, H2 ≥ g(λk)IK⊥.

Therefore, we have

TrH
1/2
1 A12A

∗
12H

1/2
1 = TrA∗

12H1A12 ≤ g(λk)TrA
∗
12A12 = g(λk)TrA12A

∗
12
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≤ TrA12H2A
∗
12

so that

Tr (H
1/2
1 A2

11H
1/2
1 +H

1/2
1 A12A

∗
12H

1/2
1 ) ≤ Tr (A11H1A11 + A12H2A

∗
12),

which shows (6.25). (6.26) is similarly proved. �

In the next result matrix concavity is assumed.

Theorem 6.31 Let f : R+ → R+ be a continuous matrix monotone (equiv-
alently, matrix concave) function. Then (6.24) holds for all A,B ∈ M+

n and
for any unitarily invariant norm ||| · |||.

Proof: By continuity we may assume that A,B ∈ M+
n are invertible. Let

g(x) := f(x)/x; then g satisfies the assumptions of Lemma 6.30. Hence the
lemma implies that

|||f(A+B)||| ≤ |||A1/2(A +B)−1/2f(A+B)(A+B)−1/2A1/2

+B1/2(A+B)−1/2f(A+B)(A +B)−1/2B1/2|||. (6.27)

Since C := A1/2(A +B)−1/2 is a contraction, Theorem 4.23 implies from the
matrix concavity that

A1/2(A+B)−1/2f(A+B)(A+B)−1/2A1/2

= Cf(A+B)C∗ ≤ f(C(A+B)C∗) = f(A),

and similarly

B1/2(A+B)−1/2f(A+B)(A+B)−1/2B1/2 ≤ f(B).

Therefore, the right-hand side of (6.27) is less than or equal to |||f(A) +
f(B)|||. �

A particular case of the next theorem is |||(A+B)m||| ≥ |||Am+Bm||| for
m ∈ N, which was shown by Bhatia and Kittaneh [21].

Theorem 6.32 Let g : R+ → R+ be an increasing bijective function whose
inverse function is operator monotone. Then

|||g(A+B)||| ≥ |||g(A) + g(B)||| (6.28)

for all A,B ∈ M+
n and ||| · |||.
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Proof: Let f be the inverse function of g. For every A,B ∈ M+
n , Theorem

6.31 implies that
f(λ(A+B)) ≺w λ(f(A) + f(B)).

Now, replace A and B by g(A) and g(B), respectively. Then we have

f(λ(g(A) + g(B))) ≺w λ(A+B).

Since f is concave and hence g is convex (and increasing), we have by Example
6.4

λ(g(A) + g(B)) ≺w g(λ(A+B)) = λ(g(A+B)),

which means by Theorem 6.24 that |||g(A) + g(B)||| ≤ |||g(A+B)|||. �

The above theorem can be extended to the next theorem due to Kosem
[52], which is the first main result of this section. The simpler proof below is
from [28].

Theorem 6.33 Let g : R+ → R+ be a continuous convex function with
g(0) = 0. Then (6.28) holds for all A,B and ||| · ||| as above.

Proof: First, note that a convex function g ≥ 0 on [0,∞) with g(0) = 0
is non-decreasing. Let Γ denote the set of all non-negative functions g on
[0,∞) for which the conclusion of the theorem holds. It is obvious that
Γ is closed under pointwise convergence and multiplication by non-negative
scalars. When f, g ∈ Γ, for the Ky Fan norms ‖ · ‖(k), 1 ≤ k ≤ n, and for
A,B ∈ M+

n we have

‖(f + g)(A+B)‖(k) = ‖f(A+B)‖(k) + ‖g(A+B)‖(k)
≥ ‖f(A) + f(B)‖(k) + ‖g(A) + g(B)‖(k)
≥ ‖(f + g)(A) + (f + g)(B)‖(k),

where the above equality is guaranteed by the non-decreasingness of f, g and
the latter inequality is the triangle inequality. Hence f + g ∈ Γ by Theorem
6.24 so that Γ is a convex cone. Notice that any convex function g ≥ 0
on [0,∞) with g(0) = 0 is the pointwise limit of an increasing sequence of
functions of the form

∑m
l=1 clγal(x) with cl, al > 0, where γa is the angle

function at a > 0 given as γa(x) := max{x− a, 0}. Hence it suffices to show
that γa ∈ Γ for all a > 0. To do this, for a, r > 0 we define

ha,r(x) :=
1

2

(

√

(x− a)2 + r + x−
√
a2 + r

)

, x ≥ 0,

which is an increasing bijective function on [0,∞) and whose inverse is

x− r/2

2x+
√
a2 + r − a

+

√
a2 + r + a

2
. (6.29)
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Since (6.29) is operator monotone on [0,∞), we have ha,r ∈ Γ by Theorem
6.32. Therefore, γa ∈ Γ since ha,r → γa as r ց 0. �

The next subadditivity inequality extending Theorem 6.31 was proved by
Bourin and Uchiyama [28], which is the second main result.

Theorem 6.34 Let f : [0,∞) → [0,∞) be a continuous concave function.
Then (6.24) holds for all A,B and ||| · ||| as above.

Proof: Let λi and ui, 1 ≤ i ≤ n, be taken as in the proof of Lemma 6.30,
and Pk, 1 ≤ k ≤ n, be also as there. We may prove the weak majorization

k
∑

i=1

f(λi) ≤
k
∑

i=1

λi(f(A) + f(B)), 1 ≤ k ≤ n.

To do this, it suffices to show that

Tr f(A+B)Pk ≤ Tr (f(A) + f(B))Pk. (6.30)

Indeed, since f is necessarily increasing, the left-hand side of (6.30) is
∑k

i=1 f(λi)

and the right-hand side is less than or equal to
∑k

i=1 λi(f(A) + f(B)). Here,
note by Exercise 13 that f is the pointwise limit of a sequence of functions of
the form α+βx− g(x) where α ≥ 0, β > 0, and g ≥ 0 is a continuous convex
function on [0,∞) with g(0) = 0. Hence, to prove (6.30), it suffices to show
that

Tr g(A+B)Pk ≥ Tr (g(A) + g(B))Pk

for any continuous convex function g ≥ 0 on [0,∞) with g(0) = 0. In fact,
this is seen as follows:

Tr g(A+B)Pk = ‖g(A+B)‖(k) ≥ ‖g(A) + g(B)‖(k) ≥ Tr (g(A) + g(B))Pk,

where the above equality is due to the increasingness of g and the first in-
equality follows from Theorem 6.33. �

The subadditivity inequality of Theorem 6.33 was further extended by
Bourin in such a way that if f is a positive continuous concave function on
[0,∞) then

|||f(|A+B|)||| ≤ |||f(|A|) + f(|B|)|||
for all normal matrices A,B ∈ Mn and for any unitarily invariant norm ||| · |||.
In particular,

|||f(|Z|)||| ≤ |||f(|A|) + f(|B|)|||
when Z = A + iB is the Descartes decomposition of Z.
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In the second part of this section, we prove the inequality between norms of
f(|A−B|) and f(A)−f(B) (or the weak majorization for their singular values)
when f is a positive operator monotone function on [0,∞) and A,B ∈ M+

n .
We first prepare some simple facts for the next theorem.

Lemma 6.35 For self-adjoint X, Y ∈ Mn, let X = X+ − X− and Y =
Y+ − Y− be the Jordan decompositions.

(1) If X ≤ Y then si(X+) ≤ si(Y+) for all i.

(2) If s(X+) ≺w s(Y+) and s(X−) ≺w s(Y−), then s(X) ≺w s(Y ).

Proof: (1) Let Q be the support projection of X+. Since

X+ = QXQ ≤ QYQ ≤ QY+Q,

we have si(X+) ≤ si(QY+Q) ≤ si(Y+) by Theorem 6.7 (7).

(2) It is rather easy to see that s(X) is the decreasing rearrangement of
the combination of s(X+) and s(X−). Hence for each k ∈ N we can choose
0 ≤ m ≤ k so that

k
∑

i=1

si(X) =
m
∑

i=1

si(X+) +
k−m
∑

i=1

si(X−).

Hence
k
∑

i=1

si(X) ≤
m
∑

i=1

si(Y+) +

k−m
∑

i=1

si(Y−) ≤
k
∑

i=1

si(Y ),

as desired. �

Theorem 6.36 Let f : R+ → R+ be a matrix monotone function. Then

|||f(A)− f(B)||| ≤ |||f(|A− B|)|||

for all A,B ∈ M+
n and for any unitarily invariant norm ||| · |||. Equivalently,

s(f(A)− f(B)) ≺w s(f(|A− B|)) (6.31)

holds.

Proof: First assume that A ≥ B ≥ 0 and let C := A− B ≥ 0. In view of
Theorem 6.24, it suffices to prove that

‖f(B + C)− f(B)‖(k) ≤ ‖f(C)‖(k), 1 ≤ k ≤ n. (6.32)
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For each λ ∈ (0,∞) let

hλ(x) =
x

x+ λ
= 1− λ

x+ λ
,

which is increasing on [0,∞) with hλ(0) = 0. According to the integral
representation for f with a, b ≥ 0 and a positive finite measure m on (0,∞),
we have

si(f(C)) = f(si(C))

= a+ bsi(C) +

∫

(0,∞)

si(C)(1 + λ)

si(C) + λ
dm(λ)

= a+ bsi(C) +

∫

(0,∞)

(1 + λ)si(hλ(C)) dm(λ),

so that

‖f(C)‖(k) ≥ b‖C‖(k) +
∫

(0,∞)

(1 + λ)‖hλ(C)‖(k) dm(λ). (6.33)

On the other hand, since

f(B + C) = aI + b(B + C) +

∫

(0,∞)

(1 + λ)hλ(B + C) dm(λ)

as well as the analogous expression for f(B), we have

f(B + C)− f(B) = bC +

∫

(0,∞)

(1 + λ)(hλ(B + C)− hλ(B)) dm(λ),

so that

‖f(B+C)−f(B)‖(k) ≤ b‖C‖(k)+
∫

(0,∞)

(1+λ)‖hλ(B+C)−hλ(B)‖(k) dm(λ).

By this inequality and (6.33), it suffices for (6.32) to show that

‖hλ(B + C)− hλ(B)‖(k) ≤ ‖hλ(C)‖(k) (λ ∈ (0,∞), 1 ≤ k ≤ n).

As hλ(x) = h1(x/λ), it is enough to show this inequality for the case λ = 1
since we may replace B and C by λ−1B and λ−1C, respectively. Thus, what
remains to prove is the following:

‖(B + I)−1 − (B + C + I)−1‖(k) ≤ ‖I − (C + I)−1‖(k) (1 ≤ k ≤ n). (6.34)
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Since

(B+I)−1−(B+C+I)−1 = (B+I)−1/2h1((B+I)−1/2C(B+I)−1/2)(B+I)−1/2

and ‖(B + I)−1/2‖ ≤ 1, we obtain

si((B + I)−1 − (B + C + I)−1) ≤ si(h1((B + I)−1/2C(B + I)−1/2))

= h1(si((B + I)−1/2C(B + I)−1/2))

≤ h1(si(C)) = si(I − (C + I)−1)

by repeated use of Theorem 6.7 (7). Therefore, (6.34) is proved.

Next, let us prove the assertion in the general case A,B ≥ 0. Since
0 ≤ A ≤ B + (A−B)+, it follows that

f(A)− f(B) ≤ f(B + (A−B)+)− f(B),

which implies by Lemma 6.35 (1) that

‖(f(A)− f(B))+‖(k) ≤ ‖f(B + (A− B)+)− f(B)‖(k).
Applying (6.32) to B + (A−B)+ and B, we have

‖f(B + (A− B)+)− f(B)‖(k) ≤ ‖f((A− B)+)‖(k).
Therefore,

s((f(A)− f(B))+) ≺w s(f((A−B)+)). (6.35)

Exchanging the role of A,B gives

s((f(A)− f(B))−) ≺w s(f((A−B)−)). (6.36)

Here, we may assume that f(0) = 0 since f can be replaced by f − f(0).
Then it is immediate to see that

f((A− B)+)f((A−B)−) = 0, f((A−B)+) + f((A− B)−) = f(|A−B|).
Hence s(f(A)−f(B)) ≺w s(f(|A−B|)) follows from (6.35) and (6.36) thanks
to Lemma 6.35 (2). �

When f(x) = xθ with 0 < θ < 1, the weak majorization (6.31) gives the
norm inequality formerly proved by Birman, Koplienko and Solomyak:

‖Aθ −Bθ‖p/θ ≤ ‖A− B‖θp
for all A,B ∈ M+

n and θ ≤ p ≤ ∞. The case where θ = 1/2 and p = 1 is
known as the Powers-Størmer inequality.

The following is an immediate corollary of Theorem 6.36, whose proof is
similar to that of Theorem 6.32.
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Corollary 6.37 Let g : R+ → R+ be an increasing bijective function whose
inverse function is operator monotone. Then

|||g(A)− g(B)||| ≥ |||g(|A− B|)|||

for all A,B and ||| · ||| as above.

In [12], Audenaert and Aujla pointed out that Theorem 6.36 is not true
in the case where f : R+ → R+ is a general continuous concave function and
that Corollary 6.37 is not true in the case where g : R+ → R+ is a general
continuous convex function.

In the last part of this section we prove log-majorizations results, which
give inequalities strengthening or complementing the Golden-Thompson in-
equality. The following log-majorization is due to Araki.

Theorem 6.38 For every A,B ∈ M+
n ,

s((A1/2BA1/2)r) ≺(log) s(A
r/2BrAr/2), r ≥ 1, (6.37)

or equivalently

s((Ap/2BpAp/2)1/p) ≺(log) s((A
q/2BqAq/2)1/q), 0 < p ≤ q. (6.38)

Proof: We can pass to the limit from A + εI and B + εI as ε ց 0 by
Theorem 6.7 (10). So we may assume that A and B are invertible.

First we show that

‖(A1/2BA1/2)r‖ ≤ ‖Ar/2BrAr/2‖, r ≥ 1. (6.39)

It is enough to check that Ar/2BrAr/2 ≤ I implies A1/2BA1/2 ≤ I which is
equivalent to a monotonicity: Br ≤ A−r implies B ≤ A−1.

We have

((A1/2BA1/2)r)∧k = ((A∧k)1/2(B∧k)(A∧k)1/2)r,

(Ar/2BrAr/2)∧k = (A∧k)r/2(B∧k)r(A∧k)r/2,

and instead of A,B in (6.39) we put A∧k, B∧k:

‖((A1/2BA1/2)r)∧k‖ ≤ ‖(Ar/2BrAr/2)∧k‖.

This means, thanks to Lemma 1.62, that

k
∏

i=1

si((A
1/2BA1/2)r) ≤

k
∏

i=1

si(A
r/2BrAr/2).
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Moreover,

n
∏

i=1

si((A
1/2BA1/2)r) = (detA · detB)r =

n
∏

i=1

si(A
r/2BrAr/2).

Hence (6.37) is proved. If we replace A,B by Ap, Bp and take r = q/p, then

s((Ap/2BpAp/2)q/p) ≺(log) s(A
q/2BqAq/2),

which implies (6.38) by Theorem 6.7 (11). �

Let 0 ≤ A,B ∈ Mm, s, t ∈ R+ and t ≥ 1. Then the theorem implies

Tr (A1/2BA1/2)st ≤ Tr (At/2BAt/2)s (6.40)

which is called Araki-Lieb-Thirring inequality. The case s = 1 and
integer t was the Lieb-Thirring inequality.

Theorems 6.24 and 6.38 yield:

Corollary 6.39 Let A,B ∈ M+
n and ||| · ||| be any unitarily invariant norm.

If f is a continuous increasing function on [0,∞) such that f(0) ≥ 0 and
f(et) is convex, then

|||f((A1/2BA1/2)r)||| ≤ |||f(Ar/2BrAr/2)|||, r ≥ 1.

In particular,

|||(A1/2BA1/2)r||| ≤ |||Ar/2BrAr/2|||, r ≥ 1.

The next corollary is the strengthened Golden-Thompson inequality
to the form of log-majorization.

Corollary 6.40 For every self-adjoint H,K ∈ Mn,

s(eH+K) ≺(log) s((e
rH/2erKerH/2)1/r), r > 0.

Hence, for every unitarily invariant norm ||| · |||,

|||eH+K ||| ≤ |||(erH/2erKerH/2)1/r|||, r > 0,

and the above right-hand side decreases to |||eH+K ||| as r ց 0. In particular,

|||eH+K ||| ≤ |||eH/2eKeH/2||| ≤ |||eHeK |||. (6.41)
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Proof: The log-majorization follows by letting p ց 0 in (6.38) thanks to
the above lemma. The second assertion follows from the first and Theorem
6.24. Thanks to Theorem 6.7 (3) and Theorem 6.38 the second inequality of
(6.41) is seen as

|||eHeK ||| = ||| |eKeH | ||| = |||(eHe2KeH)1/2||| ≥ |||eH/2eKeH/2|||.

�

The specialization of the inequality (6.41) to the trace-norm || · ||1 is the
Golden-Thompson trace inequality Tr eH+K ≤ Tr eHeK . It was shown in
[74] that Tr eH+K ≤ Tr (eH/neK/n)n for every n ∈ N. The extension (6.41)
was given in [56, 75]. Also (6.41) for the operator norm is known as Segal’s
inequality (see [72, p. 260]).

Theorem 6.41 If A,B,X ∈ Mn and for the block-matrix

0 ≤
[

A X
X B

]

,

then we have

λ
(

[

A X
X B

]

)

≺ λ
(

[

A+B 0
0 0

]

)

.

Proof: By Example 2.6 and the Ky Fan majorization (Corollary 6.11), we
have

λ
(

[

A X
X B

]

)

≺ λ
(

[

A+B
2

0
0 0

]

)

+ λ
(

[

0 0
0 A+B

2

]

)

= λ
(

[

A +B 0
0 0

]

)

.

This is the result. �

The following statement is a special case of the previous theorem.

Example 6.42 For every X, Y ∈ Mn such that X∗Y is Hermitian, we have

λ(XX∗ + Y Y ∗) ≺ λ(X∗X + Y ∗Y ).

Since
[

XX∗ + Y Y ∗ 0
0 0

]

=

[

X Y
0 0

] [

X∗ 0
Y ∗ 0

]

is unitarily conjugate to

[

X∗ 0
Y ∗ 0

] [

X Y
0 0

]

=

[

X∗X X∗Y
Y ∗X Y ∗Y

]
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and X∗Y is Hermitian by assumption, the above corollary implies that

λ
(

[

XX∗ + Y Y ∗ 0
0 0

]

)

≺ λ
(

[

X∗X + Y ∗Y 0
0 0

]

)

.

So the statement follows. �

Next we study log-majorizations and norm inequalities. These involve the
weighted geometric means

A#αB = A1/2(A−1/2BA−1/2)αA1/2,

where 0 ≤ α ≤ 1. The log-majorization in the next theorem is due to Ando
and Hiai, [7] which is considered as complementary to Theorem 6.38.

Theorem 6.43 For every A,B ∈ M+
n ,

s(Ar#αB
r) ≺(log) s((A#αB)r), r ≥ 1, (6.42)

or equivalently

s((Ap#αB
p)1/p) ≺(log) s((A

q#αB
q)1/q), p ≥ q > 0. (6.43)

Proof: First assume that both A and B are invertible. Note that

det(Ar#αB
r) = (detA)r(1−α)(detB)rα = det(A#αB)r.

For every k = 1, . . . , n, it is easily verified from the properties of the antisym-
metric tensor powers that

(Ar#αB
r)∧k = (A∧k)r#α (B

∧k)r,

((A#αB)r)∧k = ((A∧k)#α (B
∧k))r.

So it suffices to show that

‖Ar#αB
r‖ ≤ ‖(A#αB)r‖ (r ≥ 1), (6.44)

because (6.42) follows from Lemma 1.62 by taking A∧k, B∧k instead of A, B in
(6.44). To show (6.44), we may prove that A#αB ≤ I implies Ar#αB

r ≤ I.
When 1 ≤ r ≤ 2, let us write r = 2−ε with 0 ≤ ε ≤ 1. Let C := A−1/2BA−1/2.
Suppose that A#αB ≤ I. Then Cα ≤ A−1 and

A ≤ C−α, (6.45)
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so that thanks to 0 ≤ ε ≤ 1

A1−ε ≤ C−α(1−ε). (6.46)

Now we have

Ar#αB
r = A1− ε

2{A−1+ ε
2B · B−ε · BA−1+ ε

2}αA1− ε
2

= A1− ε
2{A− 1−ε

2 CA1/2(A−1/2C−1A−1/2)εA1/2CA− 1−ε
2 }αA1− ε

2

= A1/2{A1−ε#α [C(A#εC
−1)C]}A1/2

≤ A1/2{C−α(1−ε) #α [C(C
−α#εC

−1)C]}A1/2

by using (6.45), (6.46), and the joint monotonicity of power means. Since

C−α(1−ε)#α [C(C
−α#εC

−1)C] = C−α(1−ε)(1−α)[C(C−α(1−ε)C−ε)C]α = Cα,

we have
Ar#αB

r ≤ A1/2CαA1/2 = A#αB ≤ I.

Therefore (6.42) is proved when 1 ≤ r ≤ 2. When r > 2, write r = 2ms with
m ∈ N and 1 ≤ s ≤ 2. Repeating the above argument we have

s(Ar#αB
r) ≺w(log) s(A

2m−1s#αB
2m−1s)2

...

≺w(log) s(A
s#αB

s)2
m

≺w(log) s(A#αB)r.

For general A,B ∈ B(H)+ let Aε := A + εI and Bε := B + εI for ε > 0.
Since

Ar#αB
r = lim

εց0
Arε#αB

r
ε and (A#αB)r = lim

εց0
(Aε#αBε)

r,

we have (6.42) by the above case and Theorem 6.7 (10). Finally, (6.43) readily
follows from (6.42) as in the last part of the proof of Theorem 6.38. �

By Theorems 6.43 and 6.24 we have:

Corollary 6.44 Let A,B ∈ M+
n and ||| · ||| be any unitarily invariant norm.

If f is a continuous increasing function on [0,∞) such that f(0) ≥ 0 and
f(et) is convex, then

|||f(Ar#αB
r)||| ≤ |||f((A#αB)r)|||, r ≥ 1.

In particular,

|||Ar#αB
r||| ≤ |||(A#αB)r|||, r ≥ 1.
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Corollary 6.45 For every self-adjoint H,K ∈ Mn,

s((erH#αe
rK)1/r) ≺w(log) s(e

(1−α)H+αK), r > 0.

Hence, for every unitarily invariant norm ||| · |||,
|||(erH#αe

rK)1/r||| ≤ |||e(1−α)H+αK |||, r > 0,

and the above left-hand side increases to |||e(1−α)H+αK ||| as r ց 0.

Specializing to trace inequality we have

Tr (erH#αe
rK)1/r ≤ Tr e(1−α)H+αK , r > 0,

which was first proved in [42]. The following logarithmic trace inequalities
are also known for every A,B ∈ B(H)+ and every r > 0:

1

r
TrA logBr/2ArBr/2 ≤ TrA(logA+ logB) ≤ 1

r
TrA logAr/2BrAr/2,

1

r
TrA log(Ar#Br)2 ≤ TrA(logA+ logB).

The exponential function has generalization:

expp(X) = (I + pX)
1

p , (6.47)

where X = X∗ ∈ Mn(C) and p ∈ (0, 1]. (If p → 0, then the limit is expX .)
There is an extension of the Golden-Thompson trace inequality.

Theorem 6.46 For 0 ≤ X, Y ∈ Mn(C) and n ∈ (0, 1] the following inequal-
ities hold:

Tr expp(X + Y ) ≤ Tr expp(X + Y + pY 1/2XY 1/2)
≤ Tr expν(X + Y + pXY ) ≤ Tr expp(X) expp(Y ) .

Proof: Let X1 := pX , Y1 := pY and q := 1/p. Then

Tr expp(X + Y ) ≤ Tr expp(X + Y + pY 1/2XY 1/2)

= Tr [(I +X1 + Y1 + Y
1/2
1 X1Y

1/2
1 )q]

≤ Tr [(I +X1 + Y1 +X1Y1)
q]

= Tr [((I +X1)(I + Y1))
q]

The first inequality is immediate from the monotonicity of the function (1 +
px)1/p and the second is by Lemma 6.47 below. Next we take

Tr [((I +X1)(I + Y1))
q] ≤ Tr [(I +X1)

q(I + y1)
q] = Tr [expp(X) expp(Y )],

which is by the Araki-Lieb-Thirring inequality (6.40). �
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Lemma 6.47 For X, Y ∈ M+
n we have the following:

Tr [(I +X + Y + Y 1/2XY 1/2)p] ≤ Tr [(I +X + Y +XY )p] if p ≥ 1,

Tr [(I +X + Y + Y 1/2XY 1/2)p] ≥ Tr [(I +X + Y +XY )p] if 0 ≤ p ≤ 1.

Proof: For every A,B ∈ Msa
n , let X = A and Z = (BA)k for any k ∈ N.

Since X∗Z = A(BA)k is Hermitian, we have

λ(A2 + (BA)k(AB)k) ≺ λ(A2 + (AB)k(BA)k). (6.48)

When k = 1, by Theorem 6.1 this majorization yields the trace inequalities:

Tr [(A2 +BA2B)p] ≤ Tr [(A2 + AB2A)p] if p ≥ 1,
Tr [(A2 +BA2B)p] ≥ Tr [(A2 + AB2A)p] if 0 ≤ p ≤ 1.

Moreover, for every X, Y ∈ M+
n , let A = (I +X)1/2 and B = Y 1/2. Notice

that
Tr [(A2 +BA2B)p] = Tr [(I +X + Y + Y 1/2XY 1/2)p]

and

Tr [(A2 +BA2B)p] = Tr [((I +X)1/2(I + Y )(I +X)1/2)p]
= Tr [((I +X)(I + Y ))p] = Tr [(I +X + Y +XY )p],

where (I +X)(I +Y ) has the eigenvalues in (0,∞) so that ((I +X)(I +Y ))p

is defined via the analytic functional calculus (3.17). Therefore the statement
follows. �

The inequalities of Theorem 6.46 can be extended to the symmetric norm
inequality, as shown below together with the complementary inequality with
geometric mean.

Theorem 6.48 Let ||| · ||| be a symmetric norm on Mn and p ∈ (0, 1]. For
every X, Y ∈ M+

n we have

||| expp(2X)# expp(2Y )||| ≤ ||| expp(X + Y )|||
≤ ||| expp(X)1/2 expp(Y ) expp(X)1/2|||
≤ ||| expp(X) expp(Y )|||.

Proof: We have

λ(expp(2X)# expp(2Y )) = λ((I + 2pX)1/p#(I + 2pY )1/p)

≺(log) (((I + 2pX)#(I + 2pY ))1/p)
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≤ λ(expp(X + Y )),

where the log-majorization is due to (6.42) and the inequality is due to the
arithmetic-geometric mean inequality:

(I + 2pX)#(I + 2pY ) ≤ (I + 2pX) + (I + 2pY )

2
= I + p(X + Y ).

On the other hand, let A := (I+pX)1/2 and B := (pY )1/2. We can use (6.48)
and Theorem 6.38:

λ(expp(X + Y )) ≤ λ((A2 +BA2B)1/p)

≺ λ((A2 + AB2A)1/p)

= λ(((I + pX)1/2(I + pY )(I + pX)1/2)1/p)

≺(log) λ((I + pX)1/2p(I + pY )1/p(I + pX)1/2p)

= λ(expp(X)1/2 expp(Y ) expp(X)1/2)

≺(log) λ((expp(X) expp(Y )
2 expp(X))1/2)

= λ(| expp(X) expp(Y )|).

The above majorizations give the stated norm inequalities. �

6.5 Notes and remarks

The first sentence of the chapter is from the paper of John von Neumann,
Some matrix inequalities and metrization of matric-space, Tomsk. Univ. Rev.
1(1937), 286–300. (The paper is also in the book John von Neumann collected
works.) Theorem 6.17 and the duality of the ℓp norm appeared also in this
paper.

Example 6.2 is from the paper M. A. Nielsen and J. Kempe: Separable
states are more disordered globally than locally, Phys. Rev. Lett., 86, 5184-
5187 (2001). The most comprehensive literature on majorization theory for
vectors and matrices is Marshall and Olkin’s monograph [61]. [61] (There is
a recently reprinted version: A. W. Marshall, I. Olkin and B. C. Arnold, In-
equalities: Theory of Majorization and Its Applications, Second ed., Springer,
New York, 2011.) The contents presented here are mostly based on Fumio
Hiai [40]. Two survey articles of Tsuyoshi Ando are the best sources on
majorizations for the eigenvalues and the singular values of matrices [4, 5].

The first complete proof of the Lidskii-Wielandt theorem was obtained by
Helmut Wielandt in 1955 and the mini-max representation was proved by
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induction. There were some other involved but a surprisingly elemetnary and
short proofs. The proof presented here is from the paper C.-K. Li and R.
Mathias, The Lidskii-Mirsky-Wielandt theorem – additive and multiplicative
versions, Numer. Math. 81 (1999), 377–413.

Theorem 6.46 is in the paper S. Furuichi and M. Lin, A matrix trace
inequality and its application, Linear Algebra Appl. 433(2010), 1324-1328.

Here is a brief remark on the famous Horn conjecture that was affirmatively
solved just before 2000. The conjecture is related to three real vectors a =
(a1, . . . , an), b = (b1, . . . , bn), and c = (c1, . . . , cn). If there are two n × n
Hermitian matrices A and B such that a = λ(A), b = λ(B), and c = λ(A+B),
that is, a, b, c are the eigenvalues of A,B,A+B, then the three vectors obey
many inequalities of the type

∑

k∈K

ck ≤
∑

i∈I

ai +
∑

j∈J

bj

for certain triples (I, J,K) of subsets of {1, . . . , n}, including those coming
from the Lidskii-Wielandt theorem, together with the obvious equality

n
∑

i=1

ci =

n
∑

i=1

ai +

n
∑

i=1

bi.

Horn [47] proposed the procedure how to produce such triples (I, J,K) and
conjectured that all the inequalities obtained in that way are sufficient to
characterize a, b, c that are the eigenvalues of Hermitian matrices A,B,A+B.
This long-standing Horn conjecture was solved by two papers put together,
one by Klyachko [50] and the other by Knuston and Tao [51].

The Lieb-Thirring inequality was proved in 1976 by Elliott H. Lieb and
Walter Thirring in a physical journal. It is interesting that Bellmann proved
the particular case Tr (AB)2 ≤ TrA2B2 in 1980 and he conjectured Tr (AB)n ≤
TrAnBn. The extension was by Huzihiro Araki (On an inequality of Lieb
and Thirring, Lett. Math. Phys. 19(1990), 167–170.)

Theorem 6.26 is also in the paper J.S. Aujla and F.C. Silva, Weak ma-
jorization inequalities and convex functions, Linear Algebra Appl. 369(2003),
217–233. The subadditivity inequality in Theorem 6.31 and Theorem 6.36 was
first obtained by T. Ando and X. Zhan. The proof of Theorem 6.31 presented
here is simpler and it is due to Uchiyama [77].

In the papers [7, 42] there are more details about the logarithmic trace
inequalities.
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6.6 Exercises

1. Let S be a doubly substochastic n×n matrix. Show that there exists a
doubly stochastic n×nmatrixD such that Sij ≤ Dij for all 1 ≤ i, j ≤ n.

2. Let ∆n denote the set of all probability vectors in Rn, i.e.,

∆n := {p = (p1, . . . , pn) : pi ≥ 0,
n
∑

i=1

pi = 1}.

Prove that

(1/n, 1/n, . . . , 1/n) ≺ p ≺ (1, 0, . . . , 0) (p ∈ ∆n).

The Shannon entropy of p ∈ ∆n is H(p) := −∑n
i=1 pi log pi. Show

that H(q) ≤ H(p) ≤ log n for all p ≺ q in ∆n and H(p) = log n if and
only if p = (1/n, . . . , 1/n).

3. Let A ∈ B(H) be self-adjoint. Show the mini-max expression

λk(A) = min {max{〈x,Ax〉 : x ∈ M⊥, ‖x‖ = 1} :
M is a subspace of H, dim M = k − 1}}

for 1 ≤ k ≤ n.

4. Let A ∈ Msa
n . Prove the expression

k
∑

i=1

λi(A) = max{TrAP : P is a projection, rankP = k}

for 1 ≤ k ≤ n.

5. Let A,B ∈ Msa
n . Show that A ≤ B implies λk(A) ≤ λk(B) for 1 ≤ k ≤

n.

6. Show that statement of Theorem 6.13 is equivalent with the inequality

k
∏

j=1

(

sn+1−j(A)sij (B)
)

≤
k
∏

j=1

sij (AB)

for any choice of 1 ≤ i1 < · · · < ik ≤ n.

7. Give an example that for the generalized inverse (AB)† = B†A† is not
always true.
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8. Describe the generalized inverse for a row matrix.

9. What is the generalized inverse of an orthogonal projection?

10. Let A ∈ B(H) with the polar decomposition A = U |A|. Prove that

|〈x,Ax〉| ≤ 〈x, |A|x〉+ 〈x, U |A|U∗x〉
2

for x ∈ H.

11. Show that |TrA| ≤ ‖A‖1 for A ∈ B(H).

12. Let 0 < p, p1, p2 ≤ ∞ and 1/p = 1/p1+1/p2. Prove the Hölder inequal-
ity for the vectors a, b ∈ Rn:

Φp(ab) ≤ Φp1(a)Φp2(b),

where ab = (aibi).

13. Show that a continuous concave function f : R+ → R+ is the pointwise
limit of a sequence of functions of the form

α + βx−
m
∑

ℓ=1

cℓγaℓ(x),

where α ≥ 0, β, cℓ, aℓ > 0 and γa is as given in the proof of Theorem
6.33.

14. Prove for self-adjoint matrices H,K the Lie-Trotter formula:

lim
r→0

(erH/2erKerH/2)1/r = eH+K .

15. Prove for self-adjoint matrices H,K that

lim
r→0

(erH#αe
rK)1/r = e(1−α)H+αK .

16. Let f be a real function on [a, b] with a ≤ 0 ≤ b. Prove the converse of
Corollary 4.27, that is, if

Tr f(Z∗AZ) ≤ TrZ∗f(A)Z

for every A ∈ Msa
2 with σ(A) ⊂ [a, b] and every contraction Z ∈ M2,

then f is convex on [a, b] and f(0) ≤ 0.
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17. Prove Theorem 4.28 in a direct way similar to the proof of Theorem
4.26.

18. Provide an example of a pair A,B of 2×2 Hermitian matrices such that

λ1(|A+B|) < λ1(|A|+ |B|) and λ2(|A+B|) > λ2(|A|+ |B|).

From this, show that Theorems 4.26 and 4.28 are not true for a simple
convex function f(x) = |x|.



Chapter 7

Some applications

Matrices are of important use in many areas of both pure and applied math-
ematics. In particular, they are playing essential roles in quantum proba-
bility and quantum information. A discrete classical probability is a vector
(p1, p2, . . . , pn) of pi ≥ 0 with

∑n
i=1 pi = 1. Its counterpart in quantum theory

is a matrix D ∈ Mn(C) such that D ≥ 0 and TrD = 1; such matrices are
called density matrices. Then matrix analysis is a basis of quantum prob-
ability/statistics and quantum information. A point here is that classical
theory is included in quantum theory as a special case where relevant matri-
ces are restricted to diagonal ones. On the other hand, there are concepts in
classical probability theory which are formulated with matrices, for instance,
covariance matrices typical in Gaussian probabilities and Fisher information
matrices in the Cramér-Rao inequality.

This chapter is devoted to some aspects in application sides of matrices.
One of the most important concepts in probability theory is the Markov prop-
erty. This concept is discussed in the first section in the setting of Gaussian
probabilities. The structure of covariance matrices for Gaussian probabilities
with the Markov property is clarified in connection with the Boltzmann en-
tropy. Its quantum analogue in the setting of CCR-algebras CCR(H) is the
subject of Section 7.3. The counterpart of the notion of Gaussian probabili-
ties is that of Gaussian or quasi-free states ωA induced by positive operators
A (similar to covariance matrices) on the underlying Hilbert space H. In the
situation of the triplet CCR-algebra

CCR(H1 ⊕H2 ⊕H3) = CCR(H1)⊗ CCR(H2)⊗ CCR(H3),

the special structure of A on H1⊕H2⊕H3 and equality in the strong subad-
ditivity of the von Neumann entropy of ωA come out as equivalent conditions
for the Markov property of ωA.

274
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The most useful entropy in both classical and quantum probabilities is
the relative entropy S(D1‖D2) := TrD1(logD1− logD2) for density matrices
D1, D2, which was already discussed in Sections 3.2 and 4.5. (It is also known
as the Kullback-Leibler divergence in the classical case.) The notion was
extended to the quasi-entropy:

SAf (D1‖D2) := 〈AD1/2
2 , f(∆(D1/D2))(AD

1/2
2 )〉

associated with a certain function f : [0,∞) → R and a reference matrix A,
where ∆(D1/D2)X := D1XD

−1
2 = LD1

R
−1
D2
(X). (Recall that Mf (LA,RB) =

f(LAR
−1
B )RB was used for the matrix mean transformation in Section 5.4.)

The original relative entropy S(D1‖D2) is recovered by taking f(x) = x log x
and A = I. The monotonicity and the joint convexity properties are two
major properties of the quasi-entropies, which are the subject of Section 7.2.
Another important topic in the section is the monotone Riemannian metrics
on the manifold of invertible positive density matrices.

In a quantum system with a state D, several measurements are performed
to recover D, that is the subject of the quantum state tomography. Here,
a measurements is given by a POVM (positive operator-valued measure)
{F (x) : x ∈ X}, i.e., a finite set of positive matrices F (x) ∈ Mn(C) such
that

∑

x∈X F (x) = I. In Section 7.4 we study a few results concerning how
to construct optimal quantum measurements.

The last section is concerned with the quantum version of the Cramér-Rao
inequality, that is a certain matrix inequality between a sort of generalized
variance and the quantum Fisher information. The subject belongs to the
quantum estimation theory and is also related to the monotone Riemannian
metrics.

7.1 Gaussian Markov property

In probability theory the matrices have typically real entries, but the content
of this section can be modified for the complex case.

Given a positive definite real matrixM ∈ Mn(R) aGaussian probability
density is defined on Rn as

p(x) :=

√

detM

(2π)n
exp

(

− 1
2
〈x,Mx〉

)

(x ∈ Rn).

Obviously p(x) > 0 is obvious and the integral
∫

Rn

p(x) dx = 1



276 CHAPTER 7. SOME APPLICATIONS

follows due to the constant factor. Since
∫

Rn

〈x,Bx〉p(x) dx = TrBM−1,

and the particular case B = E(ij) gives

∫

Rn

xixjp(x) dx =

∫

Rn

〈x, E(ij)x〉p(x) dx = TrE(ij)M−1 = (M−1)ij .

Thus the inverse of the matrix M is the covariance matrix.

The Boltzmann entropy is

S(p) = −
∫

Rn

p(x) log p(x) dx =
n

2
log(2πe)− 1

2
Tr logM. (7.1)

(Instead of Tr logM , the formulation log detM is often used.)

If Rn = Rk × Rℓ, then the probability density p(x) has a reduction p1(y)
on Rk:

p1(y) :=

√

detM1

(2π)k
exp

(

− 1
2
〈y,M1y〉

)

(y ∈ Rk).

To describe the relation of M and M1 we take the block matrix form

M =

[

M11 M12

M∗
12 M22

]

, (7.2)

where M11 ∈ Mk(R). The we have

p1(y) =

√

detM

(2π)mdetM22

exp
(

− 1
2
〈y, (M11 −M12M

−1
22 M

∗
12)y〉

)

, (7.3)

see Example 2.7. Therefore M1 = M11 −M12M
−1
22 M

∗
12 = M/M22, which is

called the Schur complement of M22 in M . We have detM1 × detM22 =
detM .

Let p2(z) be the reduction of p(x) to Rℓ and denote the Gaussian matrix
by M2. In this case M2 = M22 − M∗

12M
−1
11 M12 = M/M11. The following

equivalent conditions hold:

(1) S(p) ≤ S(p1) + S(p2)

(2) −Tr logM ≤ −Tr logM1 − Tr logM2

(3) Tr logM ≤ Tr logM11 + Tr logM22
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(1) is known as the subadditivity of the Boltzmann entropy. The equivalence
of (1) and (2) follows directly from formula (7.1). (2) can be rewritten as

− log detM ≤ −(log detM − log detM22)− (log detM − log detM11)

and we have (3). The equality condition is M12 = 0. If

M−1 = S =

[

S11 S12

S∗
12 S22

]

,

thenM12 = 0 is obviously equivalent with S12 = 0. It is an interesting remark
that (2) is equivalent to the inequality

(2*) Tr logS ≤ Tr logS11 + Tr log S22.

The three-fold factorization Rn = Rk × Rℓ × Rm is more interesting and
includes essential properties. The Gaussian matrix of the probability density
p is

M =





M11 M12 M13

M∗
12 M22 M23

M∗
13 M∗

23 M33



 , (7.4)

where M11 ∈ Mk(R),M22 ∈ Mℓ(R),M33 ∈ Mm(R) and denote the reduced
probability densities of p by p1, p2, p3, p12, p23. The strong subadditivity of
the Boltzmann entropy

S(p) + S(p2) ≤ S(p12) + S(p23) (7.5)

is equivalent to the inequality

Tr log S + Tr log S22 ≤ Tr log

[

S11 S12

S∗
12 S22

]

+ Tr log

[

S22 S23

S∗
23 S33

]

, (7.6)

where

M−1 = S =





S11 S12 S13

S∗
12 S22 S23

S∗
13 S∗

23 S33



 .

The Markov property in probability theory is typically defined as

p(x1, x2, x3)

p12(x1, x2)
=
p23(x2, x3)

p2(x2)
(x1 ∈ R

k, x2 ∈ R
ℓ, x3 ∈ R

m).

Taking the logarithm and integrating with respect to dp, we obtain

−S(p) + S(p12) = −S(p23) + S(p2) (7.7)

and this is the equality case in (7.5) and in (7.6). The equality case of (7.6)
is described in Theorem 4.49, so we have the following:
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Theorem 7.1 The Gaussian probability density described by the block matrix
(7.4) has the Markov property if and only if S13 = S12S

−1
22 S23 for the inverse.

Another condition comes from the inverse property of a 3×3 block matrix.

Theorem 7.2 Let S = [Sij]
3
i,j=1 be an invertible block matrix and assume

that S22 and [Sij ]
3
i,j=2 are invertible. Then the (1, 3)-entry of the inverse

S−1 = [Mij ]
3
i,j=1 is given by the following formula:
(

S11 − [S12, S13 ]

[

S22, S23

S32 S33

]−1 [
S12

S13

]

)−1

×(S12S
−1
22 S23 − S13)(S33 − S32S

−1
22 S23)

−1.

Hence M13 = 0 if and only if S13 = S12S
−1
22 S23.

It follows that the Gaussian block matrix (7.4) has the Markov property
if and only if M13 = 0.

7.2 Entropies and monotonicity

Entropy and relative entropy have been important notions in information the-
ory. The quantum versions are in matrix theory. Recall that 0 ≤ D ∈ Mm is a
density matrix if TrD = 1. This means that the eigenvalues (λ1, λ2, . . . , λn)
form a probabilistic set: λi ≥ 0,

∑

i λi = 1. The von Neumann entropy
S(D) = −TrD logD of the density matrix D is the Shannon entropy of the
probabilistic set, −∑i λi log λi.

The partial trace Tr1 : Mk ⊗ Mm → Mm is a linear mapping which
is defined by the formula Tr1(A ⊗ B) = (TrA)B on elementary tensors.
It is called partial trace, since trace of the first tensor factor was taken.
Tr2 : Mk ⊗Mm → Mk is similarly defined. When D ∈ Mk ⊗Mm is a density
matrix, then Tr2D := D1 and Tr1D := D2 are the partial densities. The next
theorem has an elementary proof, but the result was not known for several
years.

The first example includes the strong subadditivity of the von Neumann
entropy and a condition of the equality is also included. (Other conditions
will appear in Lemma 7.6.)

Example 7.3 We shall need here the concept for three-fold tensor product
and reduced densities. Let D123 be a density matrix in Mk ⊗Mℓ ⊗Mm. The
reduced density matrices are defined by the partial traces:

D12 := Tr1D123 ∈ Mk ⊗Mℓ, D2 := Tr13D123 ∈ Mℓ, D23 := Tr1D123 ∈ Mk.
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The strong subadditivity is the inequality

S(D123) + S(D2) ≤ S(D12) + S(D23), (7.8)

which is equivalent to

TrD123 (logD123 − (logD12 − logD2 + logD23)) ≥ 0.

The operator
exp(logD12 − logD2 + logD23)

is positive and can be written as λD for a density matrix D. Actually,

λ = Tr exp(logD12 − logD2 + logD23).

We have

S(D12) + S(D23)− S(D123)− S(D2)
= TrD123 (logD123 − (logD12 − logD2 + logD23))
= S(D123‖λD) = S(D123‖D)− log λ . (7.9)

Here S(X‖Y ) := TrX(logX − log Y ) is the relative entropy. If X and Y
are density matrices, then S(X‖Y ) ≥ 0, see the Streater inequality (3.23).

Therefore, λ ≤ 1 implies the positivity of the left-hand side (and the strong
subadditivity). Due to Theorem 4.55, we have

Tr exp(logD12− logD2+logD23)) ≤
∫ ∞

0

TrD12(tI+D2)
−1D23(tI+D2)

−1 dt

Applying the partial traces we have

TrD12(tI +D2)
−1D23(tI +D2)

−1 = TrD2(tI +D2)
−1D2(tI +D2)

−1

and that can be integrated out. Hence
∫ ∞

0

TrD12(tI +D2)
−1D23(tI +D2)

−1 dt = TrD2 = 1

and λ ≤ 1 is obtained and the strong subadditivity is proven.

If the equality holds in (7.8), then exp(logD12 − logD2 + logD23) is a
density matrix and

S(D123‖ exp(logD12 − logD2 + logD23)) = 0

implies

logD123 = logD12 − logD2 + logD23. (7.10)

This is the necessary and sufficient condition for the equality. �
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For a density matrix D one can define the q-entropy as

Sq(D) =
1− TrDq

q − 1
=

Tr (Dq −D)

1− q
(q > 1). (7.11)

This is also called the quantum Tsallis entropy. The limit q → 1 is the
von Neumann entropy.

IfD is a state on a Hilbert spaceH1⊗H2, then it has reduced statesD1 and
D2 on the spaces H1 and H2. The subadditivity is Sq(D) ≤ Sq(D1)+Sq(D2),
or equivalently

TrDq
1 + TrDq

2 = ||D1||qq + ||D2||qq ≤ 1 + ||D||qq = 1 + TrDq. (7.12)

Theorem 7.4 When the density matrix D ∈ Mk ⊗Mm has the partial den-
sities D1 := Tr2D and D2 := Tr1D, then the subadditivity inequality (7.12)
holds for q ≥ 1.

Proof: It is enough to show the case q > 1. First we use the q-norms and
we prove

1 + ||D||q ≥ ||D1||q + ||D2||q. (7.13)

Lemma 7.5 below will be used.

If 1/q + 1/q′ = 1, then for A ≥ 0 we have

||A||q := max{TrAB : B ≥ 0, ||B||q′ ≤ 1}.

It follows that

||D1||q = TrXD1 and ||D2||q = Tr Y D2

with some X ≥ 0 and Y ≥ 0 such that ||X||q′ ≤ 1 and ||Y ||q′ ≤ 1. It follows
from Lemma 7.5 that

||(X ⊗ Ik + Im ⊗ Y − Im ⊗ Ik)+||q′ ≤ 1

and we have Z ≥ 0 such that

Z ≥ X ⊗ Ik + Im ⊗ Y − Im ⊗ Ik

and ||Z||q′ = 1. It follows that

Tr (ZD) + 1 ≥ Tr (X ⊗ Ik + Im ⊗ Y )D = TrXD1 + Tr Y D2.

Since
||D||q ≥ Tr (ZD),
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we have the inequality (7.13).

We examine the maximum of the function f(x, y) = xq+ yq in the domain

M := {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x+ y ≤ 1 + ||D||q}.

Since f is convex, it is sufficient to check the extreme points (0, 0), (1, 0),
(1, ||D||q), (||D||q, 1), (0, 1). It follows that f(x, y) ≤ 1+||D||qq. The inequality
(7.13) gives that (||D1||q, ||D2||q) ∈ M and this gives f(||D1||q, ||D2||q) ≤
1 + ||D||qq and this is the statement. �

Lemma 7.5 For q ≥ 1 and for the positive matrices 0 ≤ X ∈ Mn(C) and
0 ≤ Y ∈ Mk(C) assume that ‖X‖q, ‖Y ‖q ≤ 1. Then the quantity

||(X ⊗ Ik + In ⊗ Y − In ⊗ Ik)+||q ≤ 1 (7.14)

holds.

Proof: It is enough to compute in the case ||X||q = ||Y ||q = 1. Let
{xi : 1 ≤ i ≤ l} and {yj : 1 ≤ j ≤ m} be the positive spectrum of X and Y .
Then

l
∑

i=1

xqi = 1,
m
∑

j=1

yqj = 1

and

||(X ⊗ Ik + In ⊗ Y − In ⊗ Ik)+||qq =
∑

i,j

((xi + yj − 1)+)
q.

The function a 7→ (a+ b− 1)+ is convex for any real value of b:

(

a1 + a2
2

+ b− 1

)

+

≤ 1

2
(a1 + b− 1)+ +

1

2
(a2 + b− 1)+

It follows that the vector-valued function

a 7→ ((a + yj − 1)+ : j)

is convex as well. Since the ℓq norm for positive real vectors is convex and
monotonously increasing, we conclude that

f(a) :=

(

∑

j

((a+ yj − 1)+)
q

)1/q
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is a convex function. Since f(0) = 0 and f(1) = 1, we hav the inequality
f(a) ≤ a for 0 ≤ a ≤ 1. Actually, we need this for xi. Since 0 ≤ xi ≤ 1,
f(xi) ≤ xi follows and

∑

i

∑

j

((xi + yj − 1)+)
q =

∑

i

f(xi)
q ≤

∑

i

xqi = 1.

So (7.14) is proved. �

The next lemma is stated in the setting of Example 7.3.

Lemma 7.6 The following conditions are equivalent:

(i) S(D123) + S(D2) = S(D12) + S(D23)

(ii) Dit
123D

−it
23 = Dit

12D
−it
2 for every real t

(iii) D
1/2
123D

−1/2
23 = D

1/2
12 D

−1/2
2 ,

(iv) logD123 − logD23 = logD12 − logD2,

(v) There are positive matrices X ∈Mk ⊗Mℓ and Y ∈Mℓ⊗Mm such that
D123 = (X ⊗ Im)(Ik ⊗ Y ).

In the mathematical formalism of quantum mechanics, instead of n-tuples
of numbers one works with n × n complex matrices. They form an algebra
and this allows an algebraic approach.

For positive definite matrices D1, D2 ∈ Mn, for A ∈ Mn and a function
f : R+ → R, the quasi-entropy is defined as

SAf (D1‖D2) := 〈AD1/2
2 , f(∆(D1/D2))(AD

1/2
2 )〉

= TrD
1/2
2 A∗f(∆(D1/D2))(AD

1/2
2 ), (7.15)

where 〈B,C〉 := TrB∗C is the so-called Hilbert-Schmidt inner product
and ∆(D1/D2) : Mn → Mn is a linear mapping acting on matrices:

∆(D1/D2)A = D1AD
−1
2 .

This concept was introduced by Petz in [65, 67]. An alternative terminology
is the quantum f-divergence.

If we set

LD(X) = DX , RD(X) = XD and J
f
D1,D2

= f(LD1
R

−1
D2
)RD2

, (7.16)
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then the quasi-entropy has the form

SAf (D1‖D2) = 〈A, JfD1,D2
A〉 . (7.17)

It is clear from the definition that

SAf (λD1‖λD2) = λSAf (D1‖D2)

for positive number λ.

Let α : Mn → Mm be a mapping between two matrix algebras. The dual
α∗ : Mm → Mn with respect to the Hilbert-Schmidt inner product is positive
if and only if α is positive. Moreover, α is unital if and only if α∗ is trace
preserving. α : Mn → Mm is called a Schwarz mapping if

α(B∗B) ≥ α(B∗)α(B) (7.18)

for every B ∈ Mn.

The quasi-entropies are monotone and jointly convex.

Theorem 7.7 Assume that f : R+ → R is a matrix monotone function with
f(0) ≥ 0 and α : Mn → Mm is a unital Schwarz mapping. Then

SAf (α
∗(D1)‖α∗(D2)) ≥ S

α(A)
f (D1‖D2) (7.19)

holds for A ∈ Mn and for invertible density matrices D1 and D2 from the
matrix algebra Mm.

Proof: The proof is based on inequalities for matrix monotone and matrix
concave functions. First note that

SAf+c(α
∗(D1)‖α∗(D2)) = SAf (α

∗(D1)‖α∗(D2)) + cTrD1α(A
∗A)

and
S
α(A)
f+c (D1‖D2) = S

α(A)
f (D1‖D2) + cTrD1(α(A)

∗α(A))

for a positive constant c. Due to the Schwarz inequality (7.18), we may
assume that f(0) = 0.

Let ∆ := ∆(D1/D2) and ∆0 := ∆(α∗(D1)/α
∗(D2)). The operator

V Xα∗(D2)
1/2 = α(X)D

1/2
2 (X ∈ M0) (7.20)

is a contraction:

‖α(X)D
1/2
2 ‖2 = TrD2(α(X)∗α(X))
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≤ TrD2(α(X
∗X) = Trα∗(D2)X

∗X = ‖Xα∗(D2)
1/2‖2

since the Schwarz inequality is applicable to α. A similar simple computation
gives that

V ∗∆V ≤ ∆0 . (7.21)

Since f is matrix monotone, we have f(∆0) ≥ f(V ∗∆V ). Recall that f is
matrix concave, therefore f(V ∗∆V ) ≥ V ∗f(∆)V and we conclude

f(∆0) ≥ V ∗f(∆)V . (7.22)

Application to the vector Aα∗(D2)
1/2 gives the statement. �

It is remarkable that for a multiplicative α (i.e., α is a ∗-homomorphism)
we do not need the condition f(0) ≥ 0. Moreover, since V ∗∆V = ∆0, we do
not need the operator monotony of the function f . In this case the operator
concavity is the only condition to obtain the result analogous to Theorem
7.7. If we apply the monotonicity (7.19) (with −f in place of f) to the
embedding α(X) = X ⊕ X of Mn into Mn ⊕ Mn ⊂ Mn ⊗ M2 and to the
densities D1 = λE1 ⊕ (1 − λ)F1, D2 = λE2 ⊕ (1 − λ)F2, then we obtain the
joint convexity of the quasi-entropy:

Theorem 7.8 If f : R+ → R is an operator convex, then SAf (D1‖D2) is
jointly convex in the variables D1 and D2.

If we consider the quasi-entropy in the terminology of means, then we can
have another proof. The joint convexity of the mean is the inequality

f(L(A1+A2)/2R
−1
(B1+B2)/2

)R(B1+B2)/2 ≤ 1
2
f(LA1

R
−1
B1
)RB1

+ 1
2
f(LA2

R
−1
B2
)RB2

which can be simplified as

f(LA1+A2
R

−1
B1+B2

) ≤ R
−1/2
B1+B2

R
1/2
B1
f(LA1

R
−1
B1
)R

1/2
B1

R
−1/2
B1+B2

+R
−1/2
B1+B2

R
1/2
B2
f(LA2

R
−1
B2
)R

1/2
B2

R
−1/2
B1+B2

= Cf(LA1
R

−1
B1
)C∗ +Df(LA2

R
−1
B2
)D∗.

Here CC∗ +DD∗ = I and

C(LA1
R

−1
B1
)C∗ +D(LA2

R
−1
B2
)D∗ = LA1+A2

R
−1
B1+B2

.

So the joint convexity of the quasi-entropy has the form

f(CXC∗ +DYD∗) ≤ Cf(X)C∗ +Df(Y )D∗

which is true for an operator convex function f , see Theorem 4.22.
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Example 7.9 The concept of quasi-entropy includes some important special
cases. If f(t) = tα, then

SAf (D1‖D2) = TrA∗Dα
1AD

1−α
2 .

If 0 < α < 1, then f is matrix monotone. The joint concavity in (D1, D2) is
the famous Lieb’s concavity theorem [58].

If D2 and D1 are different and A = I, then we have a kind of relative
entropy. For f(x) = x log x we have Umegaki’s relative entropy S(D1‖D2) =
TrD1(logD1− logD2). (If we want a matrix monotone function, then we can
take f(x) = log x and then we get S(D2‖D1).) Umegaki’s relative entropy is
the most important example; therefore the function f will be chosen to be
matrix convex. This makes the probabilistic and non-commutative situation
compatible as one can see in the next argument.

Let

fα(x) =
1

α(1− α)
(1− xα).

This function is matrix monotone decreasing for α ∈ (−1, 1). (For α = 0, the
limit is taken and it is − log x.) Then the relative entropies of degree α
are produced:

Sα(D2‖D1) :=
1

α(1− α)
Tr (I −Dα

1D
−α
2 )D2.

These quantities are essential in the quantum case. �

Let Mn be the set of positive definite density matrices in Mn. This is a
differentiable manifold and the set of tangent vectors is {A = A∗ ∈ Mn :
TrA = 0}. A Riemannian metric is a family of real inner products γD(A,B)
on the tangent vectors. The possible definition is similar to (7.17):

γfD(A,B) := TrA(JfD)
−1(B) (7.23)

(Here J
f
D = J

f
D,D.) The condition xf(x−1) = f(x) implies the existence of

real inner product. By monotone metrics we mean a family of inner products
for all manifolds Mn such that

γfβ(D)(β(A), β(A)) ≤ γfD(A,A) (7.24)

for every completely positive trace-preserving mapping β : Mn → Mm. If f
is matrix monotone, then this monotonicity holds.

Let β : Mn ⊗M2 → Mn be defined as
[

B11 B12

B21 B22

]

7→ B11 +B22.
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This is completely positive and trace-preserving, it is a so-called partial trace.
For

D =

[

λD1 0
0 (1− λ)D2

]

, A =

[

λA1 0
0 (1− λ)A2

]

the inequality (7.24) gives

γλD1+(1−λ)D2
(λA1 + (1− λ)A2, λA1 + (1− λ)A2)

≤ γλD1
(λA1, λA1) + γ(1−λ)D2

((1− λ)A2, (1− λ)A2).

Since γtD(tA, tB) = tγD(A,B), we obtain the joint convexity:

Theorem 7.10 For a matrix monotone function f , the monotone metric
γfD(A,A) is a jointly convex function of (D,A) of positive definite D and
general A ∈ Mn.

The difference between two parameters in J
f
D1,D2

and one parameter in

J
f
D,D is not essential if the matrix size can be changed. We need the next

lemma.

Lemma 7.11 For D1, D2 > 0 and general X in Mn let

D :=

[

D1 0
0 D2

]

, Y :=

[

0 X
0 0

]

, A :=

[

0 X
X∗ 0

]

.

Then

〈Y, (JfD)−1Y 〉 = 〈X, (JfD1,D2
)−1X〉, (7.25)

〈A, (JfD)−1A〉 = 2〈X, (JhD1,D2
)−1X〉. (7.26)

Proof: First we show that

(JfD)
−1

[

X11 X12

X21 X22

]

=

[

(JfD1
)−1X11 (JfD1,D2

)−1X12

(JfD2,D1
)−1X21 (JfD2

)−1X22

]

. (7.27)

Since continuous functions can be approximated by polynomials, it is enough
to check (7.27) for f(x) = xk, which is easy. From (7.27), (7.25) is obvious
and

〈A, (JfD)−1A〉 = 〈X, (JfD1,D2
)−1X〉+ 〈X∗, (JfD2,D1

)−1X∗〉.
From the spectral decompositions

D1 =
∑

i

λiPi and D2 =
∑

j

µjQj
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we have

J
f
D1,D2

A =
∑

i,j

mf (λi, µj)PiAQj

and

〈X, (JgD1,D2
)−1X〉 =

∑

i,j

mg(λi, µj)TrX
∗PiXQj

=
∑

i,j

mf (µj, λi)TrXQjX
∗Pi

= 〈X∗, (JfD2,D1
)−1X∗〉. (7.28)

Therefore,

〈A, (JfD)−1A〉 = 〈X, (JfD1,D2
)−1X〉+ 〈X, (JgD1,D2

)−1X〉 = 2〈X, (JhD1,D2
)−1X〉.

�

Now let f : (0,∞) → (0,∞) be a continuous function; the definition of f
at 0 is not necessary here. Define g, h : (0,∞) → (0,∞) by g(x) := xf(x−1)
and

h(x) :=

(

f(x)−1 + g(x)−1

2

)−1

, x > 0.

Obviously, h is symmetric, i.e., h(x) = xh(x−1) for x > 0, so we may call h
the harmonic symmetrization of f .

Theorem 7.12 In the above situation consider the following conditions:

(i) f is matrix monotone,

(ii) (D,A) 7→ 〈A, (JfD)−1A〉 is jointly convex in positive definite D and gen-
eral A in Mn for every n,

(iii) (D1, D2, A) 7→ 〈A, (JfD1,D2
)−1A〉 is jointly convex in positive definite

D1, D2 and general A in Mn for every n,

(iv) (D,A) 7→ 〈A, (JfD)−1A〉 is jointly convex in positive definite D and self-
adjoint A in Mn for every n,

(v) h is matrix monotone.

Then (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v).
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Proof: (i) ⇒ (ii) is Theorem 7.10 and (ii) ⇒ (iii) follows from (7.25). We
prove (iii) ⇒ (i). For each ξ ∈ Cn let Xξ := [ξ 0 · · · 0] ∈ Mn, i.e., the first
column of Xξ is ξ and all other entries of Xξ are zero. When D2 = I and
X = Xξ, we have for D > 0 in Mn

〈Xξ, (J
f
D,I)

−1Xξ〉 = 〈Xξ, f(D)−1Xξ〉 = 〈ξ, f(D)−1ξ〉.

Hence it follows from (iii) that 〈ξ, f(D)−1ξ〉 is jointly convex in D > 0
in Mn and ξ ∈ Cn. By a standard convergence argument we see that
(D, ξ) 7→ 〈ξ, f(D)−1ξ〉 is jointly convex for positive invertible D ∈ B(H) and
ξ ∈ H, where B(H) is the set of bounded operators on a separable infinite-
dimensional Hilbert space H. Now Theorem 3.1 in [8] is used to conclude
that 1/f is operator monotone decreasing, so f is operator monotone.

(ii) ⇒ (iv) is trivial. Assume (iv); then it follows from (7.26) that (iii)
holds for h instead of f , so (v) holds thanks to (iii) ⇒ (i) for h. From (7.28)
when A = A∗ and D1 = D2 = D, it follows that

〈A, (JfD)−1A〉 = 〈A, (JgD)−1A〉 = 〈A, (JhD)−1A〉.

Hence (v) implies (iv) by applying (i) ⇒ (ii) to h. �

Example 7.13 The χ2-divergence

χ2(p, q) :=
∑

i

(pi − qi)
2

qi
=
∑

i

(

pi
qi

− 1

)2

qi

was first introduced by Karl Pearson in 1900 for probability densities p and
q. Since

(

∑

i

|pi − qi|
)2

=

(

∑

i

∣

∣

∣

∣

pi
qi

− 1

∣

∣

∣

∣

qi

)2

≤
∑

i

(

pi
qi

− 1

)2

qi,

we have
‖p− q‖21 ≤ χ2(p, q). (7.29)

A quantum generalization was introduced very recently:

χ2
α(ρ, σ) = Tr

(

(ρ− σ)σ−α(ρ− σ)σα−1
)

= Tr ρσ−αρσα−1 − 1

= 〈ρ, (Jfσ)−1ρ〉 − 1,

where α ∈ [0, 1] and f(x) = xα. If ρ and σ commute, then this formula is
independent of α.

The monotonicity of the χ2-divergence follows from (7.24).
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The monotonicity and the classical inequality (7.29) imply that

‖ρ− σ‖21 ≤ χ2(ρ, σ).

Indeed, if E is the conditional expectation onto the commutative algebra
generated by ρ− σ, then

‖ρ− σ‖21 = ‖E(ρ)− E(σ)‖21 ≤ χ2(E(ρ), E(σ)) ≤ χ2(ρ, σ).

�

7.3 Quantum Markov triplets

The CCR-algebra used in this section is an infinite dimensional C*-algebra,
but its parametrization will be by a finite dimensional Hilbert space H. (CCR
is the abbreviation of “canonical commutation relation” and the book [64]
contains the details.)

Assume that for every f ∈ H a unitary operator W (f) is given so that the
relations

W (f1)W (f2) = W (f1 + f2) exp(i σ(f1, f2)),

W (−f) = W (f)∗

hold for f1, f2, f ∈ H with σ(f1, f2) := Im〈f1, f2〉. The C*-algebra gener-
ated by these unitaries is unique and denoted by CCR(H). Given a positive
operator A ∈ B(H), a functional ωA : CCR(H) → C can be defined as

ωA(W (f)) := exp (− ‖f‖2/2− 〈f, Af〉). (7.30)

This is called a Gaussian or quasi-free state. In the so-called Fock repre-
sentation of CCR(H) the quasi-free state ωA has a statistical operator DA,
DA ≥ 0 and TrDA = 1. We do not describe here DA but we remark that if
λi’s are the eigenvalues of A, then DA has the eigenvalues

∏

i

1

1 + λi

(

λi
1 + λi

)ni

,

where ni ∈ Z+. Therefore the von Neumann entropy is

S(ωA) := −TrDA logDA = Tr κ(A), (7.31)

where κ(t) := −t log t+ (t+ 1) log(t+ 1) is an interesting special function.
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Assume that H = H1 ⊕H2 and write the positive mapping A ∈ B(H) in
the form of block matrix:

A =

[

A11 A12

A21 A22

]

.

If f ∈ H1, then

ωA(W (f ⊕ 0)) = exp (− ‖f‖2/2− 〈f, A11f〉).

Therefore the restriction of the quasi-free state ωA to CCR(H1) is the quasi-
free state ωA11

.

Let H = H1 ⊕H2 ⊕H3 be a finite dimensional Hilbert space and consider
the CCR-algebras CCR(Hi) (1 ≤ i ≤ 3). Then

CCR(H) = CCR(H1)⊗ CCR(H2)⊗ CCR(H3)

holds. Assume that D123 is a statistical operator in CCR(H) and we denote
by D12, D2, D23 its reductions into the subalgebras CCR(H1) ⊗ CCR(H2),
CCR(H2), CCR(H2) ⊗ CCR(H3), respectively. These subalgebras form a
Markov triplet with respect to the state D123 if

S(D123)− S(D23) = S(D12)− S(D2), (7.32)

where S denotes the von Neumann entropy and we assume that both sides
are finite in the equation. (Note (7.32) is the quantum analogue of (7.7).)

Now we concentrate on the Markov property of a quasi-free state ωA ≡
ω123 with a density matrix D123, where A is a positive operator acting on
H = H1 ⊕H2 ⊕H3 and it has a block matrix form

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 . (7.33)

Then the restrictions D23, D12 and D2 are also Gaussian states with the
positive operators

D =





I 0 0
0 A22 A23

0 A32 A33



 , B =





A11 A12 0
A21 A22 0
0 0 I



 , and C =





I 0 0
0 A22 0
0 0 I



 ,

respectively. Formula (7.31) tells that the Markov condition (7.32) is equiv-
alent to

Tr κ(A) + Tr κ(C) = Tr κ(B) + Tr κ(D).
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(This kind of condition appeared already in the study of strongly subadditive
functions.)

Denote by Pi the orthogonal projection from H onto Hi, 1 ≤ i ≤ 3. Of
course, P1 + P2 + P3 = I and we use also the notation P12 := P1 + P2 and
P23 := P2 + P3.

Theorem 7.14 Assume that A ∈ B(H) is a positive invertible operator and
the corresponding quasi-free state is denoted as ωA ≡ ω123 on CCR(H). Then
the following conditions are equivalent.

(a) S(ω123) + S(ω2) = S(ω12) + S(ω23).

(b) Tr κ(A) + Trκ(P2AP2) = Tr κ(P12AP12) + Tr κ(P23AP23).

(c) There is a projection P ∈ B(H) such that P1 ≤ P ≤ P1 + P2 and
PA = AP .

Proof: Due to the formula (7.31), (a) and (b) are equivalent.

Condition (c) tells that the matrix A has a special form:

A =













A11 [ a 0 ] 0

[

a∗

0

] [

c 0
0 d

] [

0
b

]

0 [ 0 b∗ ] A33













=













[

A11 a
a∗ c

]

0

0

[

d b
b∗ A33

]













, (7.34)

where the parameters a, b, c, d (and 0) are operators. This is a block diagonal
matrix, A = Diag(A1, A2),

[

A1 0
0 A2

]

and the projection P is
[

I 0
0 0

]

in this setting.

The Hilbert space H2 is decomposed as HL
2 ⊕HR

2 , where HL
2 is the range

of the projection PP2. Therefore,

CCR(H) = CCR(H1 ⊕HL
2 )⊗ CCR(HR

2 ⊕H3) (7.35)

and ω123 becomes a product state ωL ⊗ ωR. This shows that the implication
(c) ⇒ (a) is obvious.
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The essential part is the proof (a) ⇒ (c). The inequality

Tr log(A) + Tr log(A22) ≤ Tr log(B) + Tr log(C) (7.36)

is equivalent to (7.6) and Theorem 7.1 tells that the necessary and sufficient
condition for equality is A13 = A12A

−1
22 A23.

The integral representation

κ(x) =

∫ ∞

1

t−2 log(tx+ 1) dt (7.37)

shows that the function κ(x) = −x log x+(x+1) log(x+1) is matrix monotone
and (7.31) implies the inequality

Tr κ(A) + Tr κ(A22) ≤ Tr κ(B) + Tr κ(C). (7.38)

The equality holds if and only if

tA13 = tA12(tA22 + I)−1tA23

for almost every t > 1. The continuity gives that actually for every t > 1 we
have

A13 = A12(A22 + t−1I)−1A23.

The right-hand-side, A12(A22 + zI)−1A23, is an analytic function on {z ∈ C :
Re z > 0}, therefore we have

A13 = 0 = A12(A22 + sI)−1A23 (s ∈ R
+),

as the s→ ∞ case shows. Since A12s(A22+sI)
−1A23 → A12A23 as s→ ∞, we

have also 0 = A12A23. The latter condition means that RanA23 ⊂ KerA12,
or equivalently (KerA12)

⊥ ⊂ KerA∗
23.

The linear combinations of the functions x 7→ 1/(s+x) form an algebra and
due to the Stone-Weierstrass theorem A12g(A22)A23 = 0 for any continuous
function g.

We want to show that the equality implies the structure (7.34) of the
operator A. We have A23 : H3 → H2 and A12 : H2 → H1. To show the
structure (7.34), we have to find a subspace H ⊂ H2 such that

A22H ⊂ H, H⊥ ⊂ KerA12, H ⊂ KerA∗
23,

or alternatively (H⊥ =)K ⊂ H2 should be an invariant subspace of A22 such
that

RanA23 ⊂ K ⊂ KerA12.
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Let
K :=

{

∑

i

Ani
22A23xi : xi ∈ H3, ni ∈ Z

+
}

be a set of finite sums. It is a subspace of H2. The property RanA23 ⊂ K
and the invariance under A22 are obvious. Since

A12A
n
22A23x = 0,

K ⊂ KerA12 also follows. The proof is complete. �

In the theorem it was assumed that H is a finite dimensional Hilbert space,
but the proof works also in infinite dimension. In the theorem the formula
(7.34) shows that A should be a block diagonal matrix. There are nontrivial
Markovian Gaussian states which are not a product in the time localization.
However, the first and the third subalgebras are always independent.

The next two theorems give different descriptions (but they are not essen-
tially different).

Theorem 7.15 For a quasi-free state ωA the Markov property (7.32) is equiv-
alent to the condition

Ait(I + A)−itD−it(I +D)it = Bit(I +B)−itC−it(I + C)it (7.39)

for every real t.

Theorem 7.16 The block matrix

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33





gives a Gaussian state with the Markov property if and only if

A13 = A12f(A22)A23

for any continuous function f : R → R.

This shows that the CCR condition is much more restrictive than the
classical one.

7.4 Optimal quantum measurements

In the matrix formalism the state of a quantum system is a density matrix
0 ≤ ρ ∈ Md(C) with the property Tr ρ = 1. A finite set {F (x) : x ∈ X} of
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positive matrices is called positive operator-valued measure (POVM)
if

∑

x∈X

F (x) = I, (7.40)

and F (x) 6= 0 can be assumed. The quantum state tomography can recover
the state ρ from the probability set {Tr ρF (x) : x ∈ X}. In this section
there are arguments for the optimal POVM set. There are a few rules from
quantum theory, but the essential part is the frames in the Hilbert space
Md(C).

The space Md(C) of matrices equipped with the Hilbert-Schmidt inner
product 〈A|B〉 = TrA∗B is a Hilbert space. We use the bra-ket notation for
operators: 〈A| is an operator bra and |B〉 is an operator ket. Then |A〉〈B| is
a linear mapping Md(C) → Md(C). For example,

|A〉〈B|C = (TrB∗C)A, (|A〉〈B|)∗ = |B〉〈A|,
|A1A〉〈A2B| = A1|A〉〈B|A∗

2

when A1,A2 : Md(C) → Md(C).

For an orthonormal basis {|Ek〉 : 1 ≤ k ≤ d2} of Md(C), a linear superop-
erator S : Md(C) → Md(C) can then be written as S =

∑

j,k sjk|Ej〉〈Ek| and
its action is defined as

S|A〉 =
∑

j,k

sjk|Ej〉〈Ek|A〉 =
∑

j,k

sjkEjTr (Ek
∗A) .

We denote the identity superoperator as I, and so I =
∑

k |Ek〉〈Ek|.
The Hilbert space Md(C) has an orthogonal decomposition

{cI : c ∈ C} ⊕ {A ∈ Md(C) : TrA = 0}.
In the block-matrix form under this decomposition,

I =

[

1 0
0 Id2−1

]

and |I〉〈I| =
[

d 0
0 0

]

.

Let X be a finite set. An operator frame is a family of operators {A(x) :
x ∈ X} for which there exists a constant 0 < a such that

a〈C|C〉 ≤
∑

x∈X

|〈A(x)|C〉|2 (7.41)

for all C ∈ Md(C). The frame superoperator is defined as

A =
∑

x∈X

|A(x)〉〈A(x)|. (7.42)
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It has the properties

AB =
∑

x∈X

|A(x)〉〈A(x)|B〉 =
∑

x∈X

|A(x)〉TrA(x)∗B,

TrA2 =
∑

x,y∈X

|〈A(x)|A(y)〉|2 . (7.43)

The operator A is positive (and self-adjoint), since

〈B|A|B〉 =
∑

x∈X

|〈A(x)|B〉|2 ≥ 0.

Since this formula shows that (7.41) is equivalent to

aI ≤ A, (7.44)

it follows that (7.41) holds if and only if A has an inverse. The frame is called
tight if A = aI.

Let τ : X → (0,∞). Then {A(x) : x ∈ X} is an operator frame if and only
if {τ(x)A(x) : x ∈ X} is an operator frame.

Let {Ai ∈ Md(C) : 1 ≤ i ≤ k} be a subset of Md(C) such that the linear
span isMd(C). (Then k ≥ d2.) This is a simple example of an operator frame.
If k = d2, then the operator frame is tight if and only if {Ai ∈ Md(C) : 1 ≤
i ≤ d2} is an orthonormal basis up to a multiple constant.

A set A : X → Md(C)
+ of positive matrices is informationally complete

(IC) if for each pair of distinct quantum states ρ 6= σ there exists an event
x ∈ X such that TrA(x)ρ 6= TrA(x)σ. When A(x)’s are of unit rank we call
A a rank-one. It is clear that for numbers λ(x) > 0 the set {A(x) : x ∈ X}
is IC if and only if {λ(x)A(x) : x ∈ X} is IC.

Theorem 7.17 Let F : X → Md(C)
+ be a POVM. Then F is information-

ally complete if and only if {F (x) : x ∈ X} is an operator frame.

Proof: We use the notation

A =
∑

x∈X

|F (x)〉〈F (x)|, (7.45)

which is a positive operator.

Suppose that F is informationally complete and take an operator A =
A1 + iA2 in self-adjoint decomposition such that

〈A|A|A〉 =
∑

x∈X

|TrF (x)A|2 =
∑

x∈X

|TrF (x)A1|2 +
∑

x∈X

|TrF (x)A2|2 = 0,
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then we must have TrF (x)A1 = TrF (x)A2 = 0. The operators A1 and A2

are traceless:
TrAi =

∑

x∈X

TrF (x)Ai = 0 (i = 1, 2).

Take a positive definite state ρ and a small number ε > 0. Then ρ+ εAi can
be a state and we have

TrF (x)(ρ+ εAi) = TrF (x)ρ (x ∈ X).

The informationally complete property gives A1 = A2 = 0 and so A = 0. It
follows that A is invertible and the operator frame property comes.

For the converse, assume that for the distinct quantum states ρ 6= σ we
have

〈ρ− σ|A|ρ− σ〉 =
∑

x∈X

|TrF (x)(ρ− σ)|2 > 0.

Then there must exist an x ∈ X such that

Tr (F (x)(ρ− σ)) 6= 0,

or equivalently, TrF (x)ρ 6= TrF (x)σ, which means F is informationally com-
plete. �

Suppose that a POVM {F (x) : x ∈ X} is used for quantum measurement
when the state is ρ. The outcome of the measurement is an element x ∈ X

and its probability is p(x) = Tr ρF (x). If N measurements are performed
on N independent quantum systems (in the same state), then the results
are y1, . . . , yN . The outcome x ∈ X occurs with some multiplicity and the
estimate for the probability is

p̂(x) = p̂(x; y1, . . . , yN) :=
1

N

N
∑

k=1

δ(x, yk). (7.46)

From this information the state estimation has the form

ρ̂ =
∑

x∈X

p̂(x)Q(x),

where {Q(x) : x ∈ X} is a set of matrices. If we require that

ρ =
∑

x∈X

Tr (ρF (x))Q(x),

should hold for every state ρ, then {Q(x) : x ∈ X} should satisfy some
conditions. This idea will need the concept of dual frame.
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For a frame {A(x) : x ∈ X}, a dual frame {B(x) : x ∈ X} is such, that

∑

x∈X

|B(x)〉〈A(x)| = I,

or equivalently for all C ∈ Md(C) we have

C =
∑

x∈X

〈A(x)|C〉B(x) =
∑

x∈X

〈B(x)|C〉A(x).

The existence of a dual frame is equivalent to the frame inequality, but we
also have a canonical construction: The canonical dual frame is defined by
the operators

|Ã(x)〉 = A−1|A(x)〉. (7.47)

Recall that the inverse of A exists whenever {A(x) : x ∈ X} is an operator
frame. Note that given any operator frame {A(x) : x ∈ X} we can construct
a tight frame as {A−1/2|A(x)〉 : x ∈ X}.

Theorem 7.18 If the canonical dual of an operator frame {A(x) : x ∈ X}
with superoperator A is {Ã(x) : x ∈ X}, then

A−1 =
∑

x∈X

|Ã(x)〉〈Ã(x)| (7.48)

and the canonical dual of {Ã(x) : x ∈ X} is {A(x) : x ∈ X}. For an arbitrary
dual frame {B(x) : x ∈ X} of {A(x) : x ∈ X} the inequality

∑

x∈X

|B(x)〉〈B(x)| ≥
∑

x∈X

|Ã(x)〉〈Ã(x)| (7.49)

holds and equality only if B ≡ Ã.

Proof: A and A−1 are self-adjoint superoperators and we have

∑

x∈X

|Ã(x)〉〈Ã(x)| =
∑

x∈X

|A−1A(x)〉〈A−1A(x)|

= A−1
(

∑

x∈X

|A(x)〉〈A(x)|
)

A−1

= A−1AA−1 = A−1.

The second statement is A|Ã(x)〉 = |A(x)〉, which comes immediately from
|Ã(x)〉 = A−1|A(x)〉.
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Define D ≡ B − Ã. Then

∑

x∈X

|Ã(x)〉〈D(x)| =
∑

x∈X

(

|Ã(x)〉〈B(x)| − |Ã(x)〉〈Ã(x)|
)

= A−1
∑

x∈X

|A(x)〉〈B(x)| − A−1
∑

x∈X

|A(x)〉〈A(x)|A−1

= A−1I − A−1AA−1 = 0.

The adjoint gives
∑

x∈X

|D(x)〉〈Ã(x)| = 0 ,

and
∑

x∈X

|B(x)〉〈B(x)| =
∑

x∈X

|Ã(x)〉〈Ã(x)| +
∑

x∈X

|Ã(x)〉〈D(x)|

+
∑

x∈X

|D(x)〉〈Ã(x)| +
∑

x∈X

|D(x)〉〈D(x)|

=
∑

x∈X

|Ã(x)〉〈Ã(x)| +
∑

x∈X

|D(x)〉〈D(x)|

≥
∑

x∈X

|Ã(x)〉〈Ã(x)|

with equality if and only if D ≡ 0. �

We have the following inequality, also known as the frame bound.

Theorem 7.19 Let {A(x) : x ∈ X} be an operator frame with superoperator
A. Then the inequality

∑

x,y∈X

|〈A(x)|A(y)〉|2 ≥ (TrA)2

d2
(7.50)

holds, and we have equality if and only if {A(x) : x ∈ X} is a tight operator
frame.

Proof: Due to (7.43) the left hand side is TrA2, so the inequality holds.
The condition for equality is the fact that all eigenvalues of A are the same,
that is, A = cI. �

Let τ(x) = TrF (x). The useful superoperator is

F =
∑

x∈X

|F (x)〉〈F (x)|(τ(x))−1.
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Formally this is different from the frame superoperator (7.45). Therefore, we
express the POVM as

F (x) = P0(x)
√

τ(x) (x ∈ X)

where {P0(x) : x ∈ X} is called the positive operator-valued density
(POVD). Then

F =
∑

x∈X

|P0(x)〉〈P0(x)| =
∑

x∈X

|F (x)〉〈F (x)|(τ(x))−1. (7.51)

F is invertible if and only if A in (7.45) is invertible. As a corollary, we
see, that for an informationally complete POVM F , the POVD P0 can be
considered as a generalized operator frame. The canonical dual frame (in the
sense of (7.47)) then defines a reconstruction operator-valued density

|R0(x)〉 = F−1|P0(x)〉 (x ∈ X). (7.52)

We use also the notation R(x) := R0(x)τ(x)
−1/2. The identity

∑

x∈X

|R(x)〉〈F (x)| =
∑

x∈X

|R0(x)〉〈P0(x)| =
∑

x∈X

F−1|P0(x)〉〈P0(x)| = F−1F = I

(7.53)
then allows state reconstruction in terms of the measurement statistics:

ρ =

(

∑

x∈X

|R(x)〉〈F (x)|
)

ρ =
∑

x∈X

(TrF (x)ρ)R(x). (7.54)

So this state-reconstruction formula is an immediate consequence of the
action of (7.53) on ρ.

Theorem 7.20 We have

F−1 =
∑

x∈X

|R(x)〉〈R(x)|τ(x) (7.55)

and the operators R(x) are self-adjoint and TrR(x) = 1.

Proof: From the mutual canonical dual relation of {P0(x) : x ∈ X} and
{R0(x) : x ∈ X} we have

F−1 =
∑

x∈X

|R0(x)〉〈R0(x)|

and this is (7.55).
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R(x) is self-adjoint since F, and thus F−1, maps self-adjoint operators
to self-adjoint operators. For an arbitrary POVM, the identity operator is
always an eigenvector of the POVM superoperator:

F|I〉 =
∑

x∈X

|F (x)〉〈F (x)|I〉(τ(x))−1 =
∑

x∈X

|F (x)〉 = |I〉. (7.56)

Thus |I〉 is also an eigenvector of F−1, and we obtain

TrR(x) = 〈I|R(x)〉 = τ(x)−1/2〈I|R0(x)〉 = τ(x)−1/2〈I|F−1P0(x)〉
= τ(x)−1/2〈I|P0(x)〉 = τ(x)−1〈I|F (x)〉 = τ(x)−1τ(x) = 1 .

�

Note that we need |X| ≥ d2 for F to be informationally complete. If
this were not the case then F could not have full rank. An IC-POVM with
|X| = d2 is called minimal. In this case the reconstruction OVD is unique. In
general, however, there will be many different choices.

Example 7.21 Let x1, x2, . . . , xd be an orthonormal basis. ThenQi = |xi〉〈xi|
are projections and {Qi : 1 ≤ i ≤ d} is a POVM. However, it is not informa-
tionally complete. The subset

A :=
{

d
∑

i=1

λi|xi〉〈xi| : λ1, λ2, . . . , λd ∈ C

}

⊂ Md(C)

is a maximal abelian *-subalgebra, called a MASA.

A good example of an IC-POVM comes from d+ 1 similar sets:

{Q(m)
k : 1 ≤ k ≤ d, 1 ≤ m ≤ d+ 1}

consists of projections of rank one and

TrQ
(m)
k Q

(n)
l =

{

δkl if m = n,
1/d if m 6= n.

The class of POVM is described by

X := {(k,m) : 1 ≤ k ≤ d, 1 ≤ m ≤ d+ 1}

and

F (k,m) :=
1

d+ 1
Q

(m)
k , τ(k,m) :=

1

d+ 1
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for (k,m) ∈ X. (Here τ is constant and this is a uniformity.) We have

∑

(k,m)∈X

|F (k,m)〉〈F (k,m)|Q(n)
l =

1

(d+ 1)2

(

Q
(n)
l + I

)

This implies

FA =

(

∑

x∈X

|F (x)〉〈F (x)|(τ(x))−1

)

A =
1

(d+ 1)
(A + (TrA)I) .

So F is rather simple: if TrA = 0, then FA = 1
d+1

A and FI = I. (Another
formulation is (7.59).)

This example is a complete set of mutually unbiased bases (MUBs)
[79, 49]. The definition

Am :=
{

d
∑

k=1

λkQ
(m)
k : λ1, λ2, . . . , λd ∈ C

}

⊂ Md(C)

gives d + 1 MASAs. These MASAs are quasi-orthogonal in the following
sense. If Ai ∈ Ai and TrAi = 0 (1 ≤ i ≤ d + 1), then TrAiAj = 0 for
i 6= j. The construction of d + 1 quasi-orthogonal MASAs is known when d
is a prime-power (see also [29]). But d = 6 is already not prime-power and it
is a problematic example. �

It is straightforward to confirm that we have the decomposition

F =
1

d
|I〉〈I|+

∑

x∈X

|P (x)− I/d〉〈P (x)− I/d|τ(x) (7.57)

for any POVM superoperator (7.51), where P (x) := P0(x)τ(x)
−1/2 = F (x)τ(x)−1.

1

d
|I〉〈I| =

[

1 0
0 0

]

is the projection onto the subspace CI. With a notation

I0 :=

[

0 0
0 Id2−1

]

,

an IC-POVM {F (x) : x ∈ X} is tight if

∑

x∈X

|P (x)− I/d〉〈P (x)− I/d|τ(x) = aI0. (7.58)
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Theorem 7.22 F is a tight rank-one IC-POVM if and only if

F =
I+ |I〉〈I|
d+ 1

=

[

1 0
0 1

d+1
Id2−1

]

. (7.59)

(The later is in the block-matrix formalism.)

Proof: The constant a can be found by taking the superoperator trace:

a =
1

d2 − 1

∑

x∈X

〈P (x)− I/d|P (x)− I/d〉τ(x)

=
1

d2 − 1

(

∑

x∈X

〈P (x)|P (x)〉τ(x) − 1

)

.

The POVM superoperator of a tight IC-POVM satisfies the identity

F = aI +
1− a

d
|I〉〈I| . (7.60)

In the special case of a rank-one POVM a takes its maximum possible
value 1/(d + 1). Since this is in fact only possible for rank-one POVMs, by
noting that (7.60) can be taken as an alternative definition in the general
case, we obtain the proposition. �

It follows from (7.59) that

F−1 =

[

1 0
0 (d+ 1)Id2−1

]

= (d+ 1)I− |I〉〈I|. (7.61)

This shows that Example 7.21 contains a tight rank-one IC-POVM. Here is
another example.

Example 7.23 An example of an IC-POVM is the symmetric informa-
tionally complete POVM (SIC POVM). The set {Qk : 1 ≤ k ≤ d2}
consists of projections of rank one such that

TrQkQl =
1

d+ 1
(k 6= l).

Then X := {x : 1 ≤ x ≤ d2} and

F (x) =
1

d
Qx, F =

1

d

∑

x∈X

|Qx〉〈Qx|.
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We have some simple computations: FI = I and

F(Qk − I/d) =
1

d+ 1
(Qk − I/d).

This implies that if TrA = 0, then

FA =
1

d+ 1
A .

So the SIC POVM is a tight rank-one IC-POVM.

SIC-POVMs are conjectured to exist in all dimensions [80, 11]. �

The next theorem will tell that the SIC POVM is characterized by the IC
POVM property.

Theorem 7.24 If a set {Qk ∈ Md(C) : 1 ≤ k ≤ d2} consists of projections
of rank one such that

d2
∑

k=1

λk|Qk〉〈Qk| =
I+ |I〉〈I|
d+ 1

(7.62)

with numbers λk > 0, then

λi =
1

d
, TrQiQj =

1

d+ 1
(i 6= j).

Proof: Note that if both sides of (7.62) are applied to |I〉, then we get

d2
∑

i=1

λiQi = I. (7.63)

First we show that λi = 1/d. From (7.62) we have

d2
∑

i=1

λi〈A|Qi〉〈Qi|A〉 = 〈A|I+ |I〉〈I|
d+ 1

|A〉 (7.64)

with

A := Qk −
1

d+ 1
I.

(7.64) becomes

λk
d2

(d+ 1)2
+
∑

j 6=k

λj

(

TrQjQk −
1

d+ 1

)2

=
d

(d+ 1)2
. (7.65)
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The inequality

λk
d2

(d+ 1)2
≤ d

(d+ 1)2

gives λk ≤ 1/d for every 1 ≤ k ≤ d2. The trace of (7.63) is

d2
∑

i=1

λi = d.

Hence it follows that λk = 1/d for every 1 ≤ k ≤ d2. So from (7.65) we have

∑

j 6=k

λj

(

TrQjQk −
1

d+ 1

)2

= 0

and this gives the result. �

The state-reconstruction formula for a tight rank-one IC-POVM also takes
an elegant form. From (7.54) we have

ρ =
∑

x∈X

R(x)p(x) =
∑

x∈X

F−1P (x)p(x) =
∑

x∈X

((d+ 1)P (x)− I)p(x)

and obtain
ρ = (d+ 1)

∑

x∈X

P (x)p(x) − I . (7.66)

Finally, let us rewrite the frame bound (Theorem 7.19) for the context of
quantum measurements.

Theorem 7.25 Let F : X → Md(C)
+ be a POVM. Then

∑

x,y∈X

〈P (x)|P (y)〉2τ(x)τ(y) ≥ 1 +
(TrF− 1)2

d2 − 1
, (7.67)

with equality if and only if F is a tight IC-POVM.

Proof: The frame bound (7.50) takes the general form

Tr (A2) ≥ (Tr (A))2/D,

where D is the dimension of the operator space. Setting A = F− 1
d
|I〉〈I| and

D = d2 − 1 for Md(C)⊖ CI then gives (7.67) (using (7.56)). �

Informationally complete quantum measurements are precisely those mea-
surements which can be used for quantum state tomography. We will show
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that, amongst all IC-POVMs, the tight rank-one IC-POVMs are the most
robust against statistical error in the quantum tomographic process. We will
also find that, for an arbitrary IC-POVM, the canonical dual frame with re-
spect to the trace measure is the optimal dual frame for state reconstruction.
These results are shown only for the case of linear quantum state tomography.

Consider a state-reconstruction formula of the form

ρ =
∑

x∈X

p(x)Q(x) =
∑

x∈X

(TrF (x)ρ)Q(x), (7.68)

where Q(x) : X → Md(C) is an operator-valued density. If this formula is to
remain valid for all ρ, then we must have

∑

x∈X

|Q(x)〉〈F (x)| = I =
∑

x∈X

|Q0(x)〉〈P0(x)|, (7.69)

where Q0(x) = τ(x)1/2Q(x) and P0(x) = τ(x)−1/2F (x). Equation (7.69)
restricts {Q(x) : x ∈ X} to a dual frame of {F (x) : x ∈ X}. Similarly
{Q0(x) : x ∈ X} is a dual frame of {P0(x) : x ∈ X}. Our first goal is to find
the optimal dual frame.

Suppose that we take N independent random samples, y1, . . . , yN , and the
outcome x occurs with some unknown probability p(x). Our estimate for this
probability is (7.46) which of course obeys the expectation E[p̂(x)] = p(x). An
elementary calculation shows that the expected covariance for two samples is

E[(p(x)− p̂(x))(p(y)− p̂(y))] =
1

N

(

p(x)δ(x, y)− p(x)p(y)
)

. (7.70)

Now suppose that the p(x) are outcome probabilities for an information-
ally complete quantum measurement of the state ρ, p(x) = TrF (x)ρ. The
estimate of ρ is

ρ̂ = ρ̂(y1, . . . , yN) :=
∑

x∈X

p̂(x; y1, . . . , yN)Q(x) , (7.71)

and the error can be measured by the squared Hilbert-Schmidt distance:

‖ρ− ρ̂‖22 = 〈ρ− ρ̂, ρ− ρ̂〉 =
∑

x,y∈X

(p(x)− p̂(x))(p(y)− p̂(y))〈Q(x), Q(y)〉,

which has the expectation E[‖ρ − ρ̂‖22]. We want to minimize this quantity,
but not for an arbitrary ρ, but for some average. (Integration will be on the
set of unitary matrices with respect to the Haar measure.)
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Theorem 7.26 Let {F (x) : x ∈ X} be an informationally complete POVM
which has a dual frame {Q(x) : x ∈ X} as an operator-valued density. The
quantum system has a state σ and y1, . . . , yN are random samples of the mea-
surements. Then

p̂(x) :=
1

N

N
∑

k=1

δ(x, yk), ρ̂ :=
∑

x∈X

p̂(x)Q(x).

Finally let ρ = ρ(σ, U) := UσU∗ parametrized by a unitary U . Then for the
average squared distance

∫

U

E[‖ρ− ρ̂‖22] dµ(U) ≥ 1

N

(1

d
Tr (F−1)− Tr (σ2)

)

≥ 1

N

(

d(d+ 1)− 1− Tr (σ2)
)

. (7.72)

Equality in the left-hand side of (7.72) occurs if and only if Q is the recon-
struction operator-valued density (defined as |R(x)〉 = F−1|P (x)) and equality
in the right-hand side of (7.72) occurs if and only if F is a tight rank-one IC-
POVM.

Proof: For a fixed IC-POVM F we have

E[‖ρ− ρ̂‖22] =
1

N

∑

x,y∈X

(p(x)δ(x, y)− p(x)p(y))〈Q(x), Q(y)〉

=
1

N

(

∑

x∈X

p(x)〈Q(x), Q(x)〉 − 〈
∑

x∈X

p(x)Q(x)
∑

y∈X

p(y)Q(y)〉
)

=
1

N

(

∆p(Q)− Tr (ρ2)
)

,

where the formulas (7.70) and (7.68) are used, moreover

∆p(Q) :=
∑

x∈X

p(x) 〈Q(x), Q(x)〉. (7.73)

Since we have no control over Tr ρ2, we want to minimize ∆p(Q). The
IC-POVM which minimizes ∆p(Q) will in general depend on the quantum
state under examination. We thus set ρ = ρ(σ, U) := UσU∗, and now remove
this dependence by taking the Haar average µ(U) over all U ∈ U(d). Note
that

∫

U(d)

UPU∗ dµ(U)
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is the same constant C for any projection of rank 1. If
∑d

i=1 Pi = I, then

dC =
d
∑

i=1

∫

U(d)

UPU∗ dµ(U) = I

and we have C = I/d. Therefore for A =
∑d

i=1 λiPi we have

∫

U(d)

UAU∗ dµ(U) =

d
∑

i=1

λiC =
I

d
TrA.

This fact implies

∫

U(d)

∆p(Q) dµ(U) =
∑

x∈X

Tr

(

F (x)

∫

U(d)

UσU∗ dµ(U)

)

〈Q(x), Q(x)〉

=
1

d

∑

x∈X

TrF (x) Trσ〈Q(x), Q(x)〉

=
1

d

∑

x∈X

τ(x) 〈Q(x), Q(x)〉 =:
1

d
∆τ (Q) ,

where τ(x) := TrF (x). We will now minimize ∆τ (Q) over all choices for Q,
while keeping the IC-POVM F fixed. Our only constraint is that {Q(x) :
x ∈ X} remains a dual frame to {F (x) : x ∈ X} (see (7.69)), so that the
reconstruction formula (7.68) remains valid for all ρ. Theorem 7.18 shows
that the reconstruction OVD {R(x) : x ∈ X} defined as |R〉 = F−1|P 〉 is the
optimal choice for the dual frame.

Equation (7.20) shows that ∆τ (R) = Tr (F−1). We will minimize the
quantity

TrF−1 =

d2
∑

k=1

1

λk
, (7.74)

where λ1, . . . , λd2 > 0 denote the eigenvalues of F. These eigenvalues satisfy
the constraint

d2
∑

k=1

λk = TrF =
∑

x∈X

τ(x)Tr |P (x)〉〈P (x)| ≤
∑

x∈X

τ(x) = d , (7.75)

since Tr |P (x)〉〈P (x)| = TrP (x)2 ≤ 1. We know that the identity operator I
is an eigenvalue of F:

FI =
∑

x∈X

τ(x)|P (x)〉 = I
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Thus we in fact take λ1 = 1 and then
∑d2

k=2 λk ≤ d − 1. Under this latter
constraint it is straightforward to show that the right-hand-side of (7.74) takes
its minimum value if and only if λ2 = · · · = λd2 = (d−1)/(d2−1) = 1/(d+1),
or equivalently,

F = 1 · |I〉〈I|
d

+
1

d+ 1

(

I− |I〉〈I|
d

)

. (7.76)

Therefore, by Theorem 7.22, TrF−1 takes its minimum value if and only if
F is a tight rank-one IC-POVM. The minimum of TrF−1 comes from (7.76).

�

7.5 Cramér-Rao inequality

The Cramér-Rao inequality belongs to the estimation theory in mathemat-
ical statistics. Assume that we have to estimate the state ρθ, where θ =
(θ1, θ2, . . . , θN) lies in a subset of RN . There is a sequence of estimates
Φn : Xn → RN . In mathematical statistics the N × N mean quadratic
error matrix

Vn(θ)i,j :=

∫

Xn

(Φn(x)i − θi)(Φn(x)j − θj) dµn,θ(x) (1 ≤ i, j ≤ N)

is used to express the efficiency of the nth estimation and in a good estimation
scheme Vn(θ) = O(n−1) is expected. An unbiased estimation scheme
means

∫

Xn

Φn(x)i dµn,θ(x) = θi (1 ≤ i ≤ N)

and the formula simplifies:

Vn(θ)i,j :=

∫

Xn

Φn(x)iΦn(x)j dµn,θ(x)− θiθj . (7.77)

(In mathematical statistics, this is sometimes called covariance matrix of the
estimate.)

The mean quadratic error matrix is used to measure the efficiency of an
estimate. Even if the value of θ is fixed, for two different estimations the
corresponding matrices are not always comparable, because the ordering of
positive definite matrices is highly partial. This fact has inconvenient conse-
quences in classical statistics. In the state estimation of a quantum system
the very different possible measurements make the situation even more com-
plicated.
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Assume that dµn,θ(x) = fn,θ(x) dx and fix θ. fn,θ is called the likelihood
function. Let

∂j =
∂

∂θj
.

Differentiating the relation

∫

Xn

fn,θ(x) dx = 1,

we have
∫

Xn

∂jfn,θ(x) dx = 0.

If the estimation scheme is unbiased, then

∫

Xn

Φn(x)i∂jfn,θ(x) dx = δi,j .

As a combination, we conclude

∫

Xn

(Φn(x)i − θi)∂jfn,θ(x) dx = δi,j

for every 1 ≤ i, j ≤ N . This condition may be written in the slightly different
form

∫

Xn

(

(Φn(x)i − θi)
√

fn,θ(x)
) ∂jfn,θ(x)
√

fn,θ(x)
dx = δi,j.

Now the first factor of the integrand depends on i while the second one on j.
We need the following lemma.

Lemma 7.27 Assume that ui, vi are vectors in a Hilbert space such that

〈ui, vj〉 = δi,j (i, j = 1, 2, . . . , N).

Then the inequality
A ≥ B−1

holds for the N ×N matrices

Ai,j = 〈ui, uj〉 and Bi,j = 〈vi, vj〉 (1 ≤ i, j ≤ N).

The lemma applies to the vectors

ui = (Φn(x)i − θi)
√

fn,θ(x) and vj =
∂jfn,θ(x)
√

fn,θ(x)
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and the matrix A will be exactly the mean square error matrix Vn(θ), while
in place of B we have

In(θ)i,j =

∫

Xn

∂i(fn,θ(x))∂j(fn,θ(x))

f 2
n,θ(x)

dµn,θ(x).

Therefore, the lemma tells us the following.

Theorem 7.28 For an unbiased estimation scheme the matrix inequality

Vn(θ) ≥ In(θ)
−1 (7.78)

holds (if the likelihood functions fn,θ satisfy certain regularity conditions).

This is the classical Cramér-Rao inequality. The right hand side is
called the Fisher information matrix. The essential content of the in-
equality is that the lower bound is independent of the estimate Φn but depends
on the the classical likelihood function. The inequality is called classical be-
cause on both sides classical statistical quantities appear.

Example 7.29 Let F be a measurement with values in the finite set X and
assume that ρθ = ρ +

∑n
i=1 θiBi, where Bi are self-adjoint operators with

TrBi = 0. We want to compute the Fisher information matrix at θ = 0.

Since
∂iTr ρθF (x) = TrBiF (x)

for 1 ≤ i ≤ n and x ∈ X , we have

Iij(0) =
∑

x∈X

TrBiF (x)TrBjF (x)

Tr ρF (x)

�

The essential point in the quantum Cramér-Rao inequality compared with
Theorem 7.28 is that the lower bound is a quantity determined by the family
Θ. Theorem 7.28 allows to compare different estimates for a given measure-
ment but two different measurements are not comparable.

As a starting point we give a very general form of the quantum Cramér-Rao
inequality in the simple setting of a single parameter. For θ ∈ (−ε, ε) ⊂ R

a statistical operator ρθ is given and the aim is to estimate the value of
the parameter θ close to 0. Formally ρθ is an m × m positive semidefinite
matrix of trace 1 which describes a mixed state of a quantum mechanical
system and we assume that ρθ is smooth (in θ). Assume that an estimation
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is performed by the measurement of a self-adjoint matrix A playing the role
of an observable. (In this case the positive operator-valued measure on R is
the spectral measure of A.) A is an unbiased estimator when Tr ρθA = θ.
Assume that the true value of θ is close to 0. A is called a locally unbiased
estimator (at θ = 0) if

∂

∂θ
Tr ρθA

∣

∣

∣

θ=0
= 1 . (7.79)

Of course, this condition holds if A is an unbiased estimator for θ. To require
Tr ρθA = θ for all values of the parameter might be a serious restriction on
the observable A and therefore we prefer to use the weaker condition (7.79).

Example 7.30 Let

ρθ :=
exp(H + θB)

Tr exp(H + θB)

and assume that ρ0 = eH is a density matrix and Tr eHB = 0. The Fréchet
derivative of ρθ (at θ = 0) is

∫ 1

0
etHBe(1−t)H dt. Hence the self-adjoint operator

A is locally unbiased if

∫ 1

0

Tr ρt0Bρ
1−t
0 Adt = 1.

(Note that ρθ is a quantum analogue of the exponential family, in terms
of physics ρθ is a Gibbsian family of states.) �

Let ϕρ[B,C] = Tr Jρ(B)C be an inner product on the linear space of self-
adjoint matrices. ϕρ[ · , · ] and the corresponding super-operator Jρ depend
on the density matrix ρ, the notation reflects this fact. When ρθ is smooth
in θ, as already was assumed above, then

∂

∂θ
Tr ρθB

∣

∣

∣

θ=0
= ϕρ0 [B,L] (7.80)

with some L = L∗. From (7.79) and (7.80), we have ϕρ0 [A,L] = 1 and the
Schwarz inequality yields

Theorem 7.31

ϕρ0 [A,A] ≥
1

ϕρ0[L, L]
. (7.81)

This is the quantum Cramér-Rao inequality for a locally unbiased esti-
mator. It is instructive to compare Theorem 7.31 with the classical Cramér-
Rao inequality. If A =

∑

i λiEi is the spectral decomposition, then the cor-
responding von Neumann measurement is F =

∑

i δλiEi. Take the estimate
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Φ(λi) = λi. Then the mean quadratic error is
∑

i λ
2
iTr ρ0Ei (at θ = 0) which

is exactly the left-hand side of the quantum inequality provided that

ϕρ0[B,C] =
1
2
Tr ρ0(BC + CB) .

Generally, we want to interpret the left-hand side as a sort of generalized
variance of A. To do this it is useful to assume that

ϕρ[B,B] = Tr ρB2 if Bρ = ρB . (7.82)

However, in the non-commutative situation the statistical interpretation seems
to be rather problematic and thus we call this quantity quadratic cost func-
tional.

The right-hand side of (7.81) is independent of the estimator and provides
a lower bound for the quadratic cost. The denominator ϕρ0 [L, L] appears to
be in the role of Fisher information here. We call it the quantum Fisher
information with respect to the cost function ϕρ0 [ · , · ]. This quantity de-
pends on the tangent of the curve ρθ. If the densities ρθ and the estimator A
commute, then

L = ρ−1
0

dρθ
dθ

∣

∣

∣

θ=0
=

d

dθ
log ρθ

∣

∣

∣

θ=0
,

ϕ0[L, L] = Tr ρ−1
0

(

dρθ
dθ

∣

∣

∣

θ=0

)2

= Tr ρ0

(

ρ−1
0

dρθ
dθ

∣

∣

∣

θ=0

)2

.

The first formula justifies that L is called the logarithmic derivative.

A coarse-graining is an affine mapping sending density matrices into
density matrices. Such a mapping extends to all matrices and provides a
positivity and trace preserving linear transformation. A common example of
coarse-graining sends the density matrix ρ12 of a composite systemMm1

⊗Mm2

into the (reduced) density matrix ρ1 of component Mm1
. There are several

reasons to assume completely positivity for a coarse graining and we do so.
Mathematically a coarse-graining is the same as a state transformation in
an information channel. The terminology coarse-graining is used when the
statistical aspects are focused on. A coarse-graining is the quantum analogue
of a statistic.

Assume that ρθ = ρ + θB is a smooth curve of density matrices with
tangent B := ρ̇ at ρ. The quantum Fisher information Fρ(B) is an informa-
tion quantity associated with the pair (ρ, B), it appeared in the Cramér-Rao
inequality above and the classical Fisher information gives a bound for the
variance of a locally unbiased estimator. Now let α be a coarse-graining.
Then α(ρθ) is another curve in the state space. Due to the linearity of α, the
tangent at α(ρ) is α(B). As it is usual in statistics, information cannot be
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gained by coarse graining, therefore we expect that the Fisher information
at the density matrix ρ in the direction B must be larger than the Fisher
information at α(ρ) in the direction α(B). This is the monotonicity property
of the Fisher information under coarse-graining:

Fρ(B) ≥ Fα(ρ)(α(B)) (7.83)

Although we do not want to have a concrete formula for the quantum Fisher
information, we require that this monotonicity condition must hold. Another
requirement is that Fρ(B) should be quadratic in B, in other words there
exists a non-degenerate real bilinear form γρ(B,C) on the self-adjoint matrices
such that

Fρ(B) = γρ(B,B). (7.84)

When ρ is regarded as a point of a manifold consisting of density matrices
and B is considered as a tangent vector at the foot point ρ, the quadratic
quantity γρ(B,B) may be regarded as a Riemannian metric on the manifold.
This approach gives a geometric interpretation to the Fisher information.

The requirements (7.83) and (7.84) are strong enough to obtain a reason-
able but still wide class of possible quantum Fisher informations.

We may assume that

γρ(B,C) = TrBJ
−1
ρ (C) (7.85)

for an operator Jρ acting on all matrices. (This formula expresses the inner
product γρ by means of the Hilbert-Schmidt inner product and the positive
linear operator Jρ.) In terms of the operator Jρ the monotonicity condition
reads as

α∗
J
−1
α(ρ)α ≤ J

−1
ρ (7.86)

for every coarse graining α. (α∗ stands for the adjoint of α with respect to
the Hilbert-Schmidt product. Recall that α is completely positive and trace
preserving if and only if α∗ is completely positive and unital.) On the other
hand the latter condition is equivalent to

αJρα
∗ ≤ Jα(ρ) . (7.87)

It is interesting to observe the relevance of a certain quasi-entropy:

〈Bρ1/2, f(LρR−1
ρ )Bρ1/2〉 = SBf (ρ‖ρ),

where the linear transformations Lρ and Rρ acting on matrices are the left
and right multiplications, that is,

Lρ(X) = ρX and Rρ(X) = Xρ .
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When f : R+ → R is operator monotone (we always assume f(1) = 1),

〈α∗(B)ρ1/2, f(LρR
−1
ρ )α∗(B)ρ1/2〉 ≤ 〈Bα(ρ)1/2, f(Lα(ρ)R−1

α(ρ))Bα(ρ)
1/2〉

due to the monotonicity of the quasi-entropy. If we set

Jρ = R
1/2
ρ f(LρR

−1
ρ )R1/2

ρ ,

then (7.87) holds. Therefore

ϕρ[B,B] := TrBJρ(B) = 〈Bρ1/2, f(LρR−1
ρ )Bρ1/2〉 (7.88)

can be called a quadratic cost function and the corresponding monotone
quantum Fisher information

γρ(B,C) = TrBJ
−1
ρ (C) (7.89)

will be real for self-adjoint B and C if the function f satisfies the condition
f(t) = tf(t−1).

Example 7.32 In order to understand the action of the operator Jρ, assume
that ρ is diagonal, ρ =

∑

i piEii. Then one can check that the matrix units
Ekl are eigenvectors of Jρ, namely

Jρ(Ekl) = plf(pk/pl)Ekl.

The condition f(t) = tf(t−1) gives that the eigenvectors Ekl and Elk have
the same eigenvalues. Therefore, the symmetrized matrix units Ekl+Elk and
iEkl − iElk are eigenvectors as well.

Since

B =
∑

k<l

ReBkl(Ekl + Elk) +
∑

k<l

ImBkl(iEkl − iElk) +
∑

i

BiiEii,

we have

γρ(B,B) = 2
∑

k<l

1

pkf(pk/pl)
|Bkl|2 +

∑

i

|Bii|2
1

pi
. (7.90)

In place of 2
∑

k<l, we can write
∑

k 6=l. �

Any monotone cost function has the property ϕρ[B,B] = Tr ρB2 for com-
muting ρ and B. The examples below show that it is not so generally.
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Example 7.33 The analysis of operator monotone functions leads to the fact
that among all monotone quantum Fisher informations there is a smallest one
which corresponds to the (largest) function fmax(t) = (1 + t)/2. In this case

Fmin
ρ (B) = TrBL = Tr ρL2, where ρL+ Lρ = 2B.

For the purpose of a quantum Cramér-Rao inequality the minimal quantity
seems to be the best, since the inverse gives the largest lower bound. In fact,
the matrix L has been used for a long time under the name of symmetric
logarithmic derivative. In this example the quadratic cost function is

ϕρ[B,C] =
1
2
Tr ρ(BC + CB)

and we have

Jρ(B) = 1
2
(ρB +Bρ) and J−1

ρ (C) = 2
∫∞

0
e−tρCe−tρ dt

for the operator Jρ. Since J−1
ρ is the smallest, Jρ is the largest (among all

possibilities).

There is a largest among all monotone quantum Fisher informations and
this corresponds to the function fmin(t) = 2t/(1 + t). In this case

J
−1
ρ (B) = 1

2
(ρ−1B +Bρ−1) and Fmax

ρ (B) = Tr ρ−1B2.

It is known that the function

fα(t) = α(1− α)
(t− 1)2

(tα − 1)(t1−α − 1)

is operator monotone for α ∈ (0, 1). We denote by F α the corresponding
Fisher information metric. When B = i[ρ, C] is orthogonal to the commutator
of the foot point ρ in the tangent space, we have

F α
ρ (B) =

1

2α(1− α)
Tr ([ρα, C][ρ1−α, C]). (7.91)

Apart from a constant factor this expression is the skew information pro-
posed by Wigner and Yanase some time ago. In the limiting cases α → 0 or
1 we have

f0(t) =
1− t

log t

and the corresponding quantum Fisher information

γ0ρ(B,C) = Kρ(B,C) :=

∫ ∞

0

TrB(ρ+ t)−1C(ρ+ t)−1 dt (7.92)
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will be named here after Kubo and Mori. The Kubo-Mori inner product
plays a role in quantum statistical mechanics. In this case J is the so-called
Kubo transform K (and J−1 is the inverse Kubo transform K−1),

K
−1
ρ (B) :=

∫ ∞

0

(ρ+ t)−1B(ρ+ t)−1 dt and Kρ(C) :=

∫ 1

0

ρtCρ1−t dt .

Therefore the corresponding generalized variance is

ϕρ[B,C] =

∫ 1

0

TrBρtCρ1−t dt . (7.93)

All Fisher informations discussed in this example are possible Riemannian
metrics of manifolds of invertible density matrices. (Manifolds of pure states
are rather different.) �

A Fisher information appears not only as a Riemannian metric but as
an information matrix as well. Let M := {ρθ : θ ∈ G} be a smooth m-
dimensional manifold of invertible density matrices. The quantum score
operators (or logarithmic derivatives) are defined as

Li(θ) := J
−1
ρθ
(∂θiρθ) (1 ≤ i ≤ m)

and

Qij(θ) := TrLi(θ)Jρθ(Lj(θ)) (1 ≤ i, j ≤ m)

is the quantum Fisher information matrix. This matrix depends on
an operator monotone function which is involved in the super-operator J.
Historically the matrix Q determined by the symmetric logarithmic derivative
(or the function fmax(t) = (1 + t)/2) appeared first in the work of Helstrøm.
Therefore, we call thisHelstrøm information matrix and it will be denoted
by H(θ).

Theorem 7.34 Fix an operator monotone function f to induce quantum
Fisher information. Let α be a coarse-graining sending density matrices
on the Hilbert space H1 into those acting on the Hilbert space H2 and let
M := {ρθ : θ ∈ G} be a smooth m-dimensional manifold of invertible density
matrices on H1. For the Fisher information matrix Q(1)(θ) of M and for the
Fisher information matrix Q(2)(θ) of α(M) := {α(ρθ) : θ ∈ G}, we have the
monotonicity relation

Q(2)(θ) ≤ Q(1)(θ). (7.94)

(This is an inequality between m×m positive matrices.)



7.5. CRAMÉR-RAO INEQUALITY 317

Proof: Set Bi(θ) := ∂θiρθ. Then J
−1
α(ρθ)

α(Bi(θ)) is the score operator of

α(M). Using (7.86), we have

∑

ij

Q
(2)
ij (θ)aiaj = Tr J−1

α(ρθ)
α
(

∑

i

aiBi(θ)
)

α
(

∑

j

ajBj(θ)
)

≤ Tr J−1
ρθ

(

∑

i

aiBi(θ)
)(

∑

j

ajBj(θ)
)

=
∑

ij

Q
(1)
ij (θ)aiaj

for any numbers ai. �

Assume that Fj are positive operators acting on a Hilbert space H1 on
which the family M := {ρθ : θ ∈ Θ} is given. When

∑n
j=1 Fj = I, these

operators determine a measurement. For any ρθ the formula

α(ρθ) := Diag(Tr ρθF1, . . . ,Tr ρθFn)

gives a diagonal density matrix. Since this family is commutative, all quantum
Fisher informations coincide with the classical (7.78) and the classical Fisher
information stand on the left-hand side of (7.94). We hence have

I(θ) ≤ Q(θ). (7.95)

Combination of the classical Cramér-Rao inequality in Theorem 7.28 and
(7.95) yields the Helstrøm inequality:

V (θ) ≥ H(θ)−1 .

Example 7.35 In this example, we want to investigate (7.95) which is equiv-
alently written as

Q(θ)−1/2I(θ)Q(θ)−1/2 ≤ Im.

Taking the trace, we have

TrQ(θ)−1I(θ) ≤ m. (7.96)

Assume that
ρθ = ρ+

∑

k

θkBk ,

where TrBk = 0 and the self-adjoint matrices Bk are pairwise orthogonal
with respect to the inner product (B,C) 7→ TrBJ−1

ρ (C).
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The quantum Fisher information matrix

Qkl(0) = TrBkJ
−1
ρ (Bl)

is diagonal due to our assumption. Example 7.29 tells us about the classical
Fisher information matrix:

Ikl(0) =
∑

j

TrBkFj TrBlFj
Tr ρFj

Therefore,

TrQ(0)−1I(0) =
∑

k

1

TrBkJ
−1
ρ (Bk)

∑

j

(TrBkFj)
2

Tr ρFj

=
∑

j

1

Tr ρFj

∑

k



Tr
Bk

√

TrBkJ
−1
ρ (Bk)

J
−1
ρ (JρFj)





2

.

We can estimate the second sum using the fact that

Bk
√

TrBkJ
−1
ρ (Bk)

is an orthonormal system and it remains so when ρ is added to it:

(ρ, Bk) = TrBkJ
−1
ρ (ρ) = TrBk = 0

and

(ρ, ρ) = Tr ρJ−1
ρ (ρ) = Tr ρ = 1.

Due to the Parseval inequality, we have

(

Tr ρJ−1
ρ (JρFj)

)2
+
∑

k



Tr
Bk

√

TrBkJ
−1
ρ (Bk)

J
−1
ρ (JρFj)





2

≤ Tr (JρFj)J
−1
ρ (JρFj)

and

TrQ(0)−1I(0) ≤
∑

j

1

Tr ρFj

(

Tr (JρFj)Fj − (Tr ρFj)
2
)

=
n
∑

j=1

Tr (JρFj)Fj
Tr ρFj

− 1 ≤ n− 1
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if we show that

Tr (JρFj)Fj ≤ Tr ρFj .

To see this we use the fact that the left hand side is a quadratic cost and it
can be majorized by the largest one:

Tr (JρFj)Fj ≤ Tr ρF 2
j ≤ Tr ρFj ,

because F 2
j ≤ Fj .

Since θ = 0 is not essential in the above argument, we obtained that

TrQ(θ)−1I(θ) ≤ n− 1,

which can be compared with (7.96). This bound can be smaller than the gen-
eral one. The assumption on Bk’s is not very essential, since the orthogonality
can be reached by reparameterization. �

Let M := {ρθ : θ ∈ G} be a smooth m-dimensional manifold and assume
that a collection A = (A1, . . . , Am) of self-adjoint matrices is used to estimate
the true value of θ.

Given an operator J we have the corresponding cost function ϕθ ≡ ϕρθ for
every θ and the cost matrix of the estimator A is a positive definite matrix,
defined by ϕθ[A]ij = ϕθ[Ai, Aj ]. The bias of the estimator is

b(θ) = (b1(θ), b2(θ), . . . , bm(θ))

:= (Tr ρθ(A1 − θ1),Tr ρθ(A2 − θ2), . . . ,Tr ρθ(Am − θm)).

From the bias vector we form a bias matrix

Bij(θ) := ∂θjbi(θ) (1 ≤ i, j ≤ m).

For a locally unbiased estimator at θ0, we have B(θ0) = 0.

The next result is the quantum Cramér-Rao inequality for a biased esti-
mate.

Theorem 7.36 Let A = (A1, . . . , Am) be an estimator of θ. Then for the
above defined quantities the inequality

ϕθ[A] ≥ (I +B(θ))Q(θ)−1(I +B(θ)∗)

holds in the sense of the order on positive semidefinite matrices. (Here I
denotes the identity operator.)
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Proof: We will use the block-matrix method. Let X and Y be m × m
matrices with n × n entries and assume that all entries of Y are constant
multiples of the unit matrix. (Ai and Li are n×n matrices.) If α is a positive
mapping on n× n matrices with respect to the Hilbert-Schmidt inner prod-
uct, then α̃ := Diag(α, . . . , α) is a positive mapping on block matrices and
α̃(Y X) = Y α̃(X). This implies that TrXα(X∗)Y ≥ 0 when Y is positive.
Therefore the l × l ordinary matrix M which has the (i, j) entry

Tr (Xα̃(X∗))

is positive. In the sequel we restrict ourselves to m = 2 for the sake of
simplicity and apply the above fact to the case l = 4 with

X =









A1 0 0 0
A2 0 0 0
L1(θ) 0 0 0
L2(θ) 0 0 0









and α = Jρθ .

Then we have

M =









TrA1Jρ(A1) TrA1Jρ(A2) TrA1Jρ(L1) TrA1Jρ(L2)
TrA2Jρ(A1) TrA2Jρ(A2) TrA2Jρ(L1) TrA2Jρ(L2)
TrL1Jρ(A1) TrL1Jρ(A2) TrL1Jρ(L1) TrL1Jρ(L2)
TrL2Jρ(A1) TrL2Jρ(A2) TrL2Jρ(L1) TrL2Jρ(L2)









≥ 0 .

Now we rewrite the matrix M in terms of the matrices involved in our
Cramér-Rao inequality. The 2 × 2 block M11 is the generalized covariance,
M22 is the Fisher information matrix and M12 is easily expressed as I + B.
We get

M =









ϕθ[A1, A1] ϕθ[A1, A2] 1 +B11(θ) B12(θ)
ϕθ[A2, A1] ϕθ[A2, A2] B21(θ) 1 +B22(θ)
1 +B11(θ) B21(θ) ϕθ[L1, L1] ϕθ[L1, L2]
B12(θ) 1 +B22(θ) ϕθ[L2, L1] ϕθ[L2, L2]









≥ 0 .

The positivity of a block matrix

M =

[

M1 C
C∗ M2

]

=

[

ϕρ[A] I +B(θ)
I +B(θ)∗ Q(θ)

]

implies M1 ≥ CM−1
2 C∗, which reveals exactly the statement of the theorem.

(Concerning positive block-matrices, see Chapter 2.) �

Let MΘ = {ρθ : θ ∈ Θ} be a smooth manifold of density matrices. The
following construction is motivated by classical statistics. Suppose that a
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positive functional d(ρ1, ρ2) of two variables is given on the manifold. In
many cases one can get a Riemannian metric by differentiation:

gij(θ) =
∂2

∂θi∂θ
′
j

d(ρθ, ρθ′)
∣

∣

∣

θ=θ′
(θ ∈ Θ).

To be more precise the positive smooth functional d( · , · ) is called a contrast
functional if d(ρ1, ρ2) = 0 implies ρ1 = ρ2.

Following the work of Csiszár in classical information theory, Petz intro-
duced a family of information quantities parametrized by a function F : R+ →
R

SF (ρ1, ρ2) = 〈ρ1/21 , F (∆(ρ2/ρ1))ρ
1/2
1 〉,

see (7.15); F is written here in place of f . (∆(ρ2/ρ1) := Lρ2R
−1
ρ1

is the
relative modular operator of the two densities.) When F is operator monotone
decreasing, this quasi-entropy possesses good properties, for example it is a
contrast functional in the above sense if F is not linear and F (1) = 0. In
particular for

Fα(t) =
1

α(1− α)
(1− tα)

we have

Sα(ρ1, ρ2) =
1

α(1− α)
Tr (I − ρα2ρ

−α
1 )ρ1 .

The differentiation is

∂2

∂t∂u
Sα(ρ+ tB, ρ+ uC) = − 1

α(1− α)

∂2

∂t∂u
Tr (ρ+ tB)1−α(ρ+ uC)α

=: Kα
ρ (B,C)

at t = u = 0 in the affine parametrization. The tangent space at ρ is decom-
posed into two subspaces, the first consists of self-adjoint matrices commuting
with ρ and the second is {i(Dρ−ρD) : D = D∗}, the set of commutators. The
decomposition is essential both from the viewpoint of differential geometry
and from the point of view of differentiation, see Example 3.30. If B and C
commute with ρ, then

Kα
ρ (B,C) = Tr ρ−1BC

is independent of α and it is the classical Fischer information (in matrix form).
If B = i[DB, ρ] and C = i[DC , ρ], then

Kα
ρ (B,C) = Tr [ρ1−α, DB][ρ

α, DC ].

This is related to the skew information (7.91).
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7.6 Notes and remarks

As an introduction we suggest the book Oliver Johnson, Information Theory
and The Central Limit Theorem, Imperial College Press, 2004. The Gaussian
Markov property is popular in probability theory for single parameters, but
the vector-valued case is less popular. Section 1 is based on the paper T.
Ando and D. Petz, Gaussian Markov triplets approached by block matrices,
Acta Sci. Math. (Szeged) 75(2009), 329-345.

Classical information theory is in the book I. Csiszár and J. Körner, Infor-
mation Theory: Coding Theorems for Discrete Memoryless Systems, Cam-
bridge University Press, 2011. The Shannon entropy appeared in the 1940’s
and it is sometimes written that the von Neumann entropy is its generaliza-
tion. However, it is a fact that von Neumann started the quantum entropy
in 1925. Many details are in the books [62, 68]. The f -entropy of Imre
Csiszár is used in classical information theory (and statistics) [33], see also
the paper F. Liese and I. Vajda, On divergences and informations in statistics
and information theory, IEEE Trans. Inform. Theory 52(2006), 4394-4412.
The quantum generalization was extended by Dénes Petz in 1985, for ex-
ample see Chapter 7 in [62]. The strong subadditivity of the von Neumann
entropy was proved by E.H. Lieb and M.B. Ruskai in 1973. Details about the
f -divergence are in the paper [44]. Theorem 7.4 is from the paper K. M. R.
Audenaert, Subadditivity of q-entropies for q > 1, J. Math. Phys. 48(2007),
083507. The quantity TrDq is called q-entropy, or Tsallis entropy. It is
remarkable that the strong subadditivity is not true for the Tsallis entropy
in the matrix case (but it holds for probability), good informations are in
the paper [36] and S. Furuichi, Tsallis entropies and their theorems, proper-
ties and applications, Aspects of Optical Sciences and Quantum Information,
2007.

A good introduction to the CCR-algebra is the book [64]. This subject
is far from matrix analysis, but the quasi-free states are really described by
matrices. The description of the Markovian quasi-free state is from the paper
A. Jenčova, D. Petz and J. Pitrik, Markov triplets on CCR-algebras, Acta
Sci. Math. (Szeged), 76(2010), 111–134.

The optimal quantum measurements section is from the paper A. J. Scott,
Tight informationally complete quantum measurements, J. Phys. A: Math.
Gen. 39, 13507 (2006). MUBs have a big literature. They are commu-
tative quasi-orthogonal subalgebras. The work of Scott was motivated in
the paper D. Petz, L. Ruppert and A. Szántó, Conditional SIC-POVMs,
arXiv:1202.5741. It is interesting that the existence of d MUBs in Md(C)
implies the existence of d+ 1 MUBs, in the paper M. Weiner, A gap for the
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maximum number of mutually unbiased bases, arXiv:0902.0635, 2009.

The quasi-orthogonality of non-commutative subalgebras of Md(C) has
also big literature, a summary is the paper D. Petz, Algebraic complementar-
ity in quantum theory, J. Math. Phys. 51, 015215 (2010). The SIC POVM
is constructed in 6 dimension in the paper M. Grassl, On SIC-POVMs and
MUBs in dimension 6, http://arxiv.org/abs/quant-ph/0406175.

The Fisher information appeared in the 1920’s. We can suggest the book
Oliver Johnson, Information theory and the central limit theorem, Impe-
rial College Press, London, 2004 and a paper K. R. Parthasarathy, On the
philosophy of Cramér-Rao-Bhattacharya inequalities in quantum statistics,
arXiv:0907.2210. The general quantum matrix formalism was started by D.
Petz in the paper [66]. A. Lesniewski and M.B. Ruskai discovered that all
monotone Fisher informations are obtained from a quasi-entropy as contrast
functional [57].

7.7 Exercises

1. Prove Theorem 7.2.

2. Assume that H2 is one-dimensional in Theorem 7.14. Describe the
possible quasi-free Markov triplet.

3. Show that in Lemma 7.6 condition (iii) cannot be replaced by

D123D
−1
23 = D12D

−1
2 .

4. Prove Theorem 7.15.

5. The Bogoliubov-Kubo-Mori Fisher information is induced by the func-
tion

f(x) =
x− 1

log x
=

∫ 1

0

xt dt

and

γBKM
D (A,B) = TrA(JfD)

−1B

for self-adjoint matrices. Show that

γBKM
D (A,B) =

∫ ∞

0

Tr (D + tI)−1A(D + tI)−1B dt

= − ∂2

∂t∂s
S(D + tA‖D + sB)

∣

∣

∣

t=s=0
.
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6. Prove Theorem 7.16.

7. Show that

x log x =

∫ ∞

0

( x

1 + t
− x

x+ t

)

dt

and imply that the function f(x) = x log x is matrix convex.

8. Define

Sβ(ρ1‖ρ2) :=
Tr ρ1+β1 ρ−β2 − 1

β

for β ∈ (0, 1). Show that

S(ρ1‖ρ2) ≤ Sβ(ρ1‖ρ2)

for density matrices ρ1 and ρ2.

9. The functions

gp(x) :=







1
p(1−p)

(x− xp) if p 6= 1,

x log x if p = 1

can be used for quasi-entropy. For which p > 0 is the function gp
operator concave?

10. Give an example that condition (iv) in Theorem 7.12 does not imply
condition (iii).

11. Assume that
[

A B
B∗ C

]

≥ 0.

Prove that

Tr (AC − B∗B) ≤ (TrA)(TrC)− (TrB)(TrB∗).

(Hint: Use Theorem 7.4 in the case q = 2.)

12. Let ρ and ω be invertible density matrices. Show that

S(ω‖ρ) ≤ Tr (ω log(ω1/2ρ−1ω1/2)).

13. For α ∈ [0, 1] let

χ2
α(ρ, σ) := Tr ρσ−αρσα−1 − 1.

Find the value of α which gives the minimal quantity.
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Löwner, 169
Lidskii-Wielandt, 237
Lieb’s concavity, 285
Nevanlinna, 160
Riesz-Fischer, 13
Schoenberg, 87
Schur, 55, 69
Tomiyama, 97
Weyl majorization, 236
Weyl’s monotonicity, 69

trace, 7, 24
trace-norm, 245
transformer inequality, 201, 214
transpose, 7
triangular, 12
tridiagonal, 19
Tsallis entropy, 280, 322

unbiased estimation scheme, 308
unitarily invariant norm, 243

unitary, 15

van der Waerden, 49
Vandermonde matrix, 51
variance, 74
vector

cyclic, 20
von Neumann, 49, 97, 243, 269, 322
von Neumann entropy, 124

weak majorization, 228, 231
weakly positive matrix, 35
weighted

mean, 206
Weyl

inequality, 251
majorization theorem, 236
monotonicity, 69

Wielandt inequality, 35, 65, 96
Wigner, 49



Bibliography

[1] T. Ando, Generalized Schur complements, Linear Algebra Appl.
27(1979), 173–186.

[2] T. Ando, Concavity of certain maps on positive definite matrices and ap-
plications to Hadamard products, Linear Algebra Appl. 26(1979), 203–
241.

[3] T. Ando, Totally positive matrices, Linear Algebra Appl. 90(1987), 165–
219.

[4] T. Ando, Majorization, doubly stochastic matrices and comparison of
eigenvalues, Linear Algebra Appl. 118(1989), 163–248.

[5] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra
Appl. 199(1994), 17–67.

[6] T. Ando, private communication, 2009.

[7] T. Ando and F. Hiai, Log majorization and complementary Golden-
Thompson type inequalities, Linear Algebra Appl. 197/198(1994), 113–
131.

[8] T. Ando and F. Hiai, Operator log-convex functions and operator means,
Math. Ann., 350(2011), 611–630.

[9] T. Ando, C-K. Li and R. Mathias, Geometric means, Linear Algebra
Appl. 385(2004), 305–334.

[10] T. Ando and D. Petz, Gaussian Markov triplets approached by block
matrices, Acta Sci. Math. (Szeged) 75(2009), 265–281.

[11] D. M. Appleby, Symmetric informationally complete-positive opera-
tor valued measures and the extended Clifford group, J. Math. Phys.
46(2005), 052107.

331



332 BIBLIOGRAPHY

[12] K. M. R. Audenaert and J. S. Aujla, On Ando’s inequalities for convex
and concave functions, Preprint (2007), arXiv:0704.0099.

[13] K. Audenaert, F. Hiai and D. Petz, Strongly subadditive functions, Acta
Math. Hungar. 128(2010), 386–394.

[14] J. Bendat and S. Sherman, Monotone and convex operator functions.
Trans. Amer. Math. Soc. 79(1955), 58–71.
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