Functional Analysis, Exercises 1.

- 1. Let (X, d) be a metric space and $(x_n), (y_n)$ be sequences in X s.t. $x_n \rightarrow d x$ and $y_n \to^d y$. Show that $\lim_{n \to \infty} d(x_n, y_n) = d(x, y)$.
- 2. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is strictly increasing, then

$$
d_f(x, y) = |f(x) - f(y)|
$$

defines a metic on R.

3. Consider the sequence space

$$
X = \{(x_n)_{n \in \mathbb{N}} : \exists N \in \mathbb{N} \text{ s.t. } x_k = 0 \text{ if } k \ge N\}.
$$

Prove that the metric space (X, d_{∞}) is not complete.

4. Prove that the set

$$
H = \{ f \in C([0, 1]) : 0 = f(0) \le f(x) \le f(1), x \in [0, 1] \}
$$

is not compact in the metric space $(C([0, 1], d_{\infty}))$.

5. Let

$$
\mathcal{P} = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is polinomial}\}\
$$

be the vector space of polinomials.

(a) Prove that for any $f \in \mathcal{P}$, $f(x) = \sum_{k=0}^{n} a_k x^k$ the expression $||f|| := \max\{|a_k| \in \mathbb{R} : k = 1, \ldots, n\}$

defines a norm on P.

(b) Prove that for any
$$
f \in \mathcal{P}
$$
, $||f|| := \sum_{n=1}^{\infty} \frac{|f(n)|}{n!}$ defines a norm on \mathcal{P} .

6. For two vectors $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ we define a metric on \mathbb{R}^2 by

$$
d(x,y) = \begin{cases} 1, & \text{if } x_1 \neq x_2, \\ \min\{1, |x_2 - y_2|\}, & \text{if } x_1 = y_1. \end{cases}
$$

Show that d is not induced by any norm.

7. Show that the set

$$
A = \{ x = (x_n) \in \ell_2 : |x_n| \le \frac{1}{\sqrt{n}}, n \in \mathbb{N} \}
$$

is not compact in ℓ_2 . (Hint: show that A is not bounded.)

- 8. Let $p \in (1,\infty)$ and let q be its conjugate index, i.e. $1/p + 1/q = 1$. Show that if $x = (x_n) \in \ell_p$, then $(|x_n|^{p-1}) \in \ell_q$.
- 9. Recall the following notations for sequence spaces. If $x = (x_n)_{n \in \mathbb{N}}$ is a sequence, where $x_n \in \mathbb{K}$ $(n \in \mathbb{N})$, then

$$
\ell_{\infty} = \{x : ||x||_{\infty} = \sup_{j} |x_{j}| < \infty\},
$$

\n
$$
c = \{x : x \text{ is convergent}\},
$$

\n
$$
c_{0} = \{x : \lim_{n} x_{n} = 0\},
$$

\n
$$
c_{00} = \{x : x_{n} = 0, \text{ if } n > N \text{ for some } N\}.
$$

Prove the following propositions:

- (a) c is a closed subspace in ℓ_{∞} .
- (b) c_0 is a closed subspace in ℓ_{∞} .
- (c) c_{00} is a linear subspace in ℓ_{∞} , but is not closed.
- (d) $\ell_p \subset c_0 \subset \ell_\infty$ and the inclusion is proper, $(p \in [1, \infty))$
- (e) ℓ_p is not closed in ℓ_{∞} , if $p \in [1,\infty)$.
- (f) If $1 \le p < p' \le \infty$, then $\ell_p \subset \ell_{p'}$.
- (g) $\lim_{p\to\infty} ||x|| = ||x||_{\infty}$ holds for any $x \in \ell_1$.
- 10. Show that if $0 < p < q < \infty$ then ℓ_p is dense in ℓ_q .
- 11. Prove that on

$$
X := \{ f \in C^1([a, b]) : f(a) = f(b) = 0 \}
$$

the norms defined by

$$
||f||_1 = \int_a^b (|f| + |f'|)
$$
 and $||f||_2 = \int_a^b |f'|$

are equivalents.

- 12. Prove that on $X = C([0,1])$ the norm $\|.\|_{\infty}$ and the norm given by $\|f\|_1 = \int_0^1 |f|$ are not equivalent norms.
- 13. Prove that on $X = C([0, 1])$ the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are not equivalent norms.
- 14. Show that on ℓ_1 the norms $\|.\|_1$ and $\|.\|_{\infty}$ are not equivalents.
- 15. Show that on ℓ_1 the norms $\|.\|_1$ and $\|.\|_2$ are not equivalents.