Functional Analysis, Exercises 4.

1. Let $(X, \|.\|_X)$ be a Banach space and $(Y, \|.\|_Y)$ be a normed space. Show that if the operator sequence $(A_n)_{n \in \mathbb{N}} \subset \mathcal{B}(X, Y)$ is pointwisely convergent, then the (pointwisely) limit operator given by

$$Ax := \lim_{n \to \infty} A_n x, \quad (x \in X)$$

is bounded, i.e. $A \in \mathcal{B}(X, Y)$ and

$$||A|| \le \liminf_{n} (||A_n||) \le \sup\{||A_n|| : n \in \mathbb{N}\} < \infty.$$

2. Let $(X, \|.\|_X)$ be a Banach space and $(Y, \|.\|_Y)$ be a normed space and let $\mathcal{F} \subset \mathcal{B}(X, Y)$ be a nonempty subset. Show that if \mathcal{F} is not uniformly bounded, i.e.

$$\sup\{\|A\|: A \in \mathcal{F}\} = \infty,$$

then \mathcal{F} is not pointwisely bounded, i.e. there exist $u \in X$ s.t.

$$\sup\{\|Au\|_Y : A \in \mathcal{F}\} = \infty.$$

Moreover, show that the set

$$\mathcal{A} := \{ u \in X : \sup\{ \|Au\|_Y : A \in \mathcal{F} \} = \infty \}$$

is dense in X.

3. Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be normed spaces and $A \in \mathcal{B}(X, Y)$. Show that A is an open map iff there exist r > 0 s.t

$$\mathcal{B}_Y(0,r) \subset A\left(\mathcal{B}_X(0,1)\right)$$
.

 $(\mathcal{B}_Z(z_0, r)$ denotes the open ball centred at z_0 with radius r in the normed space Z.)

4. Show that the linear operator defined by

$$A: \ell_{\infty} \to \mathbf{c}_{0}, \quad A(x_{n})_{n \in \mathbb{N}} := \left(\frac{x_{n}}{n}\right)_{n \in \mathbb{N}}$$

is not an open map.

- 5. Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be normed spaces and $A : X \to Y$. Prove that A is closed operator iff for any sequence $(x_n)_{n \in \mathbb{N}} \subset \mathcal{D}(A)$ with $x_n \to x$ and $Ax_n \to y \in Y$, $x \in \mathcal{D}(A)$ and y = Ax hold.
- 6. Let X = Y = C[0, 1] with $\|.\|_{\infty}$ norm and consider the operator

$$A: C^1[0,1] \to Y, \quad Af := f'.$$

Show that $A: X \to Y$ is a closed operator. $(\mathcal{D}(A) = C^1[0, 1] \subset X)$

7. Let $X = Y = L^2[-1, 1]$ and consider the operator

$$A: C^1[-1,1] \to Y, \quad Af := f'.$$

Show that $A: X \to Y$ is not a closed operator. $(\mathcal{D}(A) = C^1[-1, 1] \subset X)$

- 8. Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be normed spaces and $A : X \to Y$ a linear operator. Prove the following statements.
 - (a) If A is closed operator then Ker(A) is a closed subspace in X.
 - (b) If A is injective, then A is closed iff A^{-1} is closed.
 - (c) If $A \in \mathcal{B}(X, Y)$ then A is closed.
 - (d) If $(Y, \|.\|_Y)$ is Banach space, A is bounded and closed, then $\mathcal{D}(A)$ is closed.
 - (e) If $(X, \|.\|_X)$ is Banach space, A is bounded, closed and injective and A^{-1} is bounded, then $\operatorname{Ran}(A)$ is closed.
- 9. Let $(X, \|.\|)$ be a Banach space and $A : X \to X$ a projection, i.e. A is a linear operator, s.t. $A^2 = A$. Show that $A \in \mathcal{B}(X)$ iff Ker(A) and Ran(A) are closed.
- 10. Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be normed spaces and $A: X \to Y$ linear. Show that

$$||x||_A := \sqrt{||x||_X^2 + ||Ax||_Y^2}, \quad (x \in \mathcal{D}(A))$$

defines a norm. Prove that if $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ are Banach spaces, the A is closed iff $(\mathcal{D}(A), \|.\|_A)$ is Banach space.