Functional Analysis, Exercises 5.

Recall that every normed space X can be isometrically embedded into its bidula by the map $(Jx)(\varphi) := \varphi(x), x \in X, \varphi \in X^*$. X is called reflexive if J is a bijection.

- 1. Show that ℓ_p is reflexive for every $p \in (1, \infty)$.
- 2. Let X be a normed space. Prove that
 - (a) If X is finite dimensional then it is reflexive,
 - (b) If X is reflexive and separable then X^* is separable.
 - (c) If X is reflexive then X^* is reflexive.
 - (d) If X is a Banach space and X^* is reflexive then X is reflexive.
- 3. Let X, Y be normed spaces and $T : X \to Y$ a linear operator. Show that the following are equivalent.
 - (a) The graph $\Gamma(T)$ of T is closed.
 - (b) If $(x_n)_{n\in\mathbb{N}}$ is a sequence in X s.t. $x_n \to 0$ and $(Tx_n)_{n\in\mathbb{N}}$ converges, then $\lim_n Tx_n = 0$.
- 4. By definition, the weak topology $\sigma(X, X^*)$ on a normed space X is the weakest topology on X s.t. all elements in X^* are continuous w.r.t. it. Show that the weak topology is generated by the sets

$$U(c, f, \varepsilon) := f^{-1}(\mathcal{B}(c, \varepsilon)) = \{ x \in X : |f(x) - c| < \varepsilon \}, \quad c \in \mathbb{K}, f \in X^*, \varepsilon > 0,$$

where $\mathcal{B}(c, \varepsilon) = \{ x \in \mathbb{K} : |x - c| < \varepsilon \}.$

5. Let X be an infinite dimensional normed space and $S_X := \{x \in X : ||x|| = 1\}$ be the unit sphere of X. Show the followin surprising fact: the closure of the unit sphere in the weak topology is the whole closed unit ball, i.e.

$$\overline{\{x \in X : \|x\| = 1\}}^{\sigma(X,X^*)} = \{x \in X : \|x\| = 1\}.$$

Conclude that the weak topology and the norm topology are different on any infnite dimensional normed space.

- 6. Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be normed spaces and $T : X \to Y$ a linear operator. Prove that the following statements are equivalent.
 - (a) T is continuous.
 - (b) For every sequence $(x_n)_{n \in \mathbb{N}}$ in X, weak convergence $x_n \to^w x$ in X implies weak convergence $Tx_n \to^w Tx$ in Y.
- 7. Let $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$ be Banach spaces and let $T : \mathcal{D}(T) \subset X \to Y$ be a linear operator with closed graph. Prove that the following statements are equivalent.
 - (a) T is injective and its range $\operatorname{Ran}(T) = T(\mathcal{D}(T))$ is closed in Y
 - (b) There exists C > 0 s.t. for all $x \in \mathcal{D}(T) ||x||_X \le C ||Tx||_Y$.