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We study the distribution of ages in the mean field forest fire model in-
troduced by Ráth and Tóth. This model is an evolving random graph whose
dynamics combine Erdős–Rényi edge-addition with a Poisson rain of light-
ning strikes. All edges in a connected component are deleted when any of its
vertices is struck by lightning. We consider the asymptotic regime of light-
ning rates for which the model displays self-organized criticality. The age of
a vertex increases at unit rate, but it is reset to zero at each burning time.
We show that the empirical age distribution converges as a process to a deter-
ministic solution of an autonomous measure-valued differential equation. The
main technique is to observe that, conditioned on the vertex ages, the graph is
an inhomogeneous random graph in the sense of Bollobás, Janson and Rior-
dan. We then study the evolution of the ages via the multitype Galton–Watson
trees that arise as the limit in law of the component of an identified vertex at
any fixed time. These trees are critical from the gelation time onwards.

1. Introduction. We study a stochastic model where a network grows steadily, but is
subject to occasional destructive events. These can spread widely, but by damaging the con-
nectivity, each destructive event makes it harder for future destruction to propagate through
the network. As motivation, consider the effect of fires on a dense forest. Given the right
conditions, a fire can destroy all the trees in a region, but afterwards, future fires cannot pass
through this area until some trees have regrown.

A probabilistic model of a complex interacting system is considered to be particularly
interesting if the effect sizes or the correlations between regions follow a power-law de-
cay. These so-called critical phenomena are observed in many complex real-world networks.
Seminal work of Bak, Tang and Wiesenfeld [3] considers models where from a broad range
of initial conditions, the dynamics move the system into a class of states where critical phe-
nomena are observed, and then maintain it there. These authors describe this property as
self-organized criticality (SOC), and in recent years a wide range of mathematical models
across many contexts have been shown to exhibit such behaviour; see, for example, [20],
Section 3, on the SOC of the Abelian sandpile model and [8] for the Curie–Weiss model of
SOC.

The forest fire model that we study in this paper is a random process taking values in
subgraphs of the complete graph Kn. The lattice setting, introduced by Drossel and Schwabl
[12], where geometry plays a more central role has also been studied: the subcritical forest
fire model on Z

d is constructed by Dürre [13–15] and the critical model on the half-plane
is constructed by Graf [19]. However, the rigorous construction of a self-organized critical
forest fire model on Z

d poses a real mathematical challenge: in fact Kiss, Manolescu and
Sidoravicius show in [21] (using the earlier results of van den Berg and Brouwer [31]) that it
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is impossible to construct such a model on Z
2 by starting with standard dynamical percolation

and requiring edges to be burned as soon as they belong to an infinite cluster.
Our focus is the mean field setting where edges may appear between any pair of vertices.

Without the destructive dynamics of fires, adding edges uniformly at random defines the
famous random graph process of Erdős and Rényi [16]. This process experiences a phase
transition between a subcritical regime, where the largest components have logarithmic size
relative to the size of the graph, and a supercritical regime, where for large graphs an asymp-
totically strictly positive proportion of the vertices form a unique giant component. During
the asymptotically instantaneous transition, the graphs display various critical properties, no-
tably a power-law decay in component sizes, which matches behaviour that is observed in
many real-world networks not just at phase transition times but at all times.

The mean field forest fire (MFFF) process was introduced in [27]. It can be viewed as
an adjustment to the Erdős–Rényi dynamics, which destroys the edges of potential giant
components as they are forming, and thus maintains the system in a critical state forever. The
following informal definition will be made precise in Section 2.1:

• The model has n vertices, with some (possibly random) initial set of undirected edges at
time 0.

• Each possible edge joining two vertices appears at rate 1/n, independently.
• At rate λ= λ(n), each vertex is struck by lightning, independently. When a vertex is struck

by lightning, the vertex survives but all of the edges in its connected component (or cluster)
are instantaneously deleted. Those edges may subsequently reappear.

If a lightning hits a vertex v at time t , we say that t is a burning time of all the vertices in the
connected cluster of v.

The most interesting asymptotic regime for the lightning rate is 1/n � λ(n) � 1. In this
regime, clusters of any fixed finite size are destroyed at a negligible rate when n is large. How-
ever, the total rate of lightning strikes in the model diverges, so if a cluster of size comparable
to n were able to form then it would only survive for time o(1). In [27], it is shown that in this
regime the model displays SOC. Subject to some assumptions on the initial conditions, the
limiting cluster size distribution in the n →∞ limit is deterministic and satisfies a coupled
system of differential equations called the critical forest fire equations; see Propositions 2.16
and 2.18 below. The limiting cluster size distribution stays subcritical until a certain gelation
time. At the gelation time and afterwards, the limiting cluster size distribution is critical in
the sense that it has a polynomially decaying tail. No giant component forms; in fact, the
model is conservative, meaning very roughly that at any time t , nearly all of the vertices are
contained in small connected components.

The goal of this paper is to describe the local graph structure of the MFFF at time t as
n →∞ in terms of a multitype branching process, and also to give a simple description of
the time evolution of the parameters that govern this multitype branching processes.

The simplest initial condition for the MFFF is the monodisperse state, where at time 0
there are no edges, so the graph consists of n isolated vertices. In this paper, we will consider
some more general initial conditions, but to state our results informally in this Introduction
we will discuss only the monodisperse initial condition. At any time t ≥ 0, each vertex v has
an age an

t (v), which is defined to be the time since it was last burned, or t if it has not yet
been burned. Let πn

t = 1
n

∑
v δan

t (v) be the empirical measure of these ages.
Our central observation, stated formally as Theorem 2.6, is that conditional on the ages

an
t (v) and an

t (w) of two vertices v and w, the probability that they are joined by an edge at
time t is exactly 1− exp(−an

t (v)∧ an
t (w)/n). Furthermore, these events are independent for

distinct pairs of vertices. So conditional on πn
t , the graph seen at time t is an inhomogeneous

random graph (IRG) in the sense of Bollobás, Janson and Riordan [5].
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Our first main result, Theorem 2.19, shows that the empirical age distributions πn
t converge

as n →∞ to a deterministic limit distribution πt . In the course of the proof, we identify πt

explicitly as the marginal distribution of at in a Markov process (Ct , at )t≥0 that takes values
in E × [0,∞), where E is the set {1,2,3, . . .} equipped with the one-point compactification
topology, with 1 identified with the point at ∞. This topology makes the process almost
surely continuous from the left at the random times when Ct explodes. The age at is simply
the time that has elapsed since the last explosion at time t , or at = t if there is no explosion
in [0, t]. (See Section 6 for the definitions in the case of general initial conditions.)

(Ct , at ) is a McKean–Vlasov process with jumps, meaning that it is a Markovian Feller
process whose infinitesimal generator at time t is defined in terms of the distribution of
(Ct , at ). We show that (Ct , at ) is the distributional limit of the process (Cn

t (ρn), an
t (ρn)),

where ρn is a uniformly chosen vertex of the graph and Cn
t (ρn) is the size of the cluster of

ρn at time t . The marginal (Ct )t≥0 is the cluster growth process (Ct )t≥0 introduced in [11],
which is a McKean–Vlasov process on its own; it is an explosive pure jump process with
explosion times τ�, � ∈ N which returns to Cτ�

= 1 at each explosion time τ�. The jump rate
of Ct is k when Ct = k and the jump distribution for jumps at time t is the law of Ct itself.

Remarkably, (at )t≥0 on its own is also a McKean–Vlasov process. It increases at rate 1
except at a random discrete set of jump times when it jumps down to 0. We show that the
jump rate of at at each time t is a function of at and the distribution πt of at . This leads
to our second main result, Theorem 2.21, which is that (πt , t ≥ 0) satisfies an autonomous
differential equation that we call the age differential equation; see (2), (3) and (4) below. The
well-posedness of this differential equation is proved in the companion paper [10], so in fact
πt is uniquely determined from π0 by the differential equation. However, we stress that in
this paper we determine πt from π0 using the cluster growth process.

Recall from [27] that there exists a so-called gelation time tgel ≥ 0, at which the model
makes a phase transition from subcritical to critical behaviour. For 0 ≤ t < tgel, the age of each
vertex simply increases at rate 1 unless it burns before tgel. However, only an asymptotically
negligible proportion of the vertices burn before tgel, so the limiting age distribution satisfies
the simple transport equation

(1)
dπt

dt
=−δ′0 ∗ πt .

Here, δ′0 is the derivative of the Dirac delta at 0, so this statement is an equality of Schwarz
distributions. In other words, for 0 ≤ t ≤ tgel and for any Borel set A⊆ [0,∞),

πt(A)= π0
({x − t : x ∈A}).

The situation is more interesting for t ≥ tgel, when the model is critical. Then, for each such
t , there exists a unique nonnegative, continuous and nondecreasing function s �→ θt (s) satis-
fying

∫
θt (s) dπt (s)= 1 and

(2) θt (s)=
∫ ∞

0
θt (u)(u∧ s)dπt(u), s ∈ [0,∞].

For a fixed t ≥ tgel, we denote by θtπt the probability measure absolutely continuous with
respect to πt with Radon–Nikodym derivative θt . We denote by ϕ(t) the limiting total rate of
mass of burnt vertices at time t (see Proposition 2.16 for details). In fact, ϕ(t) is also equal
to the explosion rate of Ct . Then for t > tgel, πt satisfies the following distribution-valued
differential equation:

(3)
dπt

dt
=−δ′0 ∗ πt − ϕ(t)θtπt + ϕ(t)δ0.



2034 E. CRANE, B. RÁTH AND D. YEO

We prove (3) by identifying it with the Kolmogorov forward equation of the McKean–Vlasov
process (at )t≥0. Let us give interpretations of the individual terms. As in (1), the transport
term −δ′0 ∗ πt describes the constant, deterministic growth of the ages of all vertices not
instantaneously involved in fires. The term −ϕ(t)θtπt describes the change due to the removal
of burning vertices. The final term ϕ(t)δ0 corresponds to the fact that all vertices burned
at time t reappear with age zero. We will show that criticality of the forest fire equations
corresponds to criticality of the IRG which describes the system conditional on the ages.
The local structure of the IRG seen at time t is well approximated by a multitype Poisson
branching process (see Definition 2.8 and Theorem 2.20(i)), and θt is the right eigenfunction
corresponding to the principal eigenvalue λt = 1 of the branching operator. The heuristic idea
is that θtπt approximates the distribution of ages in very large components of the IRG, which
account for nearly all of the burning vertices (see Section 2.6.3 for details). In fact, we do
not prove this global statement but instead obtain (3) by considering the local limit, showing
that the rate at which at jumps down to 0 when at = s is ϕ(t)θt (s). By careful analysis of the
multitype branching process, we show

(4) ϕ(t)=
(∫

θt (s)
3 dπt(s)

)−1
.

Combining (2), (3) and (4), we have an autonomous differential equation, describing the
evolution of πt in terms of πt , without reference to t .

2. Statements of results. We precisely introduce the mean field forest fire model in
Section 2.1, age-driven inhomogeneous random graphs in Section 2.2, age-driven multitype
branching processes in Section 2.3, and the critical forest fire equations in Section 2.4. These
provide the necessary background to understand the statements of our main results, stated
in Section 2.5. In Section 2.6, we set our results in the context of related literature. In Sec-
tion 2.7, we pose some open questions. In Section 2.8, we give an overview of the contents
of the rest of the paper.

2.1. The mean field forest fire. We will always use the following definition of a mean
field forest fire process on vertex set [n] := {1, . . . , n}, with lightning rate λ, following [27].
We refer to this model as MFFF(n,λ).

DEFINITION 2.1 (Graphical construction of MFFF(n,λ)). Let E be a Poisson point
process (PPP) of rate 1/n on

( [n]
2

) × [0,∞), and 
 be an independent PPP of rate λ on
[n] × [0,∞). These PPPs will determine edge arrivals and lightning strikes, respectively, at
times given by their second coordinates. Given some (possibly random) initial graph Gn

0 with
vertex set [n], we construct the random graph-valued process (Gn

t )∞t=0 started from Gn
0 as

follows, working through the points of E ∪
 in increasing order of their time coordinates:

(i) add the edge {i, j} to obtain Gn
t from Gn

t− if {i, j} × t is a point of E , and edge {i, j}
is not already present in Gn

t− (and otherwise do nothing),
(ii) erase the edges of the connected component Cn

t−(i) of vertex i in Gn
t− to obtain Gn

t

from Gn
t− if {i} × t is a point of 
.

In the latter case, we say that the vertices of Cn
t−(i) are burned at time t .

REMARK 2.2. We will always view MFFF(n,λ) as a graph-valued process coupled with
its lightning process 
. This will simplify the choice of probability space in subsequent
arguments.
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In [27], the asymptotic behaviour of MFFF processes is studied as n →∞, where the
lightning rate λ(n) satisfies the critical relation

(5) 1/n� λ(n)� 1.

We will assume throughout that this critical relation holds. Informally, this has the effect that
small components are negligibly affected by lightning, whereas components of size �(n) are
burned into singletons instantly. Roughly speaking, this means that such giant components
never appear.

Let us stress that the earlier results of [27] and [11] concerning the MFFF (which will be
recalled in Section 2.4 and Section 6.1, resp.) are about the sizes of connected clusters in the
process (Gn

t ), but the main results of this paper are about the graph structure itself for (Gn
t ).

2.2. Age-driven inhomogeneous random graphs. We will make a connection between
the MFFF(n,λ) and the theory of inhomogeneous random graphs. In order to do so, we need
to study the MFFF augmented with extra information about the ages of vertices.

DEFINITION 2.3 (Ages in the mean field forest fire model). For an
0 (i) ∈ [0,∞), i ∈ [n],

we define a mean field forest fire with ages MFFFA(n, an
0, λ) as follows. We take MFFF(n,λ)

as in Definition 2.1, with some initial graph Gn
0 , along with its lightning process 
, and we

call an
0 (i) the initial age of vertex i.

For t > 0, denote by an
t (i) the age of vertex i at time t , that is, an

t (i) is an
0 (i)+ t if i did

not burn during the time interval [0, t], otherwise an
t (i) is t − s, where s is the last burning

time of i on the time interval [0, t]. We write an
t := (an

t (i))i∈[n] for the vector of ages, and

(6) πn
t := 1

n

n∑
i=1

δan
t (i)

for the empirical measure of ages.

So the age of a vertex in MFFFA(n, an
0, λ) increases deterministically at unit rate, but is

reset to zero at each burning time.
We introduce a special case of the class of inhomogeneous random graphs introduced by

Bollobás, Janson and Riordan [5].

DEFINITION 2.4 (Age-driven IRG). Given a (possibly random) sequence

an = (an(1), . . . , an(n)
) ∈ [0,∞)n,

we define the age-driven inhomogeneous random graph (IRG) Gage(n, an) on the vertex set
[n] as follows. Conditional on an:

• an(i) is said to be the age of vertex i ∈ [n];
• independently for different edges, the edge {i, j} ∈ ( [n]2

)
is present with probability

1− exp
(
−an(i)∧ an(j)

n

)
.

Our main results concern the evolution of the process of ages in the MFFF model started
from an age-driven IRG. So, although Definition 2.3 makes sense in the generality stated,
from now on, we will usually make the following assumption.

ASSUMPTION 2.5 (MFFFA started from age-driven IRG). The MFFFA(n, an
0, λ) is

started from the initial graph Gn
0

d=Gage(n, an
0).



2036 E. CRANE, B. RÁTH AND D. YEO

The central idea underpinning our results is that the dynamics of the MFFFA preserve the
class of age-driven IRGs.

THEOREM 2.6 ((Gn
t ) and (an

t ) are intertwined). If (Gn
t ) is a MFFFA process with initial

condition distributed as Gage(n, an
0) then, for any t ≥ 0,

(7) conditional on
(
an

s , s ∈ [0, t]),we have Gn
t

d=Gage(n,an
t

)
.

A version of this result with weaker conditioning and with monodisperse initial condition
appears in [33] as Lemma 5.8. We will give a shorter proof here in Section 3.1.

REMARK 2.7. It follows from (7) that (an
t )t≥0 is a time-homogeneous Markov pro-

cess, and by the vertex exchangeability of the MFFF dynamics (πn
t )t≥0 is also a time-

homogeneous Markov process. Using the notation of [29], Section 3.2, the Markov process
(Gn

t ) is intertwined on top of (an
t ) (cf. [29], Proposition 3.4).

In order to state some of our main results, we need to define the notion of local weak limits
of age-driven IRGs: this is what we will do in the next section.

2.3. Age-driven multitype branching processes. We introduce a family of branching pro-
cess trees, also augmented with ages, which appear as local weak limits of age-driven IRGs.

DEFINITION 2.8 (Age-driven multitype branching process (MBP)).
Given a Borel probability measure π on [0,∞), we define T π , a multitype Galton–Watson

tree with vertex set V (T π) and with ages a : V (T π) → [0,∞), as follows. The root ρ has

age a(ρ)
d= π , and then any vertex of age s has an independent set of offspring vertices with

ages given by a Poisson random measure with intensity (s ∧ u)dπ(u).
We denote by |T π | the cardinality of V (T π).
We write T π

s for the random tree T π constructed in the same way but starting with a
root vertex of deterministic age s. We also define T π∞ to be the random tree whose root has
infinite age, meaning that its offspring have ages described by a Poisson random measure
with intensity udπ(u). If

∫
udπ(u) < ∞, then this is a finite intensity measure so the root

almost surely has only finitely many offspring.
We write Lπ for the branching operator, that is the Perron–Frobenius operator defined for

f ∈L1(π) by

(8) Lπf (s) :=
∫

f (u)(s ∧ u)dπ(u).

When Lπ maps L2(π) into itself, denote by ‖Lπ‖ the L2(π)-operator norm of Lπ .

Lπ has a probabilistic interpretation. The root of T π
s has a random number K of offspring

with ages a1 ≤ · · · ≤ aK , and Lπf (s)= E(f (a1)+ · · · + f (aK)).

LEMMA 2.9 (Normalized principal eigenfunction). Suppose π is a Borel probability
measure on [0,∞) such that 0 <

∫
x dπ(x) < ∞. Then the Perron–Frobenius operator

Lπ is a compact self-adjoint operator on L2(π) whose principal eigenvalue λ satisfies
0 < λ = ‖Lπ‖. Moreover there exists a unique nonnegative eigenfunction θ ∈ L2(π) for
which Lπθ = λθ and

∫
θ(x)dπ(x)= 1.
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We will prove a more detailed result in Section 4.1 that includes the statements of
Lemma 2.9.

In Section 4.2, we combine [5], Lemma 6.1, (characterizing supercriticality) and some
further arguments to prove the following result.

PROPOSITION 2.10 (Trichotomy of |T π |). Let π be a Borel probability measure on
(0,∞) with

∫
x dπ(x) <∞. Then the following trichotomy holds:

• ‖Lπ‖< 1 if and only if E[|T π |]<∞;
• ‖Lπ‖ = 1 if and only if P(|T π |<∞)= 1 and E[|T π |] =∞;
• ‖Lπ‖> 1 if and only if P(|T π | =∞) > 0.

We will say that π is age-subcritical, age-critical and age-supercritical when ‖Lπ‖ < 1,
‖Lπ‖ = 1 and ‖Lπ‖> 1, respectively.

In fact, the results of Proposition 2.10 hold under slightly weaker conditions on π . Further
details are deferred to Section 4.2.

To make sense of approximating age-driven IRGs by age-driven multitype Galton–Watson
trees, we briefly introduce one version of local weak convergence of random graphs, as stud-
ied by Aldous, Benjamini and Schramm. See [32] for a comprehensive account of this.

DEFINITION 2.11 (Local weak convergence). Let (Gn,n≥ 1) be a sequence of random
graphs where Gn has vertex set [n], and let Bn

k (w) be the k-neighborhood in Gn of a vertex
w ∈ [n], viewed as a graph rooted at w. Then we say Gn converges in probability in the local
weak sense to the random rooted graph (G,ρ) if for every rooted graph (H,v), and every
k ≥ 1,

(9)
1

n

∑
w∈[n]

1
[
Bn

k (w)� (H,v)
] P−→ P

(
Bk(ρ)� (H,v)

)
, n→∞,

where Bk(ρ) is the k-neighborhood of ρ in G and the relation � denotes the root-preserving
isomorphism of rooted graphs. Let us denote by ρn a vertex which is independent of Gn and
uniformly distributed in [n]. As a consequence of (9), we obtain the weaker condition

(10) P
(
Bn

k

(
ρn)� (H,v)

)−→ P
(
Bk(ρ)� (H,v)

)
, n→∞,

for every rooted graph (H,v), which is called convergence in distribution in the local weak
sense. (See [32], Definition 2.7.)

DEFINITION 2.12 (Convergence in probability of age distributions). If π is a probability
measure on R and π1, π2, . . . is a sequence of (possibly random) probability measures on

R, then we say that πn P⇒ π as n→∞ if
∫

f (s)dπn(s)
P→ ∫ f (s)dπ(s) as n→∞ for any

bounded continuous function f :R→R.

PROPOSITION 2.13 (IRG locally converges to MBP). Let Gn d= Gage(n, an) be a se-

quence of age-driven IRGs, for which the empirical age distributions satisfy πn P⇒ π , where∫
x dπ(x) <∞. Then Gn converges in probability in the local weak sense to the age-driven

multitype branching process tree T π .

We deduce the proof of Proposition 2.13 from [32] by a truncation argument in Section 3.2,
Theorem 3.11.
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2.4. Critical forest fire equations. In this section, we recall the main results of [27],
which concern the hydrodynamic limit of the component size vector of the MFFF. The as-
sumptions of this paper on the initial state of the MFFF are different from those of [27], so
the adaptation of the results of [27] to our setting will require extra work.

DEFINITION 2.14 (Component size vector in MFFF(n,λ)). For any t ≥ 0 and for each
k = 1,2, . . . , let us define

(11) vn
k (t) := 1

n
#{vertices in size k components at time t}.

We write vn(t) for the vector (vn
k (t))∞k=1.

The central observation of [27] is that limits of vn(t) in a sequence of forest fires in the
self-organized critical regime (5) satisfy a family of coupled differential equations. Our as-
sumptions on the initial state will be different from those of [27], Theorem 1, but the conclu-
sions will be the same.

ASSUMPTION 2.15 (v(0) is the law of |T π0 |). Suppose that π0 is a Borel probability
measure on [0,∞) satisfying

∫
udπ0(u) < ∞, moreover π0 is either age-critical or age-

subcritical. Let us define vk(0)= P(|T π0 | = k) for k = 1,2, . . . and let v(0)= (vk(0))∞k=1.

PROPOSITION 2.16 (Critical forest fire equations). If the initial condition v(0) satisfies
Assumption 2.15, then the critical forest fire equations

d

dt
vk(t)= k

2

k−1∑
�=1

v�(t)vk−�(t)− kvk(t), k ≥ 2,(12)

∞∑
k=1

vk(t)= 1,(13)

have a unique solution v(·), which also has the following properties:

1.

(14)
d

dt
v1(t)=

{−v1(t) if 0 ≤ t < tgel,

−v1(t)+ ϕ(t) if t > tgel,

where the gelation time tgel is defined by

(15) tgel =
( ∞∑

�=1

�v�(0)

)−1

(using the convention ∞−1 = 0),

and

(16) ϕ : [tgel,+∞)→ (0,+∞) is locally Lipschitz-continuous.

2. vk(t) decays exponentially as k →∞ if 0 ≤ t < tgel, but

(17)
∞∑

�=k

v�(t)≈
√

2ϕ(t)

π
k−1/2 as k →∞ for any t ≥ tgel

(where ak ≈ bk is a shorthand for limk→∞ ak

bk
= 1).
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We will prove Proposition 2.16 in Section 5.4. In [27], Theorem 1, the same conclusions
are made under the assumption that

∑∞
�=1 �3v�(0) < +∞ (which neither implies nor is im-

plied by Assumption 2.15).

REMARK 2.17.

(i) As soon as one picks any control function ϕ(·), one can construct v1(·) by solving
(14), and then vk(·) for k = 2,3, . . . inductively using (12). Proposition 2.16 states that there
is a unique ϕ(·) such that the resulting family (vk(t))

∞
k=1 of functions satisfies (13) for all

t ≥ 0.
(ii) Currently there is no known explicit solution of ((12) + (13)) except for the unique

stationary solution vk(t)= vk(0)= 2
k

( 2k−2
k−1

)
4−k , k ≥ 1. Note that this v(0) satisfies Assump-

tion 2.15; see Remark 2.23(ii).

The connection of the critical forest fire equations to the MFFF is given by the following
result.

PROPOSITION 2.18 (Convergence of component size vector). Suppose that v(0) satisfies
Assumption 2.15. Let v(·) denote the unique solution to the critical forest fire equations ((12)
+ (13)) with initial state v(0). Let (Gn, n ≥ 1) be a sequence of MFFF(n,λ(n)) processes

as defined in Definition 2.1, for which (5) holds, and |vn
k (0) − vk(0)| P→ 0 for all k ∈ N as

n→∞. Let vn(·) be defined by (11). Then for any tmax ∈ [0,∞), we have

(18) sup
k≥1

sup
0≤t≤tmax

∣∣vn
k (t)− vk(t)

∣∣ P→ 0, n→∞.

The above result for fixed t and fixed k is proved in [27], Theorem 2, while the stronger
(18) is proved in [11], Theorem 1.5. Note that the assumptions under which we prove the
uniqueness of the solution of the critical forest fire equations (cf. Proposition 2.16) are dif-
ferent from those of the analogous uniqueness result in [27] (cf. Theorem 1 therein), but the
proofs of [27], Theorem 2, and [11], Theorem 1.5, only take the uniqueness result as an input,
so the same proof also gives our Proposition 2.18.

Proposition 2.18 describes the hydrodynamic limit of the component size vector vn(t) of
the MFFF in terms of the critical forest fire equations. We want to give a similar description of
the hydrodynamic limit of the empirical age measure πn

t , which will also allow us to identify
the local weak limit of the graph Gn

t .

2.5. Main results. Throughout Section 2.5, we enforce Assumption 2.5, that the MFFFA
is started from an age-driven IRG.

Our first main result is a limit theorem for the empirical measure of ages in a family of
MFFFA processes whose initial empirical age distributions converge in probability.

THEOREM 2.19 (Convergence in probability of empirical age distribution). Let (Gn
t , t ≥

0) be a family of MFFFA(n, an
0, λ(n)) processes that satisfy Assumption 2.5. Suppose the

initial empirical age measures satisfy πn
0

P⇒ π0, where
∫

x dπ0(x) <∞ and π0 is either age-

critical or age-subcritical. Assume that λ(n) satisfies (5). Then for all t ≥ 0 we have πn
t

P⇒ πt

as n→∞, where (πt )t≥0 is a family of probability measures determined by π0 that satisfies∫
x dπt (x) <∞ for all t ≥ 0.
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The proof of Theorem 2.19 is carried out in Section 6 and is completed in Section 6.5. As
we have already mentioned in Section 1, we will identify πt as the distribution of the age at

of the watched vertex at time t of the cluster growth process with ages (Ct , at )t≥0, the law of
which is determined uniquely by π0. We refer the reader interested in the rigorous definition
of (Ct , at )t≥0 to the introduction of Section 6 for details.

Our next main result concerns the local weak limit of the graph of the MFFFA process at
time t .

THEOREM 2.20 (The local weak limit of MFFFA at time t). Let (Gn
t , t ≥ 0) and π0

satisfy the conditions of Theorem 2.19. Then the following hold:

(i) For any t ≥ 0, Gn
t converges in probability in the local weak sense to T πt as n →∞,

where πt is defined in Theorem 2.19.
(ii) The family of functions t �→ vk(t), k = 1,2, . . . defined by

(19) vk(t)= P
(∣∣T πt
∣∣= k
)
, t ≥ 0

coincides with the unique solution of the critical forest fire equations ((12) + (13)) guaran-
teed by Proposition 2.16.

(iii) πt is age-subcritical for t < tgel and πt is age-critical for t ≥ tgel (where tgel was
introduced in Proposition 2.16).

We will prove Theorem 2.20 in Section 6.6.
Our final main result is the precise statement of equations (3) and (4), which describe the

driving forces behind the time evolution of πt .

THEOREM 2.21 (Age differential equations). Assume
∫

udπ0(u) < ∞. Consider the
family (πt ) from Theorem 2.19, and for any t ≥ tgel denote by θt the eigenfunction of Lπt

corresponding to the eigenvalue λ = 1, as in Theorem 2.20(iii) and Lemma 2.9. For every
compactly supported and continuously differentiable test function f : [0,∞)→R,

∂

∂t

∫
f (s)dπt(s)

=
⎧⎪⎨⎪⎩
∫

f ′(s)dπt(s) t < tgel,∫
f ′(s)dπt(s)−

∫
f (s)ϕ(t)θt (s)dπt(s)+ ϕ(t)f (0) t > tgel,

(20)

where ϕ(·) denotes the control function appearing in equation (14) that corresponds to the
solution of ((12) + (13)) arising from Theorem 2.20(ii). For t ≥ tgel, we have

(21) ϕ(t)=
(∫ ∞

0
θt (s)

3 dπt(s)

)−1
.

We prove Theorem 2.21 in Section 6.9. Our proof crucially relies on the precise asymp-
totics of the generating function of the total number of vertices in the multitype branching
process tree T

πt
s that we derive in Section 5.

We emphasise that the age differential equation ((20) + (21)) describing the dynamics of
πt is autonomous and time-homogeneous, which is why we have chosen to formulate it in
terms of ages rather than “birth-times” of vertices.

In the companion paper [10] it is shown that the system ((20) + (21)) has a unique solution
over any time interval [0, T ], for each age-critical Borel probability measure π0 satisfying∫

x dπ0(x) < ∞. It is also shown there that πt is locally Lipschitz in π0 with respect to the
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Wasserstein 1-metric W1, uniformly over [0, T ]. W1 is the L1 distance between cumulative
distribution functions, and it metrizes simultaneous weak convergence and convergence of
first moment. It is also shown in [10] that for any solution of ((20) + (21)), θt is a con-
tinuous function of t ∈ [tgel,∞), with respect to L∞([0,∞)), therefore in (20) we see that∫

f (s) dπt (s) is continuously differentiable for t > tgel.

COROLLARY 2.22. Under the assumptions of Theorem 2.21, the total burning rate is
bounded by one: for all t ≥ tgel, ϕ(t)≤ 1.

PROOF. Apply Jensen’s inequality to the integral in (21), using the convexity of x �→ x3

on [0,∞), noting that
∫

θt (s) dπt (s)= 1 and θt (s)≥ 0. �

Solving the critical forest fire equations starting from the m-disperse state, where vk(0)=
1[k = m] (for some m ≥ 2), at the gelation time tgel = 1/m the value of ϕ is m. So Corol-
lary 2.22 genuinely relies on Assumption 2.15.

REMARK 2.23.

(i) If v(0) satisfies Assumption 2.15 and (v(t))t≥0 denotes the unique solution of ((12)
+ (13)) guaranteed by Proposition 2.16, then ṽ(0) := v(t) also satisfies Assumption 2.15 for
any t ≥ 0 by Theorems 2.19, 2.20.

(ii) One can check that the unique fixed point of the age differential equation described
in Theorem 2.21 is the age-critical measure π which has density dπ(x)= 1

2sech2(x
2 )dx.

The principal eigenfunction of the operator Lπ is θ(x)= 2 tanh(x
2 ), ϕ = 1/2 and P(|T π | =

k)= 2
k

( 2k−2
k−1

)
4−k for any k ≥ 1; cf. Remark 2.17(ii). Many questions related to the stationary

MFFF process are discussed in [9].

REMARK 2.24. Our proof of (21) involves the asymptotics of the generating function
E(z|T πt |) as z → 1 (see Section 5), and thus it is analytic in nature. Let us therefore provide
a nonrigorous probabilistic explanation of (21). Given an age-critical distribution πt and h ∈
R+, let us define the distribution πt,h by

∫
f (x)dπt,h(x)= ∫ f (t + h)dπt(x). One can show

that

(22) P
(∣∣T πt,h

∣∣=+∞)= 2
(∫ ∞

0
θt (s)

3 dπt(s)

)−1
h+ o(h), h→ 0.

Note that a similar expression characterising the infinitesimal rate of emergence of the giant
component in a family of IRGs near criticality appears in equation (3.12) in Theorem 3.17
of [5]. The fires in the MFFF burn the incipient giant clusters as they try to appear, so it is
natural to expect that ϕ(t), the limiting total rate of mass of burnt vertices at time t , is propor-
tional to the speed at which the giant cluster wants to grow, that is, 2(

∫∞
0 θt (s)

3 dπt(s))
−1. In

Section 2.6.2, we further comment on the reason why we have to multiply this speed by 1/2
to obtain the value of ϕ(t) given in (21).

2.6. Relation to other work.

2.6.1. Erdős–Rényi graphs and the Flory equations. If we consider the MFFF(n,λ)

model of Definition 2.1 without lightning (i.e., λ= 0) and start it from the empty graph on n

vertices, we get back the classical Erdős–Rényi graph process. It is well known [6, 7] that if
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we consider the component sizes (vn
k (t)) (cf. Definition 2.14) then the limits vn

k (t)
P→ vk(t)

exist as n→∞ and the limiting (vk(t)) satisfy the Flory equations:

(23)
d

dt
vk(t)= k

2

k−1∑
�=1

v�(t)vk−�(t)− kvk(t)

∞∑
�=1

v�(0), k ≥ 1,

where
∑∞

�=1 v�(0) = 1 follows from our normalization (11). Note that (12) agrees with (23)
for any k ≥ 2, but we obtain the r.h.s. of (14) by adding ϕ(t) to the right-hand side of (23)
when k = 1 and t > tgel. Also note that (13) fails for the solution of (23) when t > tgel.

The local weak limit of the Erdős–Rényi graph at time t is the Galton–Watson tree with
Poi(t) offspring distribution; see, for example, [32], Theorem 2.11. In the notation of Def-
inition 2.8, this tree is T δt , where δt is the Dirac measure concentrated on t . The explicit
solution of (23) is given by

vk(t)= P
(∣∣T δt
∣∣= k
)= kk−1

k! e−kt tk−1, t ∈ [0,+∞),

that is, the Borel distribution with parameter t . Note that in the supercritical regime t > 1 we
have
∑∞

k=1 vk(t)= 1−P(|T δt | =∞) < 1, so the Borel distribution is a defective distribution
when t > 1.

2.6.2. Stochastic models of Smoluchowski’s coagulation equations. The family of equa-
tions (23) is related to Smoluchowski’s coagulation equations, for which the final sum in (23)
is replaced by

∑∞
�=1 v�(t):

(24)
d

dt
vk(t)= k

2

k−1∑
�=1

v�(t)vk−�(t)− kvk(t)

∞∑
�=1

v�(t), k ≥ 1.

The solutions to the Flory and Smoluchowski equations coincide until the gelation time
tgel := (

∑∞
k=1 kvk(0))−1, moreover

∑∞
�=1 v�(t) =∑∞

�=1 v�(0) = 1 holds for all t ∈ [0, tgel].
Beyond tgel the evolution depends, informally, on whether small blocks are allowed to in-
teract with the so-called gel, which has mass

∑∞
�=1 v�(0) −∑∞

�=1 v�(t) at time t . In both
cases, however, the total mass

∑∞
k=1 vk(t) of small components is strictly decreasing for

t ∈ [tgel,∞).
The mean field frozen percolation model [26] is defined exactly like the MFFF (cf. Def-

inition 2.1), only differing in that when a connected component is struck by lightning, the
vertices of the component get deleted forever. Vertices that have not yet been deleted are
called alive vertices. The number of alive vertices in the frozen percolation model decreases
over time. The analogue of Proposition 2.18 holds in the frozen percolation model by [26],
Theorem 1.2, (see also [33], Chapter 4, for a shorter proof with weaker assumptions on the
initial state), where the limiting component size densities (vk(t))

∞
k=1 solve Smoluchowski’s

coagulation equations (24).
The solution of (24) is known to be unique and explicit for general initial conditions;

see [25] and also [26], Section 2. The frozen percolation model shares the feature of SOC
with the MFFF, that is, (17) holds for the solution of (24) with ϕ(t) = − d

dt

∑∞
�=1 v�(t); see

[26], Theorem 1.5. One way to approximate SOC is to allow tiny giant clusters to grow
and then destroy them successively (see [26], Theorems 1.4, 1.9), and the multiplying factor
1/2 mentioned at the end of Remark 2.24 is explained in [26], Section 7, for an equivalent
approximation of SOC in thc context of mean field frozen percolation. Roughly speaking, the
model spends half of its time in a slightly subcritical state (recovering from the destructions),
while the other half is spent in a slightly supercritical state (growing tiny giants).
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Another closely related random graph model where (24) describes the limiting compo-
nent size densities was proposed by Aldous in [1], Section 5.5, and studied by Merle and
Normand in [22]. Two connected components of size k and l merge at rate kl

n
(just as in

Definition 2.1) and connected components disappear if their size exceeds a threshold ω(n)

satisfying 1 � ω(n) � n. [22], Theorem 1.1, states that vn(t) converge to the solution v(t)

of (24). Note that this result is a special case of the main result of [18], where discrete models
of Smoluchowski’s coagulation equations with more general coagulation kernels are stud-
ied.

Similar to our Theorem 2.20(i), it is shown in [22], Theorem 1.3, that the local weak limit
of the “ω(n)-threshold deletion” graph model, started from the empty graph on n vertices, is
a Galton–Watson branching process tree with Poisson(1∧ t) offspring distribution at time t .
Also note that in this case the fraction of alive vertices at time t converges in probability to
1∧ 1/t as n→∞ by [22], Theorem 1.2.

2.6.3. Frozen percolation on inhomogeneous random graphs. The mean field frozen per-
colation model of [26] started from an IRG is studied by the third author in [34]. Initially,
each of the n vertices has one of k types, and the fraction of vertices with type i is πn

i (0). At
time zero, conditional on these types, a pair of vertices with types i and j is connected with
probability 1 − exp(−κi,j /n) independently of other pairs, where (κi,j )

k
i,j=1 (the kernel of

the IRG) is some symmetric matrix with strictly positive entries. Analogously to our Theo-
rem 2.6, if we condition on the set of alive vertices at any time t and their types, the graph is
also an IRG with kernel (κi,j + t)ki,j=1; see [34], Proposition 7.

By [34], Theorem 3, the vector (πn
i (t))ki=1 of proportions of vertices of each type that

remain alive at time t has a limit (πi(t))
k
i=1 as n →∞. Moreover, if t ≥ tgel then the vector

(πi(t))
k
i=1 obeys the differential equation

(25)
d

dt
πi(t)=−ϕ(t)θi(t)πi(t),

where ϕ(t) is the total destruction rate at time t and (θi(t))
k
i=1 is the right eigenvector

corresponding to the principal eigenvalue λ = 1 of the critical Perron–Frobenius matrix
((κi,j + t)πj (t))

k
i,j=1, normalized so that

∑k
i=1 θi(t)πi(t) = 1. (Note that the results in [34]

are formulated using the left eigenvector (μi(t))
k
i=1, where μi(t)= θi(t)πi(t).) This result is

similar to our Theorem 2.21, but the method of proof is quite different, as we now explain.
A key ingredient of the approach of [34] is that the empirical distribution of the vertex types
in a very large component of the IRG seen at time t is close to (θi(t)πi(t))

k
i=1 with high prob-

ability (see [34], Section 4, for the precise statement and proof). Instead of proving a similar
result for age-driven IRGs, for which the continuous type space presents considerable tech-
nical challenges, we derive Theorem 2.21 by directly studying the fine properties of the local
limit objects (such as the cluster growth process of [11] and age-driven multitype branching
process trees) that arise from the MFFF as n →∞ (see the introduction of Section 6 for
further details about our methods).

2.6.4. A model with limited aggregations. In [23], a dynamical variant of the configu-
ration model is discussed where edges matching remaining stubs are added one by one in
a uniform fashion. Connected clusters get deleted as soon as their size exceeds a threshold
α(n), where n denotes the initial number of vertices and 1 � α(n)� n. Similar to our The-
orem 2.20, the local weak limit of this random graph model at any time t after gelation turns
out to be a critical Galton–Watson tree.
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2.7. Open questions.

1. For each n, the evolution of the cluster size densities vn(t) of the MFFF can be viewed
as a coagulation-fragmentation process (see [27], Section 2.2), which converges in distribu-
tion as t →∞ to vn(∞), which is distributed according to the unique stationary law of the
MFFF. The critical forest fire equations ((12) + (13)) themselves have a unique fixed-point
v(∞); see Remark 2.17(ii). However, it has not yet been proved that the limit as n →∞ of
vn(∞) is deterministic and equal to v(∞); see [9], Conjecture 1.

2. A related question is whether there exist nonconstant periodic or chaotic solutions
to the critical forest fire equations ((12) + (13)). Indeed, it is not yet known whether we
have v(t)→ v(∞) as t →∞, even in the monodisperse case where v(0)= (1,0,0, . . .). The
analogous question for solutions to the age differential equations ((20) + (21)), for which
the expected limit π is discussed in Remark 2.23(ii), is also unknown. In both settings, the
conjecture that ϕ(t)→ 1

2 as t →∞ is of central importance.
3. Is it possible to write down any explicit nonconstant age-critical solutions of the age

differential equations ((20) + (21))? No explicit solutions of the critical forest fire equations
((12) + (13)) are currently known beyond tgel, apart from the stationary solution v(∞).

4. An age-critical or age-subcritical distribution π determines a cluster size distribution
vk = P(|T π | = k), k = 1,2, . . . . Not every such probability measure arises from an age dis-
tribution π . For example, the support of (vk)

∞
k=1 must be all of N if π �= δ0. In the other

direction, does (vk)
∞
k=1 uniquely determine π?

2.8. Overview of the contents of the rest of this paper. In Section 3, we connect the
MFFFA and the notion of age-driven IRG to the literature of IRGs and their local weak
limits. In Section 4, we discuss fundamental properties of the branching operator and age-
driven MBPs. In Section 5, we state and prove some results about the fine asymptotics of the
probability generating functions of the size of age-driven MBP trees. In Section 6, we prove
the main results of this paper. We strongly encourage the reader interested in our methods to
read the introduction of Section 6 now: in Section 6.1, we recall and introduce some auxiliary
Markov processes (e.g., the cluster growth process with age) which allow us to describe the
asymptotics of the time evolution of the empirical age distribution in the MFFFA. Some
properties of these auxiliary Markov processes stated in Section 6.1 (e.g., the intertwining
relation between them) are interesting in their own right.

3. Age-driven IRGs and their limits. In Section 3.1, we prove Theorem 2.6, that the
dynamics of the MFFFA preserve the class of age-driven IRGs.

In Section 3.2, we recall some elements of the theory of IRGs from [5] and [32] and prove
Proposition 2.13.

In Section 3.3, we extend this to understand the limiting joint distribution of the ages and
component sizes of two i.i.d. uniformly chosen vertices in a large age-driven IRG, for the
purpose of running a second moment argument.

3.1. Forest fire dynamics preserve age-driven IRGs. PROOF OF THEOREM 2.6. With-
out loss of generality, we assume that an

0 is deterministic, by conditioning on its value.
In order to prove (7), we will prove an even stronger statement: we will prove that (7) holds

even if we further condition on the lightning PPP 
. In practice, this means that we assume
that 
 consists of the deterministic points (ik, tk), k = 1,2, . . . , where 0 = t0 < t1 < t2 < · · · ,
that is, vertex ik’s component is burned at time tk .

We will prove that (7) holds for all t ≤ tk , k = 0,1,2, . . . by induction on k. By construc-
tion of (Gn

0 , an
0) (as an age-driven IRG), (7) holds for k = 0.
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Now let us assume that (7) holds for all t ≤ tk−1. In particular, the conditional distribution
of (Gn

tk−1
, an

tk−1
) given an

s ,0 ≤ s ≤ tk−1 is an age-driven IRG. Since no point of 
 lies in
[n] × (tk−1, tk), we have

(26) an
t (i)= an

tk−1
(i)+ (t − tk−1), tk−1 ≤ t < tk, i ∈ [n].

Edge {i, j} is present in Gn
t either if it is present in Gn

tk−1
, or if it appears during time interval

(tk−1, t]. Using the induction hypothesis and the fact that edges appear independently at rate
1/n on this interval, we conclude that conditional on (an

s ,0 ≤ s ≤ t) and 
, each edge {i, j}
is present in Gn

t independently with probability

1− exp
(
−1

n

(
an
tk−1

(i)∧ an
tk−1

(j)
))

exp
(
−1

n
(t − tk−1)

)
(26)= 1− exp

(
−1

n

(
an
t (i)∧ an

t (j)
))

.

(27)

So (7) holds for any tk−1 ≤ t < tk , and if we denote by Gn
tk− and an

tk− the graph and the
age configuration that we see right before the lightning strike at time tk , then

(28) conditional on
(
an

s , s ∈ [0, tk)
)
,we have Gn

tk−
d=Gage(n,an

tk−
)
.

At time tk , a lightning strikes vertex ik and the vertices of the connected component C of
vertex ik in the graph Gn

tk− burn, thus we have

(29) an
tk
(i)=

{
0 if i ∈ C,

an
tk−(i)= an

tk−1
(i)+ (tk − tk−1) if i ∈ [n] \ C.

Note that C is determined by an
s ,0 ≤ s ≤ tk because an

tk
(i)= 0 if and only if i ∈ C. Also note

that there are no edges between C and [n] \ C in Gn
tk−, since C is a connected component of

Gn
tk−. Also note that it follows from (28) and (29) that if we condition on (an

s , s ∈ [0, tk])
then the subgraph of Gn

tk− spanned by the vertices [n] \ C is an age-driven inhomogeneous
random graph with ages (an

tk
(i), i ∈ [n] \ C), that is, independently for different edges, the

edge {i, j} ∈ ( [n]\C
2

)
is present with probability 1 − exp(− 1

n
(an

tk
(i)∧ an

tk
(j))). Also note that

the subgraphs of Gn
tk− and Gn

tk
spanned by the vertices [n] \ C are the same, but if either i

or j belongs to C, the edge {i, j} is not present in Gn
tk

. Putting these observations together
with Definition 2.4 and (29), we obtain that (7) holds for t = tk . This completes the proof of
Theorem 2.6. �

3.2. Local weak convergence of age-driven IRGs. The goal of Section 3.2 is to prove
Proposition 2.13.

In order to apply the theory of IRGs established in [5], we recall the notion of graphical
and irreducible kernels from [5], Definitions 2.7, 2.10, (or, alternatively, from [32], Defini-
tion 3.3). In our case the ground space (S,μ) is ([0,∞),π), where π is a Borel probability
measure on [0,∞), and the kernel is κ(x, y) = x ∧ y. Our vertex space (cf. [5], Section 2)
is ([0,∞),π, (an)n≥1), where an = (an(1), . . . , an(n)) ∈ [0,∞)n is a sequence of (possibly
random) ages in Gn =Gage(n, an), which determines the (possibly random) empirical mea-

sure πn. Our definition of πn P⇒ π (cf. Definition 2.12) is one of the equivalent characteriza-
tions given in [5], Lemma A.2. Our particular definition of the conditional edge probabilities
given the types (i.e., ages) of the vertices in an age-driven IRG (cf. Definition 2.4) is in line
with [5], (2.6).

Consider Gn (d)= Gage(n, an) and for any B ≥ 0 define an
B(i) := an(i)∧B for i = 1, . . . , n.

We may use these truncated ages to define an age-driven IRG Gn
(B)

(d)= Gage(n, an
B), coupled
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such that Gn
(B) is a subgraph of Gn. We also define the bounded continuous kernel κB(x, y)=

x ∧ y ∧ B and note that Gn
(B) can be viewed as an IRG with types an and kernel κB . Let us

also introduce the multitype Galton–Watson tree T π
(B), which is defined in the same way as

T π (cf. Definition 2.8) but using the kernel κB , so that the offspring of a vertex of type s are
given by a PPP with intensity (s ∧ u∧B)dπ(u).

We first show that the “truncated” analogue of Proposition 2.13 holds.

LEMMA 3.1 (Truncated IRG locally converges to MBP). Gn
(B) converges in probability

in the local weak sense as n→∞ to T π
(B).

PROOF. First, we check that κB is a graphical kernel in our vertex space: see conditions
(i), (ii) and (iii) of [5], Definition 2.7.

(i) κB is continuous.
(ii) κB is bounded, which implies

∫ ∫
κB(x, y) dπ(x) dπ(y) <∞.

(iii) The expected number of edges in Gage(n, an) divided by n tends to
1
2

∫ ∫
κB(x, y) dπ(x) dπ(y) as n →∞, and this holds for bounded continuous kernels by

[5], Lemma 8.1 and Remark 8.4.

Thus our kernel κB is graphical. κB is also irreducible (cf. [5], Definition 2.10), therefore the
proof of Lemma 3.1 follows from [32], Theorem 3.11. �

REMARK 3.2. To ensure that κ itself is a graphical kernel, we would have to assume
some extra condition on πn in addition to its convergence in probability to π , for exam-
ple, E(

∫
x dπn(x)) → ∫ x dπ(x) would suffice. Our truncation argument allows us to avoid

making such an extra assumption.

Let us denote by Sn,k
(B) the set of vertices v of Gn such that there is a vertex of age B within

distance k of v in Gn
(B). Note that for any v ∈ [n] \ Sn,k

(B) the ball of radius k about v in Gn

agrees with that in Gn
(B).

LEMMA 3.3 (Gn
(B) and Gn locally look similar). Let ε > 0 and k ∈N. Then there exists

a constant B = B(ε, k) such that for any sufficiently large n we have

(30) P
(∣∣Sn,k

(B)

∣∣≥ nε
)≤ ε.

PROOF. Consider the set Path(�,B) that consists of directed simple paths in Gn
(B) of

length �, beginning in the set S = {v ∈ [n] : an
B(v) = B}. Conditional on the ages, the prob-

ability that any particular directed path (v0, v1, . . . , v�) ∈ Path(�,B) is present in Gn
(B) is

bounded as follows:

P
[{vi−1, vi} ∈E

(
Gn

(B)

) : 1 ≤ i ≤ �|an
B

]
=

�∏
i=1

(
1− e−(an

B(vi−1)∧an
B(vi))/n)≤ �∏

i=1

an
B(vi−1)∧ an

B(vi)

n
≤

�∏
i=1

an
B(vi)

n
.

Summing over all choices of v0 ∈ S and (v1, . . . , v�) ∈ [n]�, we obtain

E
[∣∣Path(�,B)

∣∣|an
B

]≤ |S|
(∑

v∈[n]

an
B(v)

n

)�

= |S|
(∫

(x ∧B)dπn(x)

)�

.
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Note that Sn,k
(B) is the set of vertices whose k-ball in Gn

(B) meets S, thus

(31) E
[∣∣Sn,k

(B)

∣∣/n|an
B

]≤ |S|
n

k∑
�=0

(∫
(x ∧B)dπn(x)

)�

=:Zn.

If π({B}) = 0, then Zn converges to π([B,∞))
∑k

�=0(
∫
(x ∧ B)dπ(x))� in probability, and

the latter quantity is at most ε2/4 if we choose B big enough, since
∫

x dπ(x) <∞. Then for

large enough n we have P(Zn > ε2

2 ) ≤ ε
2 , moreover P(|Sn,k

(B)|/n ≥ ε|Zn ≤ ε2

2 ) ≤ ε
2 holds by

(31), thus (30) follows. �

Next, we observe that T π
(B) converges to T π in the local weak sense as B →∞: this follows

from the fact that κB ↗ κ , therefore one can couple T π
(B) simultaneously for all B ≥ 0 to T π

so that T π
(B) converges monotonically (with respect to the partial ordering of graph inclusion)

to T π almost surely (for the details of this coupling; see the proof of [32], Theorem 3.10).
Now we can conclude the proof of Proposition 2.13. Let us fix some finite rooted

graph (H,v) and k ∈ N. Recalling Definition 2.11, let Bn
k (w) be the k-neighborhood in

Gn of a vertex w ∈ [n], and similarly let Bn
k,(B)(w) be the k-neighborhood in Gn

(B) of w.

Let Xn := 1
n

∑
w∈[n] 1[Bn

k (w) � (H,v)] and Xn,(B) := 1
n

∑
w∈[n] 1[Bn

k,(B)(w) � (H,v)]. Let
q := P(Bk(ρ)� (H,v)) and q(B) := P(Bk,(B)(ρ)� (H,v)), where Bk(ρ) and Bk,(B)(ρ) de-
note the k-neighborhoods of the root in T π and T π

(B), respectively.
Given some ε > 0, we want to show that for all large enough n we have P(|Xn − q| ≥

ε) ≤ ε. Recall that for any v ∈ [n] \ Sn,k
(B) we have Bn

k (v) = Bn
k,(B)(v), thus by Lemma 3.3

we can choose B∗ = B∗(ε, k) such that if B ≥ B∗ then we have P(|Xn −Xn,(B)| ≥ ε
3) ≤ ε

2
for large enough values of n. There exists B∗∗ such that |q − q(B)| ≤ ε

3 for any B ≥ B∗∗,
since T π

(B) converges to T π in the local weak sense as B → ∞. Let B = B∗ ∨ B∗∗. By
Lemma 3.1, we have P(|Xn,(B) − q(B)| ≥ ε

3) ≤ ε
2 for large enough n. We obtain the desired

P(|Xn − q| ≥ ε)≤ ε for large enough n by the triangle inequality and the union bound. The
proof of Proposition 2.13 is complete.

3.3. Joint weak limit of component sizes and ages. In order to prove that πn
t is concen-

trated around πt in Theorem 2.19 using a second moment argument, we will show in Proposi-
tion 6.7 that the age processes an

t (ρn
1 ) and an

t (ρn
2 ) of two i.i.d. uniformly distributed vertices

ρn
1 , ρn

2 in an MFFFA evolve asymptotically independently as n →∞. The following result
implies that the ages of ρn

1 and ρn
2 in the initial graph Gn

0 are asymptotically independent.

DEFINITION 3.4 (Components and cardinalities). Given an age-driven IRG Gage(n, an)

(cf. Definition 2.4) and a vertex i ∈ [n], let Cn(i) denote the connected component of vertex
i in the graph Gage(n, an), moreover let Cn(i) denote the number of vertices in Cn(i), that is,
Cn(i)= |Cn(i)|.

PROPOSITION 3.5 (Weak limits for two i.i.d. vertices). Let Gage(n, an) be a sequence

of age-driven IRGs, for which the empirical age distributions satisfy πn P⇒ π , where∫
x dπ0(x) < ∞ and π is an age-subcritical or age-critical probability measure. Let ρn

1 ,
ρn

2 be i.i.d. with uniform distribution on [n]. Then as n→∞,

(32)
((

an(ρn
i

)
,Cn(ρn

i

))
, i ∈ {1,2})⇒ ((a(ρ(i)), ∣∣T (i)

∣∣), i ∈ {1,2}),
where (a(ρ(i)), |T (i)|), i = 1,2 are i.i.d. copies of (a(ρ), |T π |), where ρ is the root of T π

and a(ρ) is the age of the root.
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Note that when π is age-supercritical, then P(|T π | =∞) > 0 (cf. Proposition 2.10) and,
therefore, (Cn(ρn

i ))n∈N is not tight.
Let us now explain why we omit the proof of Proposition 3.5. The statement of Propo-

sition 2.13 concerns only distributions of rooted graphs, not graphs augmented with ages.
However, the proof of [32], Theorem 3.11, (which we used in the proof of Lemma 3.1) at its
core uses a coupling argument in which an exploration of Gn from a uniformly chosen vertex
is coupled to an exploration of T π from its root. In this coupling, the ages of correspond-
ing vertices are in fact close with high probability. In the discussion in [32], Section 3.5.1,
immediately following the statement of the relevant Theorem 3.11, van der Hofstad remarks
that the convergence in probability in the local weak sense can be extended to apply to the
topology where two local subgraphs are close only if they are isomorphic as rooted graphs
by an isomorphism under which the corresponding vertices’ types are uniformly close. This
is similar to Benjamini et al. [4], who study a setting with marked edges. We actually do not
require the full power of this extension, only the fact that the initial step of the coupling argu-
ment is to couple a uniformly chosen random vertex ρn of Gn with the root ρ of T π in such
a way that with high probability the age of ρn is close to the age of ρ. This observation can
be used to show that in fact for any continuity set A of the measure π and any finite rooted
graph (H,v) and any k ≥ 1 we have as n→∞ that

(33)
1

n

∑
w∈[n]

1
[
Bn

k (w)� (H,v), an(w) ∈A
] P−→ P

(
Bk(ρ)� (H,v), a(ρ) ∈A

)
.

In order to prove (32), we only need to show that for any pair of continuity sets A1, A2 of π

and finite rooted graphs (H1, v1), (H2, v2), we have

(34) P
(
Bn

k

(
ρn

i

)� (Hi, vi), a
n(ρn

i

) ∈Ai, i ∈ {1,2})→ 2∏
i=1

P
(
Bk(ρ)� (Hi, vi), a(ρ) ∈Ai

)
as n goes to infinity. Taking the product of two instances of (33) with Ai and (Hi, vi) in place
of A and (H,v) (with i = 1,2, resp.), we obtain that

(35)
1

n2

n∑
w1,w2=1

1
[
Bn

k (wi)� (Hi, vi), a
n(wi) ∈Ai, i ∈ {1,2}]

converges in probability to the r.h.s. of (34). Taking the expectation, we obtain (34).

4. The operator Lπ and criticality of T π . In Section 4.1, we prove (a strengthening
of) Lemma 2.9. In Section 4.2, we prove Proposition 2.10.

4.1. Basic properties of Lπ . The main goal of Section 4.1 is to prove Lemma 2.9. In fact,
we will prove a more detailed result.

Let (X,μ) be a measure space, let κ be a measurable real kernel on X and define an
integral operator T by (Tf )(x) = ∫ κ(x, y)f (y) dμ(y). Then the Hilbert–Schmidt norm of
T is

(36) ‖T ‖HS =
(∫ ∫

κ(x, y)2 dμ(x) dμ(y)

)1/2
.

When ‖T ‖HS is finite, T is a Hilbert–Schmidt operator on L2(μ). It is compact (see [28],
Theorem VI.22) with operator norm bounded by

(37) ‖T ‖ ≤ ‖T ‖HS.
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LEMMA 4.1. If
∫

s dπ(s) <+∞ then Lπ is Hilbert–Schmidt, and

(38) ‖Lπ‖ ≤ ‖Lπ‖HS ≤
∫

x dπ(x) <∞.

PROOF. If we let m := ∫ x dπ(x) <∞, then we have

(39) ‖Lπ‖2
HS

(36)=
∫ ∫

(x ∧ y)2 dπ(x) dπ(y)≤
∫ ∫

xy dπ(x)dπ(y)=m2.

Thus (38) holds by (37) and (39). �

REMARK 4.2. In fact, [2], Theorem 4.6, shows (after a change of variables) that Lπ is
a bounded operator on L2(π) if and only if π([x,∞)) = O(1/x) as x →∞, it is compact
if and only if π([x,∞))= o(1/x) as x →∞, and it belongs to the trace class if and only if∫

x dπ(x) < ∞. In the latter case, one can show that the sum of the eigenvalues converges
(absolutely) to

∫
x dπ(x). See also [5], Example 17.6.

LEMMA 4.3 (Properties of Lπ ). If ‖Lπ‖HS <∞ and π �= δ0, then:

(i) Lπ is a positive semidefinite and compact self-adjoint operator on L2(π).
(ii) Elements of the image of Lπ are represented by Lipschitz functions and Lπ maps

nonnegative functions to nondecreasing nonnegative functions.
(iii) Lπ has a simple principal eigenvalue λ satisfying 0 < λ= ‖Lπ‖.
(iv) There is a unique eigenfunction θ ∈ L2(π) for which Lπθ = λθ and∫

θ(x)dπ(x)= 1. We identify θ with its Lipschitz-continuous representative, which is a non-
decreasing function on [0,∞) with θ(0)= 0.

PROOF. We begin with the proof of (i). Lπ is self-adjoint because the kernel x∧y is real
and symmetric. To see that Lπ is a positive semidefinite operator, note that for f,g ∈ L2(π)

we have

〈Lπf, g〉π =
∫ ∫

f (y)g(x)(x ∧ y)dπ(x) dπ(y)

=
∫ ∫ ∫ ∞

0
f (y)g(x)1[x ≥ u,y ≥ u]dudπ(x) dπ(y)

(∗)=
∫ ∞

0

(∫ ∞
u

f (y) dπ(y)

)(∫ ∞
u

g(x) dπ(x)

)
du.

The application of Fubini in the equation marked by (∗) is justified by the absolute integrabil-
ity which follows from 〈Lπ |f |, |g|〉π ≤ ‖Lπ‖‖f ‖‖g‖ < ∞, see (37). In particular, we have
〈Lπf,f 〉π = ∫∞0 (

∫∞
u f (x) dπ(x))2 du≥ 0.

Next, we prove (ii). For any f ∈ L2(π), Lπf is represented by a Lipschitz function. In-
deed, since π is a finite measure, the constant function 1 belongs to L2(π), and because
|(u∧ s)− (u∧ s′)| ≤ |s − s′|, we have∣∣Lπf (s)−Lπf

(
s′
)∣∣≤ ∫ ∣∣f (u)

∣∣∣∣(u∧ s)− (u∧ s ′
)∣∣dπ(u)≤ ∣∣s − s′

∣∣〈|f |,1
〉
π .

Moreover, if f is a nonnegative function and 0 ≤ s ≤ s ′ then

0 ≤ Lπf (s)=
∫

f (u)(u∧ s) dπ(u)≤
∫

f (u)
(
u∧ s ′

)
dπ(u)= Lπf

(
s′
)
.

Next, we prove (iii). Because Lπ is positive semidefinite and self-adjoint, and because
Hilbert–Schmidt operators are compact, the spectrum of Lπ is contained in the real interval
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[0,‖Lπ‖], with 0 being the only possible accumulation point and every positive eigenvalue
having finite multiplicity. Except in the trivial case Lπ = 0, which only occurs when π = δ0,
the Perron–Frobenius theorem for Hilbert–Schmidt integral operators (see [24], Section 6.5,
or [5], Lemma 5.15) guarantees that the leading eigenvalue is λ= ‖Lπ‖, and it is simple, that
is, has a one-dimensional eigenspace.

Next we prove (iv). [5], Lemma 5.15, shows that there is an eigenfunction θ ∈ L2(θ) with
eigenvalue λ such that θ is positive π -a.e. and since

∫
θ dπ = 〈θ,1〉π < ∞ it is valid to

normalize θ by multiplying it by a nonzero scalar so that
∫

θ dπ = 1. We have

(40) θ(s)= λ−1Lπθ(s)= λ−1
∫ ∞

0
θ(u)(u∧ s) dπ(u), s ∈ [0,+∞)

and we now choose the representative for θ defined by the right-hand side of (40), which is
nondecreasing and Lipschitz in s by (ii), and satisfies θ(0)= 0 and θ(s) > 0 for s > 0. �

The proof of Lemma 2.9 immediately follows from Lemmas 4.1 and 4.3.

4.2. Subcriticality, criticality and supercriticality of T π . Section 4.2 is devoted to the
proof of Proposition 2.10. Note that we will only use the properties of Lπ derived in
Lemma 4.3, so our proof works if we only assume ‖Lπ‖HS < ∞ and π �= δ0 instead of∫

s dπ(s) <+∞.
Denote by λ = ‖Lπ‖ the principal eigenvalue of Lπ , see Lemma 4.3(iii). It follows from

[5], Theorem 6.1, that ‖Lπ‖HS < ∞ implies that λ > 1 if and only if P(|T π | = ∞) > 0.
Therefore, it suffices to prove

(41)

{
λ < 1 ⇒ E

[∣∣T π
∣∣]<∞,

λ= 1 ⇒ E
[∣∣T π
∣∣]=∞.

Note that the expected number of vertices at distance k from the root of the tree T π is
given by 〈1,Lk

π1〉π , thus

(42) E
[∣∣T π
∣∣]= ∞∑

k=0

〈
1,Lk

π1
〉
π .

Using this, we can prove that λ < 1 implies E[|T π |]<∞:

(43) E
[∣∣T π
∣∣] (42)≤

∞∑
k=0

‖1‖ · ∥∥Lk
π1
∥∥≤ ∞∑

k=0

‖1‖2∥∥Lk
π

∥∥≤ ∞∑
k=0

〈1,1〉πλk = 1

1− λ
.

We now treat the critical case λ = 1. Recall from Lemma 4.3(iv) that in the λ = 1 case θ

satisfies 〈1, θ〉π = 1 and θ = Lπθ . Let us write 1 = aθ + f , where a = 〈1, θ〉π/〈θ, θ〉π > 0,
so that f ∈ θ⊥. Using that Lk

π is self-adjoint for any k ≥ 0 (cf. Lemma 4.3(i)), we obtain

(44) E
[∣∣T π
∣∣] (42)= a2

∞∑
k=0

〈
θ,Lk

πθ
〉
π +

∞∑
k=0

〈
f,Lk

πf
〉
π ,

where the first sum on the right-hand side is infinite since Lk
πθ = θ , while the second sum

is nonnegative, since Lk
π is positive semidefinite; cf. Lemma 4.3(i). It then follows that

E[|T π |] =∞. The proof of Proposition 2.10 is complete.
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5. Multitype Galton–Watson trees and generating functions. In this section, we de-
rive further properties of the multitype Galton–Watson trees T π and T π

s defined using a
probability measure π on [0,∞) that satisfies

∫
udπ(u) < ∞, see Definition 2.8. Recall

from (8) that we define the Perron–Frobenius operator Lπ acting on L2(π) by

(45) Lπf (x)=
∫ ∞

0
f (s)(x ∧ s) dπ(s).

Recall from Definition 4.3(iv) the notion of the eigenfunction θ corresponding to the principal
eigenvalue λ of Lπ . In the age-critical case (see Proposition 2.10), let us define

(46) φ :=
(∫

θ(u)3 dπ(u)

)−1
.

One of the main results of Section 5 is the next lemma.

LEMMA 5.1 (Critical generating function asymptotics). Let π be an age-critical measure
satisfying

∫
udπ(u) < ∞. Then on the intersection of the complex open unit disc D with a

neighborhood of 1 the generating function E(z|T π
s |) agrees with an analytic function of a

branch of
√

1− z that depends continuously on s ∈ [0,∞]. In particular, as z ↗ 1 through
the reals, we have

(47) E
(
z|T π

s |)= 1−√2φθ(s)
√

1− z+O(1− z),

where the implied constant in the error term is uniform as a function of s, and also

(48) E
(
z|T π |)= 1−√2φ

√
1− z+O(1− z).

Lemma 5.1 is an ingredient of the proof of Theorem 2.21; see Section 6.9.
In Section 5.1, we set up the notation required for the study of age-driven multitype branch-

ing processes using generating functions and write down a system of nonlinear equations sat-
isfied by these generating functions. This leads to the study of a nonlinear Volterra equation
of the second kind.

In Section 5.2, we prove that this nonlinear Volterra equation is well-posed.
In Section 5.3, we prove Lemma 5.1.
In Section 5.4, we prove Proposition 2.16.
The details of the proofs presented in Section 5 are independent of the rest of this paper,

so the rest of Section 5 can be skipped at first reading.

5.1. The generating function of the total progeny. Recall the notion of T π and T π
s from

Definition 2.8. In Section 5.1, we assume
∫

udπ(u) <∞ and that π is either age-subcritical
or age-critical (cf. Proposition 2.10).

Let us denote by D the closed complex unit disc.

DEFINITION 5.2 (Generating function of |T π
s | and |T π |). We write [0,∞] for the one-

point compactification [0,∞) ∪ {∞}. For s ∈ [0,∞] and z ∈ D, we define the probability
generating functions

(49) f (s, z) := E
(
z|T π

s |), f (z) := E
(
z|T π |)= ∫ f (s, z)dπ(s).

LEMMA 5.3 (Basic properties of f (s, z)).

(i) f (s, z) satisfies f (s,1)= 1 for all s ∈ [0,∞],
(ii) f (s, z) ∈ [0,1] if z ∈ [0,1] and f (s, z) ∈D if z ∈D,
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(iii) f (s, z) is strictly increasing in z ∈ [0,1] for all s ∈ [0,∞],
(iv) for each fixed s ∈ [0,∞], f (s, z) is analytic over z ∈D,
(v) f (s, z) is nonincreasing in s for all z ∈ [0,1],

(vi) f (s, z) is uniformly continuous in (s, z) ∈ [0,∞]×D.

PROOF. In order to prove (i), we only need to show P(|T π
s | = +∞) = 0 for all s ∈

[0,∞]. It is enough to show this just for s =∞, since |T π∞| stochastically dominates |T π
s | for

each s ∈ [0,∞]. Note that it follows from
∫

udπ(u) < ∞ that the function s �→ P(|T π
s | =

+∞) is nondecreasing and continuous on [0,∞]. Also note that P(|T π | = +∞)= 0 follows
from Proposition 2.10 and our assumption that π is either age-subcritical or age-critical. It
remains to observe that

∫
P(|T π

s | = +∞)dπ(s)= P(|T π | = +∞)= 0 and (i) follows
(ii), (iii) and (iv) are standard facts about generating functions.
(v) follows from the fact that |T π

s | is stochastically increasing in s.
(vi) follows as soon as we observe that

∫
udπ(u) <∞ implies that the law of T π

s depends
continuously on s ∈ [0,∞] (uniform continuity of f follows from continuity and the Heine-
Cantor theorem, since [0,∞]×D is compact). �

LEMMA 5.4 (A system of nonlinear equations for f (s, z)). For each s ∈ [0,∞], f (s, z)

satisfies the recursive equation

(50) f (s, z)= z exp
∫ (

f (u, z)− 1
)
(u∧ s) dπ(u), z ∈D.

PROOF. Denote by λs the measure dλs(a)= (s ∧ a)dπ(a). The root of Ts has offspring
of ages a1, . . . , aK which are the points of a Poisson point process on [0,∞) of intensity λs .
Thus K is a Poisson random variable of mean |λs | := ∫ dλs(a) < ∞ and conditional on K ,
the ages a1, . . . , aK are independent with law λs/|λs |,

f (s, z)= E
(
z|T π

s |)= E

(
z

K∏
i=1

z
|T π

ai
|
)

= z

∞∑
k=0

e−|λs ||λs |k
k!

k∏
i=1

Ea∼λs/|λs |
(
z|T π

a |)= z

∞∑
k=0

e−|λs |ek
s

k!

= z exp
(
es − |λs |), where es =

∫
f (a, z) dλs(a). �

In the case when π is age-subcritical, we will show that for each s, the generating function
f (s, z) has an analytic continuation on a small neighborhood of z= 1. On the other hand, in
the case when π is age-critical, we will show that f (s, z) agrees with an analytic function of√

1− z in the intersection of D and a neighborhood of 1.
Let us denote by Bδ(z0) = {z ∈ C : |z− z0| ≤ δ} the disc of radius δ centered at z0 in the

complex plane.

LEMMA 5.5 (A system of nonlinear equations for logf (s, z)). There exists δ > 0 such
that for any s ∈ [0,∞] and z ∈D∩Bδ(1) we have | logf (s, z)| ≤ 1 and

(51) logf (s, z)= logf (∞, z)−
∫ ∞
s

(
elogf (u,z) − 1

)
(u− s) dπ(u).

PROOF. In order to achieve | logf (s, z)| ≤ 1, we want to choose δ > 0 such that f (s, z)

falls in an appropriate small neighborhood of 1 for all s ∈ [0,∞] and z ∈ D ∩Bδ(1). Such a
choice is possible by statements (i) and (vi) of Lemma 5.3.
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We can thus rewrite (50) in terms of the function logf (s, z) as

logf (s, z)= log z+
∫ (

elogf (u,z) − 1
)
(u∧ s) dπ(u).

In particular, substituting s =∞ we obtain

logf (∞, z)= log z+
∫ (

elogf (u,z) − 1
)
udπ(u).

Taking the difference of the last two equations and using u− (u ∧ s) = (u− s)+ we obtain
(51). �

We will use (51) to show that f (s, z) is an analytic function of f (∞, z). This will help
us in showing that f (s, z) is analytic in z in a small neighborhood of 1 in the age-subcritical
case and, more importantly, we will use w = logf (∞, z) as a local coordinate to resolve
the algebraic singularity of f (s, ·) at z= 1 in the age-critical case. The next lemma explains
how to find logf (s, z) in terms of w. The continuity statements are given w.r.t. the one-point
compactification [0,∞]: a function f defined on [0,∞] is continuous when its restriction to
[0,∞) is continuous and limx→∞ f (x)= f (∞).

LEMMA 5.6 (A nonlinear Volterra equation). There exists δ > 0 such that for each w ∈
Bδ(0)⊂C, there exists a unique bounded solution F(·,w) : [0,∞]→C of the equation

(52) F(s,w)=w −
∫ ∞
s

(
eF(u,w) − 1

)
(u− s) dπ(u).

We have F(s,0)= 0 for all s. The solution depends continuously on (s,w) ∈ [0,∞]×Bδ(0).
For each fixed s, the solution depends analytically on w. When we consider the Taylor series
of F as a function of w, each Taylor coefficient is a bounded and continuous function of
s ∈ [0,∞].

Equation (52) is a nonlinear Volterra equation of the second kind, posed as a final value
problem. It is somewhat nonstandard because the integral is with respect to π rather than
Lebesgue measure, and the assumption that π has finite mean will be crucial. We give a
detailed proof to keep our argument self-contained, and because it would take just as much
space to verify that the equation can be transformed into a standard form satisfying suitable
hypotheses to guarantee the conclusions of the lemma.

5.2. The nonlinear Volterra equation is well-posed. The goal of Section 5.2 is to prove
Lemma 5.6.

5.2.1. Proof of existence. We begin by proving the existence of a solution of (52) with
the required properties. Let us now briefly outline our construction. We break [0,∞) into
finitely many intervals of form [αi,αi−1], where

(53) αk = 0 < αk−1 < · · ·< α1 < α0 =∞
and solve equation (52) piecewise for i = 0,1,2, . . . , starting at ∞. On each interval, we
use a Picard iteration to solve a final value problem with respect to s. We will show that
on each interval [αi,αi−1] all the iterates depend analytically on w, and are continuous on
[αi,αi−1] × Bδi

(0) for some δi > 0. We will also show that the iterates converge uniformly.
It follows that there exists δ > 0 such that the limit F of the iteration is analytic in w ∈ Bδ(0)

for each s ∈ [0,∞] and continuous in (s,w) ∈ [0,∞]×Bδ(0), and that for each fixed value
of w ∈ Bδ(0), F(·,w) solves (52).
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Let us now start to carry this plan out in detail. Also note that F(∞,w)=w, since π does
not have an atom at ∞.

To define the pieces of the iteration, recall that
∫

udπ(u) < ∞, so we can choose k ∈ N

and a finite sequence α0, . . . , αk satisfying (53) such that for each i = 1, . . . , k, we have

(54)
∫ αi−1

αi

(u− αi) dπ(u) <
1

2
.

We will prove by induction over i that for each i there exists δi > 0 such that there is a
solution F(·,w) : [αi,∞]→ C with the continuity (on [αi,∞]) and analyticity (on Bδi

(0))
required by Lemma 5.6.

For i = 0, equation (52) simply tells us that F(∞,w)=w.
For i ≥ 1, suppose that we have already a solution on [αi−1,∞], continuous in (s,w) and

analytic in w. Consider s ∈ [αi,αi−1]. Applying (52) to both F(s,w) and F(αi−1,w) and
subtracting, we obtain

F(s,w)= F(αi−1,w)− (αi−1 − s)

∫ ∞
αi−1

(
eF(u,w) − 1

)
dπ(u)

−
∫ αi−1

s

(
eF(u,w) − 1

)
(u− s) dπ(u).

(55)

Note that if i = 1 then αi−1 =∞ by (53), so the second term on the right-hand side of (55)
is zero, and thus for i = 1 (55) just becomes (52).

We will solve (55) for s ∈ [αi,αi−1] and w in some ball Bδi
(0), where we may choose

δi ∈ (0, δi−1]. The first two terms on the right-hand side of (55) are analytic in w and are
jointly continuous in s and w by the induction hypothesis. Only the left-hand side and the final
term on the right-hand side depend on the restriction of F to [αi,αi−1]. We solve equation
(55) by the Picard iteration. Define F0 by

(56) F0(s,w)= F(αi−1,w), (s,w) ∈ [αi,αi−1] ×Bδi
(0).

Then for j ≥ 1 define inductively

Fj (s,w)= F(αi−1,w)− (αi−1 − s)

∫ ∞
αi−1

(
eF(u,w) − 1

)
dπ(u)

−
∫ αi−1

s

(
eFj−1(u,w) − 1

)
(u− s) dπ(u), s ∈ [αi,αi−1].

(57)

Analogously to (55), if i = 1 then we define the second term on the right-hand side of (57) to
be equal to zero.

Denote by ‖ · ‖∞,i the infinity norm on the domain [αi,αi−1] × Bδi
(0), where δi will be

specified later. Our next goal is to prove the following lemma.

LEMMA 5.7. With the above notation, we have

(58) ‖Fj+1 − Fj‖∞,i ≤ 1

2
emax(‖Fj‖∞,i ,‖Fj−1‖∞,i )‖Fj − Fj−1‖∞,i , j ≥ 1.

PROOF. For any s ∈ [αi,αi−1] and w ∈ Bδi
(0), we have∣∣Fj+1(s,w)− Fj (s,w)

∣∣
(57)≤
∫ αi−1

s

∣∣eFj (u,w) − eFj−1(u,w)
∣∣(u− s) dπ(u)

(∗)≤
∫ αi−1

s
emax(|Fj (u,w)|,|Fj−1(u,w)|)∣∣Fj (u,w)− Fj−1(u,w)

∣∣(u− s) dπ(u)

≤ emax(‖Fj‖∞,i ,‖Fj−1‖∞,i )‖Fj − Fj−1‖∞,i

∫ αi−1

s
(u− αi) dπ(u),

(59)
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where in (∗) we used that if x1, x2 ∈ C and |x1| ≤ a, |x2| ≤ a both hold then |ex1 − ex2 | ≤
ea|x1 − x2| also holds (this inequality follows from the fact that | d

dz
ez| ≤ e|z|). By (59) and

our assumption (54), we obtain (58). �

Lemma 5.7 implies that we will have a strict contraction in ‖ · ‖∞,i as long as we can keep
control of the norms ‖Fj‖∞,i . This is what we show in the next lemma.

LEMMA 5.8. One can choose δi > 0 sufficiently small so that

‖F0‖∞,i + 3‖F1 − F0‖∞,i ≤ 1/4,(60)

‖Fj‖∞,i ≤ 1/4, j = 0,1, . . . ,(61)

‖Fj − Fj−1‖∞,i ≤
(

2

3

)j−1
‖F1 − F0‖∞,i , j = 1,2, . . . .(62)

PROOF. First, we show (60). We have

F1(s,w)− F0(s,w)

(56),(57)= (αi−1 − s)

∫ ∞
αi−1

(
eF(u,w) − 1

)
dπ(u)

− (eF(αi−1,w) − 1
) ∫ αi−1

s
(u− s) dπ(u), s ∈ [αi,αi−1].

(63)

Recall from below (57) that if i = 1 then αi−1 = ∞ and we define the first term on the
right-hand side of (63) to be equal to zero. Our induction hypothesis implies that F is jointly
continuous in (s,w) ∈ [αi−1,∞] × Bδi−1(0); moreover, we have F0(s,0) = 0 by the defi-
nition of F0 in (56) and our induction hypothesis (which implies F(αi−1,0) = 0). Putting
these observations together with (54) and (63), we see that we can choose (and fix) δi > 0
sufficiently small to ensure that (60) holds.

We will prove (61) and (62) simultaneously by induction on j . First, observe that (60)
implies (61) for j = 0 and j = 1. Also, (62) obviously holds for j = 1. Now let j ≥ 1 and
suppose that (61) and (62) hold for all indices up to j . We have

‖Fj+1 − Fj‖∞,i

(58),(61)≤ 1

2
e1/4‖Fj − Fj−1‖∞,i ≤ 2

3
‖Fj − Fj−1‖∞,i ,

thus (62) holds for j + 1. Next, we observe that

‖Fj+1 − F0‖∞,i ≤
j+1∑
k=1

‖Fk − Fk−1‖∞,i

(62)≤ 3‖F1 − F0‖∞,i .

This, together with (60) implies that (61) holds for j + 1, completing the induction step. �

Now we can finish our construction: since (62) implies that Fj is a Cauchy sequence with
respect to ‖ · ‖∞,i , so it converges. By considering the limit as j →∞ of both sides of (57),
we see that the limit function F solves (55) on [αi,αi−1] × Bδi

(0). Since each Fj is jointly
continuous in (s,w), the uniform limit F also has this property. Since each Fj is analytic
with respect to w on Bδi

(0), the uniform limit F is also analytic by Morera’s theorem. It
is easy to see by induction on j that Fj (s,0) = 0 for all s ∈ [αi,αi−1], so F also has this
property.

By piecing together the solutions for i = 1, . . . , k, and taking δ = δk we obtain a solution
of (55) defined on [0,∞]× Bδ(0) that is continuous in (s,w) and analytic in w for each s.
Note that F(·,w) is also bounded, since it is continuous on the compact space [0,∞]. Since
the Taylor coefficients of F about w = 0 can be expressed by the Cauchy integral formula,
the joint continuity of F implies the continuity of the Taylor coefficients as functions of
s ∈ [0,∞]. The Taylor coefficients of F are also bounded, since the space [0,∞] is compact.
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5.2.2. Proof of uniqueness. It remains to show the uniqueness of the solution of (52) with
the required properties. Suppose that a value w ∈ Bδ(0) is fixed, and that F̃ (·,w) is another
bounded solution of (52) defined on [0,∞]. We may assume that both F̃ (·,w) and F(·,w)

are bounded in absolute value by M <∞. Then for every s we have∣∣F(s,w)− F̃ (s,w)
∣∣ (52)≤
∫ ∞
s

∣∣eF(u,w) − eF̃ (u,w)
∣∣(u− s) dπ(u)

(∗)≤
∫ ∞
s

∣∣F(u,w)− F̃ (u,w)
∣∣eMudπ(u),

where in (∗) we used that if x1, x2 ∈C and |x1| ≤M , |x2| ≤M both hold then |ex1 − ex2 | ≤
|x1 − x2|eM also holds. Since eMudπ(u) is a finite measure, Grönwall’s inequality implies
that F̃ (·,w)≡ F(·,w).

The proof of Lemma 5.6 is complete.

5.3. Taylor coefficients. The goal of Section 5.3 is to prove Lemma 5.1, therefore, we
assume that π is age-critical in Section 5.3. Recall from Lemma 4.3(iv) that Lπθ = θ , that is,

(64) θ(s)=
∫

θ(u)(u∧ s) dπ(u)

and
∫

θ dπ = 1 and θ(0)= 0. Let us define

(65) θ(∞) := lim
s→∞ θ(s)

(64)=
∫

θ(u)udπ(u).

Let us recall the notion of the function F from Lemma 5.6.

LEMMA 5.9 (Taylor coefficients). Suppose that π is age-critical. Then 0 < θ(∞) < ∞
and the Taylor expansion of F about w = 0 is

(66) F(s,w)= θ(s)

θ(∞)
w +A2(s)w

2 +O
(
w3),

where

(67) A2(0)=−
∫

θ(u)3 dπ(u)

2θ(∞)2 < 0.

PROOF. F(s,0) ≡ 0, so the constant term in the Taylor series vanishes identically. The
coefficient of w is A1(s) := Fw(s,0) := . ∂

∂w
F (s,w)|w=0. By Lemma 5.6, s �→ Fw(s,0) is

bounded and continuous on [0,∞]. To compute it, we differentiate both sides of (52) and
evaluate at w = 0,

Fw(s,0)= 1−
∫ ∞
s

Fw(u,0)eF(u,0)(u− s) dπ(u)

= 1−
∫ ∞
s

Fw(u,0)(u− s) dπ(u)(68)

= 1−
∫ ∞

0
Fw(u,0)udπ(u)+

∫ ∞
0

Fw(u,0)(u∧ s) dπ(u).

Denote by 1 : [0,∞]→R the function 1(s) := 1. From (69), we obtain

(69) (I −Lπ)Fw(·,0)=
(

1−
∫ ∞

0
Fw(u,0)udπ(u)

)
1.
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(Note that the integrals in (69) and (69) converge since the first moment of π is finite). Take
the inner product of both sides of (69) in L2(π) with θ . Since I − Lπ is self-adjoint and
annihilates θ , the left-hand side vanishes. Therefore,

(70) 0 =
(

1−
∫ ∞

0
Fw(u,0)udπ(u)

)∫
θ(u) dπ(u).

Now we can use
∫

θ(u) dπ(u)= 1 to conclude

(71)
∫ ∞

0
Fw(u,0)udπ(u)= 1.

Substituting (71) into (69), we obtain Fw(·,0) = LπFw(·,0), so by Lemma 4.3(iv) we must
have Fw(·,0) = cθ(·) for some c ∈ R. We have already noted that Fw(·,0) is bounded and
continuous on [0,∞], thus θ(·) is bounded and

(72) 1
(71)= c

∫ ∞
0

θ(u)udπ(u)
(65)= cθ(∞).

Hence 0 < θ(∞) < ∞ and c = 1/θ(∞). Thus the first-order Taylor coefficient in (66) is
indeed A1(s)= θ(s)/θ(∞).

It remains to prove (67). Differentiating both sides of (52) twice with respect to w and
substituting w = 0, we find

A2(s)=−
∫ ∞
s

(
A2(u)+A1(u)2)(u− s) dπ(u)

=−
∫ ∞

0

(
A2(u)+ θ(u)2

2θ(∞)2

)
(u− u∧ s) dπ(u).

Hence

(I −Lπ)A2(s)− Lπθ2(s)

2θ(∞)2 =−
∫ ∞

0

(
A2(u)+ θ(u)2

2θ(∞)2

)
udπ(u).

The right-hand side of this equation does not depend on s, so it must be some constant c′.
Therefore,

(73) (I −Lπ)A2 = c′1+ 1

2θ(∞)2Lπθ2.

To find c′, take the inner product of both sides of (73) with θ :

0 = 〈(I −Lπ)θ,A2
〉
π

= 〈θ, (I −Lπ)A2
〉
π

(73)= 〈θ, c′1
〉
π + 〈θ,Lπθ2〉

π/
(
2θ(∞)2)(74)

= c′〈θ,1〉π + 〈Lπθ, θ2〉
π/
(
2θ(∞)2)

= c′ + 〈θ, θ2〉
π/
(
2θ(∞)2)

Substituting s = 0 into both sides of (73) and using (LπA2)(0) = 0 and θ(0) = 0 we obtain
A2(0)= c′ and (67) follows. �

PROOF OF LEMMA 5.1. Recall the plan outlined in the paragraph before the statement
of Lemma 5.6. We have the following expression for log z as an analytic function of w =
logf (∞, z), valid in some disc around w = 0:

(75) log z
(49)= logf (0, z)

(∗)= F(0,w)
(∗∗)= A2(0)w2 +O

(
w3),
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where in (∗) we used Lemmas 5.5 and 5.6; moreover, in (∗∗) we used Lemma 5.9 and
θ(0)= 0. From (75), we obtain 1 − z = −A2(0)w2 + O(w3), hence w has an expansion
around z= 1 as a convergent power series in (1− z)1/2:

(76) w = 1√−A2(0)
(1− z)1/2 + a2(1− z)+ a3(1− z)3/2 + · · · .

Recall from (46) that we defined φ := 1/
∫

θ(u)3 dπ(u). Note that we have logf (∞, z) <

0 if 0 ≤ z < 1, which determines the correct choice of branch of square root in the above
expansion. Let

√
1− z denote the branch of (1−z)1/2 that takes positive values for 0 ≤ z < 1.

Then we have

(77) logf (s, z)= F(s,w)
(66)= θ(s)

θ(∞)
w +O

(
w2) (67),(76)= −√2φθ(s)

√
1− z+O(1− z).

Taking the exponential of both sides of (77), we obtain the desired (47). The implied constant
in the error term is uniform as a function of s, since the Taylor coefficients of F are bounded
by Lemma 5.6.

Now the proof of (48) follows from (47) using (49),
∫

dπ(s) = 1 and
∫

θ(s) dπ(s) = 1.
The proof of Lemma 5.1 is complete. �

5.4. Critical forest fire equations. The goal of Section 5.4 is to prove Proposition 2.16. In
the proof, we will use generating functions. In fact, we will prove a more general result where
Assumption 2.15 is replaced with an assumption on the initial state v(0) which is formulated
entirely in terms of generating functions.

DEFINITION 5.10 (Analytic inverse of generating function). Let v = (vk)
∞
k=1 satisfy

vk ≥ 0 and
∑∞

k=1 vk = 1. We denote by f (z)=∑∞
k=1 vkz

k the generating function of v. Not-
ing that f (0)= 0, f (1)= 1 and f is strictly increasing on [0,1], the inverse function f−1 of
f is well defined on [0,1] and satisfies f−1(1)= 1 and (f−1)′(1)≥ 0. We say that f has an
analytic inverse if there exists some δ > 0 and a complex analytic function g : Bδ(1) → C,
satisfying either g′(1) > 0 or both g′(1)= 0 and g′′(1) < 0, such that

(78) g(z)= f−1(z), z ∈ [1− δ,1].
In other words, the generating function f of v has the analytic inverse property if f−1

can be extended analytically to Bδ(1) for some δ > 0; moreover, the second-order Taylor
polynomial of f−1 about z= 1 is not identically zero.

REMARK 5.11. Assume that v satisfies Definition 5.10.
If g′(1) > 0, then we have

∑∞
k=1 kvk = f ′(1)= 1/g′(1) and f is analytic in a small neigh-

borhood of z = 1, and thus vk decays exponentially as k →∞ by the Vivanti–Pringsheim
theorem.

If g′(1)= 0 and g′′(1) < 0 hold, then f cannot be extended analytically to a small neigh-
borhood of z = 1, and by Example (c) of Theorem 4 of Chapter XIII.5 of [17] we have∑∞

�=k v� ≈
√ −2

πg′′(1)
k−1/2 as k →∞.

The next result is a modification of [27], Theorem 1, (but neither result follows from the
other one).

PROPOSITION 5.12 (Critical forest fire equations). Let us assume that the initial condi-
tion v(0)= (vk(0))∞k=1 satisfies Definition 5.10. Then the critical forest fire equations ((12) +
(13)) have a unique solution v(·), which also satisfies the properties listed in Proposition 2.16.
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We will prove Proposition 5.12 in Section 5.4.1. Proposition 2.16 immediately follows
from the result of Proposition 5.12 as soon as we prove the next lemma.

LEMMA 5.13 (The law of |T π | satisfies the analytic inverse property). Suppose that∫
udπ(u) < ∞ holds and π is either age-critical or age-subcritical. Let us define v =

(vk)
∞
k=1 by vk := P(|T π | = k), k = 1,2, . . . . Under these conditions, v satisfies Defini-

tion 5.10. Moreover, if π is age-subcritical then g′(1) > 0 and if π is age-critical then
g′(1)= 0 and g′′(1) < 0.

In other words, if v(0) satisfies Assumption 2.15 then it also satisfies Definition 5.10.

PROOF OF LEMMA 5.13. Let us recall the notion of f (z) and f (s, z) from (49) and
F(s,w) from Lemma 5.6. We will construct the analytic inverse function g of f required by
Definition 5.10 by letting g =G ◦H−1, where

(79) G(z) := eF(0,log(z)), H(z) :=
∫

eF(s,log(z)) dπ(s).

Note that G(1) = 1 and H(1) = 1; moreover, G and H are complex analytic functions in a
neighborhood of z= 1. By Lemmas 5.5 and 5.6, we have

(80) f (s, z)= eF(s,log(f (∞,z))), f (0, z)
(49)= z= eF(0,log(f (∞,z))),

therefore for any z ∈ (1− ε,1], where ε > 0 is small enough, we have

(81) G
(
f (∞, z)

)= z, f (z)
(49)= H

(
f (∞, z)

)
.

We want H to be invertible in a small neighborhood of 1, therefore our next goal is to show
that 0 < H ′(1) <∞ holds. First, note that H ′(1)= ∫ Fw(s,0)dπ(s) follows from the defini-
tion of H . Next, note that F(s,0) = 0 and F(s,w) < 0 if w < 0 by (80), thus Fw(s,0) ≥ 0.
Also note that sups≥0 Fw(s,0) < ∞ by Lemma 5.6, thus H ′(1) < ∞. Finally, we have to
rule out the possibility that H ′(1) = 0. Let us denote A1(s) = Fw(s,0) and observe that
A1(s)= 1 − ∫∞s A1(u)(u− s)dπ(u) holds by (69) (even if π is age-subcritical). Differenti-
ating this w.r.t. s, we obtain A′

1(s) =
∫∞
s A1(u)dπ(u). Now A1(∞) = 1 and A1(s) ≥ 0, so

if we indirectly assume H ′(1) = ∫∞0 A1(u)dπ(u) = 0, then A′
1(s) ≡ 0, so A1(s) ≡ A1(∞),

which contradicts
∫∞

0 A1(u)dπ(u)= 0. This completes the proof of 0 < H ′(1) <∞, which
implies that H has a complex analytic inverse function H−1 in a small neighborhood of
z = 1, so the desired inverse function g(·) of f (·) can be defined as g = G ◦ H−1 by (81);
moreover, g is complex analytic in a small neighborhood of z= 1.

Note that f ′(1)=∑∞
k=1 kvk = E(|T π |).

If π is age-subcritical, then f ′(1) <∞ by Proposition 2.10, thus g′(1) > 0.
If π is age-critical, then f ′(1)=∞ by Proposition 2.10, thus g′(1)= 0. It remains to show

that g′′(1) < 0. One can check that G′(1)= 0 and thus g′′(1)=G′′(1)/(H ′(1))2. Noting that
by Lemma 5.9 we have H ′(1) = 1/θ(∞), we can therefore write g′′(1) = G′′(1)θ2(∞).
We can then use Fw(0,0) = A1(0) = θ(0)/θ(∞) = 0 to deduce G′′(1) = 2A2(0), whence
g′′(1)=−1/φ < 0 by (46) and (67). �

5.4.1. Analytic inverse property implies well-posedness. PROOF OF PROPOSITION 5.12.
Let f0(z)=∑∞

k=1 vk(0)zk . The condition that
∑∞

k=1 kvk(0) <∞ is equivalent to f ′
0(1) <∞,

which is in turn equivalent to g′(1) > 0, where g is the inverse function of f0.
If g′(1) > 0, then both f0 and g are invertible complex analytic functions in a small neigh-

borhood of 1. In particular, this implies that f ′′′
0 (1) <∞ and thus

∑∞
k=1 k3vk(0) <∞, hence

we can apply [27], Theorem 1, to conclude the proof of Proposition 5.12.
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The condition g′(1) = 0 is equivalent to
∑∞

k=1 kvk(0) =∞, which is in turn equivalent
to tgel = 0 (see (15)). Recall from [27] that we define V0(x) = f0(e

−x, (41)) − 1 for any
x ∈ [0,∞). Recalling [27], (57), we define E(x) = −V ′

0(x)3/V ′′
0 (x). In [27], Section 4.2,

Section 4.3, the uniqueness of the equations ((12) + (13)) and all of the other conclusions of
Proposition 2.16 are proved under the assumptions

(82) lim
x→0+

E(x) ∈ (0,∞), E′(x)=O
(
x−1/2) as x → 0+

on the initial condition (vk(0))∞k=1, thus we only need to show that the assumptions of Propo-
sition 5.12 imply (82). Indeed: denote the inverse function of −V0(x) by X(u), that is,
X(−V0(x))= x, x ∈ [0,∞). By [27], (63), we have

(83) E(x)= 1/X′′(−V0(x)
)
.

Using the above definitions, we can write X(u)=− log(g(1−u)), thus we can use g′(1)=
0 to derive

(84) lim
x→0+

E(x)= 1/X′′(0)=−1/g′′(1) ∈ (0,∞)

using the assumption of Proposition 5.12. Thus the first statement of (82) holds. Differentiat-
ing (83) with respect to x, we obtain

(85) E′(x)=E(x)2X′′′(−V0(x)
)
V ′

0(x).

Now limx→0+ E(x)2X′′′(−V0(x)) exists and is finite by the assumption that g is analytic
near 1, and |V ′

0(x)| = O(x−1/2) follows from tgel = 0, (84) and [27], Lemma 3, (61). This
concludes the proof of (82). �

Putting together the results of Proposition 5.12 and Lemma 5.13, we obtain the proof of
Proposition 2.16.

6. Age evolution. In Section 6, we prove our main results stated in Section 2.5. In order
to do so, we need to introduce some auxiliary Markov processes. In Section 6.1, below we
will provide the detailed definitions of these processes and state some key lemmas about
them. Let us now give a brief outline of the contents of Section 6.1.

We first recall from [11] the cluster growth process (Ct ) driven by a solution to the forest
fire equations ((12) + (13)) and augment it with its age process (at ) to obtain the cluster
process with age (at ,Ct ) (see Definition 6.1). We will identify the probability distribution
πt that appears in the statements of our main results (Theorems 2.19, 2.20 and 2.21) as the
marginal distribution of at .

The dynamics of the process (Ct ) are approximated by the dynamics of the component
size (Cn

t (ρn)) of a uniformly chosen vertex ρn in the MFFF when n� 1. The two processes
can be coupled in a way that with high probability they agree exactly except close to their
burning or explosion times; see Theorem 6.4.

In Theorem 6.5, we will upgrade the result of Theorem 6.4 and couple the cluster processes
(Cn

t (ρn
1 ),Cn

t (ρn
2 )) of i.i.d. uniform vertices ρn

1 and ρn
2 to a pair (C

(1)
t ,C

(2)
t ) of i.i.d. copies of

(Ct ). In Proposition 6.7, we extend the coupling of Theorem 6.5 to the setting where we keep
track of the ages of the tagged vertices as well as the size of their clusters. In Corollary 6.8,
we conclude that, for any fixed t , (an

t (ρn
i ),Cn

t (ρn
i ))i∈{1,2} weakly converge to i.i.d. copies

(a
(i)
t ,C

(i)
t )i∈{1,2} of the joint distribution at time t of the age at and cluster size Ct in the

cluster process with age.
We prove concentration of the empirical age measure πn

t around πt using Corollary 6.8
and a second moment argument, which gives the proof of Theorem 2.19. The proof of the
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local weak limit statements of Theorem 2.20 will also follow using the fact that given the
ages, the graph that we see in the MFFFA at time t is an age-driven IRG.

In Lemma 6.9, we show that conditional on (as)0≤s≤t , the law of Ct agrees with the size
of the multitype Galton–Watson tree T

πt
at where the root has age at . Finally, we show in

Lemma 6.12 that the process (at )t≥0 itself has the Markov property, and the proof of Theo-
rem 2.21 will follow as soon as we look at the Kolmogorov forward equations of (at )t≥0 the
right way.

6.1. Cluster growth processes with age. We extend the definition of the cluster growth
process associated with the forest fire model from [11], Definition 1.6, by augmenting it with
the age of the root vertex. Denote by E = (N, dE) the metric space with metric dE(i, j) =
|f (i) − f (j)|, where f (i) = 1/i for i ∈ {2,3,4, . . . } but f (1) = 0. Thus E is a compact
metric space in which limn→∞ n= 1, and 1 is the only accumulation point of E. A function
g :E →R is continuous if and only if limk→∞ g(k)= g(1).

DEFINITION 6.1 (Cluster growth process with age). Given an initial distribution π0 satis-
fying

∫
udπ0(u) <∞ that is age-critical or age-subcritical, denote by (a0,C0) the joint real-

ization of the age of the root and the total number of vertices of T π0 . Let vk(0) := P(|T π0 | =
k) and denote by (v(t)) the corresponding solution of the critical forest fire equations (cf.
Proposition 2.16). We will use this solution to construct (in Section 6.2) the cluster growth
process with age (at ,Ct )t≥0, which is an inhomogeneous ([0,∞)× E)-valued continuous-
time càdlàg Markov process such that:

• at increases at rate 1,
• Ct jumps from state i with rate i, and conditional on jumping from i at time s, it jumps to

i + k with probability vk(s),
• whenever Ct explodes, Ct returns immediately to state 1 and at jumps immediately to 0.

For any t ∈ [0,∞), we denote by πt the distribution of at .

The marginal process (Ct : t ≥ 0) is a Markov process on its own. It is the cluster growth
process studied in [11], extended to allow a critical initial cluster size distribution vk(0) =
P(|T π0 | = k) by Propositions 2.16 and 2.18.

Let us stress that the probability distribution πt from Definition 6.1 will play the role of
the πt in our main results (i.e., Theorems 2.19, 2.20, 2.21).

Note that Definition 6.1 implies

(86)
∫

udπt(u)= E(at )≤ E(a0 + t)=
∫

udπ0(u)+ t <∞.

Note that almost surely, (Ct : t ≥ 0) has infinitely many explosion times, but the set of ex-
plosion times has no accumulation points (cf. [11], Lemma 3.16). In [11], Section 3.4, it is
proved that for any t, h ∈R+ we have

(87)
∫ t+h

t
ϕ(s)ds = E

(
#
{
s ∈ [t, t + h] : C explodes at time s

})
,

where ϕ(s) is defined in Proposition 2.16 for s ≥ tgel and ϕ(s)= 0 if s < tgel.
Let us recall [11], Proposition 1.9, about the marginal distributions of C. Again the proof

of this extends to include our critical initial condition once we have Propositions 2.16 and
2.18.
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PROPOSITION 6.2 (The law of Ct is v(t)). For all t ≥ 0 and all k ∈N, the cluster growth
process C satisfies

(88) P[Ct = k] = vk(t),

where (v(t)) denotes the solution of the critical forest fire equations (cf. Proposition 2.16)
with initial condition v(0).

The main result of [11] is stated in Theorem 6.4 below. Loosely speaking, Theorem 6.4
states that for large n, the time evolution of the cluster size of a uniformly chosen vertex
ρn in the self-organized critical MFFF looks like the cluster growth process C. In particular,
burning times of ρn correspond to explosion times of C. For further intuitive discussion of
the cluster growth process C and how it arises from the MFFF, see [11], Section 1.2.

DEFINITION 6.3 (Components and cardinalities at time t). Given a MFFF(n,λ) process
(see Definition 2.1) and a vertex i ∈ [n], let Cn

t (i) denote the connected component of vertex
i in the graph at time t ; moreover, let Cn

t (i) denote the number of vertices in Cn
t (i), that is,

Cn
t (i)= |Cn

t (i)|.

The next theorem is [11], Theorem 1.7, extended to include the case where the limiting
initial condition (vk(0)) is the law of |T π0 | for an age-critical π0 with finite mean. The proof
in [11] extends to this case once we have Propositions 2.16 and 2.18.

THEOREM 6.4 (Coupling of (Cn
t (ρn)) and (Ct )). Let (Gn) be a sequence of MFFF pro-

cesses satisfying the conditions of Proposition 2.18, and let ρn be a uniformly chosen vertex
from [n]. There exists a coupling of (Cn

t (ρn)) and (Ct ) such that for any tmax > 0,

sup
t∈[0,tmax]

dE

(
Cn

t

(
ρn),Ct

) P→ 0 as n→∞.

We will show a convergence result analogous to Theorem 6.4 when we study the clusters
of two uniformly chosen vertices in a sequence of MFFF processes, and show that they are
asymptotically independent.

THEOREM 6.5 (Coupling of (Cn
t (ρn

i ))2
i=1 and (C

(i)
t )2

i=1). Let (Gn) be a sequence of
MFFF processes as in Theorem 6.4 and let ρn

1 , ρn
2 be independent uniform choices of vertices

from [n]. For each n, there exists a coupling of the process (Cn
t (ρn

1 ),Cn
t (ρn

2 ); t ∈ [0, tmax]) to

the process (C
(1)
t ,C

(2)
t ; t ∈ [0, tmax]) consisting of two independent copies of the limit cluster

growth process (Ct ), such that

(89) sup
t∈[0,tmax]

dE

(
Cn

t

(
ρn

i

)
,C

(i)
t

) P→ 0 as n→∞, for i = 1,2.

We will prove Theorem 6.5 in Section 6.3.

REMARK 6.6. Let us fix k ∈ N. The proof of Theorem 6.5 can be easily adjusted to the
case of (Cn

t (ρn
i ))ki=1, where ρn

1 , . . . , ρn
k are i.i.d. with uniform distribution on [n], and in this

case the joint distributional limit (C
(i)
t )ki=1 consists of k i.i.d. copies of (Ct ). Thus, in the

terminology of statistical physics, the MFFF model has the propagation of chaos property.
Note that (Ct ) fits into the framework of McKean–Vlasov equations with jumps. McKean–

Vlasov equations are stochastic differential equations whose coefficients at each time depend
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on the law of their own solution at that time (similarly to our Proposition 6.2). McKean–
Vlasov equations arise as weak limits of the motion of a tagged particle in an exchangeable
interacting particle system which, similar to our Theorem 6.5, exhibit propagation of chaos
(cf. [30]).

We now lift Theorem 6.5 to the setting with ages. Let us stress that we start the MFFFA
from an age-driven IRG with possibly random initial ages (cf. Assumption 2.5).

PROPOSITION 6.7 (Coupling of cluster size and age processes). Let (Gn) be a sequence
of MFFFAs satisfying the conditions of Theorem 2.19, and let ρn

1 , ρn
2 be i.i.d. uniformly cho-

sen vertices in [n]. There is a coupling of (Gn, ρn
1 , ρn

2 ) with ((a
(i)
t ,C

(i)
t ), t ∈ [0, tmax])i∈{1,2},

which are two i.i.d. copies of the process defined in Definition 6.1, such that we have both
(89) and

sup
t∈[0,tmax]

∣∣∣∣ an
t (ρn

i )

Cn
t (ρn

i )
− a

(i)
t

C
(i)
t

∣∣∣∣ P→ 0 as n→∞, for i = 1,2.

In the coupling the age of the tagged vertex ρn
i does not jump to 0 at exactly the same

times as the age a
(i)
t jumps to zero, so there are short intervals during which one age is close

to zero and the other is not. The odd-looking division of the age by the cluster size takes care
of this, since during this interval where the ages disagree substantially, one cluster size is very
large and the other age is very small.

We deduce Proposition 6.7 from Theorem 6.5 in Section 6.4.
Proposition 6.7 implies the following statement, which is in fact all we will need for the

proof of Theorems 2.19, 2.20 and 2.21.

COROLLARY 6.8 (Convergence of ages and cluster sizes at a fixed time). In the situation
of Proposition 6.7, for each fixed t ≥ 0 we have(

an
t

(
ρn

i

)
,Cn

t

(
ρn

i

))
i∈{1,2} ⇒

(
a

(i)
t ,C

(i)
t

)
i∈{1,2} as n→∞,

where the convergence in distribution is with respect to ([0,∞)×E)2.

We will deduce Corollary 6.8 from Proposition 6.7 in Section 6.4.
Recall the notion of the empirical age measure πn

t from (6). In Section 6.5, we will use

Corollary 6.8 and a second moment argument to prove the convergence of πn
t

P⇒ πt stated in
Theorem 2.19.

In Section 6.6, we will use Theorem 2.19 to deduce Theorem 2.20 about the weak local
convergence of the MFFF graph Gn

t to the MBP tree T πt .
Recall from Definition 2.8 the notion of the age-driven MBP tree T π

s where the age of the
root is specified to be s.

The following statement bears some resemblance to Theorem 2.6.

LEMMA 6.9 ((Ct ) and (at ) are intertwined). Conditional on (as)0≤s≤t , Ct
d= |T πt

at |.

We will prove Lemma 6.9 in Section 6.7.

REMARK 6.10. Similar to Remark 2.7, in the terminology of of [29], Section 3.2, the
Markov process (Ct ) is intertwined on top of (at ) (cf. [29], Proposition 3.4).
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Recall the notion of the control function ϕ(t) associated to the solution of the critical
forest fire equations from Proposition 2.16. For t < tgel we may assume that ϕ(t) = 0. Note
that
∫

s dπt(s) <∞ for all t ≥ tgel by (86). For t ≥ tgel, the probability distribution πt is age-
critical by Theorem 2.20(iii). Moreover, the eigenfunction θt (·) of Lπt corresponding to the
eigenvalue λ= 1 is uniquely defined for all t ≥ 0 by Lemma 4.3(iv).

Let us define an auxiliary [0,∞)-valued continuous-time inhomogeneous Markov pro-
cess that we will use to give an autonomous description of the time evolution of the ages in
(at ,Ct )t≥0.

DEFINITION 6.11 (An auxiliary Markov process). Let us define a Markov process
(At )t≥0, with initial distribution A0 ∼ π0 and infinitesimal generator

(90) lim
h→0+

1

h
E
(
f (At+h)− f (s)|At = s

)= f ′(s)+ ϕ(t)θt (s)
(
f (0)− f (s)

)
,

for every f : [0,∞)→R, a compactly supported smooth test function.

So A increases deterministically at speed 1 and if At = s then A jumps to zero at time t at
rate ϕ(t)θt (s).

LEMMA 6.12 (The age process is Markov). The process (at )t≥0 (defined in Defini-
tion 6.1) has the same law as the process (At )t≥0 (defined in Definition 6.11).

We will prove Lemma 6.12 in Section 6.8. As an ingredient of that proof, we will also
prove ϕ(t)= (

∫
θt (s)

3 dπt(s))
−1 when t ≥ tgel (i.e., (21)).

REMARK 6.13. Similar to Remark 6.6, the McKean–Vlasov analogy applies to the age
process (at ), which arises as the weak limit of the motion of a tagged particle in an exchange-
able interacting particle system which exhibits propagation of chaos (cf. Proposition 6.7). In
addition, (at ) is a Markov process governed by its own distribution: on the one hand the co-
efficient ϕ(t)θt (s) in the infinitesimal generator (90) (which governs (at ) by Lemma 6.12) is
determined by πt (cf. (21) and Lemma 4.3(iv)), on the other hand πt is the distribution of at

(cf. Definition 6.1).

Finally, in Section 6.9 we deduce Theorem 2.21, that is, that (πt ) satisfies the age differ-
ential equations, which turn out to be closely related to the Kolmogorov forward equations
of the Markov process (at ).

6.2. Construction of the cluster growth process with age. In our construction of (at ,Ct )

satisfying Definition 6.1, we rely on [11], Lemma 3.16, about the almost sure explosion in
finite time of Ct , where the stated hypotheses require the initial condition to be subcritical.
However, the proof of [11], Lemma 3.16, extends to the case of a critical initial cluster size
distribution vk(0)= P(|T π0 | = k) once we have Propositions 2.16 and 2.18.

We give a doubly-inductive construction, using an array (ε�,m)�∈N0,m∈N of independent
Exp(1) r.v.s and an independent array of (U�,m)�∈N0,m∈N of independent U [0,1] r.v.s. The
pair (a0,C0) is random and independent of these arrays, jointly distributed as the root age
and the number of vertices of the age-driven MBP tree T π0 , defined in Definition 2.8.

We construct (Ct )t>0 given C0, by concatenating a countably infinite sequence of time-
inhomogenous continuous-time branching processes, each of which almost surely explodes in
finite time. The outer induction is indexed by �≥ 0 and for �≥ 1 the �th explosion time will
be denoted τ�. Given some � ≥ 0, the inner induction constructs the �th branching process
which jumps at times (J�,m)m∈N.
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We define J0,0 = 0. If �≥ 1 then we suppose that τ� has already been defined and Ct has
already been constructed up to time τ�, and define J�,0 := τ� if � ≥ 1. If � = 0, then define
CJ�,0 := C0, and if �≥ 1 then we define CJ�,0 = Cτ�

:= 1. Given some �≥ 0, we recursively
define for each m≥ 1,

J�,m := J�,m−1 + ε�,m

CJ�,m−1

,(91)

Ct := CJ�,m−1, for t ∈ [J�,m−1, J�,m),(92)

CJ�,m
:= CJ�,m−1 + χ(J�,m,U�,m), where(93)

χ : [0,∞)× [0,1)→N+, χ(t, x)= k, ∀x ∈
[

k−1∑
�=1

v�(t),

k∑
�=1

v�(t)

)
.(94)

So χ(t, ·) is the inverse of the cumulative distribution function which corresponds to the
distribution v(t). We define τ�+1 := limm→∞ J�,m. Lemma 3.16 in [11] shows that the
properties of (vk(s))

∞
k=1 (see in particular (17)) imply that τ� is almost surely finite. Since

τ�+1 − τ� ≥ J�,1 − τ� = ε�,1, we have τ� →∞ as �→∞. The inductive construction there-
fore constructs Ct for all t ≥ 0 almost surely. We have limh→0+ Cτ�−h =∞ w.r.t. the usual
topology of N. This means that limh→0+ Cτ�−h = 1 w.r.t. the topology of E, so (Ct ) is con-
tinuous from the left at time τ�, since Cτ�

= 1.
We now construct at for all t > 0. Denote τ0 := −a0 and define the age at at time t by

(95) at := t − τLt , where Lt := max{�≥ 0 : τ� ≤ t}.
This completes the construction of (at ,Ct ). The marginal (Ct ) is precisely the cluster growth
process of [11], therefore the properties of (Ct ) discussed in Section 6.1 apply to it.

6.3. Asymptotic independence of cluster processes. Section 6.3 is devoted to the proof
of Theorem 6.5.

Recall from Definition 6.3 the notion of the connected cluster Cn
t (i) of vertex i at time t as

well as the size Cn
t (i) of this cluster.

Our proof of Theorem 6.5 proceeds by showing that the evolutions of Cn
t (ρn

1 ) and Cn
t (ρn

2 )

are well approximated by the limiting cluster process whenever they are not too large, and
are approximately independent except when Cn

t (ρn
1 )= Cn

t (ρn
2 ). The following lemma controls

the probability of this pathological event.

LEMMA 6.14 (The clusters of ρn
1 and ρn

2 do not merge). Let

(96) τn := inf
{
t ≥ 0 : Cn

t

(
ρn

1
)= Cn

t

(
ρn

2
)}= inf

{
t ≥ 0 : ρn

2 ∈ Cn
t

(
ρn

1
)}

.

Then for any tmax > 0, we have

(97) lim
n→∞P

(
τn ≤ tmax

)= 0.

PROOF. We begin by observing that the model asymptotically almost surely never in-
cludes a giant component, that is, for any ε > 0,

(98) lim
n→∞P

(∃t ∈ [0, tmax],∃v ∈ [n] s.t. Cn
t (v) > nε

)= 0.

The proof of (98) follows from Propositions 2.16 and 2.18, as we now explain. Recall the
notion of the solution (vk(t)) of the critical forest fire equations ((12) + (13)). Recall the
notion vn

k (t) of the fraction of vertices contained in components of size k at time t from (11).
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It follows from (13) and Dini’s theorem that there exists K ∈N such that
∑K

k=1 vk(t)≥ 1− ε
2

for all t ≤ tmax. Then we can use (18) to derive

(99) lim
n→∞P

(
inf

t≤tmax

K∑
k=1

vn
k (t)≥ 1− ε

)
= 1.

Now (98) follows from (99) as soon as we observe that if nε > K and if Cn
t (v) > nε for some

t ≤ tmax and v ∈ [n] then
∑K

k=1 vn
k (t) < 1− ε.

Next, consider the number N of fires involving ρn
1 up to time t . Since Cn(ρn

1 ) spends
an Exp(1 + λ(n)) holding time at size 1 after each fire, N is stochastically bounded by
1 + Poisson(tmax(1 + λ(n))). So we can bound in expectation the total number Mn

tmax
of

vertices which are ever in the same component as ρn
1 on time interval [0, tmax] as

E
(
Mn

tmax

)= E

[∣∣∣∣ ⋃
t∈[0,tmax]

Cn
t

(
ρn

1
)∣∣∣∣]

≤ nP
(∃t ∈ [0, tmax],Cn

t

(
ρn

1
)≥ nε

)+ (1+ tmax
(
1+ λ(n)

))
nε.

Since this holds for all ε > 0, using (98) we obtain limn→∞ 1
n
E(Mn

tmax
)= 0, from which (97)

follows as soon as we note that ρn
1 and ρn

2 are i.i.d. with uniform distribution on [n]. �

PROOF OF THEOREM 6.5. The proof of Theorem 6.4 (cf. [11], Section 4) involves a
coupling of the pair (Cn(ρn

1 ),C) such that these processes are close with respect to dE

throughout [0, tmax] with high probability. This means they are equal at all times when nei-
ther is very large, and when either is very large then the other is either very large or equal
to 1. We will restate this coupling, and explain how it may be extended to a coupling of
(Cn(ρn

1 ),Cn(ρn
2 ),C(1),C(2)), where the final two processes are independent copies of the

limit cluster growth process C. We will follow the style of [11] and state the coupling in
explicit detail, from which it will be easy to derive the rigorous results required.

As in [11], Section 4, we work with a modified version of the MFFF process, which alters
the rates of clocks on edges within clusters, and introduces clocks on loop edges (i.e., edges
from a vertex to itself). Precisely, we demand:

edge clocks within a cluster ring at rate 2/n rather than 1/n

and each loop edge has an independent clock with rate 1/n.
(100)

These adjustments have no effect on the evolution of the cluster sizes, but simplify the state-
ments of some Poisson process calculations to follow.

For each n, we define the (random) function χn : [0,∞)× [0,1)→N similar to (94):

(101) χn(t, x)= k, ∀x ∈
[

k−1∑
�=1

vn
� (t),

k∑
�=1

vn
� (t)

)
.

We also introduce a truncation parameter K ∈N, which will be taken large enough at the end.
We now describe the coupling of (Cn(ρn

1 ), C̃, S), where C̃ will be a copy of the cluster
growth process C; moreover, we augment the coupling with a failure parameter S ∈ {0,1},
which, informally, will switch from 0 to 1 at a stopping time when the coupling of Cn(ρn

1 )

and C̃ ceases to be effective.

(i) Sample U0 ∼ U [0,1], and set C̃0 = χ(0,U0), and select ρn
1 uniformly at random

from the vertices v ∈ [n] for which |Cn
0 (v)| = χn(0,U0), so Cn

0 (ρn
1 )= χn(0,U0). From now

on, we write Cn
t for Cn

t (ρn
1 ). If C̃0 = Cn

0 , set S = 0, otherwise, set S = 1.
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(ii) Enumerate the burning times and growth times of Cn
t (ρn

1 ) as follows. Set I0,0 = 0 and
inductively

(102) I�,0 := inf
{
s > I�−1,0 : Cn(ρn

1
)

is burned at time s
}
, �≥ 1.

So I�,0 is the time of the �th fire involving ρn
1 . Now, define I�,1 ≤ I�,2 ≤ · · · ≤ I�,g�

to be
the sequence of times between I�,0 and I�+1,0 at which an edge clock rings, for which at
least one incident vertex is in Cn(ρn

1 ) at that time. This sequence includes times when a clock
corresponding to an edge within Cn

t (ρn
1 ) rings, which does not lead to a change in Cn

t .
(iii) For every �≥ 0, m ∈ [1, g�], as a result of the assumption (100), the random variable

I�,m − I�,m−1 has exponential distribution with rate Cn
I�,m−1

(ρn
1 ). Moreover, we may assume

that the edge whose clock rings at time I�,m is (i�,m, j�,m), where i�,m is sampled uniformly
from Cn

I�,m−1
(ρn

1 ) and, independently, j�,m is sampled uniformly from [n]. So if we define
Ln

�,m := χn(I�,m−,U�,m), where (U�,m, � ≥ 0,m ≥ 1) are i.i.d. U [0,1] variables, we may
assume that j�,m is chosen uniformly from those vertices v ∈ [n] for which Cn

I�,m−(v)= Ln
�,m.

(iv) For each growth time I�,m, if max(Cn
I�,m−, C̃I�,m−)≤K and S = 0, we do the follow-

ing. Set L̃�,m := χ(I�,m−,U�,m), and C̃I�,m
= C̃I�,m− + L̃�,m. Then:

• if L̃�,m �= Ln
�,m, set S = 1;

• if j�,m ∈ Cn
I�,m−(ρn

1 ), then Cn
I�,m

= Cn
I�,m−, and set S = 1;

• otherwise, we have Cn
I�,m

= Cn
I�,m−+Ln

�,m and C̃I�,m
= C̃I�,m−+ L̃�,m (in this case we have

L̃�,m =Ln
�,m) and we retain S = 0.

(v) Whenever max(Cn
t , C̃t ) > K , or when S = 1, then let the two processes evolve inde-

pendently. During this, preserve the value of S, unless one process jumps away from 1 while
the other process is greater than K . If this happens while S = 0, move to the failure state
S = 1.

(vi) For each burning time I�,0, if Cn
I�,0− ≤K , set S = 1 thereafter.

The effect of these dynamics is that while S = 0, we either have Cn
t = C̃t ≤K , or(

Cn
t , C̃t

) ∈ {K + 1, . . .}2 ∪ ({1} × {K + 1, . . .})∪ ({K + 1, . . .} × {1}).
Crucially, at all times the evolution of C̃ matches with the construction of the cluster growth
process given in Section 6.2, and so we have

(103) C̃
d= C.

For the purposes of this article, we require a similar coupling (Cn(ρn
1 ),Cn(ρn

2 ), C̃(1), C̃(2))

for two independently chosen watched vertices ρ1, ρ2 ∈ [n], which we now describe. The use
of the “phantom clocks,” though notationally heavy, ensures that independence of C̃(1), C̃(2)

is immediate.

• The evolution of (Cn(ρn
1 ), C̃(1)) is exactly as in the original coupling, with failure param-

eter S(1), and the additional stipulation that whenever C̃(1)’s evolution was specified to be
independent of Cn(ρn

1 ), it is now also independent of Cn(ρn
2 ) and C̃(2).

• The construction of C̃(2) will mostly be the same, but we require extra machinery to ensure
that it stays independent of C̃(1). The addition required is a family of independent phantom
clocks, all with rate 1/n, attached to edges between Cn

t (ρn
1 ) and Cn

t (ρn
2 ) for t ≤ τn (see

(96)). We define the rate of phantom clocks to be zero for t > τn.
• Now, to determine the evolution of C̃(2) before τn, we use the regular edge clocks from

the forest-fire model associated to the edges between Cn
t (ρn

2 ) and [n]\Cn
t (ρn

1 ), but use the
phantom clocks between Cn

t (ρn
1 ) and Cn

t (ρn
2 ).
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• We define τ̄ n to be the first time that a phantom clock rings, which we think of as a phantom
growth time for Cn(ρn

2 ). Note that τ̄ n ≥ τn implies τ̄ n =∞. We also define Ī0,0 = 0 and the
burning times (Ī�,0, �≥ 1) for Cn

t (ρn
2 ) exactly as in (102), and the growth times (Ī�,m, �≥

0,m = 1, . . . , ḡ�) similarly, up to and including the phantom growth time τ̄ n. It remains
the case, as in (iii), that whenever a regular (nonphantom) clock attached to the component
of ρn

2 rings, the incident vertices may be given by a uniform choice from Cn
Ī�,m−(ρn

2 ), and

a uniform choice from [n].
• We define the evolution of C̃(2), and its failure parameter S(2) using the burning times and

growth times (Ī�,m) exactly as in (iv), (v), (vi) above; moreover, we add the stipulation
that S(2) moves to the failure state S(2) = 1 at τn ∧ τ̄ n. So C̃(2) evolves independently of
the forest-fire model and of C̃(1) whenever max(Cn

t (ρn
2 ), C̃(2)) > K , or when S(2) = 1. It

follows, analogously to (103), that C̃(2) is a copy of C.
• The jumps of C̃(1) and C̃(2) are independent, as we now explain. In the case where all

Cn
t (ρn

1 ),Cn
t (ρn

2 ), C̃
(1)
t , C̃

(2)
t ≤ K and S(2) = 0, the jumps of C̃(1) and C̃(2) are driven by

disjoint sets of edge clocks in the underlying forest fire model. This is because Cn
t (ρn

1 )

and Cn
t (ρn

2 ) are disjoint if S(2) = 0, and the true edges between them drive C̃(1), while the
phantom edges drive C̃(2). The other cases are independent by definition, since at least one
of C̃(1), C̃(2) is evolving independently of everything else. In other words,

(104) C̃(1) and C̃(2) are i.i.d. copies of C.

Theorem 1.7 of [11] shows that for any ε > 0, for large enough K we have

(105) lim
n→∞P

(
sup

t∈[0,tmax]
dE

(
Cn

t

(
ρn

1
)
, C̃

(1)
t

)
> ε
)
= 0.

Now note that while S(2) = 0, the times τ̄ n and τn are reached at the same (random,
time-dependent) rates, being given by the number of real and phantom edges, respectively,
between the two watched clusters. Since the rate of the phantom clocks is set to zero after τn,
if τ̄ n ≥ τn then τ̄ n =∞. Hence τ̄ n stochastically dominates τn, and so using Lemma 6.14,
we have, as n→∞,

P
(
τn ∧ τ̄ n ≤ tmax

)= P
({

τn ≤ tmax
}∪ {τ̄ n ≤ tmax

})≤ 2P
(
τn ≤ tmax

)→ 0.

Then we may obtain, similar to (105), that

(106) lim
n→∞P

(
sup

t∈[0,tmax]
dE

(
Cn

t

(
ρn

2
)
, C̃

(2)
t

)
> ε
)
≤ 0+ lim

n→∞P
(
τn ∧ τ̄ n ≤ tmax

)= 0

and so the proof of Theorem 6.5 follows from (104), (105) and (106). �

6.4. Coupling of cluster size and age processes. Section 6.4 is devoted to the proof of
Proposition 6.7 and Corollary 6.8.

We want to deduce the result about the coupling of the age processes from the properties
of the coupling of the cluster size processes of the watched vertices (i.e., Theorem 6.5). The
t = 0 case will follow from Proposition 3.5. As for the proof of the coupling of the whole
age processes, the main idea is that the last burning time (cf. Definition 2.1) of the vertex ρn

i

can almost be read off from the evolution of the cluster size Cn
t (ρn

i ), since it is the same as
the elapsed time since the cluster size last dropped to one, except in the unlikely case that
lightning strikes the vertex ρn

i while it is a singleton.
We will slightly modify the notion of the age of a vertex j at time t in the MFFF (cf.

Definition 2.3).
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DEFINITION 6.15 (Modified ages). For t > 0, let ān
t (j) denote the minimum of an

0 (t)+ t

and the time that has elapsed since the last burning time s of vertex j for which Cn
s−(j) > 1

(and we let s := −∞ if [0, t] does not contain such a burning time).

In other words, ān
t (j) ignores instances where vertex j is struck by lightning while a

singleton.
We will prove Proposition 6.7 by first showing in (107) that with asymptotically high

probability the above modification of ages does not actually change the ages during [0, tmax].
Then we will show that the analogue of Proposition 6.7 holds if we use the modified ages.

PROOF OF PROPOSITION 6.7. The rate of lightning striking the vertices ρn
1 and ρn

2 while
they are singletons is λ(n)� 1 (by assumption (5)), thus we have

(107) P
(
ān
t

(
ρn

i

)= an
t

(
ρn

i

)
, i ∈ {1,2}, t ∈ [0, tmax])≥ exp

(−2λ(n)tmax
)= 1− on(1).

For i ∈ {1,2}, we have

ān
t

(
ρn

i

)= t − (−an
0
(
ρn

i

))∨ sup
{
u≤ t : Cn

u−
(
ρn

i

)
> 1,Cn

u

(
ρn

i

)= 1
}
,

a
(i)
t = t − (−a

(i)
0

)∨ sup
{
u≤ t : C(i)

u− > 1,C(i)
u = 1

}
.

The key point here is that in both cases the modified age process is a function of the initial
age and the cluster size process.

We will improve the coupling that we gave in the proof of Theorem 6.5, by augmenting it
with initial ages.

We will show that for any ε, δ > 0 there exists n0 such that for any n ≥ n0 the event that
supt∈[0,tmax] |ān

t (ρn
i )/Cn

t (ρn
i )− a

(i)
t /C

(i)
t | ≤ ε occurs for both i = 1,2 is greater than or equal

to 1− 8δ.
We use Proposition 3.5 to control the initial coupling at time 0. We couple the pairs

(an
0 (ρn

i ),Cn
0 (ρn

i ))i∈{1,2} to (a
(i)
0 ,C

(i)
0 )i∈{1,2} so that for n large enough we have |an

0 (ρn
i ) −

a
(i)
0 |< ε and Cn

0 (ρn
i )= C

(i)
0 for both i = 1,2 with probability at least 1− δ.

Choose amax sufficiently large that π0([amax,∞)) < δ, so with probability at least 1 − 2δ

we have a
(i)
0 < amax for i = 1,2, and for sufficiently large n, with probability at least 1− 3δ

we have an
0 (ρn

i ) < amax for i = 1,2. Suppose that these events occur. Then all four ages
cannot exceed amax + tmax during the time interval [0, tmax]. Recall the threshold parameter
K in the coupling of Theorem 6.5, and set K > (amax + tmax)/ε. Then whenever C

(i)
t ≥ K ,

we have a
(i)
t /C

(i)
t < ε, and similarly whenever Cn

t (ρn
i ) ≥ K , we have ān

t (ρn
i )/Cn

t (ρn
i ) < ε.

Take n large enough that with this choice of K the probability of coupling failure occurring
at a strictly positive time t ≤ tmax is at most δ.

Finally, we will bound the probability that some pair of corresponding explosion and burn-
ing times in the coupling differ by at least ε. Because the interexplosion times of C

(i)
t stochas-

tically dominate a sequence of independent Exp(1) random variables, there exists N depend-
ing on tmax and δ such that with probability at least 1 − δ, C

(i)
t explodes at most N times

during [0, tmax]. If we take K sufficiently large, then (conditional on coupling success) the
probability that the �th burning time of ρn

i is at least ε away from the �th explosion time of
C(i) is at most δ/(2N) for n sufficiently large. This follows from [11], Lemmas 4.1 and 4.2,
which say that the watched cluster burns quickly with high probability once it is sufficiently
large, and the corresponding statement for the cluster growth process. A union bound now
shows that with probability at least 1−δ all of the corresponding explosion and burning times
in both C(1) and C(2) differ by less than ε.

Now the modified age processes can be read off as above from the initial ages and the
cluster size processes. We find that with probability at least 1 − 8δ we have for both i = 1
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and i = 2 that |a(i)
t − ān

t (ρn
i )| < ε throughout [0, tmax] except at times when exactly one

of C
(i)
t and Cn

t (ρn
i ) is at least K and the other is equal to 1. During those times, we have

0 ≤ a
(i)
t /C

(i)
t < ε and 0 ≤ ān

t (ρn
i )/Cn

t (ρn
i ) < ε.

The proof of Proposition 6.7 follows using (107) to replace ān by an, with an asymptoti-
cally negligible probability of failure. �

PROOF OF COROLLARY 6.8. Let us fix 0 < ε < t−2
max. Suppose that for i = 1,2 we have

an
0
(
ρn

i

)
< ε−1/2, a

(i)
0 < ε−1/2,

dE

(
cn
t

(
ρn

i

)
,C

(i)
t

)≤ ε, and
∣∣∣∣ an

t (ρn
i )

Cn
t (ρn

i )
− a

(i)
t

C
(i)
t

∣∣∣∣≤ ε.

(This happens with high probability if ε is small and then n = n(ε) is sufficiently large.) A
calculation using the definition of the metric dE shows that one of the following three options
must hold:

1. Cn
t (ρn

i )= C
(i)
t ≤ 1/

√
ε, in which case |an

t (ρn
i )− a

(i)
t | ≤ √

ε, or

2. C
(i)
t ≥ 1/

√
ε, or

3. C
(i)
t = 1 and Cn

t (ρn
i ) > 1/ε, in which case

an
t (ρn

i )

Cn
t (ρn

i )
< ε
(
an

0
(
ρn

i

)+ t
)≤ 2ε1/2,

so a
(i)
t ≤ ε + 2ε1/2.

For any fixed time t > 0, the probability that C
(i)
t > 1/

√
ε tends to 0 as ε → 0 by Proposi-

tions 6.2 and 2.16, thus the probability of option 2 above is small.
The probability that C(i) has an explosion in the time interval [t − ε − 2ε1/2, t] also tends

to 0 as ε → 0, because the expected number of explosions of Ct in any interval [a, b] is∫ b
a ϕ(s) ds (see [11], Section 3.4) and ϕ(s) is bounded on [0, tmax] (see Proposition 2.16),

thus the probability of option 3 above is also small.
It follows that option 1 above occurs with asymptotically high probability, completing the

proof of Corollary 6.8. �

6.5. Convergence of empirical age evolution. The goal of Section 6.5 is to prove Theo-
rem 2.19. We will prove that for any fixed t ∈ [0,∞), we have

(108) πn
t

P⇒ πt ,

where πt is the distribution of at (cf. Definition 6.1). By Definition 2.12, we only need to
check that for any bounded continuous function f : [0,∞)→R we have

lim
n→∞E

(∫
f (s)dπn

t (s)

)
=
∫

f (s)dπt(s),(109)

lim
n→∞Var

(∫
f (s)dπn

t (s)

)
= 0.(110)

First, we show (109). Corollary 6.8 gives an
t (ρn

1 )⇒ πt . This immediately gives (109), since
E(
∫

f (s)dπn
t (s))= E(f (an

t (ρn
1 ))).
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Corollary 6.8 also implies

lim
n→∞E

[(∫
f (s)dπn

t (s)

)2]
= lim

n→∞E
[
f
(
an
t

(
ρn

1
))

f
(
an
t

(
ρn

2
))]

= E
[
f
(
a

(1)
t

)
f
(
a

(2)
t

)]
=
(∫

f (s)dπt(s)

)2
.

(111)

The required variance statement (110) follows from (109) and (111). This completes the proof
of (108). The proof of Theorem 2.19 is complete.

6.6. The local weak limit of MFFFA at time t . The goal of Section 6.6 is to prove Theo-
rem 2.20.

We begin by proving (i). We have πn
t

P⇒ πt by Theorem 2.19. Moreover by Theorem 2.6,
the MFFFA(n, an

0, λ) graph Gn
t is an age-inhomogeneous random graph Gage(n, an

t ). We may
thus use Proposition 2.13 to conclude that the graph Gn

t converges in probability in the local
weak sense to the age-driven multitype branching process tree T πt as n →∞. This proves
(i).

Next, we prove (ii). Recall from (11) that vn
k (t) is the proportion of vertices of Gn

t in size k

components at time t . On the one hand, (i) implies that vn
k (t)

P→ P(|T πt | = k) as n→∞ for

any k ≥ 1 and t ≥ 0. On the other hand, Propositions 2.16 and 2.18 imply that vn
k (t)

P→ vk(t)

as n→∞ where v(·) is the unique solution to the critical forest fire equations ((12) + (13))
with initial state v(0) given by vk(0)= P(|T π0 | = k). This proves (ii).

It remains to prove (iii). By Proposition 2.16, we have
∑∞

k=1 vk(t)= 1,∑
k≥1

kvk(t) <∞, t < tgel, and
∑
k≥1

kvk(t)=∞, t ≥ tgel.

By (ii), we have P(|T π | < ∞) =∑∞
k=1 vk(t) and E(|T π |) =∑∞

k=1 kvk(t), thus (iii) follows
by Proposition 2.10. The proof of Theorem 2.20 is complete.

6.7. (Ct ) and (at ) are intertwined. In Section 6.7, we prove Lemma 6.9.

Theorem 2.19 gives πn
t

P⇒ πt , and so we may apply Proposition 3.5 to Gn
t , to obtain(

an
t

(
ρn),Cn

t

(
ρn))⇒ (a(ρ),

∣∣T πt
∣∣),

where ρn is uniformly distributed on [n] and a(ρ) is the age of the root in the age-labeled
tree T πt . However, Corollary 6.8 gives(

an
t

(
ρn),Cn

t

(
ρn))⇒ (at ,Ct ),

and so we know that conditional on at , we have Ct
d= |T πt

at |.
It remains to show that conditional on at , Ct is independent of (as)0≤s<t .
Recall that 0 < τ1 < τ2 < · · · are the consecutive explosion times of C and τ0 = −a0.

Recall from (95) that we denote by Lt := max{�≥ 0 : τ� ≤ t} the index of the last explosion
time τLt before t .

Assume that we are given the value of at . If at ≥ t , then we know that C did not explode
on [0, t], thus for all s ∈ [0, t] we have as = at − (t − s). So in this case, conditional on the
value of at , the cluster size Ct is independent of (as)0≤s≤t , since the latter is fully determined
by the value of at .
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Now assume that we are given the value at , and we have at ∈ [0, t). This is equiva-
lent to assuming that τLt = t − at . Under this assumption, one has as = s − τLt for any
s ∈ [τLt , t], therefore we only need to show that conditional on τLt , Ct is independent of
(as)0≤s<τLt

.
Note that (as)0≤s<τLt

is determined by a0 and (Cs)0≤s<τLt
via (95), so it is enough to

show that that conditional on τLt , (Cs)τLt≤s is independent of (a0, (Cs)0≤s<τLt
). This state-

ment follows from the construction of the cluster growth process with age given in Sec-
tion 6.2: (Cs)τLt≤s is constructed via (91)–(93) using the value of JLt ,0 (i.e., τLt ) and the
arrays (ε�,m)Lt≤�,1≤m and (U�,m)Lt≤�,1≤m, and the joint distribution of these arrays does not
depend on (a0, (Cs)0≤s<τLt

) (in particular, it does not depend on the number Lt of explosions
in [0, t]). The proof of Lemma 6.9 is complete.

6.8. The age process is Markov. The goal of Section 6.8 is to prove Lemma 6.12 and
also the formula (21).

The processes (at ) and (At ) have the same initial distribution, and as long as t ∈ [0, tgel),
both processes simply increase deterministically at speed 1. Indeed, for (At ), this follows
from Definition 6.11 and our assumption that ϕ(t) = 0 if t ∈ [0, tgel). On the other hand,
the cluster growth process (Ct ) does not explode in [0, tgel) (see [11], Lemma 3.11), thus by
Definition 6.1 we have at = a0 + t for any t < tgel.

Thus w.l.o.g. we may assume tgel = 0 for the rest of Section 6.8 (cf. Remark 2.23(i)).
Under this assumption πt is age-critical for any t ≥ 0, by Theorem 2.20(iii). Moreover, the
eigenfunction θt (·) of Lπt corresponding to the eigenvalue λ= 1 is well defined for all t ≥ 0
by Lemma 4.3(iv).

Our next step in the proof of Lemma 6.12 is to show (21), that ϕ(t)= (
∫

θt (s)
3 dπt(s))

−1

when t ≥ tgel.

PROOF OF (21). Equation (48) of Lemma 5.1 implies

(112) lim
ε→0+

1√
ε
E
(
1− (1− ε)|T πt |)=√2φt ,

where, following (46), we take φt = 1/
∫

θt (s)
3 dπt(s). Let us compare this with (17), which

is equivalent to

(113) lim
ε→0+

1√
ε

(
1−

∞∑
k=1

vk(t)(1− ε)k

)
=√2ϕ(t)

by Example (c) of Theorem 4, Chapter XIII.5 of [17].
By Theorem 2.20(ii), we have

(114)
∞∑

k=1

vk(t)(1− ε)k = E
(
(1− ε)|T πt |), ε ∈ (0,1),

whence φt = ϕ(t), which proves (21). �

PROOF OF LEMMA 6.12. We now assume tgel = 0. The initial distribution of a0 agrees
with the initial distribution of A0. Both a and A increase deterministically at speed 1 and
occasionally jump back to zero. Recalling the definition of Lt from (95), it follows that τLt+1
is the time of the first explosion after t . We only need to show

(115) lim
h→0+

1

h
P
(
τLt+1 ∈ [t, t + h]|(a(s)

)
0≤s≤t

)= ϕ(t)θt

(
a(t)
)
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in order to conclude the proof of Lemma 6.12. Let us define

(116) ψt+h(t) := P(τLt+1 > t + h|Ct = 1).

(We explain the history of this notation in Remark 6.16).
Let us make the following observation, which follows from the branching structure un-

derlying Definition 6.1. The cluster growth process started at time t from the state Ct = k

evolves until the first explosion according to the same dynamics as the sum of k i.i.d. copies
of the cluster growth process started at time t from the state Ct = 1, where the explosion
time of the sum is the minimum of the k i.i.d. explosion times for its summands. From this
observation, we conclude

(117) P(τLt+1 > t + h|Ct = k)=ψt+h(t)
k,

therefore by Lemma 6.9 we have

(118) P
(
τLt+1 ∈ [t, t + h]|(a(s)

)
0≤s≤t

)= 1−E
(
ψt+h(t)

|T πt
at ||at

)
.

Thus in order to prove (115), we only need to show

(119) lim
h→0+

1

h

(
1−E

(
ψt+h(t)

|T πt
s |))= ϕ(t)θt (s), s ≥ 0.

First, we observe that

ϕ(t)
(87)= lim

h→0+

1

h
P
(
τLt+1 ∈ [t, t + h])

(88),(117)= lim
h→0+

1

h

(
1−

∞∑
k=1

ψt+h(t)
kvk(t)

)
(120)

(19)= lim
h→0+

1

h

(
1−E

(
ψt+h(t)

|T πt |)).
If we denote ε(t, h)= 1−ψt+h(t), then

ϕ(t)h+ o(h)
(120)= 1−E

((
1− ε(t, h)

)|T πt |)
(121)

(21),(112)= √
2ϕ(t)

√
ε(t, h)+ o

(√
ε(t, h)

)
, h→ 0+.

Taking the squares of both sides of (121) and rearranging the terms, we obtainϕ(t)
2 h2 +

o(h2)= ε(t, h)+ o(ε(t, h)), that is,

(122) ψt+h(t)= 1− ϕ(t)

2
h2 + o

(
h2), h→ 0+.

Equation (47) of Lemma 5.1 together with φt = ϕ(t) (i.e., (21)) imply

(123) E
(
(1− ε)|T

πt
s |)= 1−√

ε
√

2ϕ(t)θt (s)+ o(
√

ε)ε → 0+.

Putting the above formulas together we obtain (119):

1−E
(
ψt+h(t)

|T πt
s |) (122)= 1−E

((
1−
(

ϕ(t)

2
+ o(1)

)
h2
)|T πt

s |)
(123)=
√(

ϕ(t)

2
+ o(1)

)
h2
√

2ϕ(t)θt (s)+ o(h)

= ϕ(t)θt (s)h+ o(h), h→ 0+.

This completes the proof of Lemma 6.12. �
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REMARK 6.16. For any y > tgel, the characteristic curve ψy(t), t ∈ [0, y] is defined in
[11], Lemma 3.5, to be the unique solution of the ODE

(124) ψy(y)= 1,
d

dt
ψy(t)=ψy(t)

(
1−Xt

(
ψy(t)

))
, Xt(z) :=

∞∑
k=1

zkvk(t)

for which ψy(t) < 1 for all t ∈ [0, y).
This definition and our definition (116) are equivalent by [11], (3.16).

6.9. Age differential equations. The goal of Section 6.9 is to prove Theorem 2.21.
Let us first note that for any t ∈ [0, tgel) we have ∂

∂t

∫
f (s)dπt(s) = ∫ f ′(s)dπt(s), since

πt is the distribution of the age at by Definition 6.1, and we have already seen at the beginning
of Section 6.8 that at = a0 + t for any t ∈ [0, tgel). This proves (20) for t < tgel. We can thus
assume t > tgel w.l.o.g. for the rest of Section 6.9.

Denote by π̃t the distribution of At ; cf. Definition 6.11. Integrating (90) with respect to π̃t

we obtain the weak formulation of the Kolmogorov forward equation of A:

∂

∂t

∫
f (s)dπ̃t (s)=

∫
f ′(s)dπ̃t (s)− ϕ(t)

∫
f (s)θt (s)dπ̃t (s)+ ϕ(t)f (0)

∫
θt (s)dπ̃t (s).

By Lemma 6.12, the marginal distributions of at and At agree, that is, we have
π̃t = πt . Plugging this identity in the above equation and using

∫
θt (s)dπt(s) = 1, we ob-

tain the desired (20) for t > tgel. Noting that we have already proved (21) in Section 6.8, the
proof of Theorem 2.21 is complete.
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