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Abstract

We study a variant of the color-avoiding percolation model introduced by

Krause et al., namely we investigate the color-avoiding bond percolation setup

on (not necessarily properly) edge-colored Erdős–Rényi random graphs. We say

that two vertices are color-avoiding connected in an edge-colored graph if after

the removal of the edges of any color, they are in the same component in the

remaining graph. The color-avoiding connected components of an edge-colored

graph are maximal sets of vertices such that any two of them are color-avoiding

connected.

We consider the fraction of vertices contained in color-avoiding connected

components of a given size as well as the fraction of vertices contained in the

giant color-avoiding connected component. It is known that these quantities

converge and the limits can be expressed in terms of probabilities associated

to edge-colored branching process trees. We provide explicit formulas for the

limit of the fraction of vertices contained in the giant color-avoiding connected

component, and we give a simpler asymptotic expression for it in the barely

supercritical regime. In addition, in the two-colored case we also provide

explicit formulas for the limit of the fraction of vertices contained in color-

avoiding connected components of a given size.

Keywords: Erdős–Rényi random graph; giant component; generating function

2020 Mathematics Subject Classification: Primary 60J80

Secondary 05C80

1. Introduction

The mathematical analysis of the robustness of random graphs and networks has

been in the focus of research interest in the last two decades [1,5,18,28]. The robustness

of a network refers to the ability to maintain the overall connectivity against random

error or targeted attack, i.e., how its structure varies when a fraction of its vertices or

edges are removed. This question can be investigated using the tools of an established

field of statistical physics called percolation theory.

Most of the works have focused on classical percolation on networks, meaning that

each vertex (site) or edge (bond) is kept (occupied) with probability p and removed

(vacant) with probability 1− p, see, e.g., [18]. This way of keeping or removing edges
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models how the network performs under random failures. One fundamental question

is whether there is a giant connected component of macroscopic size in the remaining

graph. Percolation theory studies the emergence of such a component when we increase

the probability p. Usually there is a well-defined critical point pc above which there

exists a unique giant component. This critical point is also called the percolation

threshold and this phenomenon is referred to as percolation phase transition.

Besides classical network percolation, another well-studied model is when the ver-

tices or edges are removed with preference, for example the nodes can be targeted

preferentially according to a structural property such as the degree or betweenness

centrality. Scale-free networks were found to be robust under random failures, and

extremely vulnerable for targeted attacks [1].

Several other network percolation frameworks have been proposed in the literature

throughout the years including k-core percolation [7], bootstrap percolation [4], l-hop

percolation [27] and limited path percolation [21]. For an extensive review on network

percolation, we refer to Li et al. [18].

In this paper, we focus on another recent network percolation framework developed

by Krause et al., called color-avoiding percolation [13,15, 16]. In this framework, each

vertex or edge is assigned a color from a color set; a color may represent a shared

eavesdropper, a controlling entity, or a correlated failure. Two vertices are color-

avoiding connected if they can be reached from each other on paths that avoid any

color from the color set. Therefore, while in the traditional percolation framework a

single path provides connectivity, here connectivity refers to the ability to avoid all

vulnerable sets of vertices or edges. The main rationale behind this percolation model

is that in real-world networks some nodes or links may mutually share a vulnerability

and it is interesting to see whether the network is robustly connected in the sense that

its overall connectivity is maintained in every possible attack scenario.

The color-avoiding percolation framework differs substantially from k-core percola-

tion where any k paths are sufficient between two nodes in the percolating cluster [7,33]

and it is also different from k-connectivity, where k pairwise disjoint paths are re-

quired [25]. Another relevant framework is percolation on multiplex networks [11,23,30]

where the layers can be considered as colors. However, this approach also differs in the

definition of connectivity as it is discussed in detail by Krause et al. in [15]. Kryven



4 B. RÁTH et al.

also investigated percolation on colored networks, however, in that setup, colors do not

indicate shared vulnerabilities, but the removal probability depends on the color [17].

In [15], Krause et al. investigated networks with colored vertices. The authors

not only presented a heuristic analytical framework for the configuration model to-

gether with a numerical algorithm to determine the color-avoiding connected pairs of

nodes, but they also demonstrated the applicability of the color-avoiding percolation

in cybersecurity. The authors extended the theory of color-avoiding site percolation

by studying the phase transition for Erdős–Rényi random graphs and by introducing

novel node functions to generalize the concept [16]. Shekhtman et al. further developed

this framework to study secure message-passing in networks with a given community

structure [29]. Giusfredi and Bagnoli investigated color-avoiding percolation in diluted

lattices [10] and also showed that color-avoiding site percolation can be mapped into

a self-organized critical problem [9].

In [13], Kadović et al. studied (not necessarily properly) edge-colored networks.

The authors presented both analytical and numerical results about the size of the

giant color-avoiding connected component for Erdős–Rényi and for scale-free graphs.

A similar concept called courteous edge-coloring was studied by DeVos et al. [6]

in 2006. Graphs with 1-courteous edge-colorings are exactly the edge-color-avoiding

connected graphs. In that article, they gave interesting upper bounds on the number

of colors needed to courteously color an arbitrary graph.

Molontay and Varga investigated the computational complexity of finding the color-

avoiding connected components both in the vertex- and edge-colored setup [24]. The

authors found that the complexity of color-avoiding site percolation highly depends

on the exact formulation: a strong version of the problem is NP-hard, while a weaker

notion makes it possible to find the components in polynomial time. However, in

the bond percolation setup, the color-avoiding connected components can be found in

polynomial time.

The goal of this paper is to study some key observables associated with the color-

avoiding bond percolation setup on Erdős–Rényi random graphs. We explicitly cal-

culate the empirical density of the giant color-avoiding connected component (if it

exists) with an arbitrary number of randomly distributed colors. Moreover, we also

give an explicit formula for the empirical density of the sizes of color-avoiding connected
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components in the case of two-colored Erdős–Rényi random graphs. The methods we

apply are classical (e.g. local approximation of random graphs by Galton-Watson trees,

method of generating functions), but the analysis is more involved.

Let us note that a few months after we posted an earlier, longer version [26] of

this paper on arXiv, a new paper [20] on color-avoiding percolation on edge-colored

Erdős–Rényi graphs also appeared on arXiv. The results of [20] include simplification

and generalization of some of our results in [26] and the answers to some of the open

questions that we posed as well as some finer results on the size of the largest color-

avoiding component; see Section 2.2 for more details. Lichev also described the phase

transition of the largest color-avoiding connected component between the supercritical

and the intermediate regime [19]. Our current paper only contains results that are

already stated and proved in [26], but we removed the proofs of those results concerning

the convergence of the color-avoiding component structure of edge-colored Erdős-Rényi

graphs that are also proved in [20].

The paper is organized as follows. In Section 2, we collect the basic definitions

needed for this paper, state our main results and then recall some key results of [26]

and [20] that help to put our main results in context. In Section 3, we introduce some

further notation and we prove some preliminary results about the survival of certain

edge-colored branching processes. In Section 4, we give formulas for the asymptotic

size of the giant color-avoiding connected component (if it exists) and we also study its

barely supercritical behaviour. In Section 5, we give a formula for the distribution of

the sizes of the small components when there are only two colors. Finally, in Section

6, we propose some open questions.

2. Main results and their context

We denote the sets of real, positive real, non-negative integer, and positive integer

numbers by R, R+, N, and N+, respectively. Let us use the notation [n] = {1, 2, . . . , n}

for any n ∈ N+. If A is an event, we denote by 1[A] the indicator variable of the event:

1[A] = 1 if A occurs, 1[A] = 0 if the complement of A, i.e., Ac occurs. Throughout the

article, by edge-colorings we always mean not necessarily proper ones and by paths we

always mean simple paths (and not walks).
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Definition 2.1. (Edge-colored (multi)graph.) We say that G = (V,E) is an edge-

colored (multi)graph with k ∈ N+ colors if E = (E1, . . . , Ek) and Ei ⊆
(
V
2

)
for every

i ∈ [k]. We say that V is the vertex set of G and Ei is the set of edges of color i for

every i ∈ [k].

Note that the edge sets E1, . . . , Ek are not necessarily disjoint and the edges of Ei

are not necessarily independent in the graph theoretical sense for any i ∈ [k] (i.e., the

graph G is not necessarily properly edge-colored).

Definition 2.2. (Uncolored color-subgraphs.) Given an edge-colored graphG = (V,E)

with k ∈ N+ colors, where E = (E1, . . . , Ek), let GI denote the simple uncolored graph(
V,
⋃
i∈I Ei

)
.

In addition, let us use the notation Guc := G[k] and G\i := G[k]\{i} for any i ∈ [k].

For an example, see Figure 1.

Figure 1: In the picture, the colors red, blue, and green are denoted by (red) triangles, (blue)

rectangles, and (green) stars, respectively. Above, an edge-colored graph G is shown, and in the

second row, we can see its color-subgraphs Gred, blue, Gred, green, Gblue, green, respectively.

2.1. Statements of main results

Definition 2.3. (Color-avoiding connectivity.) Let G = (V,E) be an edge-colored

graph with k ∈ N+ colors. For any color i ∈ [k], we say that the vertices v, w ∈ V (G)

are i-avoiding connected, briefly denoted by

v
G\i←→ w,
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if v and w are in the same component in the graph G\i, i.e., there exists a path between

v and w in G which does not contain any edges of color i; such a path is called an

i-avoiding v-w path.

We say that the vertices v, w ∈ V (G) are color-avoiding connected if they are i-

avoiding connected for all i ∈ [k].

Definition 2.4. (Edge-colored Poisson branching process (ECBP) tree.) Let k ∈ N+

and λ ∈ Rk+. We say that G∞ := G∞(r) is an edge-colored Poisson branching process

tree (or ECBP tree for short) with color intensity parameter vector λ – briefly denoted

by G∞(r) ∼ G∞(λ) – if G∞ = (V,E) is a (possibly infinite) edge-colored tree on a

random vertex set V with a distinguished root vertex r ∈ V , and with a random edge

set E = (E1, . . . , Ek) colored with k colors, and G∞ can be recursively generated in

the following way. Assume that we have already generated the graph G∞ up to the

d-th generation (i.e., up to graph distance d from the root) for some d ∈ N. Given a

vertex v in the d-th generation, let Xv,i denote the number of vertices in the (d+ 1)-

th generation which are connected to v by an edge of color i, where i ∈ [k]. Then

Xv,i ∼ POI(λi). Moreover, the family

{
Xv,i : v is a vertex in the d-th generation and i ∈ [k]

}
of random variables are conditionally independent given the graph up to generation d.

Since in this article all the edge-colored branching process trees have Poisson off-

spring distribution, we do not include the word Poisson in the abbreviation ECBP.

Definition 2.5. (Friends in ECBP trees.) Let k ∈ N+ and λ ∈ Rk+. Given an ECBP

tree G∞ := G∞(r) ∼ G∞(λ), a vertex v ∈ V (G∞) and a color i ∈ [k], we say that v is

i-avoiding connected to infinity, briefly denoted by

v
G\i∞←→∞,

if there exists an infinitely long path from v which does not contain any edges of color

i and all of the vertices on this path are descendants of v.

We say that the root r and the vertex v are i-avoiding friends if the event{
r
G\i∞←→ v

}
∪
({

r
G\i∞←→∞

}
∩
{
v
G\i∞←→∞

})
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occurs. In words: r and v are i-avoiding friends if and only if there is an i-avoiding r-v

path or both of them are i-avoiding connected to infinity (in which case we say that

they are i-avoiding connected through infinity).

We say that r and v are (color-avoiding) friends if they are i-avoiding friends for all

i ∈ [k]. The set of friends of the root r are denoted by C̃∗(r) := C̃∗(r,G∞).

Note that the root r is always a friend of itself.

Although the notation C̃∗ (which includes a tilde and an asterisk) might seem

complicated, but this notation has a purpose, as we now explain. Throughout the paper

we use a tilde to denote the generalization of a standard graph theoretical notation (in

this case the component of a vertex) to the case of color-avoiding connectivity. The

asterisk reminds us that in the case of branching process trees, we are allowed to make

a connection through infinity as well.

Definition 2.6. (Probability of ` friends in ECBP trees.) Let k ∈ N+ and λ ∈ Rk+.

Given an ECBP tree G∞(r) ∼ G∞(λ) and ` ∈ N+ ∪ {∞}, let

f∗` := f∗` (λ) := P
( ∣∣∣C̃∗(r)∣∣∣ = `

)
denote the probability that the root r has exactly ` friends.

The next claim directly follows from this definition.

Claim 2.1. (Number of friends in ECBP trees.) Let k ∈ N+, λ ∈ Rk+, and G∞(r) ∼

G∞(λ) an ECBP tree. Then

f∗∞ +
∑
`∈N+

f∗` = 1.

Definition 2.7. (Intensity parameters of uncolored color-subgraphs.) Let k ∈ N+,

λ = (λ1, . . . , λk) ∈ Rk+, and for any i ∈ [k] or I ⊆ [k], let us denote λI :=
∑
i∈I λi,

λuc := λ[k], and λ\i := λ[k]\{i}.

Definition 2.8. (Fully supercitical/critical-subcritical λ.) Let k ∈ N+. We say that a

vector λ ∈ Rk+ is fully supercritical if λ\i > 1 for all i ∈ [k], and we say that λ is fully

critical-subcritical if λ\i ≤ 1 for all i ∈ [k].

Note that a vector might be neither fully supercritical nor fully critical-subcritical.

In Section 4.2, we make the following simplifying assumption on the color intensity

parameter vector λ.
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Assumption 2.1. (Simplifying assumption.) Let k ∈ N+, k ≥ 2, let λ ∈ Rk+ and

assume that λI < 1 for any I ⊆ [k] with |I| ≤ k − 2.

Heuristically, if λ is fully supercritical and Assumption 2.1 holds, then one really

needs to use all of the other k− 1 colors to create an infinitely long i-avoiding path for

each i ∈ [k] in an ECBP tree.

Proposition 2.1. (Characterization of positivity of f∗∞.) Let k ∈ N+. A vector

λ ∈ Rk+ is fully supercritical if and only if f∗∞ > 0.

We prove Proposition 2.1 in Section 3.2. In Section 4, we provide formulas for

f∗∞. These formulas are explicit in the sense that they can be obtained by a recursive

composition of elementary functions and the Lambert W function. The depth of our

recursive formulas increases as the number k of colors increases. We provide two

different methods for the calculation of f∗∞: the method described in Section 4.1 works

even if we do not assume Assumption 2.1, while the method described in Section 4.2

only works under Assumption 2.1, but it can be used to study the asymptotic behaviour

of f∗∞ in the barely supercritical regime, cf. Theorem 2.1.

Proposition 2.2. (Characterization of positivity of f∗` .) Let k ∈ N+ and let λ ∈ Rk+
for which Assumption 2.1 holds.

(i) If λ is fully critical-subcritical, then f∗` = 1[` = 1] for any ` ∈ N+.

(ii) If λ is not fully critical-subcritical, then f∗` > 0 for any ` ∈ N+.

We prove Proposition 2.2 in Section 3.2.

A vector λ = (λ1, . . . , λk) ∈ Rk+ for some integer k ≥ 2 is called homogeneous if

λ1 = . . . = λk.

Definition 2.9. (Barely supercritical homogeneous setup.) Let k ∈ N+, k ≥ 2. For

any ε ≥ 0, let us define λ(ε) :=
(

1+ε
k−1 , . . . ,

1+ε
k−1

)
∈ Rk+ and f∗∞(ε) := f∗∞

(
λ(ε)

)
.

Note that if ε > 0, then f∗∞(ε) > 0, but if ε = 0, then f∗∞(ε) = 0 by Proposition 2.1.

Also note that if ε < 1
k−2 then Assumption 2.1 holds for λ(ε).

Our next result is about the asymptotic behaviour of f∗∞(ε) as ε→ 0+.
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Theorem 2.1. (Asymptotic decay of the probability of having infinitely many friends

in the barely supercritical homogeneous setup.) Let k ∈ N+, k ≥ 2. Then there exists

a constant C(k) ∈ R+ such that

lim
ε→0+

f∗∞(ε)

εk
= C(k).

In particular, C(2) = 4, C(3) = 32, and C(4) = 624.

In Section 4, we provide a method for computing the value of C(k) for any integer

k ≥ 2 and prove Theorem 2.1.

2.2. Context

In the following, we give some motivation for studying the above problems on ECBP

trees. As is known (see, e.g., [31]), branching process trees arise as local limits of

Erdős–Rényi graphs. We show that analogously, ECBP trees can be used for studying

color-avoiding percolation in edge-colored Erdős–Rényi multigraphs.

Definition 2.10. (Edge-colored Erdős–Rényi multigraph (ECER graph).) Let k, n ∈

N+ and λ = (λ1, . . . , λk) ∈ Rk+. We say that the edge-colored random multigraph

G = (V,E) is an edge-colored Erdős–Rényi multigraph (or ECER graph for short) with

parameter n and color density parameter vector λ – briefly denoted by G ∼ Gn(V, λ) –

if |V | ≤ n and E = (E1, . . . , Ek), where E1, . . . , Ek are independent in the stochastic

sense and Ei is the edge set of an Erdős–Rényi graph with vertex set V and edge

probability pi = 1 − exp (−λi/n) (i.e., each possible edge of
(
V
2

)
is included in Ei

independently of each other with probability pi) for all i ∈ [k].

Clearly, the relation of color-avoiding connectivity (cf. Definition 2.3) is an equiva-

lence relation and thus it defines a partition of the vertex set.

Definition 2.11. (Color-avoiding connected components.) The equivalence classes of

the relation of color-avoiding connectivity are called color-avoiding connected compo-

nents.

The set of vertices of the color-avoiding connected component of a vertex v in an

edge-colored graph G is denoted by C̃(v) := C̃(v,G).

Recall that the tilde above C̃(v) is there to stress that the standard notion of the

connected component of graph theory is generalized to the color-avoiding framework.
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Note that even if v and w are in the same color-avoiding connected component C̃, it

might still happen that there exists a color i for which every i-avoiding v-w path has

vertices outside C̃. For an example, see Figure 2.

v1

v2 v3 v4

Figure 2: In the picture, the colors red and blue are denoted by (red) triangles and (blue) rectangles,

respectively. The color-avoiding connected components of this graph are {v1, v2} and {v3, v4}. Note

that the red-avoiding v1-v2 path leaves the component {v1, v2}.

Definition 2.12. (Empirical density of vertices in color-avoiding connected compo-

nents of size `.) Let k ∈ N+ and λ ∈ Rk+. Given an ECER graph G ∼ Gn([n], λ),

let

f`(G) := f`(λ,G) :=
1

n

∑
v∈[n]

1

[∣∣∣ C̃(v)
∣∣∣ = `

]
denote the fraction of vertices contained in color-avoiding connected components of

size ` for any ` ∈ N+.

The next claim directly follows from this definition.

Claim 2.2. (Size of color-avoiding connected components in ECER graphs.) Let

k, n ∈ N+, λ ∈ Rk+, and G ∼ Gn([n], λ) an ECER graph. Then

∑
`∈[n]

f`(G) = 1.

Theorem 2.2. (Convergence of empirical component size densities.) Let k ∈ N+,

λ ∈ Rk+ and let Gn ∼ Gn([n], λ) for all n ∈ N+. Then

1

n
max
v∈[n]

∣∣∣C̃(v,Gn)
∣∣∣ P−→ f∗∞, n→∞

and for any ` ∈ N+, we have

f`(Gn)
P−→ f∗` , n→∞.
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Theorem 2.2 is proved in an earlier version of this paper [26] using Assumption 2.1,

and a short alternative proof is given in the recent paper [20] without using Assump-

tion 2.1.

From Theorem 2.2 and Claim 2.1, we can conclude the following.

Corollary 2.1. (Existence and uniqueness of giant color-avoiding connected compo-

nent in ECER graphs.) Let k, n ∈ N+, λ ∈ Rk+ and let Gn ∼ Gn([n], λ). If f∗∞ > 0,

then Gn has a unique largest color-avoiding connected component asymptotically almost

surely as n→∞.

Let us point out that Theorem 2.2 provides the motivation for the main results of

this paper: e.g., Proposition 2.1 gives a characterization of the existence of the giant

color-avoiding connected component in ECER graphs and Proposition 2.2 characterizes

the case when the fraction of vertices of an ECER graph contained in singleton color-

avoiding components is close to 1.

We note that the recent paper [20] includes results about the size of the largest color-

avoiding component for certain parameter vectors λ which are neither fully supercritical

nor fully critical-subcritical (see (ii) of Theorem 1.1 in [20]) as well as fully subcritical

vectors λ (see (iii) of Theorem 1.1 in [20]).

3. Preliminaries

In this section, we introduce some notation that we use throughout the paper,

moreover we prove Propositions 2.1 and 2.2.

3.1. Notation

We say that two edge-colored graphs G1 and G2 are isomorphic – briefly denoted by

G1 ' G2 – if there exists a bijection between their vertex sets which is an isomorphism

for the set of edges of each color.

We say that an edge-colored graph is rooted if it has a distinguished vertex. We say

that the rooted edge-colored graphs G1 and G2 with distinguished vertices v1 and v2,

respectively, are isomorphic if there exists an isomorphism between them mapping v1

to v2.

Let G = (V,E) be a graph without an edge-coloring. For a vertex v ∈ V , let
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C(v) := C(v,G) denote the set of vertices of the connected component of v in G.

For two vertices v, w ∈ V (G), let dist(v, w) := distG(v, w) denote the distance of v

and w (i.e., the number of edges on a shortest v-w path) in G.

Definition 3.1. (Color strings of length h without repetition.) Let k ∈ N+ and let

h ∈ {0, 1, . . . , k}. Let Sh denote the set of strings s = (i1, . . . , ih) of colors without

any repetition, i.e., i1, . . . , ih ∈ [k] and
∣∣{i1, . . . , ih}∣∣ = h; whereby the set S0 has one

element, namely the empty string ∅.

Let us define set(s) := {i1, . . . , ih} for a string s = (i1, . . . , ih) ∈ Sh.

Note that |Sh| = k · (k − 1) · . . . · (k − h+ 1) for any h ∈ [k].

Definition 3.2. (Color string operations.) Let k ∈ N+. For any color string s =

(i1, . . . , ih) ∈ Sh, where h ∈ [k], let s− := (i1, . . . , ih−1) ∈ Sh−1 denote the color string

that can be obtained from s by deleting its last coordinate. For any s = (i1, . . . , ih) ∈

Sh, where h ∈ {0, 1, . . . , k−1}, and for any i ∈ [k]\set(s), let si := (i1, . . . , ih, i) ∈ Sh+1

denote the concatenation of s and i.

Definition 3.3. (Set of vertices reachable by a fixed chronology of colors.) For an

edge-colored rooted tree G := G(r) colored with k ∈ N+ colors, and a color string

s = (i1, . . . , ih) ∈ Sh, where h ∈ [k], let us define the following sets of vertices. Let

R̃s(r) := R̃s(r,G) denote the set of vertices that can be reached from r with a path

whose edges are of color i1, . . . , ih and the new colors on this path appear in this specific

order. Let Ñs(r) := Ñs(r,G) denote the set of vertices that can be reached from r

with a path whose edges except the last one are of color i1, . . . , ih−1, the last edge is of

color ih, and the new colors on this path appear in this specific order. In addition, let

Ñ
\i
k−1(r) := Ñ

\i
k−1(r,G) :=

⋃
s∈Sk−1 :

set(s)=[k]\{i}

Ñs(r).

For an example, see Figure 3.
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r

v1

v2

v3

v4
v5

v6

v7

v8

v9

v10 v11 v12

Figure 3: In the picture, the colors red, blue, and green are denoted by (red) triangles, (blue)

rectangles, and (green) stars, respectively. In this graph,

R̃(red)(r) = {v1, v3}, R̃(blue)(r) = {v2}, R̃(green)(r) = ∅, R̃(red,blue)(r) = {v4, v7, v10, v11},

R̃(blue,red)(r) = {v5},

R̃(red,blue,green)(r) = {v8, v12}, R̃(blue,green,red)(r) = {v9},

Ñ(red)(r) = {v1}, Ñ(red,blue)(r) = {v4, v7}, Ñ(red,blue,green)(r) = {v8, v12}.

Definition 3.4. (Exploring up to distance d.) Let G = (V,E) be a graph, v ∈ V a

vertex, and d ∈ N. Let us define

Rd(v) := Rd(v,G) :=
{
u ∈ V : dist(u, v) = d

}
,

i.e. the set of vertices of G at distance d from the root, and let

R≤d (v) := R≤d (v,G) :=
{
u ∈ V : dist(u, v) ≤ d

}
,

i.e. the set of vertices of G at distance at most d from the root.

For an ECBP tree G∞ := G∞(r) ∼ G∞(λ), where λ ∈ Rk+ for some k ∈ N+, and for

a color i ∈ [k] or for a subset of colors I ⊆ [k], we use the notation

RI∞,d := Rd
(
r,GI∞

)
, R

\i
∞,d := R

[k]\{i}
∞,d .

The next claim directly follows from the definition of ECBP trees (cf. Definition 2.4).

Lemma 3.1. (Distribution of uncolored color-subtrees of ECBP trees.) Let k ∈

N+, λ ∈ Rk+, and let G∞(r) ∼ G∞(λ). Then
(∣∣RI∞,d∣∣)d∈N is a branching process

with offspring distribution POI(λI) for any I ⊆ [k]. In particular,
(∣∣R\i∞,d∣∣)d∈N is a

branching process with offspring distribution POI(λ\i) for any i ∈ [k].
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Definition 3.5. (Probability of being i-avoiding connected to infinity.) Let k ∈ N+,

i ∈ [k] and let λ ∈ Rk+. Let us denote by θ\i the survival probability of the branching

process with offspring distribution POI(λ\i).

Note that if G∞ := G∞(r) ∼ G∞(λ), then by Lemma 3.1,

θ\i = P
(
r
G\i∞←→∞

)
holds.

Definition 3.6. (Supercritical indices.) Let k ∈ N+. Given λ ∈ Rk+, we say that

i ∈ [k] is a supercritical index if λ\i > 1, and let us define the set Iλ of supercritical

indices of λ by

Iλ :=
{
i ∈ [k] : λ\i > 1

}
.

Note that λ is fully supercritical (cf. Definition 2.8) if and only if Iλ = [k] and λ is

fully critical-subcritical if and only if Iλ = ∅. Also note that θ\i = 0 holds if and only

if i ∈ [k] \ Iλ.

Definition 3.7. (Type vectors and their probabilities in ECBP trees.) Let k ∈ N+,

λ ∈ Rk+, and let G∞ := G∞(r) ∼ G∞(λ). The (color-avoiding) type vector of a vertex

v in the ECBP tree G∞ is

t∗(v) := t∗(v,G∞) :=

(
1
[
v
G\i∞←→∞

])
i∈Iλ

.

Given any γ ∈ {0, 1}Iλ , let us denote

p∗(γ) := p∗(γ, λ) := P
(
t∗(r) = γ

)
.

In words: for any i ∈ Iλ, the i-th coordinate of the type vector of a vertex v in

an ECBP tree is 1 if v is i-avoiding connected to infinity through its descendants,

otherwise it is 0. The reason why we only use the indices in Iλ is that we expect the

branching process G∞ to survive without the edges of color i if and only if i ∈ Iλ.

3.2. Characterization of existence of giant and non-triviality of asymptotic

component structure

Here we prove Propositions 2.1 and 2.2, but first we prove a lemma.

Let 1 ∈ Rk denote the vector whose every coordinate is equal to 1.
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Lemma 3.2. (The root has infinitely many friends iff its type vector is 1.) Let k ∈ N+,

λ, 1 ∈ Rk+ and let G∞ := G∞(r) ∼ G∞(λ). Then the events{∣∣∣C̃∗(r)∣∣∣ =∞
}

and
{
t∗(r) = 1

}
P-almost surely coincide.

In particular, f∗∞ = p∗(1).

Proof. If λ is not fully supercritical (cf. Definition 2.8), then there exists a color i ∈

[k] for which λ\i ≤ 1; let i ∈ [k] be such a color. Clearly, i /∈ Iλ, thus t∗(r) 6= 1 since the

lengths of these vectors are not equal. Now we need to show that
{∣∣C̃∗(r)∣∣ =∞

}
almost

surely does not occur. By Lemma 3.1, the branching process
(∣∣R\i∞,d∣∣) almost surely

dies out, which means that r is not i-avoiding connected to infinity (cf. Definition 2.5),

thus the set of i-avoiding friends of r is C
(
r,G

\i
∞
)
, which is almost surely finite. Since

each friend of r is also an i-avoiding friend of it, C̃∗(r,G∞) ⊆ C
(
r,G

\i
∞
)

holds, which

implies that r has almost surely finitely many friends.

If λ is fully supercritical, then assume first that the event
{∣∣C̃∗(r)∣∣ = ∞

}
occurs.

We need to show that r is i-avoiding connected to infinity for all i ∈ [k]. Let i ∈ [k] be

an arbitrary color. Since
∣∣C̃∗(r)∣∣ =∞, clearly

{
v
G\i∞←→ r

}
∪
({

v
G\i∞←→∞

}
∩
{
r
G\i∞←→∞

})
holds for infinitely many vertices v. Now this event is the union of two events and the

second one contains the desired event{
r
G\i∞←→∞

}
,

therefore if the second event occurs for any vertex v, then we are done. So assume

that the first event holds for infinitely many vertices v. Noting that the degree of every

vertex of G
\i
∞ is P-almost surely finite, we obtain by Kőnig’s lemma [14] that there

exists a path from the root r to infinity in G
\i
∞, and we are done.

Now let us assume that t∗(r) = 1, and we need to show that this implies
{
|C̃∗(r,G∞)|

=∞
}

. Let

V∞(1) :=
{
v ∈ V (G∞) : t∗(v,G∞) = 1

}
.
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By the definitions of friendship and type vectors (cf. Definitions 3.7 and 3.7, respec-

tively), we only need to show that

P
( ∣∣V∞(1)

∣∣ = +∞
∣∣∣ t∗(r) = 1

)
= 1. (3.1)

Let i ∈ [k] be an arbitrary color. By Lemma 3.1, we have that
(∣∣R\i∞,d∣∣)d∈N is a

supercritical branching process and the Kesten–Stigum theorem (see, e.g., Theorem A

of [22]) implies that conditional on
(
t∗(r)

)
i

= 1, we have

∣∣R\i∞,d∣∣ P−→∞, d→∞.

For any d ∈ N, conditional on G∞

[
R≤d
(
r,G

\i
∞
)]

, the vertices of R
\i
∞,d have type vectors

1 independently of each other with probability p∗(1), thus the distribution of
∣∣R\i∞,d ∩

V∞(1)
∣∣ is BIN

(∣∣R\i∞,d∣∣, p∗(1)
)
. By the Harris–FKG inequality [8, 12] and by the fully

supercriticality of λ, we obtain

p∗(1) ≥
∏
i∈[k]

P
((
t∗(r)

)
i

= 1
)

=
∏
i∈[k]

θ\i > 0.

Therefore, conditional on the event {t∗(r) = 1}, we have∣∣∣R\i∞,d ∩ V∞(1)
∣∣∣ P−→∞, d→∞.

Hence (3.1) holds. �

Proof of Proposition 2.1. As we saw in the proof of Lemma 3.2, if λ is not fully

supercritical, then r has almost surely finitely many friends, i.e. f∗∞ = 0, and if λ is

fully supercritical, then f∗∞ = p∗(1) > 0. �

Proof of Proposition 2.2. Let G∞ := G∞(r) ∼ G∞(λ).

We begin with the proof of (i). Let λ ∈ Rk+ be fully critical-subcritical. We need to

show that r has almost surely no friends other than itself (cf. Definition 2.5). Since λ

is fully critical-subcritical, λ\i ≤ 1 holds for all i ∈ [k], thus by Lemma 3.1, the root

r is almost surely not i-avoiding connected to infinity. Let v ∈ V (G∞), v 6= r be an

arbitrary vertex and let i ∈ [k] be a color appearing on the unique path connecting r

and v in G∞. Then

v
G\i∞
6←→ r,



18 B. RÁTH et al.

thus r and v are almost surely not i-avoiding friends, so they are not friends either.

Therefore, P
(
C̃∗(r) = {r}

)
= 1 and thus by Claim 2.1, we are done.

Next, we prove (ii). Let λ ∈ Rk+ be not fully critical-subcritical. By the definition

of Iλ, we have Iλ 6= ∅; let i1 ∈ Iλ and i2 ∈ [k] \ {i1}, and let ` ∈ N+. Let F be the

following rooted, edge-colored tree: the root of F is r, which has exactly ` neighbors

v1, . . . , v`, each of which with one further neighbor w1, . . . , w`, respectively, and the

color of the edges rv1, . . . , rv`−1 is i1, and the color of the edges rv` and v1w1, . . . , v`w`

is i2. It is not difficult to see that if the event

{G∞,2(r) ' F} ∩
{
∀j ∈ [`] : wj

G\i1∞←→∞
}

occurs, then C̃∗(r,G∞) = {r, v1, . . . , v`−1} (where we identified the vertices of G∞,2(r)

and F ). All we are left to show is that the above event occurs with positive probability.

Clearly, we have

P
({

G∞,2(r) ' F
}
∩
{
∀j ∈ [`] : wj

G\i1∞←→∞
})

=
(
θ\i1

)` · P(G∞,2(r) ' F
)
.

Since i1 ∈ Iλ, we have θ\i1 > 0, and it is not difficult to see that P
(
G∞,2(r) ' F

)
> 0,

therefore we are done. �

4. Explicit formula for f∗∞ and asymptotic behaviour of f∗∞(ε)

The goal of the section is to give explicit formulas for f∗∞ and to prove the asymptotic

formula stated in Theorem 2.1. We provide two different methods for the calculation

of f∗∞ in Sections 4.1 and 4.2. On the one hand, the method presented in Section 4.1

is simpler and works without Assumption 2.1. On the other hand, the method of

Section 4.2 only works under Assumption 2.1, but it can also be used to prove Theo-

rem 2.1.

Our formulas for f∗∞ use the Lambert W function, which satisfies

W (z)eW (z) = z (4.1)

for any z ∈ C. When restricted to real numbers, (4.1) is solvable if and only if

z ∈ [−1/e,+∞). Moreover, it has exactly one solution if z ∈ [0,+∞) and has exactly

two solutions if z ∈ [−1/e, 0). The solutions satisfying W (z) ≥ −1 form a branch
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(usually denoted by W0) called the principal branch of the Lambert W function. The

Taylor series of the principal branch is

W (x) =
∑
n∈N+

(−n)n−1

n!
xn,

whose radius of convergence is 1/e. Throughout this section, we denote by W (x)

the principal branch of the Lambert W function and we always specify which further

properties of W we use.

We also use the Borel distribution with parameter µ ∈ [0, 1], probability mass

function of which is

Pµ(n) =
e−µn(µn)n−1

n!
, n = 1, 2, . . .

If the offspring distribution of a Galton–Watson branching process is POI(λ) with

some λ ≤ 1, then the total number of vertices in the branching process tree has Borel

distribution with parameter λ, see, e.g., Section 2.2 of [3]. The generating function of

the Borel distribution with parameter µ can be expressed in terms of the Lambert W

function:
∞∑
n=1

Pµ(n)zn =
−W (−e−µµz)

µ
, z ∈ [0, 1). (4.2)

4.1. Using a system of equations

Here we give an explicit formula for f∗∞ in terms of the Lambert W function (cf.

(4.1)). Let us emphasize that in this subsection we do not assume that Assumption 2.1

holds for λ.

Let G∞ := G∞(r) ∼ G∞(λ). By Lemma 3.2, we have

f∗∞ = p∗(1) = P
(
∀i ∈ [k] : r

G\i∞←→∞
)

. (4.3)

Definition 4.1. (Probability of avoiding a color from a fixed set of colors.) Let k ∈

N+, λ ∈ Rk+ and G∞ := G∞(r) ∼ G∞(λ). Let us define

p∅ := 0

and

pI := P

(⋃
i∈I

{
r
G\i∞←→∞

})
for any nonempty I ⊆ [k].
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Definition 4.2. (Extended color-avoiding type vectors and their probabilities in ECBP

trees.) Let k ∈ N+, λ ∈ Rk+, and let G∞ := G∞(r) ∼ G∞(λ). The extended (color-

avoiding) type vector of a vertex v in the ECBP tree G∞ is

t̂∗(v) := t̂∗(v,G∞) :=

(
1
[
v
G\i∞←→∞

])
i∈[k]

.

Given any γ ∈ {0, 1}k, let us denote

p̂ ∗(γ) := p̂ ∗(γ, λ) := P
(
t̂∗(r) = γ

)
.

By the definition of p̂ ∗(γ), clearly

pI =
∑

γ ∈ {0, 1}k :∑
i∈I γi ≥ 1

p̂ ∗(γ) (4.4)

holds for any nonempty I ⊆ [k].

To determine f∗∞, first note that by Proposition 2.1, we can assume that λ ∈ Rk+
is fully supercritical (otherwise f∗∞ = 0). Then Iλ = [k], thus p∗(γ) = p̂ ∗(γ) holds for

any γ ∈ {0, 1}[k]. By (4.3) and (4.4), and by the inclusion-exclusion formula, we obtain

f∗∞ = p∗(1) =
∑
I⊆[k]

(−1)|I|(1− pI), (4.5)

so it is enough to give an explicit formula for the probabilities pI for all I ⊆ [k].

Lemma 4.1. (Implicit equation for pI .) Let k ∈ N+, λ ∈ Rk+ and G∞(r) ∼ G∞(λ).

Then

pI = 1− exp

−∑
j∈I

λjpI\{j} − pI
∑

j∈[k]\I

λj


holds for any nonempty I ⊆ [k].

Proof. By the definition of pI , the independence of the branches, and the definition

of Ñs(r) (cf. Definition 3.3), we obtain

1− pI = P

(⋂
i∈I

{
r
G\i∞
6←→ ∞

})

=
∏
i∈I

P

(
∀v ∈ Ñ(i)(r) ∀j ∈ I \ {i} :

{
v
G\j∞
6←→ ∞

})
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·
∏

i∈[k]\I

P

(
∀v ∈ Ñ(i)(r) ∀j ∈ I :

{
v
G\j∞
6←→ ∞

})
,

where (i) denotes the color string consisting of the color i only. Since the number of

i-colored children (i.e., the number of children that are connected to r by an edge of

color i) has distribution POI(λi), its generating function is exp
(
− λi(1 − z)

)
for any

i ∈ [k]. Thus we obtain

1− pI = exp

(
−
∑
i∈I

λipI\{i}

)
· exp

−pI ∑
i∈[k]\I

λi

 .

�

Let k ∈ N+, λ ∈ Rk+ and consider the following system of equations.x∅ = 0

xI = 1− exp
(
−
∑
j∈I λjxI\{j} − xI

∑
j∈[k]\I λj

)
∀I ⊆ [k], I 6= ∅.

(4.6)

By Lemma 4.1, we have that (xI)I⊆[k] = (pI)I⊆[k] is a solution of this system, but

note that this is not a unique solution, for instance (xI)I⊆[k] = 0 is also a solution.

Observe that if x∗ = (x∗I)I⊆[k] is a solution to the system of equations (4.6), then

x∗I < 1 holds for any I ⊆ [k].

Definition 4.3. (Relevant solution.) We say that a solution x∗ = (x∗I)I⊆[k] of the

system of equations (4.6) is relevant if 0 < x∗I < 1 holds for any nonempty I ⊆ [k].

Otherwise x∗ is said to be irrelevant.

The next lemma gives a necessary and sufficient condition for (pI)I⊆[k] to be a

relevant solution.

Lemma 4.2. (The relevance of the probabilistic solution.) Let k ∈ N+ and λ ∈ Rk+.

The probability vector (pI)I⊆[k] is a relevant solution of the system of equations (4.6)

if and only if λ is fully supercritical.

Proof. Let G∞ := G∞(r) ∼ G∞(λ).

First, assume that λ is fully supercritical. Then for any nonempty I ⊆ [k], we obtain

that pI = P
(⋃

i∈I

{
r
G\i∞←→∞

})
≥ P

(
r
G\k∞←→∞

)
> 0 holds, hence (pI)I⊆[k] is indeed

a relevant solution.
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Now assume that λ is not fully supercritical, i.e., there exists a color i ∈ [k] such

that λ\i ≤ 1. Then p{i} = P
(
r
G\i∞←→∞

)
= 0, thus (pI)I⊆[k] is not a relevant solution.

�

Lemma 4.3. (Uniqueness of relevant solution.) Let k ∈ N+ and λ ∈ Rk+. If λ is fully

supercritical, then (pI)I⊆[k] is a unique relevant solution of (4.6).

Proof. By the definition of a relevant solution, it is enough to show that the equation

xI = 1− exp

−∑
j∈I

λjpI\{j} − xI
∑

j∈[k]\I

λj

 (4.7)

has a unique solution in (0, 1), namely pI , for any nonempty I ⊆ [k]. We prove this by

induction on |I|.

First, assume that |I| = 1, i.e., I = {i} for some i ∈ [k]. Then we need to show

x{i} = 1− exp

−x{i} ∑
j∈[k]\{i}

λj

 . (4.8)

Now the left-hand side of (4.8) is linear in the variable x{i}, while its right-hand side

is exponential in x{i}, and it is well-known that such equations have at most two

solutions. As we saw earlier, x{i} = 0 and x{i} = p{i} are both solutions, and by

Lemma 4.2, p{i} > 0. Thus, (4.8) has indeed a unique solution in (0, 1).

Now let I ⊆ [k] with |I| ≥ 2 and assume that (4.7) holds for any I ′ ⊆ [k] with

|I ′| < |I|.

Case 1: I 6= [k].

Again, the left-hand side of (4.7) is linear, while its right-hand side is exponential

in xI , so there are at most two solutions. Clearly, pI is a solution, and by Lemma 4.2,

it is in (0, 1). In addition, in xI = 0 the left-hand side of (4.7) is clearly 0, while its

right-hand side is

1− exp

(
−
∑
i∈I

λipI\{i}

)
> 1− e0 = 0

so by the continuity of the linear and exponential functions, the other solution of (4.7)

is negative.

Case 2: I = [k].
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Then equation (4.7) becomes

x[k] = 1− exp

−∑
i∈[k]

λip[k]\{i}

 ,

which clearly has a unique solution. By Lemma 4.1, this solution is pI and it is in

(0, 1). �

As is clear from the proof of Lemma 4.3, we should solve the equations of the

system (4.6) in a nondecreasing order according to the size of their indices I. Using

the Lambert W function (cf. (4.1)), we obtain the following.

Corollary 4.1. Let k ∈ N+ and λ ∈ Rk+. If λ is fully supercritical, then

pI = 1 +
W
(
−
(∑

i∈[k]\I λi

)
exp

(
−
∑
i∈I λipI\{i} −

∑
i∈[k]\I λi

))
∑
i∈[k]\I λi

,

for any nonempty I ( [k], and

p[k] = 1− exp

−∑
i∈[k]

λip[k]\{i}

 .

Substituting these into equation (4.5), we get the required formula for f∗∞. We

note that using the values pI (and the help of computer software capable of symbolic

computations), we can also prove the convergence statement of Theorem 2.1 in the

case when k ∈ {2, 3, 4} and obtain the values C(2) = 4, and C(3) = 32, and C(4) =

624, as stated in Theorem 2.1. Note that in Section 4.2, we introduce an alternative

method with which the convergence statement of Theorem 2.1 can be proved for any

integer k ≥ 2 and at the end of Section 4.2, we obtain the same values for C(k) when

k ∈ {2, 3, 4} using this alternative approach.

4.2. Using generating functions

The aim of Section 4.2 is to give an explicit formula for f∗∞ and to prove Theorem 2.1.

By Proposition 2.1, we can assume that the color intensity parameter vector λ ∈

Rk+ (where k ∈ N+) is fully supercritical. In this section, we also assume that

Assumption 2.1 holds for λ. Recall that this assumption heuristically means that one

really needs to use all of the other k − 1 colors to create an infinitely long i-avoiding

path for each i ∈ [k].



24 B. RÁTH et al.

In order to find an explicit formula for f∗∞, we first calculate the joint generating

function of the random variables
∣∣R̃s(r)∣∣, s ∈ Sh for any h ∈ {0, 1, . . . , k − 2}. Note

that by Lemma 3.1, we have that
(
R

set(s)
∞,d

)
d∈N is a branching process with offspring

distribution POI(λset(s)).

Definition 4.4. (Generating function of Borel distribution.) Let k ∈ N+, λ ∈ Rk+,

G∞ := G∞(r) ∼ G∞(λ), h ∈ {0, 1, . . . , k − 1} and let s ∈ Sh. Let us define

Fs : [0, 1)→ [0, 1) z 7→ E
(
z|C(r,G

set(s)
∞ )|

)
,

i.e. the generating function of the total number of individuals in the branching process(
R

set(s)
∞,d

)
d∈N.

Let us denote Fs(1−) := limz→1− Fs(z), i.e. the probability of the event that the

branching process
(
R

set(s)
∞,d

)
d∈N dies out.

Note that Fs can be expressed using the Lambert W function as

Fs(z)
(4.2)
=
−W

(
−λset(s)e−λset(s)z

)
λset(s)

, z ∈ [0, 1). (4.9)

Note that if set(s) = set(s′) holds for some color strings s, s′ ∈ Sh with h ∈

{0, 1, . . . , k − 2}, then Fs ≡ Fs′ .

Also note that if λ is fully supercritical and Assumption 2.1 holds, then Fs(1−) = 1

for any s ∈ Sh with h ∈ {0, 1, . . . , k − 2}, and Fs(1−) < 1 for any s ∈ Sk−1.

Definition 4.5. (Joint generating function of the number of vertices reachable by

different color chronologies in an ECBP tree.) Let k ∈ N+, λ ∈ Rk+, G∞(r) ∼ G∞(λ)

and h ∈ {0, 1, . . . , k − 2}. Let us define

Φh : [0, 1)Sh → [0, 1)
(
zs
)
s∈Sh

7→ E

∏
s∈Sh

z

∣∣R̃s(r)∣∣
s

 .

Let us denote

Φh

(
(1−)s∈Sh

)
:= lim
∀s∈Sh:
zs→1−

Φh

((
zs
)
s∈Sh

)
.

It follows from the definition of S0 (cf. Definition 3.1) that Φ0(z) = z.

Note that if Assumption 2.1 holds, then P
(∣∣R̃s(r)∣∣ < +∞

)
= 1 for any s ∈ Sh with

h ∈ {0, 1, . . . , k − 2}. Therefore,

Φh

(
(1−)s∈Sh

)
= 1



Color-avoiding percolation and branching processes 25

for any h ∈ {0, 1, . . . , k − 2}.

Now we give a recursive formula for Φh+1 in terms of Φh for any h ∈ {0, 1, . . . , k −

3}. Note that this formula can be viewed as “explicit” since it can be written as a

composition of elementary functions and the Lambert W function (cf. (4.9)).

Lemma 4.4. (Recursion for the joint generating function of the number of vertices

reachable by different color chronologies.) Let k ∈ N+, λ ∈ Rk+ and G∞(r) ∼ G∞(λ).

Then

Φh+1

((
zs
)
s∈Sh+1

)
= Φh


 ∏
i∈[k]\set(s)

exp
(
λi ·

(
Fsi(zsi)− 1

))
s∈Sh


holds for any h ∈ {0, 1, . . . , k − 3}.

In words: one has to plug
∏
i∈[k]\set(s) exp

(
λi ·
(
Fsi(zsi)−1

))
in place of the variable

zs for every s ∈ Sh in the function Φh
(
(zs)s∈Sh

)
.

Proof of Lemma 4.4. First, note that each color string of length h+1 can be uniquely

written as the concatenation of a color string of length h and a color not appearing in

this color string. Therefore, by the tower rule,

Φh+1

((
zs
)
s∈Sh+1

)
= Φh+1

((
zsi
)
s∈Sh,i∈[k]\set(s)

)

= E

E

 ∏
s∈Sh,

i∈[k]\set(s)

z

∣∣R̃si(r)∣∣
si

∣∣∣∣∣∣∣
(
R̃s(r)

)
s∈Sh


 .

By the independence of the different branches of an ECBP tree,

E

 ∏
s∈Sh,

i∈[k]\set(s)

z

∣∣R̃si(r)∣∣
si

∣∣∣∣∣∣∣
(
R̃s(r)

)
s∈Sh

 =
∏
s∈Sh,

i∈[k]\set(s)

E
(
z

∣∣R̃si(r)∣∣
si

∣∣∣∣ R̃s(r))

holds.

Let s ∈ Sh and i ∈ [k] \ set(s). Using that for any v ∈ R̃s(r), the function

z 7→ exp
(
λi ·

(
Fsi(z) − 1

))
is the generating function of the cardinality of the set

of descendants of v belonging to R̃si(r), we obtain

E
(
z

∣∣R̃si(r)∣∣
si

∣∣∣∣ R̃s(r)) =

(
exp

(
λi ·

(
Fsi(z)− 1

)))∣∣R̃s(r)∣∣
.
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Therefore and by the definition of the function Φh, we obtain

Φh+1

((
zs
)
s∈Sh+1

)
= E

 ∏
s∈Sh,

i∈[k]\set(s)

(
exp

(
λi ·

(
Fsi(z)− 1

)))∣∣R̃s(r)∣∣

= E

∏
s∈Sh

 ∏
i∈[k]\set(s)

exp
(
λi ·

(
Fsi(z)− 1

))
∣∣R̃s(r)∣∣

= Φh


 ∏
i∈[k]\set(s)

exp
(
λi ·

(
Fsi(zsi)− 1

))
s∈Sh

 .

�

Definition 4.6. (Color strings of length k− 1 avoiding color i.) Let k ∈ N+. For any

i ∈ [k], let

S
\i
k−1 :=

{
s ∈ Sk−1 : set(s) = [k] \ {i}

}
.

Proposition 4.1. (Explicit formula for f∗∞.) Let k ∈ N+, let λ ∈ Rk+ for which

Assumption 2.1 holds, and let G∞ := G∞(r) ∼ G∞(λ). Then

f∗∞ =
∑
J⊆[k]

(−1)|J| · Φk−2


 ∏
i∈[k]\set(s)

qLJ ,si


s∈Sk−2

 ,

where we define

LJ :=
⋃
j∈J

S
\j
k−1, J ⊆ [k],

and we define

qL,si :=

exp
(
λi ·

(
Fsi(1−)− 1

))
if si ∈ L,

1 if si /∈ L

for any L ⊆ Sk−1, s ∈ Sk−2 and i ∈ [k] \ set(s).

Proof. If v ∈ V (G∞) and i ∈ [k], let us denote by Ñ∗(i)(v) the set of children of v

that are connected to v by an edge of color i. Let F denote the sigma-algebra

F := σ

1[{u1, u2} ∈ Ei] : u1 ∈
k−2⋃
j=0

⋃
s∈Sj

R̃s(r), u2 ∈ V (G∞), i ∈ [k]

 .
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In words: F contains the information that we collect if we explore the set of vertices

of G∞ that can be reached by a path from the root that uses at most k − 2 colors,

and all edges emanating from this set. Assumption 2.1 implies that this set is almost

surely finite.

By Lemma 3.1 and using that each offspring of any vertex in a branching process

tree span a branching process tree with the same offspring distribution, and by the

definition of Φk−2, for any L ⊆ Sk−1, we obtain

P

 ⋂
s′∈L

{ ∣∣∣R̃s′(r)∣∣∣ < +∞
}

= E

E
 ∏
s∈Sk−2

∏
v∈R̃s(r)

∏
i∈[k]\set(s):

si∈L

∏
u∈Ñ∗

(i)
(v)

1

[ ∣∣∣R(u,Gset(si)
∞

)∣∣∣ < +∞
]∣∣∣∣∣∣∣∣F




= E

 ∏
s∈Sk−2

∏
v∈R̃s(r)

∏
i∈[k]\set(s):

si∈L

∏
u∈Ñ∗

(i)
(v)

Fsi(1−)



= E

 ∏
s∈Sk−2

∏
v∈R̃s(r)

∏
i∈[k]\set(s):

si∈L

exp
(
λi(Fsi(1−)− 1)

)

= Φk−2


 ∏
i∈[k]\set(s)

qL,si


s∈Sk−2

 . (4.10)

By the definition of R̃s(r) (cf. Definition 3.3) we have

f∗∞ = P
(
∀j ∈ [k] : r

G\j∞←→∞
)

= P

 ⋂
j∈[k]

 ⋂
s′∈S\jk−1

{ ∣∣∣R̃s′(r)∣∣∣ < +∞
}

c
 .

Then by the inclusion-exclusion formula, the definition of LJ , and (4.10), the previous

equation implies

f∗∞ =
∑
J⊆[k]

(−1)|J| · P

 ⋂
j∈J

⋂
s′∈S\jk−1

{ ∣∣∣R̃s′(r)∣∣∣ < +∞
} =
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∑
J⊆[k]

(−1)|J| · P

 ⋂
s′∈LJ

{ ∣∣∣R̃s′(r)∣∣∣ < +∞
}

=
∑
J⊆[k]

(−1)|J| · Φk−2


 ∏
i∈[k]\set(s)

qLJ ,si


s∈Sk−2

 .

�

Proof of Theorem 2.1. Let ε ≥ 0 and let Gε∞ := Gε∞(r) ∼ G∞
(
λ(ε)

)
, where λ(ε) =(

1+ε
k−1 , . . . ,

1+ε
k−1

)
∈ Rk+. Since λ(ε) is homogeneous,

θ\k(ε) := P

(
r

(Gε∞)
\k

←−−−→∞

)
= P

(
r

(Gε∞)
\i

←−−→∞

)
holds for any i ∈ [k].

Note that if ε < 1
k−2 , then Assumption 2.1 holds. It implies that

⋃k−2
j=0

⋃
s∈Sj R̃s(r)

is almost surely finite (cf. Definition 3.3), thus every i-avoiding path from r to infinity

must pass through Ñ
\i
k−1(r) (cf. Definition 3.3), thus we have

f∗∞(ε) = P

(
∀i ∈ [k] ∃v ∈ Ñ\ik−1(r,Gε∞) : v

(Gε∞)
\i

←−−→∞

)
.

So by (4.3) and the disjointness of the sets Ñ
\i
k−1(r,Gε∞) for all i ∈ [k], the previous

equation implies

f∗∞(ε) = E

∏
i∈[k]

(
1−

(
1− θ\k(ε)

)|Ñ\ik−1( r,G
ε
∞ ) |

) . (4.11)

Clearly,

λ\k(ε) :=
∑

i∈[k−1]

λi(ε) = 1 + ε

holds, thus by Corollary 3.19 of [31], we have

lim
ε→0+

θ\k(ε)

ε
= 2.

Hence,

lim
ε→0+

f∗∞(ε)

εk
= 2k lim

ε→0+

f∗∞(ε)(
θ\k(ε)

)k , (4.12)

and now we show

lim
ε→0+

f∗∞(ε)(
θ\k(ε)

)k = E

∏
i∈[k]

∣∣∣Ñ\ik−1(r,G0
∞)
∣∣∣
 . (4.13)



Color-avoiding percolation and branching processes 29

By Assumption 2.1, there exists ε0 ≥ 0 such that

E

∏
i∈[k]

∣∣∣Ñ\ik−1(r,Gε0∞)
∣∣∣
 < +∞. (4.14)

Then by the monotone coupling the random variables
∣∣∣Ñ\ik−1(r,Gε∞)

∣∣∣ for all ε ∈ [0, ε0],

and by Bernoulli’s inequality, we obtain

∏
i∈[k]

(
1−

(
1− θ\k(ε)

)|Ñ\ik−1( r,G
ε
∞ ) |

)
≤
∏
i∈[k]

∣∣∣Ñ\ik−1(r,Gε∞)
∣∣∣

≤
∏
i∈[k]

∣∣∣Ñ\ik−1(r,Gε0∞)
∣∣∣ . (4.15)

By (4.14) and (4.15), we may apply the dominated convergence theorem (using the

random variable that appears on the r.h.s. of (4.15) as the dominating random vari-

able) to conclude that the first equality below holds. Then we can calculate (using

L’Hospital’s rule in the last equality):

lim
ε→0+

E

∏
i∈[k]

1−
(
1− θ\k(ε)

)|Ñ\ik−1( r,G
ε
∞ ) |

θ\k(ε)


= E

 lim
ε→0+

∏
i∈[k]

1−
(
1− θ\k(ε)

)|Ñ\ik−1( r,G
ε
∞ ) |

θ\k(ε)


= E

 lim
ε→0+

 1

[
∀i ∈ [k] :

∣∣∣Ñ\ik−1(r,Gε∞)
∣∣∣ =

∣∣∣Ñ\ik−1(r,G0
∞)
∣∣∣ ]

·
∏
i∈[k]

1−
(
1− θ\k(ε)

)|Ñ\ik−1( r,G
ε
∞ ) |

θ\k(ε)

+ 1

[
∃i ∈ [k] :

∣∣∣Ñ\ik−1(r,Gε∞)
∣∣∣ 6= ∣∣∣Ñ\ik−1(r,G0

∞)
∣∣∣ ]

·
∏
i∈[k]

1−
(
1− θ\k(ε)

)|Ñ\ik−1( r,G
ε
∞ ) |

θ\k(ε)




= E

 lim
ε→0+

∏
i∈[k]

1−
(
1− θ\k(ε)

)|Ñ\ik−1( r,G
0
∞ ) |

θ\k(ε)


= E

 lim
θ\k(ε)→0+

∏
i∈[k]

1−
(
1− θ\k(ε)

)|Ñ\ik−1( r,G
0
∞ ) |

θ\k(ε)
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= E

∏
i∈[k]

∣∣∣Ñ\ik−1(r,G0
∞)
∣∣∣
 .

Thus by (4.11), we obtain that (4.13) holds.

Therefore, by (4.12), we obtain

lim
ε→0+

f∗∞(ε)

εk
= 2k · E

∏
i∈[k]

∣∣∣Ñ\ik−1(r,G0
∞)
∣∣∣
 =: C(k).

Now we want to express this constant C(k) using the generating function Φk−2,

where we take the underlying parameter λ to be λ = λ(0) =
(

1
k−1 , . . . ,

1
k−1

)
.

Since the sets Ñs(r,G
0
∞) for all s ∈ Sk−1 are disjoint, it follows that

E

∏
i∈[k]

∣∣∣Ñ\ik−1(r,G0
∞)
∣∣∣
 = E

∏
i∈[k]

∑
s∈S\ik−1

∣∣∣Ñs(r,G0
∞)
∣∣∣


=
∑(

si∈S
\i
k−1

)
i∈[k]

E

∏
i∈[k]

∣∣∣Ñsi(r,G0
∞)
∣∣∣


holds.

Let si ∈ S
\i
k−1 for all i ∈ [k]. Since the random variables

∣∣Ñsi(r,G0
∞)
∣∣ for all

i ∈ [k] are conditionally independent given
(∣∣R̃s(r,G0

∞)
∣∣)
s∈Sk−2

, and their conditional

distribution is Poisson with parameter
∣∣R̃s(r,G0

∞)
∣∣/(k − 1), we obtain

E

∏
i∈[k]

∣∣∣Ñsi(r,G0
∞)
∣∣∣
 =

1

(k − 1)k
E

∏
i∈[k]

∣∣∣R̃s−i (r,G0
∞)
∣∣∣
 .

Let us define the multivariate moment generating function

ϕ
(
(xs)s∈Sk−2

)
:= Φk−2

(
(exs)s∈Sk−2

)
= E

exp

( ∑
s∈Sk−2

∣∣∣R̃s(r,G0
∞)
∣∣∣ · xs )

 .

Since the function ϕ is the multivariate moment generating function of the random

vector
(∣∣∣R̃s(r,G0

∞)
∣∣∣)
s∈Sk−2

, we obtain

∂k

∂xs−1
. . . ∂xs−k

ϕ
(
(xs)s∈Sk−2

)∣∣∣∣∣
(xs)s∈Sk−2

=0

= E

∏
i∈[k]

∣∣∣R̃s−i (r,G0
∞)
∣∣∣
 .
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Hence,

C(k) = 2k · E

∏
i∈[k]

∣∣∣Ñ\ik−1(r,G0
∞)
∣∣∣
 = 2k ·

∑(
si∈S

\i
k−1

)
i∈[k]

E

∏
i∈[k]

∣∣∣Ñsi(r,G0
∞)
∣∣∣


=
2k

(k − 1)k
·

∑(
si∈S

\i
k−1

)
i∈[k]

E

∏
i∈[k]

∣∣∣R̃s−i (r,G0
∞)
∣∣∣


=
2k

(k − 1)k
·

∑(
si∈S

\i
k−1

)
i∈[k]

∂k

∂xs−1
. . . ∂xs−k

Φk−2
(
(exs)s∈Sk−2

)∣∣∣∣∣
(xs)s∈Sk−2

=0

,

which can be expressed explicitly using an iterated composition of the Lambert W

function and elementary functions since the same is true for Φk−2 by Lemma 4.4.

In particular, when k = 2, then Φ0(ex) = ex, thus C(2) = 4.

When k = 3, then by Lemma 4.4,

Φ1(ex1 , ex2 , ex3) =
∏
i∈[3]

exp

(
1 + ε

2

(
F(i)(e

xi)− 1
))

,

where by (4.9),

F(i)(z) =
−W (− 1

2 · e
− 1

2 · z)
1
2

for any i ∈ [3]. Using the identities

d

dz
W (z) =

W (z)

z
(
1 +W (z)

) if z /∈ {0,−1/e}

and

W (zez) = z if z ≥ 0

we obtain C(3) = 32.

Similarly (but with significantly more work), we obtain the value C(4) = 624. Recall

that we obtained the same values for C(k) when k ∈ {2, 3, 4} using a different approach

at the end of Section 4.1, too. �

5. The case of two colors

By Theorem 2.2, we know that the empirical color-avoiding connected component

size densities converge. In this section, we give explicit formulas for their limit when

there are only two colors.
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First, we introduce some notation. Let X ∼ Borel(µ) be a random variable. Given

X, let us consider the random variable Y ∼ BIN(X − 1, θ) for some θ ∈ [0, 1]. Let

qµ,θ(`) := P(Y + 1 = `), ` = 1, 2, . . .

It is not difficult to see that

qµ,θ(`) =
∑
m∈N+

((
m− 1

`− 1

)
θ`−1(1−θ)m−` ·

exp
(
− µ · (1− θ) ·m

)
·
(
µ(1− θ) ·m

)m−1
m!

)

for any ` ∈ N+.

Proposition 5.1. Let λred, λblue ∈ R+, ` ∈ N+ and G∞ := G∞(r) ∼ G∞
(
(λred, λblue)

)
be a two-colored ECBP tree. Let θblue := λ\red and θred := λ\blue. Then

f∗` = 1[` = 1] · p̂ ∗
(
(0, 0)

)
+ qλred(1−θred), θblue(`) · p̂

∗((1, 0)
)

+ qλblue(1−θblue), θred(`) · p̂ ∗
(
(1, 0)

)
, (5.1)

where

p̂ ∗
(
(0, 0)

)
= exp

(
− λred −W

(
− λrede−λred

)
− λblue −W

(
− λbluee−λblue

))
,

p̂ ∗
(
(1, 0)

)
= −p̂ ∗

(
(0, 0)

)
−
W
(
− λrede−λred

)
λred

,

p̂ ∗
(
(0, 1)

)
= −p̂ ∗

(
(0, 0)

)
−
W
(
− λbluee−λblue

)
λblue

.

Proof. By the definition of f∗` and by the total law of probability, we obtain

f∗` =
∑

γ∈{0,1}2
P
( ∣∣C̃∗(r)∣∣ = `

∣∣∣ t̂∗(r) = γ
)
· p̂ ∗(γ).

Now let us look at the summands separately. Note that any red-avoiding path

contains only blue edges, and similarly, any blue-avoiding path contains only red edges.

If γ = (1, 1), then by Lemma 3.2, we obtain

P
( ∣∣C̃∗(r)∣∣ = `

∣∣∣ t̂∗(r) = (1, 1)
)
≤ P

( ∣∣C̃∗(r)∣∣ <∞ ∣∣∣ t∗(r) = (1, 1)
)

= 0.

If γ = (0, 0), then clearly,

P
( ∣∣C̃∗(r)∣∣ = `

∣∣∣ t̂∗(r) = (0, 0)
)

= 1[` = 1].
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If γ = (1, 0), then conditional on t̂∗(r) = (1, 0), the branching process
(∣∣Rred
∞,d
∣∣)
d∈N is

subcritical and has offspring distribution POI
(
λred(1− θred)

)
by Theorem 3.15 of [31].

Thus the number of vertices of
(∣∣Rred
∞,d
∣∣)
d∈N has distribution BOREL

(
λred(1 − θred)

)
.

In addition, each vertex of
(
Rred
∞,d
)
d∈N is of type either (0, 0) or (1, 0) independently of

each other with probabilities

p̂ ∗
(
(0, 0)

)
p̂ ∗
(
(0, 0)

)
+ p̂ ∗

(
(1, 0)

) =
(1− θblue)(1− θred)

(1− θred)
= 1− θblue

and
p̂ ∗
(
(1, 0)

)
p̂ ∗
(
(0, 0)

)
+ p̂ ∗

(
(1, 0)

) = θblue,

respectively. Thus by the total law of probability,

P
( ∣∣C̃∗(r)∣∣ = `

∣∣∣ t̂∗(r) = (1, 0)
)

=
∑
m∈N+

(
P
( ∣∣C̃∗(r)∣∣ = `

∣∣∣ t̂∗(r) = (1, 0),
∣∣C(r,Gred

∞ )
∣∣ = m

)
· P
( ∣∣C(r,Gred

∞ )
∣∣ = m

∣∣∣ t̂∗(r) = (1, 0)
))

= qλred(1−θred), θblue(`).

If γ = (0, 1), then similarly,

P
( ∣∣C̃∗(r)∣∣ = `

∣∣∣ t̂∗(r) = (0, 1)
)

= qλblue(1−θblue), θred .

Therefore (5.1) holds. By (4.4), we obtain

p̂ ∗
(
(0, 0)

)
= 1− p{red,blue},

p̂ ∗
(
(1, 0)

)
= p{red,blue} − p{blue},

p̂ ∗
(
(0, 1)

)
= p{red,blue} − p{red},

and by Corollary 4.1, the stated result follows. �

6. Open questions

Let us conclude our paper with a list of open questions and conjectures that we

propose for future research.
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In Section 4, we gave explicit, recursive formulas for the asymptotic density f∗∞ of

the giant color-avoiding connected component, and in Section 5, we gave a formula

for the asymptotic density f∗` of the set of vertices that belong to a color-avoiding

connected component of size ` for any ` ∈ N+ in the case of k = 2 colors.

Question 6.1. Is there an explicit formula for f∗` for any ` ∈ N+ and for k ≥ 3

colors?

It is well-known (see [2] and the references therein) that the cardinality of the union

of the largest components in an (uncolored) critical Erdős–Rényi graph Gn with n

vertices is of order n2/3. It follows from Theorem 2.2 and Proposition 2.1 that if

λ\i = 1 for some i ∈ [k], then

1

n
max

v∈V (Gn)

∣∣∣C̃(v,Gn)
∣∣∣ P−→ 0, n→∞.

Question 6.2. Let k ∈ N+, λ ∈ Rk+ and let Gn ∼ Gn([n], λ) for all n ∈ N+. What

is the order of magnitude of maxv∈[n]
∣∣C̃(v,Gn)

∣∣ if λ\i = 1 for some i ∈ [k], and in

particular, if λ\i = 1 for all i ∈ [k]?

Let us note that the recent paper [20] contains some results in the vein of our

Question 6.2, see Theorem 1.1 and Proposition 1.3 of [20].

We know from Theorem 2.1 that C(k) is an integer if k ∈ {2, 3, 4}.

Question 6.3. Is C(k) an integer for all k ∈ N+?

Our results pertain to one of the most fundamental edge-colored random graph

models, i.e., the edge-colored Erdős–Rényi graph. A natural, more heterogeneous

model of edge-colored random graphs is the following generalization of the well-known

configuration model (see Section 1.3 in [32]). Let k ∈ N+ and let p : Nk+ → [0, 1]

satisfying
∑
d∈Nk+

p(d) = 1. Let us consider a sequence of edge-colored graphs Gn

where the edge-colored degree sequence satisfies

lim
n→∞

1

n

∣∣∣{v∈V (Gn) : the number of half-edges of color i incident to v is di, i∈ [k]
}∣∣∣

= p(d1, . . . , dk)

and the half-edges of the same color are matched according to the rules of the config-

uration model.



Color-avoiding percolation and branching processes 35

Question 6.4. Does Theorem 2.2 have an analogue in the above described edge-colored

configuration model? Is there an explicit formula for the asymptotic density of the

largest color-avoiding connected component?

Color-avoiding percolation was first introduced for vertex-colored graphs, see [15,16].

The definition of color-avoiding connectivity in vertex-colored graphs is ambiguous.

The two most interesting versions are as follows. In the first version, two vertices are

color-avoiding connected in a vertex-colored graph if there exists a path between them

whose internal vertices are not of color i for any color i. Whereas in the second version,

two vertices are color-avoiding connected if there exists a path between them using any

colors and either at least one of the vertices is of color i or there exists a path between

them whose vertices are not of color i for any color i. In [24], we showed that these

two definitions can yield problems with highly different computational complexity.

Question 6.5. Does Theorem 2.2 have an analogue in a vertex-colored Erdős–Rényi

random graph, i.e., in an Erdős–Rényi random graph whose vertices are randomly

colored? Is there an explicit formula for the asymptotic density of the largest color-

avoiding connected component?
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