
MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES

Preamble

�ese are typed-up lecture notes.�ey are supposed to accompany the lectures and the

bookA�rst course in probability, 9th ed. by SheldonRoss, they are not supposed to supplant
them! Sheldon Ross has had editors, teachers, and thousands of students look over his text

for more than a decade, so it is pretty well polished. You, on the other hand, are one of the

�rst persons to see these notes. It is entirely possible that these notes contain the occasional

mistake. In general, if a calculation looks o� to you, it is much more likely that I made a

mistake than that logic has failed to do it’s magic, so don’t panic. Please contact me1 (at the

lectures or via email) if you do �nd a mistake, a �shy argument, or even a typo, so I can

correct it! You help everybody if you do.

1. What is probability theory good for?

Probability theory is used in practically every branch of science, engineering, medicine,

economics, �nance, and the social sciences. Probability lies at the foundation of statistics.

Probability theory is also really useful if you like to gamble.

In a nutshell, probability theory is the science of incomplete knowledge. Say you have
a six-sided die. What is the outcome of the roll going to be? Well, if you know the initial

position, the velocity atwhich it is thrown, the position of the table, the constants of friction

of the table and the air, etc. you could use Newton’s laws and a good computer to predict

the throw exactly. But when we are playing a game of Monopoly, we are not going to have
all this data, nor the computational power. Probability theory is aimed at making the best

predictions given incomplete data or limited resources.

Example 1. Some real or conceptual experiments or observations where probability theory
is useful for predictions or explanations:

(a) Rolling 2 dice.

(b) Dealing a poker hand.

(c) Turning a roulette wheel.

(d) �e half-life of a radio-active isotope.

(e) �e position of a molecule in a solution.

(f) �e sex of an o�spring.

(g) �e number of mutations in a strand of DNA.

(h) �e number of busy lines of a call-centre.

1You can �nd my contact information (and other course info) in the course outline on my website:

www.math.ubc.ca/∼thulshof/teaching.

1

http://www.math.ubc.ca/~thulshof/teaching.html
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(i) �e number of cars sold in Vancouver in 2014.

(j) A person’s preference for Pepsi or Coke.

△

Example 2. Roll 2 fair dice. What is the probability that their total is 8? We can start by
looking at all possible outcomes, and determine how frequent 8 is:

Die #1 ∖ Die #2 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

From the table we can see that there are 6×6 = 36 di�erent outcomes for two rolled dice.
Of those 36 outcomes, 5 result in a total of 8. With a fair dice we assume that all outcomes

of a single roll are equally likely (i.e., all outcomes have probability 1/6), so the probability
that 2 dice rolls add up to 8 is 5/36.2
To get acquainted with the notation of probability theory, let’s write that down as a for-

mula:

P( sum of two dice rolls = 8) = 5
36
.

In general we will write P(event) to denote the probability of that event. △

2. Counting

�e example with the two dice really just boils down to counting how many outcomes

of a given type there are. As we will see in the coming semester, a huge part of probability

theory deals with counting. Sometimes counting is as simple as writing down a little table,

but other times it can get pretty complex.�ere are counting problems that are so complex

that a whole branch of mathematics has been devoted to them. �e mathematical theory

of counting is known as combinatorics.

Example 3. Some of the problems that are studied with combinatorics:
● �e number of 5 note melodies you can play on a piano.

● �e number of 10 digit phone numbers that contain the sequence “555”.

● �e number of ways in which we can colour the countries on a map so that neigh-

bouring countries have di�erent colours, using four colours.

2In probability theory, we will most times express probabilities as numbers between 0 and 1, rather than

as percentages. �e reason for this is that it is more convenient. Doing calculations with percentages is

cumbersome because we will sometimes need to keep track of many factors of 100. Anyways, if we calculate

that the probability is x, where x ∈ [0, 1], then we can always express this in percentages by multiplying x
with 100%.�e probability of rolling a total of 8 with 2 dice is thus 5/36 × 100% = 13.888 . . . %.
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● �e number of possible outcomes of the Kentucky Derby.

△

2.1. �e multiplication rule. Before we start studying how to calculate probabilities, we
will �rst have to study some of the basics of combinatorics. In Example 2 we already saw

one of the most important ideas of combinatorics in action:

Principle 1 [�e multiplication rule]. If we do two experiments and experiment #1 has
n possible outcomes, while experiment #2 has m possible outcomes, then both experiments
together have n ×m possible outcomes.
We can of course generalise this principle to more than two experiments.3 In general,

when we do r experiments and experiment #i has ni possible outcomes, than the total

number of outcomes of all r experiments equals n1 × n2 ×⋯ × nr.

Question 1. How many possible postal codes are there?

Solution. Postal codes have the following form:
letter number letter number letter number

so by the multiplication rule we get that the total number of possible postal codes is

26 × 10 × 26 × 10 × 26 × 10 = 263 × 103 = 17576000.
◊

Question 2. How many 5 note melodies can you play on a piano? What if the �rst three
notes have to be played using the black keys?

Solution. Apianohas 85 keys, so by themultiplication rule, we can play 85×85×85×85×85 =
855 = 4437053125 di�erent “melodies”. If we restrict ourselves to the black keys, of which
there are 36, for the �rst three notes, then we can play 36 × 36 × 36 × 85 × 85 = 363 × 852 =
337089600 di�erent “melodies”. ◊

2.2. Permutations. Another counting problem comes from the following question.

Question 3. Suppose there are 5 horses entering in a race, call them Day Star, Apollo, El-
wood, Sea Biscuit, and Baden-Baden. How many di�erent orders are there for the horses to
cross the �nish line?

Solution. We are going to consider each place of the �nishing order in turn:
3We are going to use the word experiment o�en, and not necessarily in the sense that you may be familiar

with. In probability theory, an experiment can be any action, event or procedure, past, present or future, that

can yield or could have yielded more than one outcome. So observing the half-life of an atomic nucleus is an

experiment, but so is rolling a die, or the number of deaths that resulted from shark attacks between 1879 –

1889. Even making a sandwich with bacon, lettuce, and tomatoes is an experiment if you want it to be. . .
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● Which horse comes in 1st?�ere are 5 horses, so there are 5 possibilities. Suppose
that Apollo �nished 1st.

● Given that Apollo �nished 1st, who �nished 2nd? All horses except Apollo could
�nish 2nd, so there are 4 possibilities. Suppose Baden-Baden �nished 2nd.

● Given that Apollo came in 1st and Baden-Baden 2nd, who �nished 3rd?�ere are
still 3 horses unaccounted for, so there are 3 possibilities. Suppose Sea Biscuit came

in 3rd.

● Given that Apollo, Baden-Baden, and Sea Biscuit are 1st, 2nd, and 3rd, who �nished
4th?�ere are 2 possibilities. Suppose Day Star came in 4th.

● Elwood is the only horse le�, so it has to come in 5th: there is only 1 possibility.
As a result, we can apply the multiplication rule:

# of di�erent orders = 5 × 4 × 3 × 2 × 1 = 120.
◊

�emathematical term for a reordering of a list is a permutation. In general we have that
the number of permutations of a list of distinguishable elements can be counted according
to the following principle:

Principle 2 [Counting permutations]. Given a list with n distinguishable element there are
n! ∶= n × (n − 1) × (n − 2) ×⋯ × 3 × 2 × 1

di�erent permutations of that list.
We write n! for the number of permutations, we say “n factorial.” It turns out that it is

convenient to de�ne4 0! ∶= 1.
Distinguishability is important when counting permutations: horse races wouldn’t be

too much fun if we couldn’t tell the horses apart at the �nish line. Distinguishability is not

always a given though. In chemistry and particle physics, for instance, we may want to

count the di�erent con�gurations of electrons around a nucleus, but there is no way to tell

these electrons apart.�is will a�ect the number of di�erent states, so we will need to take

this into account, otherwise our calculations can be o� by a huge margin.5

Clearly, if we have a list of n elements that are totally indistinguishable, then any permu-
tation is the same, so there is only one permutation (e.g. the list {1, 1, 1, 1, 1, 1, 1, 1} has only
one permutation). It can also happen that the elements fall into di�erent categories, where

the elements in a given category are indistinguishable from each other, but distinguishable

from elements in other categories.

4Whenever we make a de�nition, we are going to write ∶= to denote that the equality is true because we

say so, whereas we will use = only when the equality holds because of logic.
5Youmay have noticed that the numbers we are dealing with when we do these combinatorial calculations

have a tendency towards the gigantic. When doing calculations it is wise to keep on writing thinks like 63!

or 3112 until the very end of the calculation to avoid copying errors. Sometimes numbers will be so big that

your calculator can’t handle them anymore, like 545!. Don’t bother approximating the number if this is the

case, just leave it as is in your �nal answer.
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Question 4 [�e labelling trick]. How many di�erent “words” can we spell with the letters
of MISSISSIPPI?.

Solution. If all letters were distinguishable, i.e., if they were for instance labeled as follows:
M1I1S1S2I2S3S4I3P1P2I4,

then there would be 11! = 39916800 di�erent orderings. Let’s imagine we put all these
labeled words in a big list.

If we look only at the ways the labeled S’s may appear in a given word (ignoring the

positions of the other letters for the moment) then it is clear that there are 4! = 24 di�erent
orderings. So if, in the list of all labeled “words” we remove the labels on the S’s, then we

will see 24 identical copies of each word in the list. Similarly, there are 4! = 24 ways in
which the labeled I’s may appear, so if we also remove the labels on the I’s, we will now see

4! × 4! identical copies of each word in the list.�ere are 2! = 2 ways in which the labeled
P’s may appear, so removing the labels on the P’s, we will see 4! × 4! × 2! identical copies
of each word in the list. �ere is only one M, so removing its label has no e�ect on the

multiplicity of words.

As a result, our list contains

# labeled words

# identical copies of each word
= 11!

4! × 4! × 2!
= 34650

distinct words spelled with the letters MISSISSIPPI. ◊

We can generalise the above solution:

Principle 3 [Counting permutations with categories]. Given a list with n elements that
fall into r categories of indistinguishable elements with sizes n1, n2, . . . , nr, there are

n!
n1! n2!⋯nr!

di�erent orderings for that list.

2.3. Combinations. �e thirdmain counting problem thatwewill encounter in this course
is that of counting combinations. Consider the following question:

Question 5. A vase contains 5 marbles: 1 red, 1 green, 1 blue, 1 yellow, and 1 pink. If we draw
3 marbles from the vase, how many di�erent colour combinations can we get?

Solution. Let’s �rst keep track of the order in which we draw the marbles. For the �rst
marble there are 5 possibilities, for the second there are 4 possibilities, and for the third

there are 3 possibilities, so there are 5 × 4 × 3 = 60 di�erent ordered draws possible. But
we are not interested in the order. As far as we are concerned, the draw “red – blue – pink”

is equivalent to the draw “pink – red – blue”, so we overcounted the number of combina-

tions when we kept track of the order. How much have we overcounted? For each set of 3
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marbles, there are 3! = 6 possible orders, so we counted each combination 6 times when
we kept track of the order.�erefore,

# combinations of 3 out of 5 colours = # ordered combinations of 3 out of 5 colours

# orders of 3 colours

= 5 × 4 × 3
3 × 2 × 1

= 10.

◊

Again we can generalise the above example:

Principle 4 [Counting combinations]. For r ≤ n, we canmake a combination of r elements
out of a list of n indistinguishable elements in

(n
r
) ∶= n(n − 1)⋯(n − r + 1)

r!
= n!

(n − r)!r!
di�erent ways.

Wewrite (nr), we say “n choose r”. For the second equality in the above equation we used
that

n(n − 1)⋯(n − r + 1) = n!
(n − r)!

.

Observe that (nr) = ( n
n−r). Since we de�ned 0! ∶= 1 this implies that (

n
0
) = (nn) = 1.

Question 6. How many di�erent poker hands are there?

Solution. �ere are 52 cards in a deck, and a poker hand is 5 cards, so n = 52 and r = 5. As
a result,

# poker hands = (52
5
) = 52 × 51 × 50 × 49 × 48

5!
= 2598960.

◊

Question 7. Why does four-of-a-kind beat a full house?

Solution. Assume a fair deal, so each hand is equally likely.
We start by counting the number of combinations of �ve cards that are a four-of-a-

kind. A deck of cards contains 13 quartets. We need to draw one of those, so there are (13
1
)

combinations. Having drawn a quartet, there are 48 cards le� in the deck. We need to draw

one of those.�ere are (48
1
) ways of doing that.�erefore,

# four-of-a-kind hands = (13
1
) × (48

1
) = 624.
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Moreover, the probability of getting four-of-a-kind is

P(hand is four-of-a-kind) = # four-of-a-kind hands

# poker hands
= 624

2598960
= 0.00024.

Now we count the number of hands that are a full house. Again, a deck contains 13

quartets. From one of those quartets we want to draw three cards, from a second quartet

we want to draw two cards. �ere are (13
1
) ways of choosing the quartet from which we

draw three cards. �en, there are 12 quartets le�, so there are (12
1
) ways of choosing the

quartet from which to draw two cards.�ere are (4
3
) ways of drawing 3 cards from 4, and

there are (4
2
) ways of drawing 2 cards from 4.�erefore,

# full house hands = (13
1
) × (4

3
) × (12

1
) × (4

2
) = 3744.

So there are 6 times asmany hands that are a full house than there are four-of-a-kind hands.

Since all hands are equally likely, drawing a full house is 6 times more likely than drawing

a four-of-a-kind. Indeed, the probability of getting a full house is

P(hand is full house) = # full house hands

# poker hands
= 3744

2598960
= 0.00114.

◊

2.3.1. �e binomial theorem. �e number of combinations (nr) are also known as the bino-
mial coe�cients. �e binomial coe�cients come about naturally when we expand equa-
tions of the form (x + y)n.

Example 4. We expand (x + y)2:

(x + y)2 = (x + y)(x + y)
= x(x + y) + y(x + y)
= xx + xy + yx + yy
= x2 + 2xy + y2

= (2
2
)x2y2−2 + (2

1
)x1y2−1 + (2

0
)x0y2−0.
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Well, that is not a very convincing example to show the relation between (x + y)n and (nr),
so lets try a larger value of n. We are going to expand (x + y)4:

(x + y)4 = (x + y)2(x + y)2

= (x2 + 2xy + y2)(x2 + 2xy + y2)
= x2(x2 + 2xy + y2) + 2xy(x2 + 2xy + y2) + y2(x2 + 2xy + y2)
= x4 + 2x3y + x2y2 + 2x3y + 4x2y2 + 2xy3 + x2y2 + 2xy3 + y4

= 1x4 + 4x3y + 6x2y2 + 4xy3 + 1y4

= (4
4
)x4y4−4 + (4

3
)x3y4−1 + (4

2
)x2y4−2 + (4

1
)x1y4−1 + (4

0
)x0y4−0

=
4

∑
k=0

(4
k
)xk y4−k .

△

In the last step we introduced the capital-sigma notation to simplify the formula.6

It turns out that we can generalise the above example to hold for any integer power of

(x + y):
Theorem 1 [�e binomial theorem].

(x + y)n =
n
∑
k=0

(n
k
)xk yn−k

Proof. We prove7 this theorem using the ‘labelling trick’. We are going to label all the x’s
and y’s:

(x1 + y1)(x2 + y2)⋯(xn + yn). (1)

We expand the above formula. By the multiplication rule we get 2n distinguishable terms.

Each of these terms will contain either xi or yi for any i = 1, 2, . . . , n, but never both.
For instance, we get the term y1x2y3y4y5x6y7y8⋯xn−2yn−1yn. Since there are (nr) ways of
choosing r labeled x’s from n labeled x’s, there will be (nr) terms with r x’s and (n − r) y’s
in the expansion of (1). So if we erase all the labels we get

(x + y)n =
n
∑
k=0

(n
k
)xk yn−k

as claimed. �

6Recall that the capital-sigma notation works like this: ∑
b
i=a x i = xa + xa+1 +⋯+ xb−1 + xb . Basic example:

4

∑
s=1

s2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 15 = 29.

7Ross presents another proof that uses induction. You may �nd it helpful to study both proofs.



MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES 9

Question 8. How many subsets can we make from a set of n elements?

Solution. Wewill use the binomial theoremwith x = 1 and y = 1. Since there are (nk) subsets
of size k we can make a total of

n
∑
k=0

(n
k
) =

n
∑
k=0

(n
k
)1k1n−k = (1 + 1)n = 2n

subsets.8 ◊

2.3.2. �e number of ways of dividing things. �e next combinatorial subjectwewill discuss
is that of counting possible divisions.

Question 9 [�e wall trick]. Suppose we have 11 identical marbles, and we want to put
them into 4 di�erent boxes. How many ways are there of doing that?

Solution. We are going to solve this using the so-called wall trick. Instead of putting the
marbles in the boxes, we are going to put the boxes around themarbles. We start by putting
all our marbles in a row:

b b b b b b b b b b b

Now we put our four boxes around them:

∣ b b ∣∣ b b b ∣∣ b ∣∣ b b b b b ∣

We can encode this sequence by writingM (marble) forb, andW (wall) for ∣∣:
{M ,M ,W ,M ,M ,M ,W ,M ,W ,M ,M ,M ,M ,M}.

We did not encode thewalls at the beginning and end of the sequence, since they are always

in the same place. We can shorten the encoding evenmore by only keeping track of the po-

sitions of the walls with respect to the set of walls andmarbles, i.e., {3, 7, 9} ⊂ {1, 2, . . . , 14}.
A possible division then, is characterised by the positions of 3 walls among 11+4−1 possible
locations.

So it turns out that if we want to count the number of possible divisions of 11 marbles

among 4 boxes, this is equivalent to the number of ways that we can choose a set of 3 among

11 + 4 − 1 elements, i.e., there are (14
3
) possible divisions. ◊

Once again, we can generalise this principle:

Principle 5 [Counting possible divisions].

# ways of dividing n indistinguishable elements into r subsets = (n + r − 1
r − 1

)

8Note that we also counted the subset of size 0, i.e., we counted the empty set ∅, corresponding to k = 0.
Since (

n
0
) = 1, there are 2n − 1 nonempty subsets.
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2.4. Urn problems. 9With our basic knowledge of combinatorics we can already do some
useful calculations.�e problems that we are going to discuss are generally known as urn
problems because we are going to imagine our problem as a problemwhere we have to pick
coloured marbles from an urn (vase).10

Let’s start with an “actual” urn problem:

Question 10. An urn contains 15 marbles: 8 are red and 7 are green. We pick 5 marbles from
the urn at random. What is the probability that we pick 3 red marbles and 2 green marbles?

Solution. We start by observing

P( drawing 3 red and 2 green) = # draws of 3 red and 2 green

# draws of 5
= A
B
.

We apply the combination rule for the denominator:

B = (15
5
) = 3003.

To count the numerator, we �rst apply the multiplication rule:

A = # draws of 3 from 8 red × # draws of 2 from 7 green = (8
3
)(7
2
) = 1176.

�erefore,

P( drawing 3 red and 2 green) = 1176
3003

= 0.3916.

◊

Now on to a less obvious urn problem:

Question 11. An election in a small town is between two candidates with the following out-
come:

● Candidate A gets 1422 votes.
● Candidate B gets 1405 votes.

Candidate A is about to be declared the winner, but then it is discovered that 101 votes were
accidentally counted twice. �ere is no reason to believe that the miscount was intentional,
so each twice counted vote could have been for either candidate. What is the probability that
a�er a recount it turns out that Candidate B is declared the winner?

9�is section does not correspond to a section in Ross.�is section is more about solving a certain type

of problem, and not so much about theory.
10 �is kind of reductive thinking involving marbles and urns has a long history going back to Jacob

Bernoulli, who wrote about it �rst in 1713. In his writing he used the latin word ‘urna’. Urna means ‘clay

vessel’, especially of the type used to collect votes or ballots. Nowadays the word has di�erent meanings, but

we are going to ignore this fact.
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Solution. We suppose each of the 1422 + 1405 = 2827 votes is equally likely to have been
counted twice. We write

X = # double votes for A.

We want to calculate the probability of the following event:

E = event that B is the winner
= {1422 − X < 1405 − (101 − X)}
= {1422 − 1405 + 101 < 2X}
= {118 < 2X}
= {X > 59}.

�at is, we want to calculate

P(E) = P(X > 59)
= P(X = 60) + P(k = 61) +⋯ + P(X = 101)

=
101

∑
k=60

P(X = k).

So now we have to calculate the probability P(X = k). We can imagine the votes for A
as being 1422 red marbles, and the votes for B as 1405 green marbles. �en we have the

following equivalence:

P(X = k) = P( drawing k red and (101 − k) green) =
(1422k )( 1405

101−k)
(2827
101

)
.

Now we calculate (with a computer)

P(E) =
101

∑
k=60

(1422k )( 1405
101−k)

(2827
101

)
= 0.059,

so there is about 6% chance that candidate B wins the election. ◊

Question 12. An ecologist captures 60 water beetles in a pond, marks each with a dot of
paint and returns them to the pond. A day later she captures 50 beetles and �nds that 12 are
marked and 38 are unmarked.

What is the best estimate for N, the number of beetles in the pond?

Solution. (A) Assume that
ratio in 2nd sample = ratio in pond.

�en
12

50
= 60
N
, ⇒ N = 60 × 50

12
= 250.
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(B)�e assumption made in (A) is not needed. We can calculate the probability pN ,
pN = P( catch 12 marked and 38 unmarked beetles from N)

and then see which value of N gives the highest probability for that to happen. �is is
known as amaximum likelihood estimate.
Wecan calculate pN using an urnmodel: consider an urnwith 60 redmarbles andN−60

green marbles, then

pN = P(draw 12 red and 38 green from N) =
(60
12
)(N−60

38
)

(N
50
)

.

Now we can check with a computer that pN is maximised when N = 250. ◊

Question 13 [�e pigeonhole principle]. Suppose n people attend a party. What is the
probability that at least two people shake the exact same number of hands during that party?
(Assume that no one shakes the same hand twice, and they don’t shake their own hands.)

Solution. �is could be a very hard problem to solve if we want to enumerate the di�erent
ways in which hands are shook. Suppose that person #1 shakes the hands of persons #2

through #11 during the party.�at implies that persons #2 through #11 also shook at least

one hand. Now suppose person #2 shook 20 hands that night. We know one of them was

person #1, but the other 19 handshakes could have gone to either persons that shook hands

with person #1 (except for person #2 of course), or to persons that didn’t shake hands with

person #1. �is is going to matter if we want to keep track. �ings will get exponentially

more complicated by the time we reach person #n.
We could spend hours trying to �gure it out for ourselves, or we could program a com-

puter to go through the enumeration for us, but it turns out that both approaches are need-

lessly complicated.

We can use the pigeonhole principle instead.�e pigeonhole principle states that if there
are m pigeons in n pigeonholes and m > n, then there has to be at least one pigeonhole
with more than one pigeon in it.11

In terms of our problem, we can look at the pigeonhole principle as follows. Imagine

each person as a marble, so there are n marbles in total. Imagine now that we are going
to put these marbles into urns as follows: marble #k goes into urn #i if person #k shook
exactly i hands. A person can shake 0, 1, 2, . . . , n− 1 hands at the party, so there are n urns,
i.e.,

⊔
urn #0

⊔
urn #1

⊔
urn #2

⋯ ⊔
urn #(n-1)

.

11Asimpli�ed version of the pigeonhole principle: suppose your sock drawer only contains blue and brown

socks. If you pick out your socks without looking, how many socks must you take to be sure that you get a

pair?�e answer is three socks: if you take two socks, then it could happen that you get a pair, but it could

also happen that you take a blue one and a brown one. But now if you take a third sock, then you either have

one blue sock and two brown socks, or two blue socks and one brown sock. Either way you get a pair.
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But note that urn #0 and urn #(n-1) cannot both contain a marble, since if urn #(n-1)

contains a marble, then there is one person at the party that shook hands with everyone,

which would imply that urn #0 is empty. Conversely, if urn #0 contains a marble, then urn

#(n-1) cannot contain a marble for the same reason.�erefore, there are e�ectively (n− 1)
urns and n marbles. Now, by the pigeonhole principle, there must be an urn that contains
more than one marble.�erefore, there must be at least two persons that shook the same

number of hands that night.�erefore, the probability of this event is simply 1.�at is to

say, it cannot happen that everybody at a party shakes a di�erent number of hands than
everybody else. ◊

3. The axioms of probability theory

In the previous chapter we looked at combinatorics, and the types of probabilities that

we can calculate using them. In particular, we noted that the combinatorial principles are

useful for treating experiments where every single outcome has the same probability. But
o�entimes it is either too cumbersome or simply impossible to express our experiment as

one with equally probable outcomes. What we want is a probabilistic theory where we can

decide for ourselves what the probability of a single outcome is going to be, so that we can

match it to our data or our theory. To that end, we are going to start at the very foundation

and work our way up towards a theory of probability that has a large amount of �exibility.

3.1. Sample spaces and events. Our �rst task will be to give a general description for the
events of which we want to calculate the probabilities. Let’s start by de�ning what a sets, a

subsets and events are:

Definition 1 [Sets and subsets]. .
(a) A set is a well-de�ned collection of distinct objects (a.k.a. elements).
(b) If A and B are sets, then B is a subset of A if and only if all elements of B are also

present in A. We write B ⊂ A if B is a subset of A.
(c) We de�ne the empty set as the set with no elements and write ∅.
(d) We de�ne the cardinality of the set A as the number of elements in A and write ∣A∣.

Example 5. Some examples of sets:
(a) A = {1, 2, 3, 4, 5, 6, 7, 8} is a set. B = {2, 4, 5} is a subset of A, i.e., B ⊂ A. �e
cardinality of A is 8, i.e., ∣A∣ = 8.

(b) C = {c, d , e , f , g} is a set. D = {c} is a subset of C, i.e., D ⊂ C.�e empty set is also
a subset of C (or of any set, for that matter), i.e., ∅ ⊂ C. Finally, ∣C∣ = 5, D = 1, and
∣∅∣ = 0.

(c) E = [0, 3] is the set of all real numbers between 0 and 3 (i.e., 2.33349373637. . . , with
any number of decimal points). F = [2, 2.5] is a subset of E. So is G = {1, 2} (the
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set consisting only of the numbers 1 and 2.). �e cardinality of E and F is both
in�nity,12 i.e., ∣E∣ = ∣F ∣ =∞.�e cardinality of G is 2.

(d) H = {shoes, toothbrush, comb, t-shirt, socks} is a set (e.g., the set of things in your
suitcase).�e cardinality of H is 5.

△

Definition 2 [Sample space and events]. For an experiment we de�ne
(a) �e sample space S as the set of all possible outcomes of the experiment.
(b) An event E as any set that is a subset of S, i.e., E is an event if and only if E ⊂ S.

Let’s investigate these de�nitions with a couple of examples:

Example 6. (a) Roll a die. �e sample space is S = {1, 2, 3, 4, 5, 6}. A possible event
could be E = {roll is even} = {2, 4, 6}. Note that E ⊂ S.

(b) Toss two coins.�e sample space is S = {HH, HT, TT, TH}. A possible event could
be E = {second coin is tails} = {HT, TT}.

(c) �e outcome of a race between 5 horses. �e sample space is S = {all 5! permuta-
tions of (1, 2, 3, 4, 5)}. An event could be E = {horse 2 �nishes before horse 4}.

(d) �e amount of rainfall on a day in millimetres per square meter.�e sample space

is S = {t ∶ 0 ≤ t < ∞} = [0,∞). An event could be E = {it doesn’t rain} = {0} or
F = {between 2 and 4 millimetres of rain} = (2, 4).

△
�e sample space and the events are all sets. Sets have their own rules of arithmetic,

and since we will be working with sets from here on, it is necessary that we master the

arithmetic of sets. Set arithmetic is not unlike number arithmetic. Number arithmetic has

addition (+) andmultiplication (×) as its most basic operations. Set arithmetic has its own
basic operations: union (∪) and intersection (∩).

Definition 3 [Set arithmetic]. Given two sets, E and F we de�ne
(a) �e union E ∪ F as the set of all elements that is either in E or in F or in both.
(b) �e intersection E ∩ F as the set of all elements that is both in E and in F.

When reading set-arithmetic equations and formulas, it may help you to read A∪ B as ‘A
or B happens’ and of A∩ B as ‘A and B happen’.
Let’s again look at some examples:

Example 7. (a) Let E = {1, 2, 4} and F = {2, 3, 4, 6}.�e union of E and F, is set their
combined elements , i.e., E ∪ F = {1, 2, 3, 4, 6} (we remove double elements). �e
intersection of E and F is the set of elements that is in both, so E ∩ F = {2, 4}.

(b) Let E = {all odd rolls of a die} = {1, 3, 5} and let F = {all rolls greater than 4} =
{5, 6}.�e union E ∪ F = {1, 3, 5, 6} and the intersection E ∩ F = {5}.

12�e study of the cardinality of intervals of real lines is complicated and more sophisticated that it is

represented here. If you’re interested, look up ‘cardinal numbers’ on Wikipedia.
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Figure 1. Two Venn diagrams.�e rectangle represents the sample space

S, the two circles represent the events A and B. On the le�, the union A∪B
has been shaded, on the right, the intersection A∩ B is shaded.

(c) Let E = {apple, lime, banana, orange, grape, lemon} and let F = {all citrus fruits}.
�e union E ∪ F = {apple, banana, grape, and all citrus fruits} and the intersection
E ∩ F = {lime, orange, lemon}.

(d) Let E = [2, 7] (all real numbers between 2 and 7), and let F = [3, 9]. �e union
E ∪ F = [2, 9] and the intersection E ∩ F = [3, 7].

△

When doing math it is o�en a good idea to draw some schematic diagrams of the thing

you’re trying to study. We can draw such schematic diagrams for set arithmetic as well.

One of the simplest ways of doing this is using so-calledVenn diagrams. In Venn diagrams
the sample space is represented as a square, and the events are represented as (possibly

intersecting) circles. Figure 1 depicts a pair of shaded Venn diagrams.

Sometimes we want to exclude a set, or write it as the negation of an event. For those

cases we have the following de�nitions:

Definition 4 [Relative complement and complement]. Given a sample space S and two
sets, E and F we de�ne
(a) �e relative complement of F in E as E ∖ F, the event that contains all elements of E

that are not in F.
(b) �e complement of E as Ec, the event that contains all elements of S that are not in

E, i.e., Ec = S ∖ E.

See �gure 2 for Venn diagrams of the above de�nition.

Finally, we have the following important de�nition:

Definition 5 [Mutually exclusive sets]. Two sets A and B are mutually exclusive if and
only if A∩ B = ∅. If A and B are mutually exclusive, we will sometimes write this as A∪̇B.
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See �gure 3 for a Venn diagram. Observe that by this de�nition, A and Ac are mutually

exclusive for any set A.
Given the de�nitions given above, the following arithmetic rules for sets can be veri�ed:

Principle 6 [Basic rules of set arithmetic]. Given a sample space S and events E , F , and
G,
(a) (E ∪ F) ∪G = E ∪ (F ∪G) = E ∪ F ∪G .
(b) (E ∪ F) ∩G = (E ∩G) ∪ (F ∩G).
(c) (E ∩ F) ∪G = (E ∪G) ∩ (F ∪G).
(d) (Ec)c = E.
(e) Sc = ∅.

Figure 2. Two Venn diagrams.�e rectangle represents the sample space

S, the two circles represent events A and B. On the le� A ∖ B, the relative
complement of the B inAhas been shaded, on the rightAc, the complement

the A is shaded.

Figure 3. A Venn diagram for two mutually exclusive events.
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�ere is another principle that is less obvious:

Principle 7 [DeMorgan’s laws]. Given a sample space S and sets Ei , for i = 1, 2, . . . , n,

(
n
⋃
i=1

Ei)
c

=
n
⋂
i=1

Ec
i and (

n
⋂
i=1

Ei)
c

=
n
⋃
i=1

Ec
i .

To convince yourself of DeMorgan’s laws, draw a Venn diagram for the case n = 2, i.e.,
illustrate that (A∪B)c = Ac∩Bc and that (A∩B)c = Ac∪Bc.�ere is a proof of DeMorgan’s

laws at the end of Section 2.2 in Ross.

3.2. �e axioms of probability. What we want is to express the probability of an event
E as P(E). In particular, we want a function P( ⋅ ) that takes events as its input and that
gives a number between 0 and 1 as its output. Besides this, we want as much �exibility as

possible, but we don’t want to make any ‘unnatural’ assumptions13 on the events or on the

probability function P. To this end, Andrey Kolmogorov came up with the following three

basic assumptions on the probability function P, also known as axioms on which we can
base the entire study of probability theory:

The axioms of probability. Given a sample space S and and any event E ⊂ S,
● Axiom 1:

0 ≤ P(E) ≤ 1.
● Axiom 2:

P(S) = 1.
● Axiom 3: For any sequence of mutually exclusive events E1, E2, . . . (i.e., Ei ∩ E j = ∅
when i ≠ j),

P(
∞

⋃
i=1

Ei) =
∞

∑
i=1
P(Ei).

From these three axiomswe can derive all sorts of general properties of probability func-

tions.�en, if we have an experiment that we want to describe in terms of probabilities, we

can take our data or theory about the experiment and derive from it a probability function

P. We will then check whether our choice of P satis�es the axioms. If it does, then it is a

‘true’ probability, and all these general properties will hold for our choice of P. If it doesn’t

satisfy the axioms, then we can’t be sure that those properties hold (most likely they won’t).

So it is very important that any probability we choose from now on satis�es the axioms.

We can roughly translate these three axioms into words as follows:

● “Axiom 1:” Any outcome of an experiment will have a probability that is between 0
(if it never happens) and 1 (if it always happens).

● “Axiom 2:” If we do an experiment, then ‘something’ has to happen.
13E.g., we want to exclude the possibility that a probability is negative, or that it is possible that a single

experiment can have more than one outcome at the same time.
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● “Axiom 3:” If two outcomes cannot happen at the same time (e.g. heads and tails)
then their probabilities can be added.

�e third translation is actually a fair deal weaker than axiom 3,14 but it does serve to illus-

trate the ‘naturalness’ of the axiom.

Let’s consider some examples of functions that satisfy the three axioms of probability:

Example 8. Suppose S is �nite: S = {1, 2, . . . ,m}.
(a) Given numbers p j, j = 1, . . . ,m that satisfy

0 ≤ p j ≤ 1 and p1 + p2 +⋯ + pm = 1,

a probability is de�ned by setting

P({ j}) = p j and P(E) =∑
j∈E
P({ j})

for any event E ⊂ S.
(b) Equally likely outcomes: take p j = 1

m = 1

∣S∣ for each j.�en a probability is de�ned
by setting

P(E) =∑
j∈E

1

∣S∣
= ∣E∣

∣S∣
= # of outcomes in E

# total outcomes
.

(Note that we have used this construction of a probability many times already in

the �rst chapter.�is veri�es that what we did there was ok.)

(c) Pick an integer n and a number p ∈ [0, 1]. By the binomial theorem,

1 = 1n = (p + (1 − p))n =
n
∑
k=0

(n
k
)pk(1 − p)n−k .

So if we set S = {0, 1, . . . , n} and p j = (nj)p j(1− p)n− j we get a probability by setting

P(E) =∑
j∈E

(n
j
)p j(1 − p)n− j.

(�is is a very important probability, also known as the binomial distribution. We
will return to it many times.)

△

We can determine some of the immediate consequences of the axioms of probability:

Principle 8. For any event E,
P(Ec) = 1 − P(E) and P(∅) = 0.

14In axiom 3 we use the union of an in�nite number of events: this may seem ‘unnatural’, and some

mathematicians in the past have objected to this axiom (just as some have objected to in�nite sums, in�nite

integrals, etc.), but it will make our life a lot easier later on, so we will be pragmatic and use it nonetheless.
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Proof: Using that E∪Ec = S and that E∩Ec = ∅, we can apply axioms 2 and 3 to determine

1 = P(S) = P(E ∪ Ec) = P(E) + P(Ec),

so it follows that

P(Ec) = 1 − P(E),
and in particular,

P(∅) = P(Sc) = 1 − P(S) = 0.
�

Principle 9. If E ⊂ F, then
P(E) ≤ P(F).

Proof:We can write F as a union of twomutually exclusive events: F = E∪̇(F ∩Ec) and use
�rst axiom 3 and then axiom 1:

P(F) = P(E) + P(F ∩ Ec) ≥ P(E).

�

Principle 10. Given two events E and F,
P(E ∪ F) = P(E) + P(F) − P(E ∩ F).

Proof:We can write E ∪ F as three mutually exclusive events:

E ∪ F = (E ∩ F c)∪̇(E ∩ F)∪̇(Ec ∩ F) =∶ A∪̇B∪̇C .

By axiom 3,

P(E ∪ F) = P(A) + P(B) + P(C).
But also note that by the de�nitions of A, B and C and axiom 3,

P(E) = P(A) + P(B) and P(F) = P(B) + P(C).

Adding up these two equations gives

P(E) + P(F) = P(A) + 2P(B) + P(C)
= P(E ∪ F) + P(B)
= P(E ∪ F) + P(E ∩ F).

Subtracting P(E ∩ F) on both sides completes the proof. �

Question 14. In Beverly Hills, 10% of the population is rich, 5% is famous, and 3% is rich
and famous. Pick a person at random from the population of Beverly Hills. What is the
probability that this person is either rich or famous?
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Solution. De�ne the events
R ∶= {person is rich} and F ∶= {person is famous}.

It is given that

P(R) = 0.1, P(F) = 0.05, and P(R ∩ F) = 0.03,
Applying Principle 10 we get that

P({person is rich or famous}) = P(R ∪ F)
= P(R) + P(F) − P(R ∩ F)
= 0.1 + 0.05 − 0.03
= 0.12,

so the probability of picking someone either rich or famous is 12%. ◊

Principle 10 can be generalised to the following identity:

Principle 11 [�e inclusion-exclusion identity].

P(E1 ∪ E2 ∪⋯ ∪ En) =
n
∑
i=1
P(Ei) − ∑

0≤i1≤i2≤n
P(Ei1 ∩ Ei2) +⋯

+ (−1)r+1 ∑
0≤i1≤i2≤⋯≤ir≤n

P(Ei1 ∩ Ei2 ∩⋯ ∩ Eir)

+⋯ + (−1)n+1P(E1 ∩⋯ ∩ En).

�is is a pretty complicated identity, but for small n it is fairly simple, e.g., for n = 3,
P(A∪ B ∪ C) = P(A) +P(B) +P(C) −P(A∩ B) −P(A∩ C) −P(B ∩ C) +P(A∩ B ∩ C).
See �gure ?? for a sketch.

Question 15 [�e matching problem]. In preparation of a ‘Secret Santa’ party, n friends
draw a slip of paper with a name on it from a hat with one slip for each of the friends. What
is the probability that nobody draws the lot with their own name on it?

Solution. Let Ei denote the event that friend i draws his or her own lot. �e probability
that no one person draws their own name can be written as

P(An) ∶= P(no one draws their own lot) = 1 − P (E1 ∪ E2 ∪⋯ ∪ En) . (2)

If n = 2 then by Principle 10,
P(A2) = 1 − P(E1 ∪ E2) = 1 − P(E1) − P(E2) + P(E1 ∩ E2)

= 1 − 1
2
− 1
2
+ 1
2
= 1
2
.

(Here we used that P(E1 ∩ E2) = P(E1) = 1

2
because if there are two lots and friend 1 draws

his own name, then friend 2 has to draw her name as well.
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Figure 4. A schematic drawing of the inclusion-exclusion identity in

terms of Venn diagrams.

For general n we can apply the inclusion exclusion identity (Principle 11) to the prob-
ability on the right-hand side of (2). We want to calculate for all r between 1 and n the
sum

∑
1≤i1<i2<⋯<ir≤n

P(Ei1 ∩ Ei2 ∩⋯ ∩ Eir).

We know from combinatorics that there are n! ways of distributing n lots. If friends
i1, i2, . . . , ir draw their own lots, then there are (n − r)! ways of distributing the remaining
(n− r) lots among the remaining (n− r) friends, so the probability that friends i1, i2, . . . , ir
draw their own lots is equal to

P(Ei1 ∩ Ei2 ∩⋯ ∩ Eir) =
# ways to draw lots of (n − r) friends

# ways to draw lots of n friends
= (n − r)!

n!
.

Also, there are (nr) ways of choosing r friends from n, so

∑
1≤i1<⋯<ir≤n

P(Ei1 ∩⋯ ∩ Eir) = (n
r
)(n − r)!

n!
= n!
r!(n − r)!

(n − r)!
n!

= 1
r!
.

�erefore we can apply the inclusion-exclusion identity to determine

P (E1 ∪ E2 ∪⋯ ∪ En) =
1

1!
− 1
2!
+ 1
3!
+⋯ + (−1)n+1

n!
.
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�is implies that

P(no one draws their own lot) = 1 − 1 + 1
2!
− 1
3!
+⋯ + (−1)n

n!
=

n
∑
r=0

(−1)r
r!
.

From calculus we know that the Taylor expansion of ex around x = 0 is given by

ex =
∞

∑
r=0

xr
r!
.

If we choose x = −1 we get

e−1 =
∞

∑
r=0

(−1)r
r!
.

So when n is large, we have that

P(no one draws their own lot) ≈ e−1 ≈ 0.3679.

◊

Question 16 [�e birthday ‘paradox’]. Suppose n persons are in a room. At what value of
n is the probability that at least two persons have the same birthday equal to 1/2?

Solution. So let’s ignore February 29. We want to calculate P(E) where E = {at least two
persons have the same birthday}. To determine the probability for smaller values of n, we
�rst use Principle 8, i.e., P(E) = 1 − P(Ec). Note that

Ec = {nobody has the same birthday as anybody else}.

Now it is easy to use combinatorics to determine the value of n such that P(Ec) = 1

2
:

P(Ec) = # ways to assign n di�erent birthdays
# ways to assign n birthdays

= 365 ⋅ 364⋯(365 − (n − 1))
(365)n

= 365
365

⋅ 364
365

⋯365 − (n − 1)
365

= 1 ⋅ (1 − 1

365
)(1 − 2

365
)⋯(1 − n − 1

365
)

=
n−1
∏
j=1

(1 − j
365

)

= 1

365n
365!

(365 − (n − 1) − 1)!
.
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Here in the second-to-last step we used the capital-pi notation for a product.15 From here

on it is not too hard to calculate the value of n with a computer. But let’s continue by hand
to try our hand at some approximation techniques.

Product formulas are typically hard to evaluate, so we are going to use a trick to turn the

product into a sum. Recall the following identity:

log(xy) = log(x) + log(y),

and more generally,

log(
n
∏
i=1

ai) =
n
∑
i=1
log ai .

�at is, the logarithm turns products into sums.16 Furthermore, x = elog(x), so we can write

P(Ec) = elog∏
n−1
j=1 (1−

j
365
) = e∑

n−1
j=1 log(1−

j
365
)
.

Now we use that log(1 − x) ≈ −x is a good approximation17 when x is small, to get

P(Ec) ≈ e−∑
n−1
j=1

j
365 .

Furthermore, it is not hard to prove that∑k
j=1 j =

k(k+1)
2
, so we get

P(Ec) ≈ e− 1

365

n(n−1)
2 = e−

n(n−1)
730 .

So now it remains to solve e−
n(n−1)
730 = 1

2
for n. We do this the old-fashioned way:

1

2
= e−

n(n−1)
730 ⇒ n2 − n + 730 log 1

2
= 0 ⇒ n = 1

2
+ 1
2

√
1 − 2920 log 1

2
.

It turns out that 1 − 2920 log 1
2
≈ 2025 = 452 so

n ≈ 1
2
+ 1
2

√
452 = 1

2
+ 45
2
= 23.

15�is is the product analogue of the capital-sigma notation for summation, that is,

3

∏
i=0

(1 + i) = (1 + 0)(1 + 1)(1 + 2)(1 + 3) = 24.

16We are going to use the natural logarithm (with base number e = 2.71828 . . . ), but this identity holds

for any base number.
17�is follows from the Taylor expansion of log(1 − x) around x = 0, which gives

log(1 − x) = −
∞

∑
n=1

xn

n
= −x − x2

2
− . . .
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So it turns out that the probability that two people have the same birthday is already 50%

when there are just 23 persons in the room!18 (And when there are 50 persons in the room,

P(E) ≈ 0.97.) ◊

18�at a number as small as 23 should be the answer may seem a bit surprising at �rst sight, but it is

certainly no paradox. Among 23 persons there are (
23

2
) = 253 pairs, and each pair has probability 1

365
of

having the same birthday.
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4. Conditional probabilities

In the previous section we discovered how to set up a probability function P for a given

experiment: we should �rst determine the sample space, and then determine the proba-

bilities for each possible outcome in that sample space.19 If we know these things, then we

can calculate the probability of any given event.

So imagine that we have done all that work, andwe are ready to start our experiment, but

then we discover that actually some partial information about outcome is available. With

this information can rule out some of the outcomes in our sample space.�at implies that

the sample space that we chose when we set up the probability is actually too big, and so

our probabilities are all wrong. We need to start over.

Fortunately, there is a pretty easyway to �gure out this new probability function, because

we can use the sample space, the probability function and the information. Consider the

following example:

Example 9. We �ip a coin twice. Our sample space is S = {HH, HT, TH, TT}. �e event
that we get heads twice is E = {HH}, and the probability of E is

P(E) = ∣E∣
∣S∣

= 1
4
.

Now we are informed that the �rst toss is heads. As a result, we can rule out the outcomes

TT and TH. Our new sample space is thus T = {HH, HT} and for our new probability
function we are going to writeQ.�at is, information reduces the sample space. Given the

information T , the probability of getting heads twice is

Q(E) = ∣E∣
∣T ∣

= 1
2
.

Note that T is an event, that is T ⊂ S. Also note that we can rewrite for any event F ⊂ T ,

P(F) = ∣F ∣
∣S∣

= ∣F ∣
∣T ∣

∣T ∣
∣S∣

= Q(F)P(T),

so that

Q(F) = P(F)
P(T)

.

△
�e above example shows that given a probability function P and some information T ,

we can de�ne a new probability functionQ that takes the information T into account.�e
probability function Q is called a the conditional probability function. See Figure ?? for a
sketch.

We can generalise the construction of Example 9 so that it works for any probability

function and any information T :
19�ere are cases where the sample space is so large that we cannot do this. We will discuss this case in

much detail in upcoming sections. For now, assume that our sample space is not too large.
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Figure 5. A schematic drawing of conditioning E on the information T
in terms of Venn diagrams.

Definition 6 [Conditional probability]. If P(T) > 0, then we de�ne the probability of E
given information T as

P(E ∣ T) = P(E ∩ T)
P(T)

.

We say that P(E ∣ T) is the ‘conditional probability of E given that T occurred’.

Question 17. We roll 2 dice. Recall from Example 2 that the probability that the sum of two
dice rolls is 8 is 5/36. Now it is revealed that the outcome of the roll of the second die is 3.
Now what is the probability that the sum of the two dice rolls is 8?

Solution. Our sample space for two dice rolls is S = {(1, 1), (1, 2), . . . , (6, 5), (6, 6)}. Each
outcome in S is equally probable and ∣S∣ = 6.�e event that we want to calculate the proba-
bility of is E = {(2, 6), (3, 5), . . . , (6, 2)}. Our information isT = {(1, 3), (2, 3), . . . , (6, 3)}.
Note that E ∩ T = {(5, 3)} and that ∣T ∣ = 6.�erefore,

P(E ∣ T) = P(E ∩ T)
P(T)

=
1

36

6

36

= 1
6
.

So, given the information T , the probability that we rolled a sum of 8 increases to 1/6. ◊
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Question 18. Toss two coins again. What is the probability that the �rst toss comes up heads
if we know that at least one coin comes up heads?

Solution. Our sample space for two coin tosses is S = {HH, HT, TH, TT}. All outcomes in
S are equally likely. Our event is E = {HH, HT}. Our information is T = {HH, HT, TH}.
�e conditional probability of E given T is

P(E ∣ T) = P(E ∩ T)
P(T)

=
2

4

3

4

= 2
3
.

◊

4.1. Conditional probabilities are probabilities. It is important to remember that any
conditional probability is a full-�edged probability function. �at is, for any information

T such that P(T) > 0 (i.e., for any information that isn’t impossible), the conditional prob-
ability function P( ⋅ ∣ T) satis�es the three axioms of probability theory:
Given a sample space S, and events E , T ⊂ S such that P(T) > 0,
(#1)

0 ≤ P(E ∣ T) ≤ 1.
(#2)

P(S ∣ T) = 1.
(#3) For any sequence of mutually exclusive events E1, E2, . . . ,

P
⎛
⎝

∞

⋃
i=1

Ei

RRRRRRRRRRR
T
⎞
⎠
=

∞

∑
i=1
P(Ei ∣ T).

Conditional probabilities can even come in handy when we have no information, be-

cause sometimes conditional probabilities are easier to calculate than normal probabilities.

In particular, the following principle comes in handy very o�en:

Principle 12.

P(A∩ B) = P(A)P(B ∣ A)

Proof:�e identity follows directly from rewriting the de�nition of a conditional probabil-
ity.

Question 19. Draw two cards from a deck of 52. What is the probability of drawing two
aces?

Solution. Write E1 for the event that the �rst card is an ace, and E2 for the event that the
second one is an ace. We want to calculate P(E1 ∩ E2). We can use Principle 12:

P(E1 ∩ E2) = P(E1)P(E2 ∣ E1) =
4

52
⋅ 3
51
.

Note that this calculation is much easier than the counting techniques we used before. ◊
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Question 20. �e probability that a randomly chosen snake at the zoo is venomous is 15%.
�e probability that an Australian snake is venomous is 80%. About 10% of the snakes at the
zoo is Australian. What percentage of the snakes at the zoo is venomous but not Australian?

Solution. WriteV for the event that a snake is venomous. Write A for the event that a snake
is Australian. Observe that P(V) = 0.15, that P(A) = 0.1 and that P(V ∣ A) = 0.8. We want
to calculate P(V ∩ Ac). Note that

P(V) = P(V ∩ A) + P(V ∩ Ac),
so

P(V ∩ Ac) = P(V) − P(V ∩ A).
We use Principle 12 to write P(V ∩ A) = P(V ∣ A)P(A):

P(V ∩ Ac) = P(V) − P(V ∣ A)P(A) = 0.15 − 0.8 × 0.1 = 0.07.
So 7% of the non-Australian snakes at the zoo is venomous. ◊

We can generalise Principle 12 to more than two events:

Principle 13 [�e multiplication rule].

P(E1 ∩ E2 ∩⋯ ∩ En) = P(E1) × P(E2 ∣ E1) × P(E3 ∣ E1 ∩ E2) ×⋯ × P(En ∣ E1 ∩⋯ ∩ En−1)

Proof. Apply De�nition 6 to each term on the right-hand side:
P(E1)
1

× P(E1 ∩ E2)
P(E1)

× P(E1 ∩ E2 ∩ E3)
P(E1 ∩ E2)

×⋯ × P(E1 ∩ E2 ∩⋯ ∩ En)
P(E1 ∩⋯ ∩ En−1)

.

�is is a telescoping product, so everything is canceled except for the �rst denominator

and the last numerator. �

Question 21. Recall Question 15 about the probability that nobody draws their own name
in preparation of a secret Santa party. We calculated that the probability that nobody in a
group on n friends draws their own name is

Pn =
n
∑
r=0

(−1)r
r!

≈ 1
e
.

What is the probability that exactly k friends draw their own name?

Solution. �ere are (nk) ways of choosing k friends. First we are going to calculate the
probability that a �xed group of k friends draws their own name, and the others don’t.
Write E for the event that these k friends all draw their own name, and write F for the
event that all of the n− k other friends don’t draw their own name. So we want to calculate
the probability of the event E ∩ F. We use Principle 12:

P(E ∩ F) = P(E)P(F ∣ E).
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Now write Gi , i = 1, . . . , k for the event that friend i draws his or her own name.�en we
can write E = G1 ∩⋯ ∩Gk so we can use Principle 13 to calculate the probability of E:

P(E) = P(G1 ∩⋯ ∩Gk) = P(G1)P(G2 ∣ G1)⋯P(Gk ∣ G1 ∩⋯ ∩Gk−1)

= 1
n
1

n − 1
⋯ 1

n − k + 1

= (n − k)!
n!

.

�e event E implies that k friends draw their own name. If event E occurs, this implies
that the other n−k friends will be choosing from among their own n−k names.�erefore,

P(F ∣ E) = Pn−k =
n−k
∑
r=0

(−1)r
r!
.

It follows that

P(E ∩ F) = (n − k)!
n!

Pn−k
Now recall that we �xed the group of k friends, so we need to multiply P(E ∩ F) by the
number of ways in which we can do this for the �nal answer, i.e.,

P(exactly k friends draw own name) = n!
k!(n − k)!

(n − k)!
n!

Pn−k =
Pn−k
k!

≈ 1

ek!
.

◊

4.2. Bayes’ rule. It is a simple consequence of set arithmetic that we can write for any two
events E , F,

E = (E ∩ F) ∪ (E ∩ F c).
Applying this identity, Axiom #3, and Principle 12 we can derive the following useful rule:

Principle 14 [Total probability rule]. .
(a) For events E , F,

P(E) = P(E∣F)P(F) + P(E∣F c)P(F c).
(b) For a sample space S and events E and F1, . . . , Fn such that Fi ∩ F j = ∅ for i ≠ j and
⋃n

i=1 Fi = S,

P(E) =
n
∑
i=1
P(E ∣ Fi)P(Fi).

See �gure 6 for an illustration of the total probability rule.

Wehave seen how to use added information tomodify our probability function. It would

be useful if we could reverse this procedure.�e following question illustrates why:

Question 22. Professional cyclists are tested for the performance enhancing drug EPO at the
end of a race. �e test gives a false positive 1% of the time, i.e., the test is sometimes positive
even if the cyclist has not used EPO. Moreover, the test gives a false negative 2% of the time,
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Figure 6. A schematic drawing of the total probability rule. �e events

F1, . . . , F4 partition the state space S. By evaluating the probability of E with
respect to each of the Fi individually and then adding these probabilities

together (according to their ownprobabilities), we get the same aswewould

get if we evaluate the probability of E with respect to S.

i.e., the test is negative even if the cyclist has used EPO. Suppose that 3% of all professional
cyclists uses EPO. What is the probability that a cyclist who tests positive has used EPO?

Solution. Write E for the event that a cyclist uses EPO and P for the event that the test is
positive. We are asked to calculate P(E∣P) and we are given that

P(E) = 0.03, P(P∣Ec) = 0.01 and P(Pc ∣E) = 0.02.

We can rewrite

P(E∣P) = P(E ∩ P)
P(P)

= P(P∣E)P(E)
P(P)

(3)

From the data we can derive that P(P∣E) = 1 − P(Pc ∣E) = 0.98. Moreover, by the total
probability rule,

P(P) = P(P∣E)P(E) + P(P∣Ec)P(Ec) = 0.98 × 0.03 + 0.01 × 0.97 = 0.0391.

We insert these numbers into (3) to obtain

P(E∣P) = 0.98 × 0.03
0.0391

= 0.75,
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So even with a very accurate test, there is still 25% chance that the cyclist was innocent.20

◊

Equation (3) is an incredibly useful equation. It is, in fact, one of the cornerstones of

statistics.�e formula has a name:

Principle 15 [Bayes’ rule].

P(E∣F) = P(F ∣E)P(E)
P(F)

Question 23. Suppose there are three cards in a hat: one card is red on both sides, one card
is black on both sides, and one card is red on one side and black on the other side. A card is
drawn from the hat and placed on the table. �e top of the card is red. What is the probability
that the bottom of the card is black?

Solution. Write R for the event that the top is red, and write Rr for the event that both sides
are red, Bb that both sides are black, Rb that one side is red, the other black. We want to
calculate P(Rb∣R). We apply Bayes’ rule:

P(Rb∣R) = P(R∣Rb)P(Rb)
P(R)

.

Note that P(Rb) = P(Rr) = P(Bb) = 1

3
. Moreover, by the total probability rule,

P(R) = P(R∣Rr)P(Rr) + P(R∣Rb)P(Rb) + P(R∣Bb)P(Bb)

= 1 × 1
3
+ 1
2
× 1
3
+ 0 × 1

2
= 1
2
.

�erefore,

P(Rb∣R) =
1

2
× 1

3

1

2

= 1
3
.

◊

4.3. Independence. In the previous sectionswe saw that information can sometimes dras-
tically change the probability of an event. But sometimes, having information does not

change the outcome of any event. For instance, the information that it is snowing on the

north pole will not increase your chances of winning the lottery. Having information that

does not a�ect the probability function may seem useless, but in fact this is not so. Real-

ising that knowledge of one event does not change the probability of another event can be

incredibly useful information in itself:

20Before you start to think that your favourite cyclist may be innocent, keep in mind that this calculation

depends strongly on the assumption that only 3% of all cyclists used EPO. If we assume that 30% uses, then

the probability that the cyclist is an EPO if the test is positive goes up to about 98%.
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Definition 7 [Independent events]. �e events E and F are independent if
P(E∣F) = P(E) and P(F ∣E) = P(F).

If the events do not satisfy the above equalities, then E and F are dependent.

Note that by the de�nition of conditional probabilities, the le�-hand equation implies the

right-hand one, and vice versa, so either of the two equations su�ces as a de�nition.

Independent events are much easier to calculate with than dependent events. In partic-

ular

Principle 16. If E and F are independent events, then
P(E ∩ F) = P(E)P(F).

Example 10. Successive coin tosses are independent. Consider the sample space of two
coin tosses S = {HH, HT, TH, TT}, then

P(1st toss is heads) = P({HH,HT}) = 1
2

and P(2nd toss is tails) = P({HT , TT}) = 1
2
,

and

P({1st toss is heads} ∩ {2nd toss is tails}) = P({HT}) = 1
4
.

△

Question 24. Draw a card from a deck. If E is the event that the card is an ace, and F is the
event that is a spade, are E and F independent?

Solution. Calculate

P(E) = 1
13
, ,P(F) = 13

52
, and P(E ∩ F) = 1

52
.

Note that P(E) × P(F) = P(E ∩ F), so E and F are indeed independent. ◊

Question 25. For events A and B we know that
P(A) = 0.4, P(B) = 0.3, and P(A∪ B) = 0.58.

Are A and B independent?

Solution. �e events A and B are independent if P(A∩ B) = P(A)P(B). From the data it
follows that P(A)P(B) = 0.4× 0.3 = 0.12. We can use Principle 10 to determine P(A∩ B):

P(A∪ B) = P(A) + P(B) − P(A∩ B),
so

P(A∩ B) = 0.4 + 0.3 − 0.58 = 0.12.
It follows that A and B are indeed independent. ◊
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If two events are independent, then the events are also independent of each other’s com-

plements:

Principle 17. If E and F are independent events, then
P(E ∩ F c) = P(E)P(F c).

Proof. Since E = (E ∩ F)∪̇(E ∩ F c) it follows that

P(E) = P(E ∩ F) + P(E ∩ F c)
= P(E)P(F) + P(E ∩ F c).

Rearranging gives

P(E ∩ F c) = P(E) − P(E)P(F)
= P(E)(1 − P(F))
= P(E)P(F c).

�
If two events are independent, then their complements are also independent:

Principle 18. If E and F are independent events, then
P(Ec ∩ F c) = P(Ec)P(F c).

Proof. Homework.

Question 26. If E is independent of F and E is independent of G, does it follow that F is
independent of G?

Solution. �e answer is ‘no’. We prove this by giving a counter example.21 As we have
already seen, if E is independent of F, then it is also independent of F c. Suppose that

0 < P(F) < 1, then it is not hard to see that F and F c are not independent:

P(F ∩ F c) = P(∅) = 0, while P(F)P(F c) = P(F)(1 − P(F)) > 0

so in particular,

P(F ∩ F c) ≠ P(F)P(F c).
◊

In general it should be noted that any two mutually exclusive events that are not empty

sets cannot be independent.

21�ere exist many more counter examples to this statement, see for instance Example 4e on page 76 of

Ross.
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Question 27. A sequence of n times the same experiment is performed. Each experiment
can end in success, with probability p, or in failure, with probability 1 − p. �e outcomes of
the experiments are independent.

(a) What is the probability that at least 1 success occurs?
(b) What is the probability that the �rst success occurs on the rth trial?
(c) What is the probability that exactly k successes occur?

Solution. Write Ei for the event that the ith experiment is a success.
(a) We want to calculate

P(at least 1 success) = 1 − P(no success)
= 1 − P(Ec

1 ∩ Ec
2 ∩⋯ ∩ Ec

n)
= 1 − P(Ec

1 )P(Ec
2)⋯P(Ec

n)
= 1 − (1 − p)n .

(b)�e event that the rth trial is the �rst success implies that the �rst r − 1 trials are a
failure.�erefore,

P(1st success on rth trial) = P(Ec
1 ∩ Ec

2 ∩⋯ ∩ Ec
r−1 ∩ Er)

= P(Ec
1 )⋯P(Ec

r−1)P(Er)
= (1 − p)r−1p.

(c)�ere are (nk) sequences in which k successes and n− k failures can occur.�erefore,

P(exactly k successes) = (n
k
)pk(1 − p)n−k .

◊

�e following is one of the oldest probability problems out there.22 Like all old proba-

bility problems, this one is about gambling.

Question 28 [Gambler’s ruin]. You and a friend are playing a game of coin �ip. You �ip
a coin, and if it comes up heads, you win a dollar from your friend. But if it comes up tails,
you lose a dollar to your friend. You keep playing the game until one of you goes broke. You
start with r dollars, your friend with n − r dollars (so there are n dollars in total). What is
the probability that you go broke?

Solution. Each coin �ip has the same probability of coming up heads (i.e., 1/2), so the game
is fair.23Write Ar for the event that you lose all your money if you start with r dollars. We

22�e great Dutch scientist Christiaan Huygens studied it �rst in 1657. Huygens was one of the most

brilliant scientists ever. Besides pretty much inventing probability theory, he also invented the pendulum

clock, discovered the rings of Saturn, and was the �rst to develop the theory of light as waves.
23Ross gives the same calculation for an unfair game.
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want to calculate pr ∶= P(Ar). We can use the total probability rule to split the probability
on the event B that your friend wins the �rst game:

pr = P(Ar) = P(B)P(Ar ∣B) + P(Bc)P(Ar ∣Bc).
Since the game is fair, P(B) = P(Bc) = 1

2
. Moreover, the coin �ips are independent, so the

probability of going broke a�er you lose the �rst game is the same as the probability that

you go broke if you start with r − 1 dollars, i.e.,
P(Ar ∣B) = P(Ar−1) = pr−1.

Similarly,

P(Ar ∣Bc) = P(Ar+1) = pr+1.
As a result,

pr =
1

2
pr+1 +

1

2
pr−1.

We can rewrite

pr+1 − pr = pr − pr−1.
It is obvious that pn = 0 so we get the following system of equations:

pn − pn−1 = 0 − pn−1 = −pn−1
pn−1 − pn−2 = pn − pn−1 = −pn−1
pn−2 − pn−3 = pn−1 − pn−1 = −pn−1

⋮ ⋮ ⋮
p2 − p1 = p3 − p2 = −pn−1
p1 − p0 = p2 − p1 = −pn−1.

It follows that each increment (i.e., the di�erence between pi and pi−1) is equal, so
pr = (n − r)pn−1.

It is also obvious that p0 = 1, so 1 = (n − 0)pn−1, which implies that

pn−1 =
1

n
.

So the probability that you go broke if you start with r dollars is

pr =
n − r
n
.

◊

Question 29. Suppose you are hiring a secretary and n people apply for the job. You don’t
want to waste toomuch time with the application procedure, so you decide to hire a candidate
you like on the spot. Your aim is to hire the very best candidate. Your strategy is to interview
r applicants without hiring any, and then to hire the next applicant that is better than all the
�rst r applicants. How big should r be to maximise your chance of getting the best candidate?
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Solution. Assume that no two candidates are equally quali�ed, and that the order in which
they do their interview is random. Write

A = {the best applicant is selected},
Bi = {applicant i is the best},
Ci = {applicant i is selected}.

We can write A in terms of Bi and Ci using some set arithmetic:

A =
n
⋃
i=1

(Bi ∩ Ci) .

Note that Bi and B j are mutually exclusive for i ≠ j, and similarly, Ci and C j are mutually

exclusive, so by Axiom #3,

P(A) =
n
∑
i=1
P (Bi ∩ Ci) .

Now we apply the de�nition of conditional probability:

P(A) =
n
∑
i=1
P (Ci ∣Bi)P(Bi).

�e best candidate could be any of the n candidates, so

P(Bi) =
1

n
for all i = 1, . . . n.

Our strategy dictates that we are not going to hire candidate i if i ≤ r, even if that candidate
is the best, so

P(Ci ∣Bi) = 0 for all i = 1, . . . , r.
�is means that

P(A) =
r
∑
i=1
0 × 1

n
+

n
∑
i=r+1

P(Ci ∣Bi)
1

n

= 1
n

n
∑
i=r+1

P(Ci ∣Bi).

Now, for i > r, the event that you select candidate i, given that i is the best, implies that the
best candidate among the �rst i − 1 candidates was actually among the �rst r candidates.
�is must be the case, because if you interviewed a candidate that was better than the �rst r
candidates before you interviewed candidate i, than that candidate would have been hired.
Since the event is that candidate i gets hired, this must not happen. WriteDi−1 for the event

that the best candidate among the �rst i − 1 candidates is among the �rst r candidates. Our
hiring strategy dictates that, conditioned on the event Bi we have Ci = Di−1 for i > r.
Moreover, the event Di−1 only depends on the relative order of the �rst i − 1 candidates.
Because we are only interested in the ranking of these i − 1 candidates among themselves,
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this is independent of how they compare to candidates i , . . . , n, so Di−1 is also independent

the event Bi , i.e.,

P(Ci ∣Bi) = P(Di−1∣Bi) = P(Di−1).
We can calculate P(Di−1) by counting:

P(Di−1) =
# places for best candidate among �rst r

# places for best candidate among �rst i − 1
= r
i − 1

.

We plug this into our equation for P(A):

P(A) = 1
n

n
∑
i=r+1

r
i − 1

= r
n

n−1
∑
j=r

1

j
.

Using a computer, we can �nd the optimal value for r:
n 1 2 3 4 5 6 7 8 9

optimal r 0 0 1 1 2 2 2 3 3

P(A) 1 0.5 0.5 0.458 0.433 0.428 0.414 0.410 0.406

Finally, we approximate the sum by an integral to determine the optimal r and P(A) for
large n:

P(A) = r
n

n−1
∑
j=r

1

j
≈ r
n

n

∫
r

1

x
dx = r

n
[log x∣nr

= r
n
(log(n) − log(r)) = − r

n
log( r

n
) .

If we write t = r
n , then it follows that

P(A) ≈ −t log t.
Wewant tomaximiseP(A), sowe need to �nd the value of t ∈ [0, 1] thatmaximises−t log t,
i.e., we want to solve

− d
dt

t log t = 0 and − d
2

dt2
t log t < 0. (4)

Recall from calculus that

− d
dt

t log t = − log t − 1 and − d
2

dt2
t log t = − 1

t
.

You can check that the equations (4) are solved for t = 1

e . So, if we choose r =
n
e
, then we

get that the probability that we select the best candidate is

P(A) ≈ − 1
e
log
1

e
= 1
e
= 0.368 . . .

(Using some advanced mathematics you can actually prove that the strategy of pass-

ing on r candidates and then picking the best one a�er that is actually the best possible
strategy.) ◊
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4.4. Simpson’s paradox. �e following data is from a medical paper comparing the e�ec-
tiveness of treatments for kidney stones.24 Two types of treatment were studied: treatment

A is surgical removal of the kidney stones, treatment B is percutaneous nephrolithotomy.

�e data gives the following rates of e�ectiveness:

Treatment A Treatment B

Small stones 93% (81/87) 87% (234/270)

Large stones 73% (192/263) 69% (55/80)
Both 78% (273/350) 83% (289/350)

Something weird is going on. If we look at the total e�ectiveness of each treatment, then

treatment B seemsmost e�ective, but if we look at the e�ectiveness for both small and large

stones separately, then treatment A seems most e�ective in both cases. Which treatment

should we recommend?

First of all, we should note that this is not actually a paradox. When we compare these

success rates, we are comparing two di�erent probability functions: the sample spaces of

the probabilities of having success with treatment A and treatment B, respectively, are not

the same. If we look at the e�ectiveness for treatment A, we sample from a population

where 87 patients have small stones, while 263 have large stones, while the distribution of

the population for treatment B this ratio is pretty much reversed:

Treatment group A Treatment group B

Small stones 87 270

Large stones 263 80

Both 350 350

It turns out that treatment B is less invasive than treatment A, but it is much harder

to perform on patients with large kidney stones, so doctors prefer treatment A for large

stones and treatment B for small ones. �is causes the di�erence in sample spaces. Both

treatments, however, work better for small kidney stones than for large ones. So the reason

that treatment B seems more e�ective on the whole, is that it gets applied to the more easy

cases, while the more e�ective treatment A gets applied to mostly hard cases.

To conclude, if you only care about success (and not invasiveness of the procedure) then

treatment A is your best choice.

24C. R. Charig, D. R. Webb, S. R. Payne, J. E. Wickham (29 March 1986). “Comparison of treatment of

renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy”. Br
Med J (Clin Res Ed) 292 (6524): 879–882.
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5. Random variables

It o�en happens that the outcome of an experiment is a number, i.e., for each outcome

in the sample space S a number X is observed. We call such a number a random variable.25
Studying a problem in terms of random variables gives us a new way of understanding

probabilities, because we can treat random variables as functions X ∶ S → R.

Example 11 (Bernoulli random variable). An experiment has only two outcomes: F (fail-
ure) and F c (success), with probabilitiesP(F) = 1−p andP(F c) = p. We de�ne the random
variable X as

X ∶= {0 if the outcome is F ,
1 if the outcome if F c .

Now we can write the probabilities of our original problem as

P(F) = P(X = 0) and P(F c) = P(X = 1).

�is is one of the simplest random variables that we can de�ne, but it is a very important

one nonetheless: it is called the Bernoulli random variable with parameter p. To indicate
that random variable X is a Bernoulli random variable with parameter p, we write

X ∼ Ber(p)

�e Bernoulli random variable does not appear to be a particularly useful function. But

with it, we can de�ne another function: we de�ne the probability mass function of X as
f (x) ∶= P(X = x), i.e.,26

f (x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − p if x = 0,
p if x = 1,
0 for other values of x .

△

We can generalise this example to a de�ne a probability mass function for a given ran-

dom variable:

Definition 8. Given a random variable X, the probability mass function of X is de�ned as
f (x) = P(X = x) for all x ∈ R.

Example 12 (Binomial random variable). Repeat n times the Bernoulli experiment with
parameter p, and now let

X ∶= # observed successes.

25We will o�en write random variables as capital letters near the end of the alphabet, e.g., X ,Y , or Z. We
will reserve the lower case letters for real variables, e.g., x , y and z.
26�e Ross book writes p(x) for the probability mass function, but I think the letter p is getting a bit

overused, so we will typically write f (x).
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We call X a binomial random variable. X can take the values 0, 1, 2, . . . , n. To indicate that
X is a binomial random variable with parameters n and p we write

X ∼ Bin(n, p).
�e probability mass function of X is given by

f (x) = P(X = k) = (n
k
)pk(1 − p)n−k for k = 0, 1, . . . , n

(recall Example 27(c)). △

Example 13 (Geometric random variable). We repeat a Bernoulli experiment with param-
eter p until we see the �rst success, and let

X ∶= # trials until �rst success.

We call X a geometric random variable with parameter p. X can take the values 1, 2, 3, . . . .
To indicate that X is a geometric random variable with parameter p, we write

X ∼ Geo(p).
�e probability mass function of X is given by

f (x) = P(X = k) = (1 − p)n−1p
(recall Example 27(b)). △

In this section we will study discrete random variables.�ese are random variables that

satisfy the following technical de�nition.

Definition 9. We say that a random variable X is discrete if X takes values on a set I ⊂ R
that contains only separated points.�at is, I contains no intervals of numbers, so there exists
no a, b such that the interval [a, b] ⊂ I .

Example 14 (Discrete random variables). Bernoulli random variables are discrete, because
they take values on the set {0, 1}. Similarly, Binomial random variables are discrete, be-
cause they take values on the set {0, 1, . . . , n}. Geometric random variables take values on
the in�nite set of natural numbers N = {1, 2, . . . }. Other examples of sets I on which a
random variable is discrete are the in�nite set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }, the
set of non-negative numbers rounded to the nearest decimal {0, 0.1, 0.2, 0.3, . . . }, etc. △

In general, probability mass functions of discrete random variables have the following

properties:

Principle 19 [Properties of probability mass functions]. If X is a discrete random variable
that takes its values on a set I ⊂ R, and f (x) is the probability mass function of X, then
(a) f (x) ≥ 0 for all x ∈ R,
(b) ∑x∈I f (x) = 1.



MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES 41

Proof. (a)�e probability mass function is de�ned as a probability for those values of x
that correspond to possible values of X, so for those x the p.m.f. is non-negative. For all
other values of x, the p.m.f. is de�ned to equal 0, so there it is also non-negative.
(b) A random variable has to associate a number with every outcome in the state space,

so the event S (i.e., the entire sample space) is equivalent tot the event {X ∈ I} (i.e., the
event that X takes some value). Moreover, the random variable associates exactly one value
to each outcome in S, so the events {X = y} and {X = z} are mutually exclusive if y ≠ z.
�is, together with Axiom #3 implies that

1 = P(S) = P(X ∈ I) = P(⋃
x∈I

{X = x}) =∑
x∈I
P(X = x) =∑

x∈I
f (x).

�

Example 15. Let’s do a quick check of Principle 19 for Bernoulli, Binomial, and Geometric
random variables:

Bernoulli random variable: If X ∼ Ber(p), then Principle 19(a) is satis�ed since it is clearly
non-negative, and Principle 19(b) is satis�ed because

∑
x∈{0,1}

f (x) = P(X = 0) + P(X = 1) = (1 − p) + p = 1.

Binomial random variable: If X ∼ Bin(n, p), then Principle 19(a) is obviously satis�ed, and
Principle 19(b) is satis�ed because by the binomial theorem,

∑
x∈{0,1,...,n}

f (x) =
n
∑
k=0
P(X = k) =

n
∑
k=0

(n
k
)pk(1 − p)n−k = (p + (1 − p))n = 1n = 1,

Geometric random variable: If X ∼Geo(p), then again Principle 19(a) is obviously satis�ed.
To prove that Principle 19(b) is satis�ed we use the geometric identity for −1 < z < 1

∞

∑
m=0

zm = 1

1 − z
,

as follows:

∑
x∈N

f (x) =
∞

∑
n=1

(1 − p)n−1p = p
∞

∑
m=0

(1 − p)m = p × 1

1 − (1 − p)
= p
p
= 1.

△

Using random variables can make calculations signi�cantly easier:

Question 30. An unfair coin comes up heads 60% of the time. What is the probability that
in ten tosses, the coin comes up heads at least eight times?
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Solution. Let X =#heads. X counts the number of successes in a sequence of 8 independent
trials that all have success probability 0.6 so it follows that X ∼ Bin(n = 10, p = 0.6). We
want to calculate P(X ≥ 8):

P(X ≥ 8) = P(X = 8) + P(X = 9) + P(X = 10)

= (10
8
)0.68(1 − 0.6)2 + (10

9
)0.69(1 − 0.6)1 + (10

10
)0.610(1 − 0.6)0

= 0.12093 + 0.04031 + 0.00605
= 0.16729.

◊

Question 31. You ask randomly chosen people about their birthday until you �nd some-
one with the same birthday as yourself. How many people do you have to ask, so that the
probability of getting a match is more than 1/2?

Solution. Let X =# people you ask until you get a match. Assume that the probability of
asking one person and getting a match is 1/365.�en it follows that X ∼ Geo(p = 1/365).
We want to determine r such thatP(X < r) ≥ 1

2
, which of course implies thatP(X ≥ r) ≤ 1

2
:

P(X ≥ r) =
∞

∑
n=r

(1 − p)n−1p

= (1 − p)r−1p
∞

∑
m=0

(1 − p)m

= (1 − p)r−1p × 1

1 − (1 − p)
= (1 − p)r−1.

It remains to �nd the smallest r such that

(1 − p)r−1 ≤ 1
2
.

Equating and taking the log on both sides gives

(r − 1) log(1 − p) = log 1
2

⇒ r =
log 1

2

log(1 − p)
+ 1 = 252.7,

So we need to ask at least 253 people to havemore than 50% chance that we getmatch.27 ◊

�e random variables that we have considered can be used to describe large families of

problems. Sometimes, a problem arises that doesn’t �t into such a class. In these cases,

we can sometimes construct a random variable and p.m.f. from the data, as the following

example illustrates:

27You can approximate the solution without a calculator if you remember that log(1 − x) ≈ −x when x is
small and that − log 1

2
= log 2 ≈ 0.7.
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Example 16. A pond contains �ve �shes. You go �shing. �e probability that you catch 0
�sh is 11%, that you catch 1 �sh is 31%, 2 �sh is 24%, 3 �sh is 19%, 4 �sh is 8%, and 5 �sh is

7%.

We can de�ne a random variable X and p.m.f. f (x) as follows:

X = # �sh you catch and f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.11 if x = 0
0.31 if x = 1
0.24 if x = 2
0.19 if x = 3
0.08 if x = 4
0.07 if x = 5
0 otherwise.

△

Here is another example of an important random variable:

Example 17 (Negative binomial). Repeat the Bernoulli experiment with success probability
p until you see r times a success. Let

Y = # trials until the rth success.
We can calculate the probability mass function of Y (using the ‘wall trick’ described in
Question 9):

f (k) = P(Y = r + k) = (r + k − 1
r − 1

)pr(1 − p)k , for k = 0, 1, 2, . . .

We write Y ∼NBin(r, p). Checking Principle 19(b) is not particularly easy, so we will not
do that here. △

�e following is a classic example28 of a problem that can be solved with random vari-

ables:

Question 32 [Problem of points]. Two evenly matched teams compete to see who will be
the �rst to win n games. �e winner gets prize money. �e play gets interrupted before either
teamwins n games, so it is decided that the prize money will be divided among the two teams.
At the time of interruption, Team A has won i games, Team B has won j games. Given this
information, what is the most fair division of the prize money?

Solution. �e most fair division is according to the probability that the team would have
won if the play had continued, that is, Team A deserves a fraction

P(Team A wins∣ Team A won i games, Team B won j games) (5)

of the prize money.

28It was independently solved by Blaise Pascal and Pierre de Fermat in 1654.
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Let’s start by solving this problem in the case that n = 7, i = 2, and j = 4. For Team A to
win the prize, they have to win 5 games before Team B wins 3 games. Let

Y = # games until Team A wins 5 games,

Observe that Y is a negative binomial random variable with parameters r = 5 and p = 1/2.
It follows that if Team A is to win, then Y can only take the values 5, 6, or 7 (if Y was

any larger, Team B would have won 3 or more games, and Y can’t be smaller than 5).�is
means that the probability (5) is equal to

P(Y = 5 or 6 or 7) = P(Y = 5) + P(Y = 6) + P(Y = 7)

= (5 − 1
5 − 1

)p5(1 − p)0 + (5 + 1 − 1
5 − 1

)p5(1 − p)1 + (5 + 2 − 1
5 − 1

)p5(1 − p)2

= ( 1
2
)
5

(1 + 5 1
2
+ 6 ⋅ 5
2

( 1
2
)
2

)

= ( 1
2
)
5

(4 + 10 + 15
22

)

= ( 1
2
)
7

29 = 29
128

= 0.227.

We can calculate the general solution in the same way: write s = n− i and t = n− j, then
the probability in (5) becomes

s+t−1
∑
m=s

(m − 1
s − 1

) 1
2m
.

◊

Example 18 (Relation between geometric and negative binomial random variables). By
de�nition, the geometric random variable is a special case of a negative binomial random

variable, namely the case where r = 1. Observe that moreover, if Y is a NBin(r, p) random
variable, and if X1, . . . , Xr are r independent Geo(p) r.v.’s, then

Y =# trials until rth success
=# trials until 1st success + # additional trials until 2nd success +
+⋯ + # additional trials until rth success

=X1 + X2 +⋯ + Xr ,

that is, a negative binomial random variable with parameters r and p is the sum of r inde-
pendent geometric random variables with parameter p. △
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5.1. �e expected value of a random variable. If we think about a random variable X as
the outcome of an experiment beforewe perform the experiment, thanwe can ask ourselves
what we expect to see.�ere are multiple ways of thinking about what it means to expect
to see something. We might for instance say that we expect to see the outcome that has

the highest probability of occurring. We might also say that we expect to see the outcome

that has a valueM such that the probability that the real outcome is larger thanM is about
the same as the probability that its smaller thanM (e.g., both probabilities are about 50%).
Both of these interpretations have their own value in the study of probabilities. �e �rst

interpretation is known as themaximum likelihood of X, the second is themedian of X.
�ere is, however, a third way of interpreting the expectation of X, namely, to interpret

it at the average of X weighted with the p.m.f. It is this interpretation that we will call the
expectation of X:

Definition 10 [�e expectation of a random variable]. �e expectation or expected value
of a discrete random variable X that takes values on the set I is given by

E[X] ∶=∑
x∈I

xP(X = x) =∑
x∈I

x f (x).

With this de�nition of the expectation we are essentially describing the outcome of X that
we will see if we average over a large number of repeated experiments.

Let’s examine what the expectation of a random variable means with a couple of exam-

ples:

Example 19 (Roulette). Bet $1 on black. Let

X = {+1$ if you win,

−1$ if you lose,
and f (x) = {

18

38
if x = +1,

20

38
if x = −1.

We use the de�nition of the expectation of X to determine

E[X] = (+1$) 18
38

+ (−1$)20
38

= − 2
38

= −0.0526$,

so in the long run you should expect to lose about 5 cents for every dollar that you bet on
black. △
Example 20 (�e expected value of a die). Roll a die. Let X denote the outcome of the die.
�e expected value of X is given by

E[X] =
6

∑
n=1

n 1
6
= 1
6

6

∑
n=1

n = 1
6
⋅ 6 ⋅ (6 + 1)

2
= 7
2
= 3.5,

so the expected value of a die (as averaged over the long run) is 3.5. △
Observe that you cannot actually roll a value of 3.5 with a die, so the expected value of

a die roll does not correspond to an actual outcome of a die roll. More generally, it holds

for any random variable X that takes values on the set I that E[X] does not need to take
its value on I . In particular, E[X] is a function from I to R, i.e., E[X] ∶ I → R.
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Example 21 (�e expectation of a geometric r.v.). Let X ∼ Geo(p), then, since

d

dp
(1 − p)n = −n(1 − p)n−1, and

∞

∑
n=0

zn = 1

1 − z
,

we can calculate

E[X] =
∞

∑
n=1

nP(X = n) =
∞

∑
n=1

n(1 − p)n−1p

= p
∞

∑
n=1

n(1 − p)n−1 = p d
dp

∞

∑
n=0

−(1 − p)n

= −p d
dp

( 1

1 − (1 − p)
) = −p d

dp
( 1
p
)

= −p(− 1
p2

) = 1
p
,

So E[X] = 1/p for a geometric random variable. To see that this makes sense think of the
following question: how o�en should I expect to roll a die before I roll a 6? △

Example 22 (�e expectation of a binomial r.v.). Let X ∼ Bin(n, p), and recall that

f (k) = (n
k
)pk(1 − p)n−k = n!

k!(n − k)!
pk(1 − p)n−k .

Using moreover that k
k! =

1

(k−1)! and that n − k = (n − 1) − (k − 1), we can calculate

E[X] =
n
∑
k=0

k f (k)

= 0 +
n
∑
k=1

k n!
k!(n − k)!

pk(1 − p)n−k

=
n
∑
k=1

k
k!

n(n − 1)
(n − k)!

ppk−1(1 − p)n−k

= np
n
∑
k=1

(n − 1)!
(k − 1)!((n − 1) − (k − 1))!

pk−1(1 − p)(n−1)−(k−1)

= np
n−1
∑
s=0

(n − 1
s

)ps(1 − p)(n−1)−s

= np(p + (1 − p))n−1 = np,

where in the third-to-last stepwe relabelled the summationwith s = k−1 and in the second-
to-last step we used the binomial theorem. △

Sometimes the most useful random variable is the simplest one:
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Example 23 (�e indicator function). We say that the random variable 1A is the indicator
function of the event A if

1A = {1 if A occurs,
0 if Ac occurs.

Observe that the p.m.f. of 1A is given by f (1) = P(A) and f (0) = P(Ac) = 1 − P(A). It
follows that the expectation of 1A is given by

E[1A] = 1 × P(A) + 0 × (1 − P(A)) = P(A),

that is, 1A lets us use the tricks and calculations that we will discover for expectations to

probabilities.�is will turn out to be incredibly useful. △

5.2. �e expectation of a function of a random variable. Random variables o�en have a
physical interpretation, and o�enwewant to use that interpretation in further calculations.

Consider for instance a machine that cuts circular slices of silica from a rod, to be used for

the production of computer chips.�e number of chips that we can put on a slice depends

on the surface area of the disk. Wemeasure the radius of the rod up to the nearestmicron:29

this is our random variable R. Because our measurement is in microns, R is a discrete
random variable. We can use the standard formula for surface area of a circle to calculate

the area of the disc A from our measurement of the radius R, i.e.,

A = πR2.

It follows that A is also a discrete random variable. If we want to calculate E[A], it stands
to reason that we should know the p.m.f. of A. What this p.m.f. is obviously depends on
the p.m.f. of R. And if the p.m.f. of R is particularly di�cult function, then it may be very
di�cult to �nd the p.m.f. of A. Fortunately, if we only care about E[A], we don’t have to go
through all the trouble of determining the p.m.f. of A. Instead, we can just use the p.m.f.
of R and the function of A in terms of R to calculate E[A].�e tool that we use to do this
the following theorem:

Theorem 2 [�e law of the unconscious statistician]. If X is a discrete random variable
that takes values on I with p.m.f. f (x), and if g(x) is a real-valued function, then

E[g(X)] =∑
x∈I

g(x) f (x).

Before we prove the this theorem, let’s see how it works in practice:

29A micron is a millionth of a meter.
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Example 24. Roll a fair die, write X for the outcome. Let g(x) = (x −3)2. Applying the law
of the unconscious statistician, we can calculate

E[g(X)] =
6

∑
x=1

g(x) f (x) =
6

∑
x=1

(x − 3)2
6

= 1
6
((1 − 3)2 + (2 − 3)2 + (3 − 3)2 + (4 − 3)2 + (5 − 3)2 + (6 − 3)2)

= 1
6
(4 + 1 + 0 + 1 + 4 + 9) = 19

6
.

Of course, X and g(x) are not so di�cult, so we can �gure out the p.m.f. of g(X) and
calculate E[g(X)] in the traditional way also:

g(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 when we roll 3,

1 when we roll 2 or 4,

4 when we roll 1 or 5,

9 when we roll 6 ,

so it follows that

E[g(x)] = 0 ⋅ 1
6
+ 1 ⋅ 2

6
+ 4 ⋅ 2

6
+ 9 ⋅ 1

6
= 19
6
.

So at least the theorem works for this particular case. △

Now we prove the law of the unconscious statistician:

Proof of�eorem 2. Let Y = g(X), then

E[Y] = ∑
y∈g(I)

yP(Y = y),

(where we write g(I) for the set {g(x) ∶ x ∈ I}), and

P(Y = y) = P(X = a value x such that y = g(x))
= ∑

x∈I ∶ g(x)=y
P(X = x)

(think of Y = X2, then P(Y = y) = P(X = √y) + P(X = −√y)).
We can use the above equations to rearrange the sums

E[Y] = ∑
y∈g(I)

y ∑
x∈I ∶ g(x)=y

P(X = x)

= ∑
y∈g(I)

∑
x∈I ∶ g(x)=y

g(x)P(X = x).
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Now we use that the double sum e�ectively is a sum over x ∈ I , i.e.,

E[Y] = ∑
y∈g(I)

∑
x∈I ∶ g(x)=y

g(x)P(X = x)

=∑
x∈I

g(x)P(X = x),

and that completes the proof. �

Example 25 (�e moments of X). Let g(x) = xk for some integer k. We call E[Xk] the kth
moment of X. It follows that

1st moment: E[X] =∑
x∈I

x f (x) =∶ µ,

2nd moment: E[X2] =∑
x∈I

x2 f (x).

(We o�en write µ (the Greek letter ‘mu’) for the ‘mean of X’.) △

Using the �rst and second moment, we can calculate an important quantity:

Definition 11 [�e variance of a random variable]. Let X be a discrete random variable.
We de�ne the variance of X as

σ2 ∶= Var(X) ∶= E [(X − E[X])2] .

Moreover, we de�ne the standard deviation of X as σ =
√
Var(X).

Roughly speaking, the standard deviation σ (the Greek letter ‘sigma’) of a random vari-
able X describes the size of a typical �uctuation in X, i.e.,

● when σ is small compared to µ, then X is typically close to µ,
● when σ is large compared to µ, then X is typically far from µ.

We can give a quantitative statement of this observation:

Principle 20 [Chebychev’s inequality]. Given a random variable X that takes values on I
and any ε > 0,

P(∣X − µ∣ ≥ ε) ≤ σ 2
ε2
.
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Proof. By the de�nition of σ2,

σ 2 = Var(X) =∑
x∈I

(x − µ)2 f (x)

≥ ∑
x∈I ∶ (x−µ)2≥ε

(x − µ)2 f (x) [sum over fewer values]

≥ ∑
x∈I ∶ (x−µ)2≥ε

ε2 f (x) [use that (x − µ) ≥ ε]

= ε2 ∑
x∈I ∶ (x−µ)2≥ε

f (x) [rearrange]

= ε2P((X − µ)2 ≥ ε2) [sum over x]
= ε2P(∣X − µ∣ ≥ ε),

so ε2P(∣X − µ∣ ≥ ε) ≤ σ 2. Rearranging completes the proof. �

Question 33. Acme Widgets produces an average of 1000 widgets a day with a standard
deviation of 20 widgets. Find an interval where you can be 90% sure that the daily production
will lie in this interval.

Solution. Write X for the number of widgets produced on a given day. We don’t know the
distribution of X, but we do know that µ = 1000 and σ = 20. We can restate the question
as follows: Find a number ε so that on 9 days out of 10, the number of widgets produced is
not less than 1000 − ε and not more than 1000 + ε. �at is, we want to calculate the value
of ε such that P(∣X − µ∣ ≥ ε) ≤ 0.1. We can use Chebychev’s inequality:

0.1 = P(∣X − µ∣ ≥ ε) ≤ σ 2
ε2

≤ 400
ε2
.

It follows that we should take ε2 = 4000, and therefore ε = 63.2. We can thus be (more than)
90% con�dent that the daily production of widgets will bewithin 936 and 1064widgets. ◊

Relating the standard deviation to �uctuations of the random variable. Chebychev’s in-
equality tells us that

P(∣X − µ∣ ≤ ε) ≥ 1 − σ2
ε2
,

so if we take ε = kσ , then

P(∣X − µ∣ ≤ kσ) ≥ 1 − σ2
k2σ2

= 1 − 1
k2
.

Setting k = 2 gives

P(∣X − µ∣ ≤ 2σ) ≥ 1 − 1
22

= 0.75,

so X is within two standard deviations of µ at least 75% of the time.
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5.3. Properties of expectation and variance. Wecan determine the following useful prop-
erties of the expectation of a random variable:

Principle 21 [Properties of expectation]. Let X be a random variable that takes its values
on the set I .
(a) Linearity of expectation: for real numbers a, b,

E[aX + b] = aE[X] + b.
(b) If X and Y are random variables:

E[X + Y] = E[X] + E[Y].

We will prove (b) later.

Proof of (a). By�eorem 2 and Principle 19(b),
E[aX + b] =∑

x∈I
(ax + b) f (x) = a∑

x∈I
x f (x) + b∑

x∈I
f (x) = aE[X] + b ⋅ 1. �

We can determine the following properties for the variance:

Principle 22 [Properties of variance]. Let X be a random variable.
(a) Quadratic behaviour of variance: for real numbers a, b,

Var(aX + b) = a2Var(X).
(b) Alternative formula for the variance:

Var(X) = E[X2] − E[X]2.
(c) If X and Y are independent random variables,

Var(X + Y) = Var(X) +Var(Y).

Keep in mind that once again, property (c) only holds (in generality) if X and Y are inde-
pendent! We will prove property (c) later.

Proof of (a). By the de�nition of the variance and Principle 21(a),
Var(aX + b) = E [(aX + b − E[aX + b])2]

= E [(aX + b − aE[X] − b)2]

= E [(a(X − E[X]))2]

= a2E [(X − E[X])2] = a2Var(X). �

Proof of (b). Write µ = E[X], then, by the de�nition of the variance and Principle 21(a)
Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2]

= E[X2] − 2µE[X] + µ2

= E[X2] − 2µ2 + µ2 = E[X2] − µ2. �
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Example 26 (�e variance of a Bernoulli r.v.). Recall that

X = {1 with prob. p,
0 with prob. 1 − p,

so

E[X] = 0 ⋅ (1 − p) + 1 ⋅ p = p,
and

Var(X) = E[X2] − E[X]2 = E[X2] − p2

= (02 ⋅ (1 − p) + 12 ⋅ p) − p2

= p − p2 = p(1 − p).
△

Example 27 (�e variance of a binomial r.v.). Let X ∼Bin(n, p). We have already calculated
that E[X] = np.�e variance is given by

Var(X) = E[X2] − E[X]2 = E[X2] − n2p2.
We can try and calculate the second moment of X, E[X2], directly using

E[X2] =
n
∑
k=0

k2(n
k
)pk(1 − p)n−k ,

but this is not an easy calculation.30

�e calculation is much easier than that. Recall that the Binomial random variable X
counts the number of successes in n independent trials, where the success probability for
each trial is p.�erefore, anotherway of looking at X is as a sumof n independent Bernoulli
random variables. �at is, let Yi ∼ Ber(p) for i = 1, . . . , n, then X = Y1 + ⋯ + Yn, and we

can use Principle 22(c) to determine

Var(X) = Var(Y1 +⋯ + Yn)
= Var(Y1) +⋯ +Var(Yn)
= p(1 − p) +⋯ + p(1 − p)
= np(1 − p).

△

5.4. �e Poisson random variable describes rare events. �e Vancouver metro area is
home to some 2.25 million people. On any given day, none of these people are very likely

to call 911, but some do. Suppose we want to describe the number of people that call 911

in Vancouver on a given day. If we assume that everybody is equally probable to do so

(say with probability 0.0001), and that calls are more-or-less independent, then we can

describe this number as a Binomial random variable X ∼ Bin(n = 2.25 ⋅ 106, p = 0.0001).
30Ross, in Section 4.6.1 takes this approach.
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�e expected number of people that calls 911 on a given day is E[X] = np = 225. �e
variance is very close to the expectation: Var(X) = np(1 − p) = 224.99.
Because calls are rare, it does notmatter that we don’t know the precise number of people

in Vancouver. Likewise, since the number of people in Vancouver is very large, it does

not matter that we don’t know the precise probability that someone calls 911. Maybe it is

therefore enough if we just know the mean number of calls to 911 per day in Vancouver.

As it turns out, it is enough to know the mean.�ere exists a very good approximation

for binomial random variables with n large, p small, and npmoderate.�is approximation
is known as the Poisson random variable.31 Because scenarios that look like rare events that
can be described by binomials with large n, small p, and moderate np are common, the
Poisson random variable takes a prominent place in probability theory.

Before we derive the approximation, let’s see what a Poisson random variable looks like:

Example 28 (�e Poisson random variable). We say that a random variable X that takes
values on 0, 1, 2, . . . is a Poisson r.v. with parameter λ (the Greek letter ‘lambda’) if, for
some λ > 0,

P(X = n) = λn

n!
e−λ , for n = 0, 1, 2, . . .

We write X ∼ Poi(λ).
�e above probabilities satisfy the properties of a p.m.f. as given by Principle 19:

∞

∑
n=0
P(X = n) =

∞

∑
n=0

λn

n!
e−λ = e−λ

∞

∑
n=0

λn

n!
= e−λeλ = 1,

(here we used the de�nition of ex). △

Approximation of a binomial by a Poisson random variable. Suppose that X ∼ Bin(n, p)
with n large, p small, and np moderate (say more than 5). We will write λ = np (in antic-
ipation of the formula of the Poisson r.v. that will come out at the end of our calculation).

�en it follows that p = λ
n , and we can calculate

P(X = k) = (n
k
)pk(1 − p)n−k

= n!
k!(n − k)!

( λ
n
)
k

(1 − λ
n
)
n−k

= [λk

k!
] × [(1 − λ

n
)
n

] ×
⎡⎢⎢⎢⎢⎣

1

(1 − λ
n)

k
1

nk
n!

(n − k)!

⎤⎥⎥⎥⎥⎦
.

We will leave the �rst term as it is, and approximate the other two terms separately, starting

with the third term: We will show that the third term is close to 1 when n is large. Start by

31A�er Siméon Denis Poisson, 1781–1840.
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observing that
n!

(n − k)!
= n × (n − 1) ×⋯ × (n − k + 1),

so

1

(1 − λ
n)

k
1

nk
n!

(n − k)!
= 1

(1 − λ
n)

k ⋅
n
n
⋅ n − 1

n
⋅ ⋯ ⋅ (n − k + 1)

n

= 1

(1 − λ
n)

k ⋅ 1 ⋅ (1 −
1

n
) ⋅ ⋯ ⋅ (1 − k − 1

n
)

= 1

(1 − λ
n)

k

k−1
∏
r=0

(1 − r
n
)

=
k−1
∏
r=0

1 − r
n

1 − λ
n
.

Now we use the fact that x = elog(x) and that log(xy) = log(x) + log(y), and proceed32

k−1
∏
r=0

1 − r
n

1 − λ
n
= e

log(∏
k−1
r=0

1− r
n

1− λ
n
)

= e∑k−1
r=0 log(1−

r
n )−∑

k−1
r=0 log(1−

λ
n )

≈ e−∑k−1
r=0

r
n+∑

k−1
r=0

λ
n

= e−
k(k−1)

n + λk
n

≈ e0 = 1,
where, for the �rst approximation we again used that log(1 − x) ≈ −x when x is small. In
the last step we used the approximation that

k(k−1)
n ≈ 0 and that λk

n ≈ 0, and so determined
that the third term on the right-hand side of (5.4) is close to 1 when n is large.
Now we have to bound the second term on the right-hand side of (5.4). We will use that

lim
n→∞

(1 − λ
n
)
n

= e−λ .

To see this, we again take the exponent of logarithm and approximate:

(1 − λ
n
)
n

= en log(1− λ
n ) ≈ e−n λ

n = e−λ .

From the analysis of the second and third terms of (5.4), it follows that when n is large,

P(X = k) ≈ λk

k!
e−λ ,

which is the p.m.f. of a Poisson random variable with parameter λ.
32We will essentially use the same analysis as in the treatment of the birthday paradox, question 16.
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Example 29 (�e mean and variance of a Poisson r.v.). Let X ∼ Poi(λ).�en

E[X] =
∞

∑
n=0

n λn

n!
e−λ

= λe−λ
∞

∑
n=1

λn−1

(n − 1)!

= λe−λ
∞

∑
m=0

λm

m!
= λe−λeλ = λ,

so E[X] = λ.
Now we calculate the variance:

Var(X) = E[X2] − E[X]2 = E[X2] − λ2.

We write

E[X2] = E[X(X − 1) + X] = E[X(X − 1)] + E[X] = E[X(X − 1)] + λ.

Calculating E[X(X − 1)] is similar to calculating E[X]:

E[X(X − 1)] =
∞

∑
n=0

n(n − 1)λn

n!
e−λ

= λ2e−λ
∞

∑
n=2

λn−2

(n − 2)!

= λ2e−λ
∞

∑
m=0

λm

m!
= λ2e−λeλ = λ2.

So we can conclude that

Var(X) = E[X(X − 1)] + λ − λ2 = λ2 + λ − λ2 = λ,

so Var(X) = λ also. △

Some examples of Poisson random variables.

Example 30 (Radioactive decay). Uranium 238 has a half-life of approximately 4 billion
years (≈ 1017 seconds). �at is, if we have a single Uranium-238 atom, we have to wait
approximately 4 billion years to have a 50-50 chance of seeing it decay. �ere are about

2.5 × 1018 atoms in a milligram of Uranium 238. �erefore, we are looking at a situation
with a large number of rare events, so we can model the observed number of decays of a

1 milligram sample of Uranium 238 in a second by a Poisson random variable. To deter-

mine the parameter λ we can measure the average number of decays per second (we don’t
necessarily need to know the number of atoms or the decay probability for this). Suppose
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that it turns out that λ = 1.4. We can calculate the probability that we see at most 3 decays
in a second:

P(at most 3 decays observed) = P(X ≤ 3)
= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

= e−1.4 (1.4
0

0!
+ 1.4

1

1!
+ 1.4

2

2!
+ 1.4

3

3!
)

= 0.946.
△

Example 31 (Some more examples of things that can be described with a Poisson r.v.). .
(a) �e number of typos on a page of text.

(b) �e number of �aws in a length of wire.

(c) �e number of customers at a restaurant on a given day.

(d) �e number of jumps in a stock price during a day.

(e) �e number of photons arriving at a telescope.

(f) �e number of shark attacks per year.

(g) �e number of earthquakes per year.

(h) �e number of mutations on a chromosome.

△

Example 32 (�e birthday paradox revisited –Not treated in class). In question 16 we calcu-
lated the probability that in a room with n people, no two people share the same birthday.
If n is large (but not too large) then the number of people who share a birthday is almost a
Poisson random variable: We can write X for the random variable for the number of pairs
of people with the same birthday. In total there are (n

2
) pairs of such people, so we can view

X as the sum of (n
2
) success-failure trials, where the trial is “pick 2 persons and check if

their birthdays are the same”. Write Ei , j for the event that person i and person j have the
same birthday. Observe that these events are not independent, because if for instance E1,2
happens, and E2,3 happens, then E1,3 must also happen. But when n is large, the trials will
be ‘almost’ independent, so we can do an (uncontrolled) approximation of a Poisson r.v.

with

λ = (# trials) × (success prob.) = (n
2
) ⋅ 1
365
.

We can then calculate

P(no match) = P(X = 0) = λ0
0!
e−λ = e−(

n
2
) 1

365 = e−
n(n−1)
730 ,

which is the same approximation as we get in question 16.

We can moreover approximate the probability that we get exactly one match:

P(exactly one match) ≈ P(X = 1) = e−λ λ
1!
= (n
2
) 1
365
e−(

n
2
) 1

365 .
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We can even approximate the probability of a triplematch by letting the random variable

Y describe the number of triple matches, and noting that there are now (n
3
) trials with

success probability ( 1

365
)2, i.e.,

P(no triple match) ≈ P(Y = 0) = e−(
n
3
)( 1

365
)
2

.

(If we choose n = 90, we get P(Y = 0) ≈ 0.41.) △

Finally, some sketches of four common discrete distributions:

Figure 7. Some sketches of typical shapes of the p.m.f.’s of four common

discrete random variables.



58 MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES

6. Continuous random variables

So far, we have only discussed random variables that take their values on discrete sets.

Such random variables are useful whenwe want to count whole things, such as the number

of successes, or when a measurement is rounded o� at a given decimal. But sometimes,

discrete random variables do not give a satisfactory description, for instance when we are

interested in quantities like the time until a certain event happens, or in the outcome of

a very precise measurement. For such cases we can expand our de�nition of a random

variable in the following way:

Definition 12 [Continuous random variables]. We say that X is a continuous random
variable if there exists a non-negative function f on the set of real numbers (i.e., the set of all
x such that x ∈ (−∞,∞)) that has the property that for any set B of real numbers,

P(X ∈ B) = ∫
B

f (x)dx .

We call the function f the probability density function (or p.d.f.) of the random variable X.

�e essential di�erence between the de�nitions of discrete and continuous random vari-

ables is that we use summation to evaluate discrete random variables, and we use integra-

tion to evaluate continuous random variables. �is makes discrete and continuous r.v.’s

somewhat di�erent, but on the whole the two are very similar.

Principle 23 [Properties of continuous random variables]. Let X be a continuous random
variable with p.d.f. f , then X satis�es the following properties:
(a) �e random variable X must take some value in the reals:

1 = P(X ∈ (−∞,∞)) =
∞

∫
−∞

f (x)dx .

(b) For sets that are intervals, i.e., B = [a, b],

P(X ∈ B) = P(a ≤ X ≤ b) =
b

∫
a

f (x)dx .

(c) Isolated points have zero probability:
P(X = a) = 0,

and moreover,
P(X ≤ a) = P(X < a).

From property (c) it is clear that a probability density function does not describe the prob-
ability of seeing a single value. Rather, f (x) describes how likely it is that X takes a value
near x.
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Figure 8. A schematic drawing of the P(a ≤ X ≤ b) in terms of the area
between a and b underneath f (x).

Proof. (a) and (b) follow directly from the de�nition of a continuous random variable. (See
�gure 8 for a sketch of property (b).)�e proof of (c) is elementary: let F be the antideriv-
ative33 (a.k.a. primitive) of f , then

P(X = a) = P(X ∈ [a, a]) =
a

∫
a

f (x)dx = F(a) − F(a) = 0

and so

P(X ≤ a) = P(X < a) + P(X = a) = P(X < a) + 0.
�

Since we calculate probabilities by taking the integral of a p.d.f. f , it makes sense to
study the antiderivative as well. It turns out that the antiderivative of a p.d.f. has a clear

probabilistic interpretation:

Definition 13 [�e cumulative distribution function]. Given a continuous random vari-
able X with p.d.f. f , we de�ne the cumulative distribution function (or c.d.f.) F of X as the
function

F(b) = P(X ≤ b) =
b

∫
−∞

f (x)dx .

33I.e., the function F such that d
dx F(x) = f (x).
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Note that we can also de�ne an analogous function for discrete random variables.

Principle 24 [Properties of the c.d.f.]. Let X be a continuous random variable with c.d.f.
F, then F has the following properties:
(a) F(−∞) = 0 and F(∞) = 1.
(b) F(x) is non-decreasing in x.
(c) P(a ≤ X ≤ b) = F(b) − F(a).
(d) d

dbF(b) = f (b).

Proof. (a) F(−∞) = P(X ≤ −∞) = 0 since X only takes values in (−∞,∞). Similarly,
F(∞) = P(X <∞) = 1 holds.
(b) Let a and b be real numbers such that a < b, then

F(a) = P(X ≤ a) ≤ P(X ≤ b) = F(b).

(c) By mutual exclusivity,

P(X ≤ b) = P({X < a} ∪ {a ≤ X ≤ b}) = P(X ≤ a) + P(a ≤ X ≤ b),

so

P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a) = F(b) − F(a).
(d) By the de�nition of F(b),

d

db
F(b) = d

db

b

∫
−∞

f (x)dx = f (b).

�
Let’s look at some examples of continuous random variables:

Example 33. Let X be a continuous r.v. with p.d.f.

f (x) = {e
−x when x ≥ 0,
0 when x < 0.

We can check that this is indeed a p.d.f.:

∞

∫
−∞

f (x)dx =
0

∫
−∞

0dx +
∞

∫
0

e−xdx = 0 + [−e−x ∣∞
0
= −(0 − 1) = 1.

We can also calculate the c.d.f. of X: if b ≤ 0, then F(b) = 0, and if b > 0, then

F(b) =
b

∫
−∞

f (x)dx = 0 +
b

∫
0

e−xdx = [−e−x ∣b
0
= 1 − e−b .

△
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Example 34. Let X be a continuous r.v. with p.d.f.

f (x) = {2x when 0 ≤ x ≤ 1,
0 otherwise.

We can again check that this is a p.d.f.:

∞

∫
−∞

f (x)dx =
1

∫
0

2xdx = [2 ⋅ x
2

2
∣
1

0

= 2( 1
2
− 0) = 1.

We can calculate the probability that X > 1/2:

P(X ≥ 1/2) =
1

∫
1/2

2xdx = 2 [x
2

2
∣
1

1/2

= 2( 1
2
− (1/2)2

2
) = 1 − ( 1

2
)
2

= 3
4
.

We can calculate the probability that X > 1/2 given the information that we know that
X > 1/4:

P(X > 1/2∣X > 1/4) = P(X > 1/2)
P(X > 1/4)

= 3/4
1

∫
1/4

2xdx
= 3/4
1 − (1/4)2

= 3/4
15/16

= 12
15

= 4
5
.

We can calculate the conditioning the other way around too (although this is pretty obvi-

ous):

P(X > 1/4∣X > 1/2) = P(X > 1/2)
P(X > 1/2)

= 1.

Finally, we can calculate the c.d.f.: For x < 0, F(x) = 0. For 0 < x < 1,

F(x) =
x

∫
0

2tdt = x2.

And for x > 1, F(x) = 1. △

We can calculate the expectation of a continuous random variable, just like a discrete

random variable, but with summation replaced with integration:

Definition 14 [�e expectation of a continuous random variable]. For a continuous ran-
dom variable X with p.d.f. f , we de�ne the expectation of X as

E[X] =
∞

∫
−∞

x f (x)dx .

Example 35. Let X be a continuous r.v. with p.d.f.

f (x) = {2x when 0 ≤ x ≤ 1,
0 otherwise.
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then we can calculate

E[X] =
∞

∫
−∞

x f (x)dx =
1

∫
0

2x2 = [2x
3

3
∣
1

0

= 2
3
.

△

Principle 25 [Properties of continuous r.v.’s]. Let X be a continuous random variable with
p.d.f. f , then the following properties that we determined for discrete random variables also
hold for X:
(a) �e law of the unconscious statistician for continuous r.v.’s: for any function g(x),

E[g(X)] =
∞

∫
−∞

g(x) f (x)dx .

(b) �e variance of a continuous random variable:

Var(X) = E[(X − µ)2] =
∞

∫
−∞

(x − µ)2 f (x)dx = E[X2] − µ2.

(c) Linearity of expectation, quadratic behaviour of variance:
E[aX + b] = aE[X] + b and Var(aX + b) = a2Var(X).

(d) Chebychev’s inequality:

P(∣X − µ∣ ≥ ε) ≤ σ 2
ε2
.

It is o�en useful to think of E[X] as the x-coordinate of the ‘centre of mass’ of the shape
between the graph of f (x) and the x-axis.
Proof. For (a), (b), and (c), see Ross, Section 5.2. For proof of (d), see Ross Section 8.2.

6.1. Examples of continuous random variables. In this section we discuss some impor-
tant examples of continuous random variables.

6.1.1. �e uniform randomvariable. Arandomvariable X is said to beuniformly distributed
over the interval [a, b] if the p.d.f. of X is given by

f (x) = {
1

b−a when a ≤ x ≤ b,
0 otherwise.

We write X ∼ Unif[a, b].
Checking that X is normalised is easy: the shape of f (x) is a rectangle with sides (b−a)

and 1

b−a , so the area underneath f (x) is simply the area of the rectangle:
∞

∫
−∞

f (x)dx = (b − a) × 1

b − a
= 1.
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It also follows that for a ≤ c < d ≤ b,

P(c ≤ X ≤ d) =
d

∫
c

1

b − a
dx = d − c

b − a
.

If we think of E[X] as the x-coordinate of the centre of mass of f (x), then since f (x) has a
rectangular shape, E[X] should lie in the middle of the interval [a, b], so E[X] = (a+b)/2.
We can also just calculate the mean of X:

E[X] =
b

∫
a

x 1

b − a
dx = 1

b − a
[x
2

2
∣
b

a
= 1

b − a
b2 − a2
2

= 1
2

(b − a)(b + a)
b − a

= a + b
2
.

And we can calculate the variance of X: direct computation works �ne, but it is a bit tricky
to get a nice equation that way.34 A better way of calculating the variance of X is by intro-
ducing the random variable

Y = X − µ
(b − a)

.

�e random variable Y is a ‘shi�ed and squeezed’ version of X, where the shi� and squeeze
are chosen such that the p.d.f. of Y is simply

g(x) = {1 when − 1

2
≤ x ≤ 1

2
,

0 otherwise,

so Y ∼ Unif[−1/2, 1/2]. As a result, E[Y] = −1/2+1/2

2
= 0. Since X = (b − a)Y + µ, it follows

from the quadratic behaviour of the variance that

Var(X) = (b − a)2Var(Y).

34I.e.,

Var(X) = E[X2] − E[X]
2
= E[X2] − a2 + 2ab + b2

4
.

By the law of the unconscious statistician,

E[X2] =
b

∫
a

x2 1

b − a
dx = 1

b − a
[
x3

3
∣

b

a
=

1

b − a
b3 − a3

3
.

We can simplify this a bit more, since b3 − a3 = (b − a)(b2 + ab + a2), so we get

E[X2] = b2 + ab + a2

3
.

Plugging this into the formula for the variance we get

Var(X) =
b2 + ab + a2

3
−
a2 + 2ab + b2

4
=
a2 − ab + b2

12
=

(b − a)2

12
.
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Moreover, Var(Y) is easy to calculate:

Var(Y) = E[Y 2] − E[Y]2 =
1/2

∫
−1/2

x2dx − 02 = [x
3

3
∣
1/2

−1/2

= ( 1

3 ⋅ 23
− (− 1

3 ⋅ 23
)) = 2

3 ⋅ 8
= 1
12
.

So it follows that

Var(X) = (b − a)2Var(Y) = (b − a)2
12

.

Question 34. �e failure of a component interrupts work at an assembly line. �e time X
(in hours) until the replacement component is installed is distributed as X ∼ Unif[1, 5]. Find
the probability that replacement takes more than two hours.

Solution. �e time X has p.d.f.

f (x) = {
1

5−1
= 1

4
when 1 ≤ x ≤ 5,

0 otherwise.

We are asked to calculate P(X ≥ 2) ∶

P(X ≥ 2) = P(X ∈ [2,∞)) =
∞

∫
2

f (x)dx =
5

∫
2

1

4
dx = [x

4
∣
5

2

= 5
4
− 2
4
= 3
4
.

◊
6.1.2. �e exponential random variable. A random variable is said to be exponentially dis-
tributed with parameter λ if X has p.d.f.

f (x) = {λe−λx when x ≥ 0,
0 when x < 0.

We write X ∼ Exp(λ). See �gure ?? for some sketches of p.d.f.’s for exponential random
variables.

We can check that X is properly normalised:
∞

∫
−∞

f (x)dx =
∞

∫
0

λe−λxdx = [−e−λx ∣∞
0
= −0 − (−1) = 1.

We can calculate the c.d.f. of X: for x < 0 it is easy to see that F(x) = 0 and for x ≥ 0,

F(x) = P(X ≤ x) =
x

∫
0

λe−λtdt = [−e−λt∣x
0
= 1 − e−λx .

We can calculate the mean of X:

E[X] =
∞

∫
−∞

x f (x)dx =
∞

∫
0

xλe−λxdx = 1
λ

∞

∫
0

ye−ydy,
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Figure 9. A schematic drawing of the p.d.f.’s of an Exp(2) and an Exp(2)
random variable.

where in the last step we substituted35 y = λx.
Rather than solving just this integral, we solve the more general case, which is known as

the Gamma function:

Γ(n) =
∞

∫
0

yn−1e−ydy.

We use integration by parts36 with u(y) = yn−1 and d

dyv(y) = e−y:
∞

∫
0

yn−1e−ydy = [−yn−1e−y∣∞
0
−

∞

∫
0

(n−1)yn−2 (−e−y)dy = 0+(n−1)
∞

∫
0

yn−2e−ydy = (n−1)Γ(n−1).

35Recall the substitution rule for integrals from calculus: for a continuously di�erentiable function g(t),
we can substitute x = g(t)

g(b)

∫
g(a)

f (x)dx =
b

∫
a

f (g(x)) ( d
dx

g(x))dx

so if y = λx then dy = λdx and the integration limits become 0/λ = 0 and∞/λ =∞.
36Recall that integration by parts is a technique from calculus that uses the fact that

b

∫
a

u(y)( d
dy

v(y))dy = [u(y)v(y)∣ba −
b

∫
a

(
d

dy
u(y)) v(y)dy.
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So in particular, we have the equation Γ(n) = (n − 1)Γ(n − 1). Observe that

Γ(1) =
∞

∫
0

e−ydy = [−e−y∣∞
0
= 0 − (−1) = 1,

It follows that

Γ(2) = 1 ⋅ Γ(1) = 1,
Γ(3) = 2 ⋅ Γ(2) = 2 ⋅ 1 = 2!,
Γ(4) = 3 ⋅ Γ(3) = 3 ⋅ 2 ⋅ 1 = 3!,

⋮
Γ(n) = (n − 1) ⋅ (n − 2)⋯2 ⋅ 1 = (n − 1)!,

so the Gamma function, when evaluated at the integers gives the factorials.

Applying this property of the Gamma function to our current problem, we get

E[X] = 1
λ
Γ(2) = 1

λ
.

Using the Gamma function we can also easily calculate the nth moment of X:

E[Xn] =
∞

∫
0

xnλe−λxdx = 1
λn Γ(n + 1) =

n!
λ
.

Now we can calculate the variance of X:

Var(X) = E[X2] − E[X]2 = 2!
λ2
− 1

λ2
= 1

λ2
.

Example 36 (Lack of memory of the exponential distribution). Exponential random vari-
ables can be viewed as the continuous analogue of geometric random variables. In partic-

ular, the exponential random variable has the lack-of-memory property: Let X ∼ Exp(λ),
then

P(X > s + t∣X > s) = P(X > s + t)
P(X > s)

= 1 − P(X ≤ s + t)
1 − P(X ≤ s)

= 1 − F(s + t)
1 − F(s)

= 1 − (1 − e−λ(s+t))
1 − (1 − e−λs)

= e
−λ(s+t)

e−λs = e−λt = 1 − F(t)

= P(X > t).
We canmoreover show that any continuous randomvariable that has the lack-of-memory

property must have an exponential distribution.

Finally, a warning. A common mistake is to take the lack-of-memory property of Z to
mean that

P(Z > s∣Z > t) = P(Z > s).
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�is is not the case! If the above equality holds, that means that {Z > s} and {Z > t} are
independent, which is entirely di�erent. △

Question 35. It is a curious fact is that the lifetimes of lobsters are exponentially distributed
random variables with a mean lifetime (in captivity) of 60 years. A zoo has two lobsters, one
is 1 year old, the other is 100 years old. What is the probability that the 1 year old lobster dies
before the 100 year old lobster dies?

Solution. Write X1 for the lifetime of the young lobster, and X2 for the lifetime of the old
lobster. Since the lifetimes are exponentially distributed, E[X1] = E[X2] = 1

λ so λ = 1

60
. We

are asked to calculate

P(X1 − 1 > X2 − 100∣{X1 > 1} ∩ {X2 > 100}).
�is is a bit tricky, it is easier to calculate the probability that either lobster survives for t
more years and compare these probabilities: by the lack of memory of exponential random

variables, the probability that the 1 year old lobster lives another t years is
P(X1 > 1 + t∣X1 > 1) = P(X1 > t) = e−t/60.

But similarly, the probability that the old lobster survives t more years is
P(X2 > 100 + t∣X2 > 100) = P(X2 > t) = e−t/60,

so at any given time, the probability that the 1 year old lobster dies is equal to the probability

that the 100 year old lobster dies! We conclude that the probability that the young lobster

outlives the old one is 50%. ◊

Example 37 (Somemore examples of random variables that have exponential distribution).
In general, we can assume that the exponential distribution is valid for any random vari-

able that has the lack-of-memory property. Sometimes it is obvious to see that this property

holds, other times it is not. Some examples of real-life random variables that have expo-

nential distribution are

(a) �e time until a single radioactive atom decays.

(b) �e time between two customers at a store.

(c) �e time between two consecutive queries to a database.

(d) �e time until default on a loan payment.

(e) �e distance between mutations on a strand of DNA.

(f) �e distance between two typos in a text.

(g) �e time between two shark attacks.37

37If some of these examples seem similar to the examples for Poisson r.v.s, that is because they are.�ere is

a deep relation between exponential and Poisson random variables: if the times between consecutive events

are distributed as exponential random variables, then the number of events in a given interval is distributed

as a Poisson r.v. Wewill not explore this relation further in this course, but the relations between exponentials

and Poissons is captured in the “Poisson process.” See page 144 of Ross for a short treatment and Section 9.1

for a slightly longer overview.
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△

Question 36. �e amount of beets (in metric tonnes) that a sugar re�nery can process in a
day is distributed as an Exp(1/4) random variable. Howmany beets should the re�nery have
in stock on a given day so that the probability of running out is just 5%?

Solution. Let X denote the amount of beets (in tonnes) processed in a day. �en X ∼
Exp(1/4). Note that E[X] = 4 tonnes. We want to calculate the value of a such that

P(X > a) = 0.05.
We use the c.d.f. of X:

P(X > a) = 1 − P(X ≤ a) = 1 − F(a) = 1 − (1 − e−a/4) = e−a/4.
Now we take the log of both sides:

−a
4
= log(0.05) ⇒ a = 4 log(20) = 11.98.

◊

6.1.3. �e normal distribution. �e �nal example of a continuous random variable that
we discuss is simply known as the normal distribution. �e normal distribution got that
name because statisticians are so much used to seeing it, that they say consider their data

‘normal’ if it has this distribution. We say that a random variable X is normally distributed
with parameters µ and σ 2 (corresponding to the mean and variance of X) if X has the
following p.d.f.:

f (x) = 1√
2πσ

e−(x−µ)/2σ
2

for all −∞ < x <∞.

If X is normally distributed with parameters µ and σ , then we write X ∼ N (µ, σ).
�e shape of f (x) is a bell-shaped curve that is symmetric around the point µ on the

x-axis. (See �gure 10.) For this reason, the normal distribution is also o�en referred to as
the ‘bell curve’.38

�e normal distribution is normal for a reason. Mathematicians know this reason as the

‘central limit theorem’. In short, the central limit theorem states that almost any averaged

sum of random variables of almost any distribution will have a normal distribution. �is

fact is so deep and so useful that it has takes the central place in probability theory, hence

the name. �e central limit theorem will be the �nal goal of this course as well, but we

still have a way to go before we can study it. One step is of course to understand random

variables with a normal distribution.

38A third common name for the normal distribution is the ‘Gauss distribution’ (or simply the ‘Gaussian’),

in honour of Karl Friedrich Gauss, who extensively studied the normal distribution. Gauss did not discover

the normal distribution though, that honour goes to Abraham de Moivre.�ere are short bios of Gauss and

de Moivre at the end of Section 5.4 of Ross that are worth reading.
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Figure 10. A schematic drawing the p.d.f. of a normally distributed ran-

dom variable with mean µ and variance σ2.

Question 37. Let X ∼ N (µ, σ). Calculate P(X ≤ a).

Solution. Unless a = −∞, µ, or∞, nobody knows how to do this!39 When a = µ we can
use the symmetry of f around the point µ to determine that

P(X ≤ µ) = P(X ≥ µ),
and since P(X ≤ µ) + P(X ≥ µ) = 1 we get

P(X ≤ µ) = 1
2
.

◊
In the above calculation we assumed that P(X ∈ (−∞,∞)) = 1, but we have yet to

determine that, so lets. To prove that f (x) is a normalised p.d.f. we need to show that

1√
2πσ

∞

∫
−∞

e−(x−µ)/2σ
2

dx = 1.

We start by making the substitution y = (x − µ)/σ so that

1√
2πσ

∞

∫
−∞

e−(x−µ)/2σ
2

dx = 1√
2π

∞

∫
−∞

e−y
2/2dy.

so we need to show that

I ∶=
∞

∫
−∞

e−y
2/2dy =

√
2π.

39We can approximate the solution very accurately, but we will get to that later.
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We can show that this is the case by using the following beautiful little proof due to Gauss:

We take the square of I:

I2 =
∞

∫
−∞

e−y
2/2dy

∞

∫
−∞

e−x
2/2dx

=
∞

∫
−∞

∞

∫
−∞

e−(x
2+y2)/2dydx .

Now comes the clever part: since the equation x2 + y2 = r2 describes a circle of radius r,
we can move to polar coordinates and turn this double integral into a single integral: we

write x = r cos θ and y = r sin θ, and recall that this coordinate transformation turns dydx
into rdrdθ, to get

I2 =
2π

∫
0

∞

∫
0

e−r
2/2rdrdθ

= 2π
∞

∫
0

re−r2/2dr.

Now we substitute once more: u = r2/2 so that du = rdr,

I2 = 2π
∞

∫
0

e−udu = 2π [−e−u∣∞
0
= 2π.

So it follows that I =
√
2π, as required.

�e best way to write the c.d.f. of X ∼ N (µ, σ) is simply as an integral:

FX(b) =
1√
2πσ

b

∫
∞

e−(x−µ)/2σ
2

dx

(where we write the subscript X to remind ourselves that this is the c.d.f. of X). As men-
tioned in Question 37 we cannot calculate the c.d.f. of X explicitly. We can calculate FX(b)
numerically (with a computer), but since N (µ, σ) is a two-parameter distribution, it can
be a hassle. Fortunately, we don’t have to. All we need to know is the c.d.f. FY(a) for the
random variable Y ∼ N (µ = 0, σ = 1). Such a random variable Y is known as a standard
random variable.�e reason that we only need to know the c.d.f. of Y is as follows:

Principle 26 [Linear transformations of normal random variables are normal too]. If X
is a normal random variable with X ∼ N (µ, σ) then, for any a ≠ 0 and b, Y = aX + b is
distributed as Y ∼ N (aµ + b, a2σ 2).
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Figure 11. A schematic drawing of the standardisation of X via linear
transformations.

Using this principle, we can standardise any X:

Y = X − µ
σ
.

Standardising a randomvariable can be viewed as �rst shi�ing X by−µ, and by then squeez-
ing (or stretching) X − µ by 1σ . See �gure 11.
As we calculated in the homework, if E[X] = µ and Var(X) = σ 2, then E[Y] = 0 and

Var(Y) = 1, so if X ∼ N (µ, σ) then Y ∼ N (0, 1). We can use this to FX in terms of FY as
follows:

FX(b) = P(X ≤ b) = P(X − µ
σ

≤ b − µ
σ

) = P(Y ≤ b − µ
σ

) = FY (b − µ
σ

) .

Proof of Principle 26. Since Y = aX + b, we have

FY(x) = P(Y ≤ x) = P(aX + b ≤ x) = P(X ≤ x − b
a

) = FX (x − b
a

) .

Since FY is the antiderivative of fY and FX is the antiderivative of FX it follows that

fY(x) =
d

dx
FY(x) =

d

dx
FX (x − b

a
) = dy
dx
d

dy
FX(y),
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where in the last line we applied the chain rule of di�erentiation with y = x−b
a . Now it

follows that

fY(x) =
1

a
d

dy
FX(y) =

1

a
fX(y) =

1

a
fX (x − b

a
) .

Using the formula for fX we get

fY(x) =
1

a
1√
2πσ

e
−
( x−ba −µ)2

2σ2 = 1√
2π(aσ)

e
−
(x−(aµ+b))2

2(aσ)2 ,

so fY is the pdf of a normal random variable Y ∼ N (aµ + b, aσ) as claimed. �
With Principle 26 things simplify a lot. Someone has once gone through the trouble of

calculating numerically, the values of the function

Φ(z) ∶= FZ(z) where Z ∼ N (0, 1),

and has made the neat table that appears on the next page.

With this table we can look up for instance the value of Φ(1.22) by looking at the number
that is in the intersection of the row with value 1.2 and the column with value 0.02, i.e,

Φ(1.22) = 0.8888. See �gure 12 for a sketch of Φ(z).

Figure 12. A schematic drawing of Φ(z) in terms of the area between −∞
and z underneath f (x) = 1√

2πe
−x2/2.

Note that, since the standard normal distribution is symmetric around 0, it follows that

Φ(−z) = P(Z ≤ −z) = 1 − P(Z > −z) = 1 − P(Z < z) = 1 −Φ(z).
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Table 1. Values of Φ(z) (the c.d.f. of anN (0, 1) random variable.)

We can use this fact to look up the values for negative z as well. For instance, if we want to
�nd Φ(−1.98) in the table, we use

Φ(−1.98) = 1 −Φ(1.98) = 1 − 0.9761 = 0.0239.

Question 38. �e annual rainfall in Vancouver in centimetres is distributed as a normal
random variable with mean µ = 110 cm, and standard deviation σ = 10 cm.
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(a) Find P(annual rainfall exceeds 135 cm).
(b) Find P(annual rainfall is between 95 and 125 cm).
(c) Find P(starting this year it will take over 10 years until the annual rainfall exceeds 135

cm).

Solution. Let X ∼ N (µ = 110, σ 2 = 102) denote the annual rainfall and let Z be the stan-
dardised random variable

Z = X − µ
σ

= X − 110
10

∼ N (0, 1).

(a) We calculate

P(X > 135) = P(X − 110
10

> 135 − 110
10

)

= P(Z > 2.5) = 1 −Φ(2.5) = 1 − 0.9938
= 0.0062.

(b) Similarly,

P(95 ≤ X ≤ 125) = P(95 − 110
10

≤ X − 110
10

≤ 125 − 110
10

)

= P(−1.5 ≤ Z ≤ 1.5) = Φ(1.5) −Φ(−1.5)
= 2Φ(1.5) − 1 = 2 ⋅ 0.9332 − 1
= 0.8664.

(c) Let Y denote the 1st year with rainfall exceeding 135 cm. �en Y ∼ Geo(p = 0.0062)
(by (a)), so

P(Y > 10) = (1 − p)10 = (0.9938)10 = 0.9397.

◊

Question 39. �e annual return of a stock is normally distributed with mean 10% and stan-
dard deviation 12%. If we buy 100 shares at $60 each, what is the probability that a�er one
year our net pro�t is at least $750?

Solution. Let X = value of stock portfolio a�er one year. �e return on our entire invest-
ment is given by

R = X − 6000
6000

.
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From the question we can deduce that R ∼ N (µ = 0.1, σ 2 = 0.122). We want to calculate

P(X − 6000 ≥ 750) = P(X − 6000
6000

≥ 750
6000

) = P(R ≥ 0.125)

= P(R − 0.1
0.12

≥ 0.125 − 0.1
0.12

) = P(Z ≥ 0.208)

= 1 −Φ(0.208) = 1 − 0.5832
= 0.4168.

so with 42% chance we will make at least $750 on our investment. ◊

Question 40. �e scores of a test given to 100,000 students are normally distributed with
mean 500 and standard deviation 100. What score will place a student in the top 10%?

Solution. Let
X = score of randomly selected student ∼ N (500, 1002).

We seek s such that P(X ≥ s) = 0.1. We start by standardising:

0.1 = P(X − µ
σ

≥ s − µ
σ

) = P(Z ≥ s
100

− 5) = 1 −Φ ( s
100

− 5)

So we want to solve

Φ ( s
100

− 5) = 0.9.

In the table we can �nd the close approximation Φ(1.28) = 0.8997, so it follows that

1.28 = s
100

− 5 ⇒ s = 100(5 + 1.28) = 628,

so the student will be in the top 10% if the score is at least 628. ◊
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7. Joint probability distributions

So far we have studied random variables either on their own, or as part of an ensemble of

independent random variables. Now it is time to explore the situation where the random

variables depend on one another. Such dependencies are very common, for instance with

stock prices: viewed on their own, the Dow Jones and the Nasdaq behave as though they

are randomly �uctuating, but if one takes a dive, then other index will likely do the same.

To study pairs of random variables jointly, we introduce the following notation:

Definition 15 [Joint probability mass function]. For discrete random variables X and Y,
the joint probability mass function of X and Y is given by

f (x , y) ∶= P(X = x ,Y = y).

Observe that f (x , y) is a function that takes two variables as input and gives one number
as it’s output. If the function f (x , y) is continuous, it therefore describes a surface. See
�gure 13 for an example.

Question 41. An urn contains 5 marbles, two red ones and 3 blue ones. We draw marbles
from the urn without replacement until the two red marbles are found. Let
X = # draws until 1st red marble and Y = # additional draws until 2nd red marble.

Find the joint p.m.f. of X and Y.

Figure 13. A sketch of a function of a continuous function on two variables.
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Solution. Start by noting that X ,Y ≥ 1 and that X + Y ≤ 5. We can calculate the individual
probabilities and write the joint p.m.f. of X and Y as a table:

X ∖ Y 1 2 3 4

1 2

5
⋅ 1
4
= 1

10

2

5
⋅ 3
4
⋅ 1
3
= 1

10

2

5
⋅ 3
4
⋅ 2
3
⋅ 1
2
= 1

10

2

5
⋅ 3
4
⋅ 2
3
⋅ 1
2
⋅ 1
1
= 1

10

2 3

5
⋅ 2
4
⋅ 1
3
= 1

10

1

10

1

10
0

3 1

10

1

10
0 0

4 1

10
0 0 0

Note that the entries of the table sum up to 1, and that we if we ignore the value of Y ,
then we can calculate the p.m.f. of X on its own:

fX(x) = P(X = x) =
4

∑
y=1
P(X = x ,Y = y) =

4

∑
y=1

f (x , y),

i.e.,

fX(1) =
4

10
, fX(2) =

3

10
, fX(3) =

2

10
, and fX(4) =

1

10
.

◊

We have a special name and notation for p.m.f.’s of single random variables that are

derived from joint p.m.f.’s:

Definition 16 [Marginal probability mass functions]. Let X be a discrete random variable
that takes its values on the set I and let Y be a discrete random variable that takes its values
on the set J with joint p.m.f. f (x , y) = P(X = x ,Y = y), then we de�ne the marginal
probability mass functions of X and Y as

fX(x) ∶= P(X = x) = ∑
y∈J

f (x , y) and fY(y) ∶=∑
x∈I

f (x , y).

We can of course give similar de�nitions for continuous random variables:



78 MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES

Definition 17 [Joint probability density function]. For continuous random variables X
and Y, the joint probability density function is given by f (x , y) if for any set A ⊆ R × R,

P((X ,Y) ∈ A) = ∫∫
A

f (x , y)dxdy.

In particular, for the rectangle [a, b] × [c, d] ⊂ R × R,

P((X ,Y) ∈ [a, b] × [c, d]) =
d

∫
c

b

∫
a

f (x , y)dxdy.

�emarginal densities fX(x) and fY(y) of X and Y are given by

fX(x) ∶=
∞

∫
−∞

f (x , y)dy and fY(y) ∶=
∞

∫
−∞

f (x , y)dx ,

such that for B ⊂ R,

P(X ∈ B) = P(X ∈ B,Y ∈ (−∞,∞)) = ∫
B

∞

∫
−∞

f (x , y)dydx = ∫
B

fX(x)dx ,

and similarly,
P(Y ∈ B) = ∫

B

fY(y)dy.

Question 42. �e joint p.d.f. of X and Y is given by

f (x , y) = {cx y for 0 < x < 1 and 0 < y < 2,
0 otherwise.

(a) Find c.
(b) Find fX(x).
(c) Find P(X > Y).
(d) Find P(Y > 1/2∣X < 1/2).

Solution. (a) We want to �nd the value for c such that the integral is normalised:

1 =
∞

∫
−∞

∞

∫
−∞

f (x , y)dxdy =
2

∫
0

1

∫
0

cx ydxdy

= c
2

∫
0

[x
2y
2

∣
1

0

dy = c
2

∫
0

y
2
dy = c [ y

2

4
∣
2

0

= c,

so it follows that c = 1.
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(b) We use the de�nition of a marginal p.d.f.: for 0 < x < 1,

fX(x) =
∞

∫
−∞

f (x , y)dy =
2

∫
0

xydy = [xy
2

2
∣
2

0

= 2x .

(c) Since X > Y , we want to integrate �rst y from 0 to x (the values for which Y is smaller
than X), and then x from 0 to 1 (it helps if you draw a picture of the integration domain):

P(X > Y) = ∫∫
x>y

f (x , y)dydx =
1

∫
0

x

∫
0

f (x , y)dydx

=
1

∫
0

x

∫
0

xydydx =
1

∫
0

[xy
2

2
∣
x

0

dx

=
1

∫
0

x3
2
dx = [x

4

8
∣
1

0

= 1
8
.

(d) Recall the de�nition of conditional probabilities:

P(Y > 1/2∣X < 1/2) = P(Y > 1/2, X < 1/2)
P(X < 1/2)

=

2

∫
1/2

1/2

∫
0

xydxdy

1/2

∫
0

2xdx

=

2

∫
1/2

y [ x2
2
∣
1/2

0
dy

[x2∣1/2
0

= 4
2

∫
1/2

y
8
dy = 4 [ y

2

16
∣
2

1/2

= 4( 4
16
− 1/4
16

) = 1 − 1
16

= 15
16
.

◊

7.1. Independent random variables. Recall from Section 4.3 that two events A and B are
independent if P(A∩B) = P(A)P(B). We can extend this notion of independence to joint
probability distributions:

Definition 18. Two random variables X and Y are with joint p.d.f. or joint p.m.f. f (x , y)
are independent if and only if

f (x , y) = fX(x) fY(y).

Question 43. Are the random variables X and Y described in Question 41 independent?
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X ∖ Y 1 2 3 4

1 1/10 1/10 1/10 1/10
2 1/10 1/10 1/10 0

3 1/10 1/10 0 0

4 1/10 0 0 0

Solution. Recall that X and Y have the following joint p.m.f.:
and recall that the marginal distributions of X and Y are given by

fX(1) =
4

10
, fX(2) =

3

10
, fX(3) =

2

10
, and fX(4) =

1

10
.

and

fY(1) =
4

10
, fY(2) =

3

10
, fY(3) =

2

10
, and fY(4) =

1

10
.

Now we can check independence: suppose X = 1 and Y = 1, then we get

f (1, 1) = 1
10
, while fX(1) fY(1) =

4

10
⋅ 4
10

≠ 1
10
,

so X and Y are not independent. ◊

Question 44. An police car is patrolling an L kilometre long stretch of highway, travelling
back and forth. An accident occurs somewhere on this stretch of highway. What is the distri-
bution of the distance between the police car and the accident?

Solution. We will start by assuming that both the location of the police car X and the lo-
cation of the accident Y are uniformly distributed, i.e., X ∼ Unif[0, L] and Y ∼ Unif[0, L],
so

fX(x) = {
1

L if 0 < x < L,
0 otherwise,

and fY(y) = {
1

L if 0 < y < L,
0 otherwise.

We will also assume that the location of the police car and of the accident are independent,

therefore

f (x , y) = {
1

L2 if 0 < x < L and 0 < y < L,
0 otherwise,

We write Z for the random variable that describes the (absolute) distance between X and
Y , i.e., Z = ∣X − Y ∣. We want to determine fZ(z).
First, we will try to �nd the c.d.f. of Z:

FZ(z) = P(Z ≤ z) = P(∣X − Y ∣ ≤ z)
= P(−z ≤ X − Y ≤ z) = P(X − z ≤ Y ≤ X + z).
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Let A denote the set of points {x , y} ∈ R×R such that x − z ≤ y ≤ y+ z, then it follows that

Fz(z) = P(X − z ≤ Y ≤ X + z) = ∫∫
A

f (x , y)dxdy.

Solving this integral with calculus is not easy, because the area of integration A is di�cult
to work with. Essentially, the area A is the area in the intersection of a square L × L and
the area between the lines y = x + a and y = x − a. (Try and draw the picture of this area.)
�erefore, the area of A is equal to the area of the square with sides Lminus the area of the
two equilateral triangles with sides L − a, so

Fz(z) = ∫∫
A

f (x , y)dxdy = 1
L2

× (area of A)

= 1
L2

(L2 − 2 1
2
(L − z)2) = 1

L2
(2Lz − z2) = 2z

L
− z2
L2
.

Now we can determine the p.d.f. of Z by di�erentiating FZ(z):

fZ(z) =
d

dz
FZ(z) =

2

L
− 2z
L2

( for 0 ≤ z ≤ L).

◊

7.2. �e expectation of a joint distribution. Recall the law of the unconscious statistician
(LoUS):

E[g(X)] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑x∈I g(x) f (x) if X is discrete,
∞

∫
−∞

g(x) f (x)dx if X is continuous.

We can generalise again for joint distributions:

Principle 27 [LoUS for joint distributions]. For any function g(x , y),
E[g(X ,Y)] =∑

x∈I
∑
y∈J

g(x , y) f (x , y) if X and Y are discrete,

and

E[g(X ,Y)] =
∞

∫
−∞

∞

∫
−∞

g(x , y) f (x , y)dxdy if X and Y are continuous.

We will omit the proof.

With this generalised version of the LoUS, we can prove Principle 21(b) (back on page

51): recall

E[X + Y] = E[X] + E[Y].
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We can prove this with the function g(x , y) = x + y: for continuous random variables X
and Y ,

E[X + Y] =
∞

∫
−∞

∞

∫
−∞

(x + y) f (x , y)dxdy

=
∞

∫
−∞

∞

∫
−∞

x f (x , y)dxdy +
∞

∫
−∞

∞

∫
−∞

y f (x , y)dxdy

=
∞

∫
−∞

x
⎛
⎝

∞

∫
−∞

f (x , y)dy
⎞
⎠
dx +

∞

∫
−∞

y
⎛
⎝

∞

∫
−∞

f (x , y)dx
⎞
⎠
dy

=
∞

∫
−∞

x fX(x)dx +
∞

∫
−∞

y fY(y)dy

= E[X] + E[Y].

�e proof for discrete random variables is similar.

Principle 28. If X and Y are independent random variables and g(x) and h(x) are func-
tions, then

E[g(X)h(Y)] = E[g(X)]E[h(Y)],
and in particular,

E[XY] = E[X]E[Y].

Proof. Suppose X and Y are discrete (the proof for continuous r.v.’s is similar):

E[g(X)h(Y)] =∑
x∈I
∑
y∈J

g(x)h(y) f (x , y) =∑
x∈I
∑
y∈J

g(x)h(y) fX(x) fY(y)

= (∑
x∈I

g(x) fX(x))
⎛
⎝∑y∈J

h(y) fY(y)
⎞
⎠
= E[g(X)]E[h(Y)]. �

7.3. Covariance and correlation. Random variables can have strong dependencies on one
another.40Wemay want to quantify this dependence. To this end we de�ne

Definition 19 [�e covariance between two random variables]. Let X and Y be random
variables with E[X] = µX and E[Y] = µY . �e covariance between X and Y is de�ned as

Cov(X ,Y) ∶= E[(X − µX)(Y − µY)]

We will use the covariance mainly to calculate the variance of sums of random variables.

To do this, we need to establish some properties of the covariance:

40�ink again of stock prices.
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Principle 29 [Properties of the covariance]. Let X and Y be random variables. �en the
following hold:
(a) A simple formula for covariance:

Cov(X ,Y) = E[XY] − E[X]E[Y],
which implies that for independent X and Y,

Cov(X ,Y) = 0.
(Note that Cov(X ,Y) = 0 does not also imply that X and Y are independent!)

(b) �e covariance is symmetric:
Cov(X ,Y) = Cov(Y , X).

(c) �e covariance between X and itself is the variance:
Cov(X , X) = Var(X).

(d) Linearity of covariance:
Cov(aX ,Y) = aCov(X ,Y).

(e) Covariance of sums of random variables is bilinear:

Cov
⎛
⎝

n
∑
i=1

Xi ,
m
∑
j=1

Yj
⎞
⎠
=

n
∑
i=1

m
∑
j=1
Cov(Xi ,Yj).

We omit the proofs here. For the proof of (a), see Ross, page 305. �e proofs of (b), (c),

and (d) follow directly from the de�nitions of covariance and variance. �e proof of (e)

can be found on page 306 of Ross.

With all these properties established we can determine the variance of sums of random

variables:

Principle 30 [�e variance of sums of random variables]. Let X and Y be random vari-
ables, then

Var(X + Y) = Var(X) +Var(Y) + 2Cov(X ,Y),
and more generally

Var(
n
∑
i=1

Xi) =
n
∑
i=1
Var(Xi) + 2

n
∑
i=2

i
∑
j=1
Cov(Xi , X j).

Proof. We will prove it for two random variables. �e general proof is in Ross on page
306. �e proof simply involves the de�nitions of variance and covariance and a clever
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rearranging of the terms:

Var(X + Y) = E[(X + Y)2] − (E[X + Y])2

= E[(X + Y)2] − (E[X] + E[Y])2

= E[X2 + 2XY + Y 2] − (E[X]2 + 2E[X]E[Y] + E[Y]2)
= E[X2] + 2E[XY] + E[Y 2] − E[X]2 − 2E[X]E[Y] − E[Y]2

= (E[X2] − E[X]2) + (E[Y 2] − E[Y]2) + 2 (E[XY] − E[X]E[Y])
= Var(X) +Var(Y) + 2Cov(X ,Y). �

Recall Principle 22(c) on page 51, which states that for independent random variables X
and Y ,

Var(X + Y) = Var(X) +Var(Y).
With Principles 29(a) and 30 in hand we can �nally prove this claim:

Var(X + Y) = Var(X) +Var(Y) + 2Cov(X ,Y) = Var(X) +Var(Y) + 0.

Question 45. A coin comes up heads with probability p. Flip the coin once. Let X = 1 if the
coin came up heads, and let X = 0 if it came up tails. If the coin came up tails, �ip it again.
If it came up heads do nothing. Let Y = 1 if the coin is now heads, and let Y = 0 if the coin is
now tails.
(a) Find f (x , y) and its marginals.
(b) Find Cov(X ,Y).
(c) Finc Var(X + Y).

Solution. (a) We can write the joint p.m.f. of X and Y as a table:

X ∖ Y 0 1 fX(x)
0 (1 − p) ⋅ (1 − p) (1 − p) ⋅ p (1 − p)
1 0 p ⋅ 1 p

fY(y) (1 − p)(1 − p) p + p(1 − p)

(b) To calculate the covariance, we need to determine E[X], E[Y], and E[XY], :

E[X] = 0 ⋅ fX(0) + 1 ⋅ fX(1) = p,
E[Y] = 0 ⋅ fY(0) + 1 ⋅ fY(1) = p + p(1 − p),

E[XY] = 0 ⋅ 0 ⋅ f (0, 0) + 1 ⋅ 0 ⋅ f (1, 0) + 0 ⋅ 1 ⋅ f (0, 1) + 1 ⋅ 1 ⋅ f (1, 1) = f (1, 1) = p.

�erefore,

Cov(X ,Y) = E[XY] − E[X]E[Y] = p − p(p + p(1 − p)) = p − 2p2 + p3.
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(c) We need to calculate Var(X) and Var(Y). Marginally, both are Bernoulli random vari-
ables, i.e., X ∼ Ber(p) and Y ∼ Ber(p + p(1 − p)), so

Var(X) = p(1 − p) and Var(Y) = (p + p(1 − p))(1 − (p + p(1 − p)))
= 2p − 5p2 + 4p3 − p4.

�erefore,

Var(X + Y) = Var(X) +Var(Y) + 2Cov(X ,Y)
= p(1 − p) + (2p − 5p2 + 4p3 − p4) + 2(p + 2p2 − p3)
= 5p − 2p2 + 2p3 − p4.

◊
�e covariance of X and Y tells us something about their codependence, but it is not

exactly clear from the formulation how strong this dependence is. If wewant to understand

this, we need to compare the covariance to the variances of X and Y :

Definition 20 [�e correlation coe�cient]. Given random variables X and Y, we de�ne
the correlation coe�cient of X and Y as

ρ(X ,Y) ∶= Cov(X ,Y)√
Var(X)Var(Y)

.

Observe that if X is expressed in units [a] and Y is expressed in units [b] (e.g., X is in
metres, and Y is in seconds) then Var(X) is expressed in units [a2], Var(Y) is expressed
in units [b2], and Cov(X ,Y) is expressed in units [a ⋅ b], so it follows that the correlation
coe�cient ρ(X ,Y) is expressed in units [(a⋅b)/

√
a2 ⋅ b2] = [1], that is, ρ(X ,Y) is a unitless

(or ‘dimensionless’) quantity.

Moreover, ρ(X ,Y) has the following property:

Principle 31. Let X and Y be random variables, then
−1 ≤ ρ(X ,Y) ≤ 1.

Proof. �e proof uses the Cauchy-Schwarz inequality:41

E[XY]2 ≤ E[X2]E[Y 2].
�e proof of this inequality goes as follows: assume42 that E[X2] ≠ 0. De�ne Z = tX + Y .
We have the following inequality

0 ≤ E[Z2] = E[(tX + Y)2] = t2E[X2] + 2tE[XY] + E[Y 2] =∶ at2 + bt + c.
41�e Cauchy-Schwarz inequality holds more generally for inner products:

∣⟨x , y⟩∣2 ≤ ⟨x , x⟩ ⋅ ⟨y, y⟩,
so that for instance for vectors x , y ∈ Rn , the inequality becomes ∣⟨x , y⟩∣2 ≤ ∣x∣2∣y∣2.
42E[X2] = 0 can only happen if X = 0 always, which is not an interesting random variable. Moreover, the

Cauchy-Schwarz inequality holds trivially if this is the case.
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�e right hand side should always be positive (i.e., non-negative and non-zero) except
possibly for the point t = 0, so we know that the discriminant of the quadratic function on
the right should be non-positive, i.e.,

b2 − 4ac ≤ 0.

�erefore,

4E[XY]2 ≤ 4E[X2]E[Y 2].
�is completes the proof of the Cauchy-Schwarz inequality.

Now we apply this inequality to the de�nition of the covariance:

∣Cov(X ,Y)∣2 = ∣E[(X − E[X])(Y − E[Y])]∣2

≤ E[(X − E[X])2]E[(Y − E[Y])2]
= Var(X)Var(Y).

With this inequality, if follows from the de�nition of ρ(X ,Y) that

∣ρ(X ,Y)∣ ≤ 1

and this completes the proof. �

7.4. Sums of independent random variables. If we have two independent random vari-
ables, X and Y , we can calculate the distribution of X + Y :

Principle 32 [�e sums of independent random variables]. Let X and Y be independent
continuous random variables with p.d.f. fX(x) and fY(y), respectively. �e p.d.f. of X +Y is
given by

fX+Y(z) =
∞

∫
−∞

fX(z − y) fY(y)dy.

�e function fX+Y is also known as the convolution of fX and fY .

Proof. We start by determining the c.d.f. of X + Y :

FX+Y(z) = P(X + Y ≤ z) = ∫∫
x+y≤z

fX(x) fY(y)dxdy

=
∞

∫
−∞

z−y

∫
−∞

fX(x) fY(y)dxdy

=
∞

∫
−∞

⎛
⎝

z−y

∫
−∞

fX(x)dx
⎞
⎠
fY(y)dy

=
∞

∫
−∞

FX(z − y) fY(y)dy.
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Now we di�erentiate with respect to z:

fX+Y(z) =
d

dz

∞

∫
−∞

FX(z − y) fY(y)dy

=
∞

∫
−∞

d

dz
FX(z − y) fY(y)dy

=
∞

∫
−∞

fX(z − y) fY(y)dy. �

Example 38 (�e sumof two independent uniform randomvariables). Let X ,Y ∼Unif[0, 1].
We can calculate the distribution of X + Y . Recall the p.d.f. of X and Y :

fX(a) = fY(a) = {1 if 0 < a < 1,
0 otherwise.

�erefore,

fX+Y(z) =
1

∫
0

fX(z − y) ⋅ 1dy.

Since y is between 0 and 1 on the range of this integral, we get

fX(z − y) = {1 if 0 ≤ z − y ≤ 1,
0 otherwise.

�e values y for which the function is non-zero depend on z: if z ≤ 1, then 0 ≤ z − y ≤ 1
implies that 0 ≤ y ≤ z, while if 1 ≤ z ≤ 2, then z − 1 ≤ y ≤ z, so

fX+Y(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
∫
0

1 ⋅ 1dy = z if 0 ≤ z ≤ 1,
1

∫
z−1
1 ⋅ 1dy = 2 − z if 1 ≤ z ≤ 2,

0 otherwise.

△
Example 39 (Gamma random variables). Recall the gamma function (discussed on page
65):

Γ(n) =
∞

∫
0

yn−1e−ydy.

�e gamma distribution is a two-parameter family of probability distribution functions
with parameters (t, θ) (where t, θ > 0) and p.d.f.

f (x) = θe−θx(θx)t−1
Γ(t)

when 0 < x <∞.
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�e gamma distribution is o�en used in the econometrics and actuarial science to model

the time until a person dies, but it has numerous other applications as well.43

�e property that we are interested in now, is the following fact: the family of gamma

distributions with �xed θ is “closed under convolutions”. �is means that if we take two
randomvariables, X ∼Gamma(s, θ) andY ∼Gamma(t, θ), then X+Y ∼Gamma(s+t, θ).
We will now prove this fact:

By Principle 32,

fX+Y(z) =
z

∫
0

fX(z − y) fX(y)dy

= 1

Γ(s)Γ(t)

z

∫
0

θe−θ(z−y) (θ(z − y))s−1 θe−θy(θy)t−1dy

= Ke−θz
z

∫
0

(z − y)s−1yt−1dy.

Let’s analyse these steps: In the �rst step, we used the fact that the product fX(z − y) fY(y)
is only non-zero when both y and z − y are positive to limit our integration domain to
0 ≤ y ≤ z. In the second step we simply applied the de�nition of the gamma distribution.
In the third step, we moved all the factors that do not depend on y outside of the integral,
and moreover, we write all the constants here combined as K. We do this because it turns
out that it won’t matter to us what the precise value of this K is going to be, as we will see
shortly.

We continue by substituting x = y/z:

fX+Y(z) = Ke−θzzs+t−1
1

∫
0

(1 − x)s−1x t−1dx .

�e parameters s and t don’t need to be integers, so this integral can be very di�cult, but
that does not matter. All that matters is that the integral does not depend on z, so it will
give us some constant value.�erefore there exists another constant C such that

fX+Y(z) = Ce−θzzs+t−1.
�e reason that we did not bother determining the value of C by solving the integral is

as follows: by Principle 32 we already know that the above function is the p.d.f. of X + Y ,
so it must be a normalised function. �erefore, we can just determine the value of C by
setting the integral equal to 1:

1 =
∞

∫
−∞

fX+Y(z)dz = C
∞

∫
0

e−θz(θz)s+t−1dz.

43See Ross, Section 5.6.1 on page 203 for a brief discussion of the gamma distributions.
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Now we substitute y = θz to obtain

1 = C
θs+t

∞

∫
0

ys+t−1e−ydy = C ⋅ Γ(s + t)
θs+t ,

so it follows that C = θs+t/Γ(s + t) and therefore,

fX+Y(z) =
θe−θz(θz)s+t−1
Γ(s + t)

when 0 < z <∞,

so X + Y ∼ Gamma(s + t, θ) as claimed. △

�ere is another family of distributions that is closed under convolutions:

Principle 33 [�e sum of independent normals is normal]. If Xi for i = 1, . . . , n are inde-
pendent normal random variables such that Xi ∼ N (µi , σ2i ), then

n
∑
i=1

Xi ∼ N (
n
∑
i=1

µi ,
n
∑
i=1

σ2i )

Proof. Recall that X ∼ N (µ, σ 2)means that X has p.d.f.

f (x) = 1√
2πσ

e−(x−µ)/2σ
2

for all −∞ < x <∞.

We start with the special case where we have two random variables with the speci�c

distributions X ∼ N (0, σ2) and Y ∼ N (0, 1). To make our notation a bit easier, we de�ne

c ∶= 1

2σ 2
+ 1
2
= 1 + σ2
2σ2

.

We want to use Principle 32 so we need to determine fX(z − y) fY(y):

fX(z − y) fY(y) =
1√
2πσ

e
−
(z−y)2

2σ2
1√
2π
e−

y2
2

= 1

2πσ
e
− z2
2σ2 e

−c(y2−2y z
1+σ2
)

= 1

2πσ
e
− z2
2σ2 e

z2
2σ2(1+σ2) e

−c(y− z
1+σ2
)
2

In the third step we used a method known as completing the square.44
We can simplify this formula a bit: the exponents of the second and third factor can be

written as

− z2
2σ 2

+ z2
2σ 2(1 + σ 2)

= − z2(1 + σ2)
2σ2(1 + σ2)

+ z2
2σ 2(1 + σ 2)

= − zσ 2
2σ 2(1 + σ2)

= − z2
2(1 + σ 2)

,

44 In the exponent appears a term of the form y2 − by. We rewrite this as y2 − by + b2/4 − b2/4 and then
we use the fact that (y − b/2)2 = y2 − by + b2/4 to determine that y2 − by = (y − b/2)2 − b2/4.



90 MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES

so that

fX(z − y) fY(y) =
1

2πσ
e
− z2
2(1+σ2) e

−c(y− z
1+σ2
)
2

.

We integrate over y to determine fX+Y(z):

fX+Y(z) =
1

2πσ
e
− z2
2(1+σ2)

∞

∫
0

e
−c(y− z

1+σ2
)
2

dy

= 1

2πσ
e
− z2
2(1+σ2)

∞

∫
−∞

e−cx
2

dx

= Ce−
z2

2(1+σ2) .

In the second step we substituted x = y − z
2(1+σ 2) and in the third step we introduced the

constant C that does not depend on z.�e value of C is unimportant since we know that
fX+Y(z) is a p.d.f. and therefore normalised. Moreover, the non-constant part of the p.d.f.
has the same form as that of a normally distributed random variable with mean 0 and

variance 1 + σ 2, so we can conclude that X + Y ∼ N (0, 1 + σ2).
Now we can determine that the same holds for two normally distributed random vari-

ables with arbitrary means and variances: let X1 ∼ N (µ1, σ 21 ) and let X2 ∼ N (µ2, σ22 ), then
we can write

X1 + X2 = σ2 (
X1 − µ1

σ2
+ X2 − µ2

σ2
) + µ1 + µ2.

Since by Principle 26 normal random variables stay normally distributed under linear

transformations, we have that

X1 − µ1
σ2

∼ N (0, σ21 /σ22 ) and
X2 − µ2

σ2
∼ N (0, 1),

so we can apply our previous calculation to determine that

X1 + X2 ∼ N (µ1 + µ2, σ 22 (1 + σ 21 /σ22 )) = N (µ1 + µ2, σ 21 + σ22 ).
Finally, extending this result to general values n is easy. We use the inductive method: we
know that the principle holds when n = 2, so all we need to do is show that if it holds for
n − 1, then it also holds for n. Assume that the principle holds for n − 1, then

n
∑
i=1

Xi =
n−1
∑
i=1

Xi + Xn .

It is our assumption that

n−1
∑
i=1

Xi ∼ N (
n−1
∑
i=1

µi ,
n−1
∑
i=1

σ2i ) and Xn ∼ N (µn , σ 2n),

so that we are adding two normally distributed random variables, and hence by our result

for n = 2, it also holds for general n. �
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7.5. Conditional distributions. Given a joint probability distribution, we can derive con-
ditional probabilities as well.

Let’s start by recalling what a conditional probability is: for events A and B, the condi-
tional probability of A given B is

P(A∣B) =
⎧⎪⎪⎨⎪⎪⎩

P(A∩B)
P(B) if P(B) > 0,
0 if P(B) = 0.

.

We can extend this notion to joint probability distributions in a natural way.�e extensions

for discrete and continuous random variables are di�erent, so wewill treat them separately.

7.5.1. Conditional distributions for discrete random variables.

Definition 21 [�e conditional p.m.f.]. Given a joint p.m.f. for the discrete random vari-
ables X and Y, we de�ne the conditional p.m.f. of X conditioned on the event {Y = y} as

fX∣Y(x∣y) ∶= P(X = x∣Y = y) = P({X = x} ∩ {Y = y})
P(Y = y)

= f (x , y)
fY(y)

.

Question 46. Calculate for the random variables X and Y described in Question 41 the
following conditional probabilities:
(a) P(X = 3∣Y = 2)
(b) P(X = 3∣Y = 1)
(c) P(Y = 2∣X = 4)

Solution. Recall that X and Y have the following joint p.m.f. and marginals:

X ∖ Y 1 2 3 4 fX(x)
1 1/10 1/10 1/10 1/10 4/10
2 1/10 1/10 1/10 0 3/10
3 1/10 1/10 0 0 2/10
4 1/10 0 0 0 1/10

fY(y) 4/10 3/10 2/10 1/10

(a) We use the de�nition:

P(X = 3∣Y = 2) = f (3, 2)
fY(2)

= 1/10
3/10

= 1
3
.

(b) Again, by the de�nition:

P(X = 3∣Y = 1) = f (2, 2)
fY(1)

= 1/10
4/10

= 1
4
.
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(c) And again:

P(Y = 2∣X = 4) = f (4, 2)
fX(4)

= 0

1/10
= 0.

◊

7.5.2. Conditional distributions for continuous random variables. Even though the proba-
bility of the event {Y = y} is always 0 for continuous random variables, we can still de�ne
the conditional distributions of X given {Y = y}:

Definition 22 [�e conditional p.d.f. and c.d.f.]. Given a joint p.d.f. f (x , y) for the con-
tinuous random variables X and Y, we de�ne the conditional p.d.f. of X given {Y = y} as

fX∣Y(x∣y) ∶=
f (x , y)
fY(y)

.

Moreover, we de�ne the conditional c.d.f. of X given Y as

FX∣Y(x∣y) ∶=
x

∫
−∞

fX∣Y(x∣y)dx .

Note that both the conditional p.d.f. and the conditional c.d.f. can be functions of y.
Nevertheless, the c.d.f. does describe a probability for any �xed y.

Question 47. Recall from Question 42 on page 78 the following joint p.d.f. for random vari-
ables X and Y:

f (x , y) = {xy for 0 < x < 1 and 0 < y < 2,
0 otherwise.

Find P(Y > 1/2∣X = x).

Solution. Let’s start by recalling the marginals of X and Y from Question 42: fX(x) = 2x
and fY(y) = y

2
.�erefore,

fY ∣X(y∣x) =
f (x , y)
fX(x)

= {
y
2
for 0 < x < 1 and 0 < y < 2,

0 otherwise.

Now we can determine P(Y > 1/2∣X = x) by integrating:

P(Y > 1/2∣X = x) =
∞

∫
1/2

fY ∣X(y∣x)dy =
2

∫
1/2

y
2
dy

= [ y
2

4
∣
2

1/2

= 1 − 1
16

= 15
16
,

so in fact any conditioning on x gives us the same conditional probability distribution for
Y . (Compare with Question 42(d).) ◊
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More generally, we have the following

Principle 34 [Conditional distributions of independent r.v.’s]. If X and Y are independent
random variables (both either discrete or continuous), then

fX∣Y(x∣y) = fX(x).

Proof. Simply apply the de�nitions of independence and conditional distributions:

fX∣Y(x∣y) =
f (x , y)
fY(y)

= fX(x) fY(y)
fY(y)

= fX(x). �

Question 48. Let X and Y be continuous random variables with joint p.d.f.

f (x , y) = e
−x/ye−y

y
when 0 < x <∞ and 0 < y <∞.

(a) Find fX∣Y(x∣y).
(b) Find P(X > 1∣Y = y).

Solution. (a) Since fX∣Y(x∣y) = f (x ,y)
fY(y) we should �rst determine the marginal of Y :

fY(y) =
∞

∫
0

e−x/ye−y

y
dx = e

−y

y

∞

∫
0

e−x/ydx = e
−y

y
[−ye−x/y∣∞

0
= e−y .

Now we can determine

fX∣Y(x∣y) =
e−x/ye−y

y

e−y
= e

−x/y

y
.

(b) We integrate fX∣Y(x∣y) from 1 to∞ for the answer:

P(X > 1∣Y = y) =
∞

∫
1

e−x/y

y
dx = [−e−x/y∣∞

1
= e−1/y .

Note that this answer still depends on y, so X and Y are not independent. ◊

7.5.3. Conditional expectation. Just as with any probability distribution, we cal also deter-
mine the expectation of X conditioned on the event {Y = y}:

Definition 23 [Conditional expectation]. Let X and Y be random variables with joint
distribution f (x , y), then the conditional expectation of X given y is de�ned as

E[X∣Y = y] =∑
x∈I

x fX∣Y(x∣y) if X and Y are discrete,

and

E[X∣Y = y] =
∞

∫
−∞

x fX∣Y(x∣y)dx if X and Y are continuous.
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Let’s calculate the conditional expectation for the joint p.d.f. in Question 48:

Question 49. Let X and Y be continuous random variables with joint p.d.f.

f (x , y) = e
−x/ye−y

y
when 0 < x <∞ and 0 < y <∞.

Find E[X∣Y = y].

Solution. We already know the conditional density:

fX∣Y(x∣y) =
e−x/y

y
.

�erefore,

E[X∣Y = y] =
∞

∫
0

x
y
e−x/ydx .

We can solve this integral via integration by parts, using f (x) = x and d

dx g(x) =
e−x/y

y (so

that g(x) = −e−x/y):

E[X∣Y = y] = [ f (x)g(x)∣∞
0
−

∞

∫
0

( d
dx

f (x)) g(x)dx

= [−xe−x/y∣∞
0
+

∞

∫
0

e−x/ydx

= 0 + [−ye−x/y∣∞
0
= y.

so conditionally on the event that {Y = y} the expected value of X also becomes y. ◊

In general, the expectation of X conditioned on {Y = y} can be a function that depends
on y. For any �xed y, however, E[X∣Y = y] is a true expectation in the sense that is satis�es
all the properties of an expectation. In essence, E[X∣Y = y] is simply the expectation on
the reduced sample space given by the information {Y = y}, as described in the beginning
of Section 4.

7.6. Using conditional expectations to compute unconditioned expectations. Like con-
ditional probabilities, so are conditional expectations powerful tool for computations. Un-

fortunately, conditional expectations are sometimes a bit di�cult to work with, so some

care is needed when we try and use this tool. Ross gives a number of nice examples of this

method in Section 7.5.2, but we will restrict ourselves to a single example here.

�e following principle supplies the tool:
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Principle 35 [�e expectation over conditional expectations is the ordinary expectation].

For random variables X and Y, (a) For discrete random variables X and Y,
E[X] = ∑

y∈J
E[X∣Y = y]P(Y = y).

(b) For continuous random variables X and Y,

E[X] =
∞

∫
−∞

E[X∣Y = y] fY(y)dy.

�e general notation for this principle is

E[X] = E[E[X∣Y]].

�e proof for discrete random variables can be found on page 315 of Ross, so we omit that.

�e proof for the continuous case goes as follows:

Proof of (b). We simply apply the de�nitions of E[X∣Y = y], fX∣Y(x∣y) and fX(x) (in that
order) to the right-hand side:

∞

∫
−∞

E[X∣Y = y] fY(y)dy =
∞

∫
−∞

∞

∫
−∞

x fX∣Y(x∣y) fY(y)dydx =
∞

∫
−∞

∞

∫
−∞

x f (x , y)
fY(y)

fY(y)dydx

=
∞

∫
−∞

∞

∫
−∞

x f (x , y)dydx =
∞

∫
−∞

x
⎛
⎝

∞

∫
−∞

f (x , y)dy
⎞
⎠
dx

=
∞

∫
−∞

x fX(x)dx = E[X]. �

Question 50. A miner has lost his way in a mine, in a room containting three doors. If the
miner takes the �rst door, then the miner gets out of the mine in 3 hours. If the miner takes
the second door, then he returns to the room a�er 5 hours. If the miner takes the third door,
then he returns to the room in 7 hours. �e miner is disoriented, so each time he gets to the
room, he picks a door at random and follows the path. What is the expected time until the
miner escapes?

Solution. Let X denote the escape time and Y denote the door the miner chooses. We can
determine E[X] with conditional expectations. Since E[X] = E[E[X∣Y]],

E[X] = E[X∣Y = 1]P(Y = 1) + E[X∣Y = 2]P(Y = 2) + E[X∣Y = 3]P(Y = 3).

We know from the question that P(Y = i) = 1/3 for i = 1, 2, 3. Moreover, it is given that

E[X∣Y = 1] = 3.



96 MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES

To determine E[X∣Y = 2]we have to reason a bit: if the miner takes door 2, then he returns
to the room a�er 5 hours. When he returns to the room, he picks a door at random again,

so the expected remaining time to escape a�er returning to the room is also E[X], by the
de�nition of X.�erefore,

E[X∣Y = 2] = 5 + E[X].
Similarly we can reason that

E[X∣Y = 3] = 7 + E[X].
We can now use that E[X] = E[E[X∣Y]] to solve the problem:

E[X] = 1
3
(3 + (5 + E[X]) + (7 + E[X])) = 5 + 2

3
E[X] ⇒ E[X] = 15,

so it will take the miner an expected 15 hours to escape the mine. ◊
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8. Moment generating functions

Let’s start with the de�nition:

Definition 24 [�e moment generating function]. Given a random variable X, we de�ne
themoment generating function of X as

MX(t) ∶= E [etX] ,
so that in particular, if X is discrete, then

MX(t) =∑
x∈I
etxP(X = x),

while if X is continuous with p.d.f. f (x), then

MX(t) =
∞

∫
−∞

etx f (x)dx .

So why should we bother with such a complicated looking thing? Because moment gen-

erating functions (or m.g.f.’s) are an extremely useful tool in probability theory. �ey are

part of a larger framework, that of generating functions. Generating functions are an in-

dispensable tool in both probability theory and discrete mathematics.�e following quote

from the excellent introductory book Generatingfunctionology by Herbert Wilf45 sums up
the basic idea of generating functions:

A generating function is a clothesline on which we hang up a sequence of

numbers for display. What that means is this: suppose we have a problem

whose answer is a sequence of numbers, a0, a1, a2, . . . . We want to know
what the sequence is. What kind of an answer might we expect?

[. . . ]

Generating functions add another string to your bow. Although giving a

simple formula for themembers of the sequencemay be out of the question,

we might be able to give a simple formula for the sum of a power series,

whose coe�cients are the sequence that were looking for.

What Wilf is saying is that if we want to understand a sequence {an}∞n=1 (or functions
f (x) for that matter), then we can do this by studying instead a function that is described
by this sequence (or function). �is way, we may be able to �nd a nice generating function
of this sequence. We can then apply the tools that we have for functions to the generating

function and learn something about the sequence. For instance, we know how to take the

derivative of a function, and this will turn out to be a very useful aspect. Indeed, let’s see

what happens when we take the derivative of the moment generating function:

d

dt
MX(t) =

d

dt
E [etX] = E [ d

dt
etX] = E [XetX] .

45Herbert S. Wilf, Generatingfunctionology, 1990, Academic Press.
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�e equation on the right-hand side46may not seemmuch easier than the equation on the

le�-hand side, but it will be when we evaluate it at t = 0:
d

dt
MX(t)∣

t=0
= E[X],

so the �rst derivative ofMX(t) evaluated at t = 0 gives us the �rst moment of X.
We can continue di�erentiating:

d2

dt2
MX(t) =

d

dt
E [XetX] = E [X d

dt
etX] = E [X2etX] .

Now, if we evaluate the second derivative ofMX(t) at t = 0 we get
d2

dt2
MX(t)∣

t=0
= E[X2],

so the second derivative ofMX(t) evaluated at t = 0 gives us the second moment of X.
We can of course keep on di�erentiating MX(t) as o�en as we like, and we will end up

with the following

Principle 36 [�emoment generating function of X describes themoments of X]. Under
some mild assumptions on X (see footnote 46), we have for all n ≥ 1,

dn

dtn
MX(t)∣

t=0
= E[Xn].

�e true utility of the moment generating function comes from the fact that it allows us

to determine the moments of a distribution via di�erentiation, rather than via integration,

and it is o�en much easier to di�erentiate that to integrate. As an added bonus, we don’t

even need to understand the derivatives ofMX(t) for all values of t, we just need to know
it for one particular, easy value: when t = 0.
Let’s examine the moment generating functions for a couple of common distributions.

Example 40 (�emoment generating function of a binomial distribution). If X ∼Bin(n, p),
then

MX(t) = E[etX] =
n
∑
k=0

(n
k
)pk(1 − p)n−ketk

=
n
∑
k=0

(n
k
)(pet)k(1 − p)n−k

= (pet + (1 − p))n ,
where the �nal equality is due to the binomial theorem (see page 8).

46We have cheated a little bit in the derivation: we have interchanged the order of expectation and di�er-

entiation.�is is not always possible, but it is possible for almost any reasonable probability distribution. In

particular, all the distributions that we have considered so far have this property. We will not check this for

every distribution that we come across, but rather assume that this is the case in this course.
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Now we can easily calculate the moments of X. Di�erentiating once (by making use of
the chain rule with u = pet + (1 − p)) yields

d

dt
MX(t) =

du
dt

⋅ d
du

un = pet ⋅ nun−1 = npet (pet − (1 − p))n−1 ,

so that

E[X] = d
dt

MX(t)∣
t=0

= np,

as expected. △

Example 41 (�e m.g.f. of a Poisson random variable). If X ∼ Poi(λ), then

MX(t) = E[etX] =
∞

∑
n=0

λne−λ

n!
etn

= e−λ
∞

∑
n=0

(λet)n
n!

= e−λeλet = eλ(et−1).

We can again determine the �rst derivative of MX(t) (using the chain rule with u =
λ(et − 1))

d

dt
MX(t) =

du
dt

⋅ d
du
eu = λet ⋅ eλu = λeλ(et−1)+t ,

and the second derivative (using the chain rule with v = λ(et − 1) + t)

d2

dt2
MX(t) =

d

dt
λeλ(et−1)+t = dv

dt
⋅ d
dv

λev = λ(λet + 1)eλ(et−1)+t .

Evaluating the derivatives at t = 0 gives

E[X] = d
dt

MX(t)∣
t=0

= λeλ(1−1)+0 = λ

and

E[X2] = d
2

dt2
MX(t)∣

t=0
= λ(λ + 1)eλ(1−1)+0 = λ(λ + 1) = λ2 + λ.

△

Principle 37 [�e m.g.f. of a standard normal random variable]. If Z ∼ N (0, 1), then
MZ(t) = et

2/2.
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Proof.

MZ(t) = E[etZ] =
1√
2π

∞

∫
−∞

e−x
2/2etxdx

= 1√
2π

∞

∫
−∞

e−(x
2−2tx)/2dx

= 1√
2π

∞

∫
−∞

e−(x−t)
2/2+t2/2dx ,

where in the last step we again used the method of ‘completing the square’ to write

x2 − 2tx = x2 − 2tx + t2 − t2 = (x − t)2 − t2

(see footnote 44 on page 89). We continue, using the substitution u = x − t:

MZ(t) = et
2/2 1√

2π

∞

∫
−∞

e−(x−t)
2/2dx

= et2/2 1√
2π

∞

∫
−∞

e−u
2/2du

= et2/2,

where in the last step we used that the integral is equal to
√
2π (see page 69). �

Example 42 (Additional properties of them.g.f. of a standard normal / not treated in class).
We can again di�erentiate (using the chain rule with u = t2/2):

d

dt
MZ(t) =

du
dt

⋅ d
du
eu = tet2/2,

and we can di�erentiate again (now using the product rule with u = et2/2 and v = t):

d2

d2t
MZ(t) = vdu

dt
+ udv
dt

= t2et2/2 + et2/2 = (t2 + 1)et2/2.

We can continue in this fashion (using always the product rule with u = et2/2 and v equal
to the other factor):

d3

d3t
MZ(t) = vdu

dt
+ udv
dt

= (t2 + 1)tet2/2 + 2tet2/2 = (t3 + 3t)et2/2,

d4

d4t
MZ(t) = vdu

dt
+ udv
dt

= (t3 + 3t)tet2/2 + (3t2 + 3)et2/2 = (t4 + 6t + 3)et2/2.
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We can thus determine the �rst four moments of Z:

E[Z] = d
dt

MZ(t)∣
t=0

= 0,

E[Z2] = d
2

d2t
MZ(t)∣

t=0
= 1,

E[Z3] = d
3

d3t
MZ(t)∣

t=0
= 0,

E[Z4] = d
4

d4t
MZ(t)∣

t=0
= 3.

More generally we can determine that

E[Zn] = {(n − 1)!! if n is even,
0 if n is odd,

where n!! denotes the double factorial which is the product of every odd number between
n and 1. △

Principle 38. If X and Y are random variables such that Y = aX + b, then
MY(t) = etbMX(at).

Proof.
MY(t) = E[etY] = E[et(aX+b)] = E[e(ta)Xetb] = etbMX(at). �

�is principle has the following consequence:

Corollary 1 [�e m.g.f. of a normal random variable]. Let X ∼ N (µ, σ2), then
MX(t) = e(tσ)

2/2+tµ .

Proof. �is follows immediately from the principle since X = µ + σZ if Z ∼ N (0, 1), and
MZ(t) = et

2/2. �

8.1. Moment generating functions of sumsof randomvariables. Another nice thing about
the moment generating function approach is that it o�ers us an easy way of studying the

sums of independent random variables:

Principle 39. Let X and Y be independent random variables, then
MX+Y(t) = MX(t)MY(t).

Proof. By the fact that E[g(X)h(Y)] = E[g(X)]E[h(Y)] for independent X and Y (see
Principle 28 on page 82),

MX+Y(t) = E[et(X+Y)] = E[etXetX] = E[etX]E[etY] = MX(t)MY(t). �

Question 51. Suppose X ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent. What is the
distribution of X + Y?
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Solution. We use the m.g.f. approach:
MX+Y(t) = MX(t)MY(t) = (pet + 1 − p)n(pet + 1 − p)m = (pet + 1 − p)n+m ,

which is of course the m.g.f. of a random variable distributed as Bin(n +m, p). It is a bit
toomuch to simply conclude from this that since the m.g.f. of X+Y and of a Bin(n+m, p)
are the same, it holds that X+Y ∼ Bin(n+m, p) since we have not ruled out the possibility
that two random variables with di�erent distributions can have the same m.g.f. �is can

in fact not happen,47 but we will not prove this (see also Lemma 1 below). ◊

Question 52 [Not treated in class]. Suppose X ∼ Poi(λ) and Y ∼ Poi(θ) are independent.
What is the distribution of X + Y?

Solution. We use the m.g.f. approach again:
MX+Y(t) = MX(t)MY(t) = eλ(et−1)eθ(et−1) = e(λ+θ)(et−1),

which is of course the m.g.f. of a random variable distributed as Poi(λ + θ). ◊

Question 53 [Not treated in class]. Suppose X ∼ N (µ1, σ 21 ) and Y ∼ N (µ2, σ 22 ) are inde-
pendent. What is the distribution of X + Y?

Solution. We use the m.g.f. approach again:

MX+Y(t) = MX(t)MY(t) = eσ 21 t2/2+µ1 teσ 22 t2/2+µ2 t = e(σ 21 +σ 22 )t2/2+(µ1+µ2)t ,

which is of course the m.g.f. of a random variable distributed as N (µ1 + µ2, σ21 + σ22 ). We
already knew this, since it is the content of Principle 33, but observe how much easier this

proof is. ◊

It should be noted here that the previous three examples were all for random variables

that are closed under convolution, i.e., for randomvariables X andY that have the property
that X + Y belongs to the same distributional family as X and Y .�is is o�en not the case
(for instance, it is not true for uniform random variables, as we proved in Example 38).

47Well, to be completely honest, it is possible for two random variables with di�erent distributions to have

the samemoment generating function, but all known examples are fairly pathological randomvariablesmade

up by mathematicians in an e�ort to �nd a counter example to the claim. Fortunately for us, all the random

variables that we study can be uniquely characterized by their moment generating functions.



MATH 302 “INTRODUCTION TO PROBABILITY” LECTURE NOTES 103

9. Limit theorems

In this section, we will prove and examine two of the main results of probability theory:

the weak law of large numbers (WLLN) and the central limit theorem (CLT). Sheldon Ross
takes a somewhat technical approach to the proofs. In my opinion, this make it harder to

understand the underlying ideas, which are deep (especially theCLT is a profound result).48

�e big ideas are more important than the technical details (again, my opinion), so we are

going to take a more heuristic approach to the proofs, starting with the WLLN:

9.1. �e weak law of large numbers. We start with an important notion:

Definition 25 [Convergence in probability]. A sequence of random variables X1, X2, . . .
converges in probability to a random variable Y if for every ε > 0,

lim
n→∞

P(∣Xn − Y ∣ ≥ ε) = 0.

Convergence in probability is a pretty strong statement to make about random variables,

because it implies that as the sequence X1, X2, . . . progresses, the “error” between Xn and

Y becomes smaller and smaller (although note that our de�nition does not require that
the error is zero for any �nite n.49

Example 43. You take up a bow and start shooting arrows at a target. You aim for the
middle of the target, which is worth 10 points. Write Xn for the score of the nth shot. As
you shoot more and more arrows, you become more experienced, and as a result, you hit

the middle more frequently. In the mathematically idealized setting where you continue

to shoot and improve ad in�nitum, the sequence X1, X2, . . . will converge in probability to
(the not particularly) random variable Y = 10. △

Example 44. A scientist measures the weight of a single bacterium whose true weight is
given by a random variable Y . Because there is a statistical error each the scientist weighs
the bacterium, the scientist weighs the bacterium many times in the hopes of avering out
the statistical errors. She writes Xn for the average of the �rst n measurements. Again, in
themathematically idealized setting where the scientist continuesmeasuring ad in�nitum,

the sequence X1, X2, . . . will converge in probability to Y . △

In this second example we are getting a bit ahead of ourselves. In fact, we only know this

kind of averaging results because of the weak law of large numbers:

48�is is not to say that you shouldn’t also study Ross’s approach: two viewpoints will teach youmore than

one.
49Soon we will learn of another form of convergence of random variables which is considerably weaker.
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Theorem 3 [�e weak law of large numbers]. Suppose that X1, X2, . . . is a sequence of in-
dependent and identically distributed random variables with �nite means E[Xi] = µ and
Var(Xi) = σ2. Let

X̄n ∶=
1

n
(X1 +⋯ + Xn)

denote the sample mean of the �rst n random variables. �en, X̄n converges in probability to
µ, i.e., for every ε > 0,

lim
n→∞

P(∣X̄n − µ∣ ≥ ε) = 0.

�e WLLN states that the expectation of the average over many identically distributed

random variables converges to its mean.50 �is essentially justi�es our interpretation of the

expectation as the long-run average.

�e phrase “independent and identically distributed” is a common term in probability,

so it is o�en abbreviated as “i.i.d.” We will follow this convention.
Although it is not necessary, we will assume that the variances of the Xi ’s and of Y are

all �nite. With this assumption, the proof of the weak law of large numbers is rather easy:

Proof. We determine E[X̄n] and Var(X̄n) and then we apply Chebychev’s inequality. Start-
ing with E[X̄n]: using the fact that all Xi ’s are identically distributed,

E[X̄n] = E [
1

n

n
∑
i=1

Xi] =
1

n

n
∑
i=1
E[Xi] =

1

n
⋅ nµ = µ.

Now we can determine Var(X̄n) (using the fact that the Xi ’s are i.i.d.)

Var(X̄n) = Var(
1

n

n
∑
i=1

Xi) = 1
n2
Var(

n
∑
i=1

Xi) = 1
n2

n
∑
i=1
Var(Xi) =

1

n2
⋅ nσ2 = σ 2

n
.

Observe that the mean of X̄n is the same for all n, whereas the variance of Xn gets smaller

and smaller as n increases.
Now we apply Chebychev’s inequality (see Principle 20 on page 49):

P(∣X̄n − µ∣ ≥ ε) ≤ Var(X̄n)
ε2

= σ 2
nε2

n→∞Ð→ 0. �

50As the name weak law of large numbers suggests, there also exists a strong law of large numbers (SLLN).
�e SLLN states the same as the WLLN, but with the limit inside the probability, i.e., it states that

P( lim
n→∞

(X1 +⋯ + Xn)/n ≠ µ) = 0.

�e proof of the SLLN is signi�cantly more di�cult than the proof of theWLLN, and we have not developed

all the required tools during the course, so we will not treat the SLLN in more detail.
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9.2. �e central limit theorem. �eWLLN is a great result: it justi�es our ideas about ex-
pectation as the long-run average, and it has it’s applications in statistics besides this. But

compared to the next result, the WLLN looks a bit less impressive. We are about to prove

the most important result of probability theory bar none. In terms of magnitude of conse-

quence and philosophical depth, you could compare de Laplace’s central limit theorem to

Darwin’s theory of evolution, or Einstein’s theory of relativity.51 It’s that big.

Before we get to the central limit theorem, we need some de�ntions and lemmas52We

start with a de�nition:

Definition 26 [Convergence in distribution]. Suppose X1, X2, . . . are random variables
with c.d.f.’s FX1 , FX2 , . . . . Let Y be random variable with c.d.f. FY . We say that Xn converges

in distribution to Y if
lim
n→∞

FXn(z) = FY(z)
for every z where FY(z) is continuous.

Observe that convergence in distribution is a signi�cantly weaker notion that convergence

in probability, because even though the c.d.f.’s may converge, the associated random vari-

ables may �uctuate.

Example 45. Let Y1,Y2, . . . be i.i.d. Unif[0, 1] random variables. Let Xn =min{Y1, . . . ,Yn}.
Since {Xn > z}means that {Yi > z} for all i = 1, . . . , n, and all Yi are independent, it follows

that

FXn(z) = P(Xn ≤ z) = 1 − P(Xn > z)
= 1 − P({Y1 > z} ∩ {Y2 > z} ∩ ⋅ ⋅ ⋅ ∩ {Yn > z})
= 1 − P(Y1 > z)P(Y2 > z)⋯P(Yn > z)

Now since the Yi are i.i.d., and since P(Yi > z) = (1 − z) for 0 ≤ z ≤ 1,

FXn(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 when z < 0,
1 − (1 − z)n when 0 ≤ z ≤ 1,
1 when z > 1.

Taking the limit n →∞ and using that limn→∞(1 − z)n = 0 for all 0 < z ≤ 1 we get

lim
n→∞

FXn(z) = {0 when z < 0,
1 when z > 0.

�is is the c.d.f. of the (not very) random variable Y = 0, so it follows that Xn converges in

distribution to 0. △
51Einstein, in fact, did not receive his Nobel prize for his theory of relativity, but rather for his explanation

of the photoelectric e�ect and for his explanation of the random motion of particles in a solution as proof

that molecules exist.�is latter result makes crucial use of the CLT.
52A lemma is a helper theorem.
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We will use the following technical lemma as well:

Lemma 1 [A criterion for convergence in distribution]. Suppose that X1, X2, . . . are random
variables with moment generating functions MX1(t),MX2(t), . . . and suppose that Y is a
random variable with m.g.f. MY(t). If

lim
n→∞

MXn(t) = MY(t) for all t ∈ R,

then Xn converges to Y in distribution.

We will not prove this lemma, because the proof is too technical and di�cult.�e lemma

makes intuitive sense though: If we know the moment generating function, then we know

an in�nite number of moments, which is rather a large amount of information. Andmore-
over, all those in�nite moments come just from the shape of the m.g.f. at the point t = 0,
but we know the m.g.f. for all t ∈ R, so it is not hard to imagine that with some cleverness,
we can �gure out the entire distribution just by looking at the m.g.f.

Now let’s recall a fundamental theorem from calculus:

Theorem 4 [Taylor’s theorem]. Let k be an integer, and let the function f ∶ R → R be at
least k times di�erentiable at the point a ∈ R. Write f (n)(a) for the nth derivative of f (x)
evaluated at a. �en there exists a function hk(x) such that

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 +⋯ + f (k)(a)
k!

(x − a)k + hk(x)(x − a)k ,

and limx→a hk(x) = 0.

(Exercise: check that Taylor’s theorem holds for f (x) = ex and a = 0.)
We will also use the following simple lemma:53

53Lemmas 1 and 2 have the following nice consequence: together they can be used to reprove that a bino-

mial r.v. converges to a Poisson r.v. in distribution:

Recall that the m.g.f. of Xn ∼ Bin(n, p) is given by MXn(t) = (pet + 1 − p)n . We write p = λ/n and take
the limit n →∞:

lim
n→∞

MXn(t) = limn→∞
(

λ
n
e
t
+ 1 −

λ
n
)

n
= lim

n→∞
(1 +

λ(et − 1)
n

)

n

= e
λ(et−1)

,

where in the last step we applied Lemma 2 with x = λ(et − 1). Note that the function on the right-hand side
is the m.g.f. of a Poisson r.v., so by Lemma 1, Xn → Poi(λ) in distribution.
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Lemma 2. For any x ∈ R we have

lim
n→∞

(1 + x
n
)
n
= ex .

Moreover, for any x ∈ R, and any h(x , n) such that for all x,
lim
n→∞

h(x , n) = 0,

we have
lim
n→∞

(1 + x
n
+ h(x , n)x

n
)
n

= ex .

Here is a ‘lazy proof ’ the �rst claim, the second follows the same approach.

Lazy proof. We start taking the exponent of the log of the le�-hand side:

lim
n→∞

(1 + x
n
)
n
= elog(limn→∞(1+

x
n )

n
) = elimn→∞ n log(1+ x

n ).

Now we use the approximation54 log(1 + x/n) ≈ x/n to obtain

lim
n→∞

(1 + x
n
)
n
= elimn→∞ n x

n = ex . ◯

Now we are �nally ready to state the central limit theorem:

54�is is why it’s a lazy proof.�e approximation of course depends on the fact that the higher order terms

x2/(2n2), x3/(3n3), etc. of the expansion are small compared to x/n. Here is the actual proof (not treated
in class):

Actual proof. We start with the same steps, but then we write t = 1/n, so that we can take the limit t → 0
instead:

lim
n→∞

(1 +
x
n
)
n
= e

limn→∞ n log(1+ x
n ) = e

limt→0
1
t log(1+tx) .

We can apply L’Hôpital’s rule (which states limx→a
f (x)
g(x) = limx→a

f ′(x)
g′(x) ) to the exponent:

lim
t→0

1

t
log(1 + tx) = lim

t→0

d

dt log(1 + tx)
d

dt t
= lim

t→0

x
1+tx
1

= lim
t→0

x
1 + tx

.

Now we use that the limit of a ratio is equal to the ratios of the limits:

lim
t→0

x
1 + tx

=
limt→0 x

limt→0 1 + xt
=
x
1
= x .

�erefore,

e
limt→0

1
t log(1+tx) = ex ,

and this concludes the proof. �
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Theorem 5 [�e central limit theorem]. Let X1, X2, . . . be i.i.d. random variables with
E[Xi] = µ and Var(Xi) = σ2. Let Sn ∶= X1 +⋯ + Xn, then

Sn − nµ
σ
√
n
Ð→ N (0, 1) in distribution.

In other words,

lim
n→∞

P(a ≤ Sn − nµ
σ
√
n

≤ b) = 1√
2π

b

∫
a

e−
x2
2 dx = Φ(b) −Φ(a).

�e most important point to note about the CLT is that any distribution for Xi will yield

the same limiting distribution for Sn (as long as µ and σ2 are �nite). �at is to say, the Xi
can be Bernoulli random variables, or exponential random variables, or even some kind of

distribution that we’ve never heard of: it doesn’t matter for Sn. Moreover, there are versions
of the CLT (which we won’t discuss during this course) that show that the convergence can

even hold if the Xi are not independent (if the dependence is weak enough), or if the Xi ’s

are not identically distributed (if the distributions are not too dissimilar).

Before we delve deeper into the consequences of the CLT, let’s �rst prove it:

Proof. We start by writing

Yi ∶=
Xi − µ

σ
so that Yi are i.i.d. with E[Yi] = 0 and Var(Yi) = 1. Now we assume that MYi(t) exists for
all t (this is not always true, but again, the precise proof is muchmore technical). We apply
Taylor’s theorem with k = 2 and a = 0 toMYi(t):

MYi(t) = MYi(0) +M′
Yi
(0)t + 1

2
M′′

Yi
(0)t2 + h2(t)t2

= 1 + E[Yi]t +
1

2
E[Y 2i ]t2 + h2(t)t2

= 1 + 0 + 1
2
t2 + h2(t)t2.

Now we write

Un =
1√
n

n
∑
i=1

Yi =
Sn − nµ

σ
√
n
.

To prove the CLT, we need to show that Un → N (0, 1) in distribution, so by Lemma 1 it is
enough to show that for all t ∈ R,

MUn(t) = et
2/2 when n →∞.
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We know from Principle 38 thatMaX(t) = MX(at) and we know from Principle 39 that
MX+Y(t) = MX(t)MY(t) if X and Y are independent, so

MUn(t) = M∑n
i=1 Yi(t/

√
n) = (MY1(t/

√
n))n = (1 + 1

2

t2
n
+ h2 (

t√
n
) t2
n
)
n

.

All that remains is to take the limit as n → ∞. To determine what this limit is we apply
Lemma 2 with x = t2

2
and with h(x , n) = 2h2(

√
2x/n) (which satis�es limn→∞ h(x , n) = 0

by Taylor’s theorem) to obtain

lim
n→∞

MUn(t) = (1 + t2
2n

+ h2 (
t√
n
) t2
n
)
n

= et2/2. �

We will conclude with some examples of the CLT:

Question 54. An airline company knows that about 5% of the people who buy a ticket don’t
show up for the �ight, so they �gure that they may as well sell a few more tickets than there
are seats in the plane. �ey decide that it is good enough to be 99% sure that there are more
available seats than passengers for any given �ight. How many tickets should the airline sell
for a �ight that seats 400 passengers?

Solution. Suppose the airline sells n tickets. Let Xi = 1 if the ith ticket holder shows up, and
let Xi = 0 if the ticket holder does not show up. �en it follows that Xi ∼ Ber(p = 0.95).
We will assume that all the Xi ’s are independent (this is a dubious assumption, considering

people o�en travel in groups, but ok). Let Sn = ∑n
i=1 denote the number of people who show

up for the �ight, so Sn ∼ Bin(n, p = 0.95). We want to determine n such that
P(Sn ≤ 400) ≈ 0.99.

We know that E[Sn] = np = 0.95n and Var(Sn) = np(1− p) = 0.0475n, so that σ ≈ 0.22
√
n.

Now, by the CLT,

0.99 ≈ P(Sn ≤ 400) = P(Sn − np
σ
√
n

≤ 400 − np
σ
√
n

) ≈ Φ(400 − np
σ
√
n

) .

From the table for the standard normal c.d.f. on page 73 we can determine that Φ(2.33) ≈
0.99, so we should solve

400 − np
σ
√
n

= 2.33.

�is can be solved to give us that n = 410, so the airline can quite con�dently sell 10 extra
tickets for the �ight. ◊

Question 55 [Simple random walk on the integers]. To model the random motion of a
single particle (e.g. a molecule) in a solution, consider the following model: we let the number
lineZ = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } describe the x-coordinate of the particle. At time t = 0
a particle sits at the point x = 0. �e particle sits there until time t = 1, when it jumps. �e
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particle either jumps one step to the le�, to x = −1, or it jumps to the right, to x = 1. Both jumps
are equally likely. At time t = 2 the particle again jumps one step in a random direction, and
so forth. What is the probability that at t = 1000 the particle is more than 100 steps removed
from its starting point?

Solution. We write Xi for the increment of the ith step, i.e., P(Xi = −1) = P(Xi = 1) = 1/2.
�en µ = E[Xi] = 0 and Var(Xi) = E[X2i ] − µ2 = 1. �e position of the particle at time
t = 1000 is given by S1000, so we want to determine

P(∣S1000∣ > 100).
By the CLT and since

√
1000 ≈ 31.6,

P(∣S1000∣ > 100) = 2P(S1000 > 100) = 2P(S1000 − nµ
σ
√
1000

≥ 100 − nµ
σ
√
1000

)

= 2(1 −Φ ( 100
31.6

)) = 2(1 −Φ(3.16)) = 2(1 − 0.9993) = 0.0014.

�e probability that the particle travelsmore than three standard deviations from themean

is extremely unlikely. ◊
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Some concluding remarks

�e CLT is a logical ending point for a course that aims at introducing probability the-

ory. We have seen how to de�ne probabilities, how to determine the probability of a given

event, how to take extra information into account, how to deal with the random outcomes

of experiments, and what happens to large averages of such outcomes. We have used all

kinds of tools, from complex counting arguments to the highly abstracted logic of moment

generating functions.

In front of us now lies a vast number of applications and extensions of the theories that

we have studied. Many of these extensions are somehow related to the model described in

the �nal example. Simple random walk (or SRW) is what is known as a stochastic process.
Stochastic processes are models that describe how a system develops randomly over time.

�e position of a randomly jumping particle is the prime example of such a process.�ere

are many more such processes, and they have a wide range of applications:

● Brownian motion is the continuous variant of SRW. Instead of jumping to a new
direction at each time step, a Brownian motion wiggles around without ever jump-

ing. Brownianmotion hasmany successful applications, for instance in physics and

chemistry, because it accurately describes themotion of particles in a solution. Un-

fortunately, there are also less successful applications. Black and Scholes famously

used Brownianmotion tomodel stockmarket �uctuations. Stockmarkets do jump,

however, and their inaccuratemodel is viewed as one of themain causes of the stock

market crash in 2008.55

● Branching processes are processes that can be used to model asexual reproduction.
An individual gives birth to a random number of children, who in turn give birth

to their own random number of children, etc. We can use such models to predict

for instance extinction, and with somemodi�cation, we can use them tomodel the

spread of evolutionary traits through a population.

● Random networks can be used to model the growth and structure of large, real life
networks, such as the facebook network or the internet. We can for instance test

the ‘six degrees of separation’ hypothesis.56 It turns out that in a network with N
nodes, themaximal distance is o�en between log(log(N)) and log(N), so the 6DoS
hypothesis seems plausible.

● Queues are mathematical models that describe how a system deals with serving
customers or requests. A queue model describes the situation where customers (or

requests) come in randomly, and service times are also random. Questions that

we want to answer are: how many customers will be helped in a certain amount of

time, and how many servers should we hire/install?

55Stockmarkets can bemodelledmuch better by Lévy processes, which are Brownianmotionswith jumps.
56�e 6DoS hypothesis states that any randomly chosen person on this planet is at most a friend-of-a-

friend-of-a-friend-of-a-friend-of-a-friend-of-a-friend-of-a-friend of yours.
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● Card shu�ing is a problem that has been getting a lot of attention recently. �e
questions are simple: for a given type of shu�ing, how long do we need to shu�e

a deck of cards before it is properly randomised? And can we even tell whether a

deck of cards has been shu�ed properly?�ese questions are surprisingly hard to

answer. Card shu�ing may seem like a rather trivial problem, but these questions

have strong ties to problems in computer science.

Besides these processes, there aremany other �elds where knowledge of probability theory

is useful.�e obvious one is of course statistics, which is the science of large sets of random

numbers. Quantum theory is another �eld that heavily uses probability theory, now to de-

scribe the totally random nature of the smallest particles. But even in cases where there

seems to be no randomness at all, probability can still be useful. For instance, the very seri-

ousmathematical study of prime numbers57 uses a lot of probability theory. Somehow, even

though the prime numbers are of course a completely deterministic set, their distribution

on the number line so much resembles a random mess that the probabilistic arguments

that we studied can be used to answer big questions about the primes. In the spring of 2013

Yitang Zhang used probabilistic methods (along with a lot of other high level math) to

show that there are in�nitely many prime numbers p and q such that ∣p−q∣ ≤ 70, 000, 000.
�is may not seem like a big deal, but mathematicians it is: this problem had been open for

a hundred and ��y years, and was generally considered to be one of the hardest problems

in mathematics.58

I guess what I’m trying to say is, there are still plenty more applications of probability

theory for you to discover, and I hope you will.

57Numbers only divisible by one and themselves.
58�e twin primes conjecture states that there are in�nitely many primes p and q such that ∣p−q∣ = 2.�e

proof of Zhang has a much higher bound, and the fact that it is 70, 000, 000 is not particularly important (it

has since been reduced to 576), the amazing fact is that we now have a proof for some �nite number.
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