Math 302 HW assignment 3. Due Friday, July 25 at start of class

Note: Write your student number on each page that you submit. Show all your work! Separate the solutions of different exercises with a line. Draw a frame around your final answer (if it is a number).

1. I throw three dice and denote the outcomes by X_{1}, X_{2}, X_{3}. Let us define the events

$$
A=\left\{X_{1} \neq X_{2}\right\}, \quad B=\left\{X_{2} \neq X_{3}\right\}, \quad C=\left\{X_{1} \neq X_{3}\right\} .
$$

(a) (3 marks) Calculate $\mathbf{P}(A), \mathbf{P}(A \mid B)$ and $\mathbf{P}(A \mid B \cap C)$.
(b) (2 marks) Are B and C independent? Are A, B and C completely independent? Why?
2. (2 marks) In a class there are four freshman boys, six freshman girls, six sophomore boys and a certain number of sophomore girls. When a student is selected at random, the following two events are independent:

$$
A=\{\text { the selected student is a boy }\} \text { and } B=\{\text { the selected student is a freshman }\} .
$$

What is the number of sophomore girls?
3. (4 marks) On a roulette wheel there are 18 black and 18 red numbers, plus the number 0 which is green. Before I start I have 100 dollars. My strategy is to keep betting 100 dollars on red again and again until I have either 0 or 1000 dollars. Denote by X my net profit (i.e., the difference between my wealth before starting and after finishing the game). What is $\mathbf{E}(X)$?
4. Two equally good ping pong players (Alice and Bob) compete.
(a) (2 marks) Assuming that the game goes on indefinitely, let us denote by X the number of rounds they that need to play until Bob wins 6 rounds. What is the distribution of X ? Note: It is a famous distribution: name it and specify its parameter(s).
(b) (2 marks) What is $\mathbf{E}(X)$? Why?
(c) (3 marks) They compete to see who will be the first to win 11 games. The game gets interrupted when when Bob won 5 rounds and Alice won 8 rounds. What is the fair division of the price money (100 dollars) between Alice and Bob given this information? Note: Express your answer using the probability mass function of X.
5. In Dragonland the frequency of an n-headed dragon is

$$
p_{n}=\binom{6}{n-1} \cdot 0.7^{n-1} \cdot 0.3^{7-n}, \quad n=1,2, \ldots, 7
$$

Beheading a dragon is a dangerous business: one succeeds in cutting off each head independently from the others with 90% chance, and if he/she fails to cut it off, then the head eats him/her.
(a) (2 mark) What is the average number of heads of a dragon from Dragonland? Hint: Use your knowledge about the expectation of famous random variables.
(b) (2 marks) I come across a dragon, but I can't see from the fog how many heads it has. What is my chance of surviving this encounter?
(c) (2 marks) After the battle I meet a friend who also just killed a dragon. What is the probability that it was 7 -headed?
6. Alice and Bob play target shooting. With each shot, Alice hits the target with 15% chance, Bob hits it with 10% chance. Bob starts and they take turns. Whoever hits the target first wins.
(a) (3 marks) What is the probability that Alice wins?
(b) (3 marks) What is the expectation of the number of bullets shot throughout the game?

