
August 8, 2014

Math 302 HW assignment 5 solutions.

1. Let us define the joint probability density function f(x, y) of (X,Y ) by

f(x, y) =

{

60x2y if x ≥ 0, y ≥ 0 and x+ y ≤ 1,

0 otherwise

(a) (2 marks) Calculate the p.d.f. of X and the p.d.f. Y (i.e., the marginal distributions).

Solution: If x+ y ≤ 1, then y ≤ 1− x. For any 0 ≤ x ≤ 1:

fX(x) =

∫ ∞

−∞

f(x, y)dy =

∫ 1−x

0

60x2ydy = [30x2y2]1−x
0 = 30x2(1− x)2,

thus fX(x) = 30x2(1− x)21[0 ≤ x ≤ 1].

If x+ y ≤ 1, then x ≤ 1− y. For any 0 ≤ y ≤ 1:

fY (y) =

∫ ∞

−∞

f(x, y)dx =

∫ 1−y

0

60x2ydx = [20x3y]1−y
0 = 20y(1− y)3,

thus fY (y) = 20y(1− y)31[0 ≤ y ≤ 1].

(b) (2 marks) Are X and Y independent?

Solution: No, because for any (x, y) ∈ (0, 1)×(0, 1) satisfying x+y > 1 we have fX(x) > 0,
fY (y) > 0 but f(x, y) = 0.

(c) (2 marks) Calculate the covariance of X and Y .

Solution:

E(X) =

∫ 1

0

x · 30x2(1− x)2dx = 1/2

E(Y ) =

∫ 1

0

y · 20y(1− y)3dx = 1/3

E(XY ) =

∫ 1

0

∫ 1−y

0

xy · 60x2y dxdy = 1/7

Cov(X,Y ) = E(XY )−E(X)E(Y ) = −1/42

Note that it is not surprising that the covariance is negative: the restriction X + Y ≤ 1
implies that if X is “big”, then Y has to be “small”, so they have a negative effect on each
other.

2. Suppose we have a floor made of parallel strips of wood, each with width 3, and we drop a
needle of length 1 onto the floor. The aim of this exercise is to find the probability that the
needle will lie across a line between two strips.

(a) (2 marks) Assume that the strips of wood lie in the east-west direction. We call one end
of the needle the head and the other end the tip. Let X denote the distance of head from
the closest separating line to the south of the head. Let Y denote the angle of the needle
measured in radians (let’s say Y = 0 if the needle is parallel to the lines and the tip points
to the east). What is the natural choice of the joint p.d.f. of (X,Y ) if we want to model a
randomly dropped needle?

Solution: This is the famous “Buffon’s needle problem” (Google it)

0 ≤ X ≤ 3, 0 ≤ Y ≤ 2π, and it is natural to assume that X ∼ Unif[0, 3], Y ∼ Unif[0, 2π]
and that (X,Y ) are independent. Thus

fX(x) =
1

3
1[0 ≤ x ≤ 3], fY (y) =

1

2π
1[0 ≤ y ≤ 2π],

f(x, y) = fX(x)fY (y) =
1

6π
1[0 ≤ x ≤ 3, 0 ≤ y ≤ 2π].
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(b) (2 marks) The possible outcomes of (X,Y ) form a rectangle. Describe (and draw) the
subset A of this rectangle whose points correspond to a needle position that crosses a line!

Solution:

If 0 ≤ X ≤ 1 then there is a chance for the needle to intersect the line to the south of the
head. The needle crosses that line if sin(Y ) +X ≤ 0 (so Y has to be between π and 2π so
that sin(Y ) < 0).

If 2 ≤ X ≤ 3 then there is a chance for the needle to intersect the line to the north of the
head. The needle crosses that line if sin(Y ) +X ≥ 3 (so Y has to be between 0 and π so
that sin(Y ) > 0). Thus, see Figure 1,

A = A1 ∪ A2

A1 = {(x, y) : π ≤ y ≤ 2π, 0 ≤ x ≤ − sin(y)}

A2 = {(x, y) : 0 ≤ y ≤ π, 3− sin(y) ≤ x ≤ 3}

A1

A2

Figure 1: An illustration of A1 ∪A2 = A ⊆ [0, 3]× [0, 2π].

(c) (2 marks) Calculate the probability that the needle will lie across a line between two strips.

Solution: Since (X,Y ) is uniformly distributed on the rectangle Ω = [0, 3] × [0, 2π], we
have

P[(X,Y ) ∈ A] =
area(A)

area(Ω)
=

area(A1) + area(A2)

6π

Now the areas of A1 and A2 are both equal to
∫ π

0 sin(y)dy = [− cos(y)]π0 = 2, thus the

probability that the needle will lie across a line between two strips is 2
3π .

3. A certain segment of the sky contains Z stars. Each star is either a red giant with probability
1/3 or a white dwarf with probability 2/3, independently from the other stars.

(a) (2 marks) If we condition on the event {Z = 4}, what is the joint p.m.f. of the red giants

X and the white dwarves Y ? Fill in a 5× 5 table with the (f(x, y))
4
x,y=0 values.

Solution:

Conditioned on {Z = z}, the conditional distribution of red giants is X ∼ Bin(z, p), where
p = 1

3 and the number of white dwarves is just Y = z −X . Note that Y ∼ Bin(z, 1− p).
Thus for any 0 ≤ x ≤ z we have

P(X = x |Z = z) =

(

z

x

)

px (1− p)
z−x

. (1)
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In particular the entries of the 5× 5 table with the (f(x, y))
4
x,y=0 values are:

f(x, y) =

{

(

4
x

) (

1
3

)x ( 2
3

)4−x
if x+ y = 4,

0 if x+ y 6= 4.

(b) (3 marks) Show that if Z ∼ POI(6), then the random variables X and Y are independent
and have Poisson distribution by calculating the joint p.m.f. of X and Y .

Solution: We’ll show more generally that if Z ∼ POI(λ) and each star is red with proba-
bility p or white with probability 1−p, independently from other stars, then X ∼ POI(pλ)
and Y ∼ POI((1 − p)λ), moreover (X,Y ) are independent. In order to show all of this it
is enough to show that the joint p.m.f. of (X,Y ) is

f(x, y) =

(

e−pλ (pλ)
x

x!

)

·

(

e−(1−p)λ ((1− p)λ)y

y!

)

, x, y = 0, 1, 2, . . .

Let’s show this. First note that Z = X +Y , so if X = x and Y = y, then Z = x+ y. Thus

f(x, y) = P(X = x, Y = y) = P(X = x, Y = y, Z = x+ y) =

P(X = x, Y = y |Z = x+ y)P(Z = x+ y) = P(X = x |Z = x+ y)P(Z = x+ y)
(1)
=

(

x+ y

x

)

px (1− p)
y · e−λ λx+y

(x + y)!
=

(x + y)!

x! · y!
px (1− p)

y · e−pλe−(1−p)λ λxλy

(x+ y)!
=

1

x!

1

y!
px (1− p)

y · e−pλe−(1−p)λλxλy =
1

x!

1

y!
(pλ)x((1− p)λ)y · e−pλe−(1−p)λ =

(

e−pλ (pλ)
x

x!

)

·

(

e−(1−p)λ ((1 − p)λ)y

y!

)

4. The round table of astrologists consists of 144 people. As they examine the laws of the stars,
they find that it brings good luck to a Capricorn if a Scorpio sits on his/her right. Calculate
the expectation (2 marks) and variance (3 marks) of the number X of lucky Capricorns.

Solution: We assume that the star signs of the 144 people are completely independent and
uniformly distributed over the 12 possible signs.

Let Ei denote the event that the i’th astrologist is a lucky Capricorn, i.e., Ei is the event that
the i’th astrologist is a Capricorn and the person sitting on his right is a Scorpio. Let Xi = 1[Ei]
be the indicator variable of the event Ei. Then

X =
144
∑

i=1

Xi.

First note that for any 1 ≤ i ≤ 144 we have

P(Ei) =
1

12
·
1

12
=

1

144
.

Thus

E(X) = E

(

144
∑

i=1

Xi

)

=

144
∑

i=1

E (Xi) =

144
∑

i=1

1

144
= 1.

Nov let’s calculate

Var(X) = Cov(X,X) = Cov(

144
∑

i=1

Xi,

144
∑

j=1

Xj) =

144
∑

i=1

144
∑

j=1

Cov(Xi, Xj).

Note that Xi · Xj = 1[Ei]1[Ej ] = 1[Ei ∩ Ej ] and that the expectation of the indicator of an
event is just the probability of that event, thus

Cov(Xi, Xj) = E(Xi ·Xj)−E(Xi) ·E(Xj) = P(Ei ∩ Ej)−P(Ei)P(Ej).

If i = j then P(Ei ∩ Ej) = P(Ei) =
1

144 , thus Cov(Xi, Xi) =
1

144

(

1− 1
144

)

.

3



If i and j are sitting right next to each other then Ei ∩ Ej = ∅, because for both of them
to be a lucky Capricorn, both of them would need to be a Capricorn, but the person on the
right also has to be a Scorpio, which is impossible. Thus in this case P(Ei ∩ Ej) = 0 and
Cov(Xi, Xj) = − 1

1442 .

If there is at least one person sitting between i and j then Ei and Ej are independent events,
because the outcome of the events Ei and Ej depend on the birthdays of two separate pairs of
people, whose birthdays are all independent. Therefore Cov(Xi, Xj) = 0.

Now the sum
∑144

i=1

∑144
j=1 Cov(Xi, Xj) has 144×144 terms. 144 terms are “diagonal”, i.e., i = j.

2 · 144 terms correspond to astrologists i and j are sitting right next to each other (the factor 2
is there because j can sit on the left or the right of i). The rest of the terms of the sum are all
zeros, thus

Var(X) = 144 ·
1

144

(

1−
1

144

)

+ 2 · 144 · (−
1

1442
) = 1−

3

144

5. Discrete convolution.

(a) (2 marks) Show that if X and Y are independent integer-valued random variables and
Z = X + Y then their p.m.f.’s satisfy fZ(z) =

∑∞
y=−∞ fX(z − y)fY (y).

Solution:

fZ(z) = P(Z = z) =

∞
∑

y=−∞

P(Z = z, Y = y) =

∞
∑

y=−∞

P(X = z − y, Y = y) =

∞
∑

y=−∞

P(X = z − y)P(Y = y) =

∞
∑

y=−∞

fX(z − y)fY (y)

(b) (3 marks) Show that if X ∼ Bin(n, p) and Y ∼ Bin(m, p) then Z ∼ Bin(m+ n, p).

Solution:

fX(x) =

(

n

x

)

px(1− p)n−x
1[0 ≤ x ≤ n]

fY (y) =

(

m

y

)

py(1− p)m−y
1[0 ≤ y ≤ m]

We want to show that fZ(z) =
∑∞

y=−∞ fX(z − y)fY (y) satisfies

fZ(z) =

(

n+m

z

)

pz(1 − p)n+m−z
1[0 ≤ z ≤ n+m].

Note that indeed P(0 ≤ X ≤ n) = 1 and P(0 ≤ Y ≤ m) = 1 implies P(0 ≤ Z ≤ n+m) =
P(0 ≤ X + Y ≤ n+m) = 1, thus fZ(z) = 0 if z < 0 or z > n+m. So we can assume that
0 ≤ z ≤ n+m and calculate

fZ(z) =

∞
∑

y=−∞

fX(z − y)fY (y) =

∞
∑

y=−∞

(

n

z − y

)

pz−y(1− p)n−z+y
1[0 ≤ z − y ≤ n]

(

m

y

)

py(1− p)m−y
1[0 ≤ y ≤ m] =

pz(1 − p)n+m−z

∞
∑

y=−∞

(

n

z − y

)(

m

y

)

1[0 ≤ z − y ≤ n, 0 ≤ y ≤ m] =

pz(1 − p)n+m−z

m
∑

y=z−n

(

n

z − y

)(

m

y

)

= pz(1− p)n+m−z

(

n+m

z

)

.

The only question that remains is that why did we have
∑m

y=z−n

(

n
z−y

)(

m
y

)

=
(

n+m
z

)

? This

is a combinatorial identity: we have n+m numbered (i.e., distinguishable) balls, n is red,
m is blue. How many ways are there to pick z balls out of them? The answer is

(

n+m
z

)

.

4



Now let’s calculate the number of ways to pick z balls out of them, where the number of
blue balls is y. This means we need to choose exactly z − y red balls, thus the number of
ways is

(

n

z−y

)(

m

y

)

by the multiplication trick. Now y (the number of blue balls picked) can

be at most m, and z − y (the number of red balls picked) can be at most n, so y ≤ z − n.
Thus if we sum

(

n
z−y

)(

m
y

)

for y values between z−n and m, then we calculated the number
of ways to pick z balls out of n +m balls, where the number of blue balls is y, but y can
be anything, so we just calculated that the number of ways to pick z balls out of n + m
balls is equal to

∑m

y=z−n

(

n

z−y

)(

m

y

)

.

Another Solution: We want to show thatX ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent
then X + Y = Z ∼ Bin(m + n, p). Now X is the number of successful attempts out
of n independent p-trials and Y is the number of successful attempts out of another m
independent p-trials, so Z = X + Y together counts the number of successful attempts out
of n+m independent p-trials, hence Z ∼ Bin(m+ n, p). That’s all.

6. The aim of this exercise is to show that −1 ≤ ρ(X,Y ) ≤ 1 for any pair (X,Y ) of random
variables, where ρ(X,Y ) is the correlation coefficient.

(a) (1 mark) Express f(t) := Var(X + tY ) = a · t2 + b · t+ c using the bilinearity of covariance.

(b) (1 mark) Why do we have b2 − 4ac ≤ 0? Hint: remember the Quadratic Formula.

(c) (1 mark) Express ρ(X,Y ) as a function of a, b, c and show that −1 ≤ ρ(X,Y ) ≤ 1.

Solution: The solution is explained in Tim Hulshof’s typed MATH302 lecture notes (see Prin-
ciple 31 on page 85), the link to the file is available on my MATH302 lecture notes webpage.

7. I have an (uncooked) spaghetti of length one, and I break it at a uniform point X . I take the
half-spaghetti that is in my left hand, and I break it at a uniform point Y . Find the conditional
p.d.f. of Y given X (1 mark), the joint p.d.f. of Y and X (1 mark), the conditional p.d.f. of X
given Y (1 mark) and the conditional expectation of X given Y = 10−5 (1 mark).

Solution:

X ∼ Unif[0, 1], thus fX(x) = 1[0 ≤ x ≤ 1] and conditioned on {X = x}, Y ∼ Unif[0, x], thus

fY |X(y|x) = 1
x
1[0 ≤ y ≤ x]. Now fY |X(y|x) = f(x,y)

fX (x) , which can be rearranged to obtain

f(x, y) = fX(x)fY |X(y|x) =
1

x
1[0 ≤ y ≤ x ≤ 1].

For any 0 ≤ y ≤ 1 we have

fY (y) =

∫ ∞

−∞

f(x, y)dx =

∫ 1

y

1

x
dx = − ln(y).

Thus

fX|Y (x|y) =
f(x, y)

fY (y)
= −

1

x ln(y)
1[y ≤ x ≤ 1].

E(X |Y = y) =

∫ ∞

−∞

x · fX|Y (x|y)dx =

∫ 1

y

−
1

ln(y)
dx =

y − 1

ln(y)

E(X |Y = 10−5) =
10−5 − 1

ln(10−5)
≈

1

ln(105)
≈ 0.0868
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