
Stoch. Proc. HW assignment 10. Due Friday, November 17 at start of class
1. There are six machines and six repairmen in a factory. Each machine works for an EXP(2) time interval

and then it breaks down. Machines break down independently from one another. If a machine breaks
down, a repairmen immediately starts repairing it. The time it takes to repair a machine is EXP(3)
distributed. The working times and the repair times are independent. If a machine is fixed, it immediately
starts working again, and it works until it breaks down again, etc. Initially all machines work. Denote
by Xt the number of working machines at time t.

(a) Write down the infinitesimal generator of the Markov chain (Xt).
(b) Find the distribution of Xt. In other words, find pt(6, x) for all x = 0, 1, . . . , 6.

Solution:

(a) If x machines work currently and 6 − x machines are being repaired, then x independent EXP(2)
„break” random variables compete against 6 − x independent EXP(3) „repair” random variables.
Thus the rate of jump from x to x− 1 is g(x, x− 1) = 2x while the rate of jump from x to x+ 1 is
g(x, x+1) = 3(6− x) for any x ∈ {0, 1, . . . , 6}. The diagonal elements of the infinitesimal generator
matrix are of form g(x, x) = −(2x + 3(6 − x)) = −(18 − x) = x − 18. The other entries of the
infinitesimal generator matrix are zero. Thus the state space is S = {0, 1, . . . , 6} and

G =



−18 18 0 0 0 0 0
2 −17 15 0 0 0 0
0 4 −16 12 0 0 0
0 0 6 −15 9 0 0
0 0 0 8 −14 6 0
0 0 0 0 10 −13 3
0 0 0 0 0 12 −12


(b) First let us choose our favourite machine and find the probability pt that it works at time t. Here we

could use diagonalization (like in the case of the Markov chain on page 142 of the scanned lecture
notes), but we will use another method: we solve the Kolmogorov forward equation. We have

d

dt
pt = −2pt + 3(1− pt) = 3− 5pt,

since 1− pt is the probability that our favourite machine is being repaired at time t and a working
machine breaks at rate 2, while a broken machine gets repaired at rate 3. This is an inhomogeneous
linear ODE, so let’s first solve the corresponding homogeneous ODE: d

dtpt = −5pt. The general
solution of this is pt = Ce−5t. Now a particular solution of the original inhomogeneous ODE
d
dtpt = 3−5pt is the constant solution pt ≡ 3/5. So the general solution of the original inhomogeneous
ODE is pt = 3/5+Ce−5t. We need to find C so that the initial condition p0 = 1 is satisfied (initially
the machine works). Thus pt = 3

5 + 2
5e
−5t.

Now observe that machines break down and get repaired independently from each other. Thus if
Ai,t is the event that machine i works at time t, then the events A1,t, A2,t, . . . , A6,t are independent
and P(Ai,t) = pt for i = 1, . . . , 6, where pt = 3

5 +
2
5e
−5t. Hence Xt = 1[A1,t] + · · ·+1[A6,t] and thus

Xt ∼ BIN(6, pt). Therefore

pt(6, x) =

(
6

x

)
pxt (1− pt)6−x, x = 0, 1, 2, . . . , 6.

Remark : The stationary distribution is BIN(6, 35 ), since limt→∞ pt =
3
5 .

Note that (Xt) is a birth and death chain, hence it is reversible, hence the detailed balance condition
must be satisfied. Let us check for fun that that indeed we have π(x)g(x, x+1) = π(x+1)g(x+1, x) for
all x = 0, . . . , 5:

π(x)g(x, x+ 1) =

((
6

x

)(
3

5

)x(
2

5

)6−x
)
· 3(6− x) = 6!

x!(5− x)!
3x+126−x

56

π(x+ 1)g(x+ 1, x) =

((
6

x+ 1

)(
3

5

)x+1(
2

5

)5−x
)
· 2(x+ 1) =

6!

x!(5− x)!
3x+126−x

56
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2. Forest fire model. We consider the time evolution of a random graph on three vertices. The edge set
changes as time evolves. The dynamics is driven by six independent Poisson point processes:

• for each unordered pair of vertices there is an „edge” PPP with rate 1/3 and upon each arrival of
an edge process, we draw and edge between that pair of vertices (unless there is already an edge
between them, in which case we don’t do anything).

• for each vertex there is a „lightning” PPP with rate 1 and upon each arrival of a lightning process,
a lightning strikes that vertex and immediately burns all of the edges of the connected component
of that vertex.

Denote by Gt the edge set of the graph at time t and let Xt be number of connected components in Gt.

(a) Argue that (Xt) is a Markov process and find its infinitesimal generator matrix.

(b) Find the stationary distribution of (Xt).

Solution:

(a) (Xt) is a Markov process because if we know the value of Xt at time t, then in fact we know the
sizes of connected components in Gt, and this is enough to figure out the rates at which Xt changes,
and we can forget about the rest of the past of (Xt). The state space of (Xt) is S = {1, 2, 3} and
the infinitesimal generator matrix is

G =

 −3 0 3
2/3 −8/3 2
0 1 −1

 .

In words:
g(1, 3) = 3 because if Xt = 1 then all three vertices are in one component and each of the vertices
is exposed to a lightning PPP of rate 1, so the total rate of lightning is 3, and if a lightning strikes
the component then all edges burn and we obtain three singleton connected components.
g(2, 1) = 2/3 because if Xt = 2 then there are two possible edges connecting these two components,
and an edge arrives at both of these possible edges at rate 1/3, so the total rate of merger is 2/3.
g(2, 3) = 2 since if Xt = 2 then there is a connected component of size 2 and both of the vertices of
this component are exposed to a lightning PPP of rate 1, so the total rate of lightning is 2, and if a
lightning strikes the component then it splits into two singleton connected components.
g(3, 2) = 1 since if Xt = 3 then there are three possible edges, each of which arrive at rate 1/3 and
reduce the number of connected components to 2.

(b) In order to find the stationary distribution π = (π1, π2, π3) of (Xt), we need to solve

−3π1 +
2

3
π2 + 0π3 = 0,

0π1 −
8

3
π2 + π3 = 0,

3π1 + 2π2 − π3 = 0,

π1 + π2 + π3 = 1.

Note that these are four equations with only three variables, but this system of linear equations is not
overdetermined, as we now explain. The sum of the first three equations is just the trivial identity
0 = 0, so one of the first three equations can be omitted without changing the set of solutions.
The solution of the above system of linear equations is

π1 =
2

35
, π2 =

9

35
, π3 =

24

35
.

Remark: If we consider the forest fire model on four vertices, then the number of connected components
is not a Markov chain, because we cannot recover the component size structure from the number of
connected components.
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3. There is an amoeba at time 0 in a Petri dish. An amoeba splits after an EXP(1) distributed waiting
time into two amoebae which are identical to the original one. The goal of this exercise is to show that
at time t the number Xt of amoebae in the Petri dish has optimistic GEO(e−t) distribution.

(a) Write down the infinitesimal generator matrix of the continuous-time Markov chain (Xt).

(b) Write down the Kolmogorov forward equations for the family of functions t 7→ pt(1, x), x ∈ N.
(c) Write down the conjectured value of pt(1, x) for any t ∈ R+ and x ∈ N.
(d) Verify that the conjectured functions t 7→ pt(1, x), x ∈ N indeed satisfy the Kolmogorov forward

differential equations and the initial condition p0(1, x) = 1[x = 1].

Solution: The Markov chain (Xt) is called the Yule process. It is a pure birth process, meaning that
it is a birth-death process without death. The Yule process is a cousin of supercritical Galton-Watson
branching processes, and this exercise is about the exponential growth of the population.

(a) When Xt = x ∈ N, then each of these x amoebae split independently at rate 1, so the rate of
jumping from x to x+ 1 is x. Thus the infinitesimal generator matrix is

G =



−1 1 0 0 0 . . .
0 −2 2 0 0 . . .
0 0 −3 3 0 . . .
0 0 0 −4 4 . . .
0 0 0 0 −5 . . .
...

...
...

...
...

. . .


.

(b) ṗt(1, x) = (x− 1)pt(1, x− 1)− xpt(1, x) for any x ≥ 1.
In words: the jump rate from state x− 1 to state x is x− 1 and the jump rate out of state x is x.

(c) We conjecture pt(1, x) = e−t(1− e−t)x−1 for any x = 1, 2, 3, . . .

(d) The initial condition p0(1, x) = 1[x = 1] is satisfied since limt→0+ e
−t(1− e−t)x−1 = 1[x = 1].

The Kolmogorov forward equations are satisfied for x = 1, since

ṗt(1, 1) =
d

dt
e−t = −e−t = −p1(1, 1)

(∗)
= (1− 1)pt(1, 1− 1)− 1pt(1, 1),

where after (∗) the quantity pt(1, 1− 1) is just formally defined, it is multiplied with zero anyway.
It remains to show that the Kolmogorov forward equations are satisfied for x ≥ 2.
First we calculate the left-hand side of the differential equation:

ṗt(1, x) =
d

dt

(
e−t(1− e−t)x−1

)
= −e−t(1− e−t)x−1 + e−t(x− 1)(1− e−t)x−2e−t =(

−e−t(1− e−t) + (x− 1)e−2t
)
(1− e−t)x−2 =

(
−e−t + xe−2t

)
(1− e−t)x−2 (1)

Next we calculate the right-hand side of the differential equation:

(x− 1)pt(1, x− 1)− xpt(1, x) = (x− 1)e−t(1− e−t)x−2 − xe−t(1− e−t)x−1 =

(x− 1)e−t(1− e−t)x−2 − xe−t(1− e−t)(1− e−t)x−2 =
(
(x− 1)e−t − xe−t(1− e−t)

)
(1− e−t)x−2 =(

xe−t − e−t − xe−t + xe−2t
)
(1− e−t)x−2 =

(
−e−t + xe−2t

)
(1− e−t)x−2 (2)

Now (1) and (2) are equal, so the conjectured functions indeed satisfy the Kolmogorov forward
equations for x ≥ 2.

Remark: So we have found that Xt ∼ OPTGEO(e−t). Note that E(Xt) = et, the population grows
exponentially.

Here is an alternative explanation of the fact that Xt ∼ OPTGEO(e−t). Denote by T (n) the n’th jump
time of the process (Xt) (with the assumption T (0) = 0). Denote by τk the time it takes for a new amoeba
to be born when there are k amoebae, i.e., τk = T (k) − T (k − 1). Now T (n) = τ1 + · · · + τn, where
τk ∼ EXP(k) (since k amoebae are competing to give birth) and τ1, . . . , τn are independent. Let us argue
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that T (n) has the same distribution as T̂ (n) = max{τ̂1, . . . , τ̂n}, where τ̂1, . . . , τ̂n are i.i.d. with EXP(1)
distribution. Indeed, if you think about τ̂1, . . . , τ̂n as the ringing times of i.i.d. exponential clocks, then
T̂ (n) is the time when the last clock rings. The time when the first clock rings has EXP(n) distribution
(since n clocks are competing), and the remaining lifetime of the remaining n − 1 clocks are still i.i.d.
EXP(1) by the memoryless property. So the time between the first and second ring has EXP(n − 1)
distribution. The time between the second and third ring has EXP(n − 2) distribution, etc. The time
between ring n − 1 and ring n has EXP(1) distribution (since there is only one clock left). This shows
that T (n) ∼ T̂ (n). Now we can compute

P(Xt > n) = P(T (n) ≤ t) = P(T̃ (n) ≤ t) = P(τ̃1 ≤ t, . . . , τ̃n ≤ t)
(∗)
= (1− e−t)n,

where in (∗) we used that τ̂1, . . . , τ̂n are independent with EXP(1) distribution. Now if P(Xt > n) =
(1− e−t)n for n = 0, 1, 2, . . . then Xt has optimistic geometric distribution with success parameter e−t.
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