
Stoch. Proc. HW assignment 11. Due Friday, November 27 at start of class
1. Let us consider the following model for the spreading of a computer virus. At all times, each infected

computer manages to infect a new computer after an EXP(a) distributed time. For each infected com-
puter, the virus is removed from that computer after an EXP(b) distributed time. On the top of this,
the hacker who created the virus infects new computers with the virus according to the arrival times of
a Poisson point process with rate c. Denote by Xt the number of infected computers at time t. The goal
of this exercise is to decide (given the positive real parameters a, b and c) whether this Markov chain is
positive recurrent, null recurrent or transient. Loosely speaking, transience means a worldwide epidemic,
while recurrence means that the virus can be safely controlled.

(a) Write down the infinitesimal generator of (Xt).
(b) Explain why it is OK to assume a = 1 without loss of generality if we want to decide about whether

this Markov chain is positive recurrent, null recurrent or transient.
(c) Assuming a = 1, find the values of (b, c) for which (Xt) is positive recurrent/null recurrent/transient.

Solution:

(a) (Xt) is a birth and death process with birth rates λx = c + ax and death rates µx = bx for any
x = 0, 1, 2, . . . For the infinitesimal generator, see page 157 of scanned lecture notes.

(b) If we change the unit of measurement of time and declare the new unit of time length to be 1/a

then birth rates will be λ̃x = c̃ + ãx and the death rates will be µ̃x = b̃x for any x = 0, 1, 2, . . . ,
where ã = 1, b̃ = b/a, and c̃ = c/a. The time-changed process is recurrent if and only if the original
process is recurrent, since the embedded discrete time Markov chain remains the same. The time-
changed process is positive recurrent if and only if the original process is positive recurrent, since
the stationary distribution (if it exists) remains the same. So it is OK to assume that a = 1 without
loss of generality.

(c) First we show that if b > 1 then the birth and death chain is positive recurrent. It is enough
to show that

∑∞
x=0

λ0λ1...λx−1

µ1µ2...µx
< +∞ (see page 158 of the scanned lecture notes). We will do

this using the ratio test. If we let ax = λ0λ1...λx−1

µ1µ2...µx
, then ax+1/ax = λx/µx+1 = x+c

b(x+1) , and
limx→∞ ax+1/ax = 1/b < 1, thus by the ratio test we have

∑∞
x=0 ax <∞.

Next we show that if b < 1 then the birth and death chain is transient. It is enough to show that∑∞
x=0

µ1µ2...µx

λ1λ1...λx
< +∞ (see page 162 of the scanned lecture notes). This is easy using the ratio test,

so we omit the details.
When b = 1 then the ratio test is inconclusive, so we need more sophisticated methods to de-
cide about the convergence/divergence of infinite sums. We have λy−1

µy
= y−1+c

y = 1 + c−1
y =

exp
(
c−1
y +O(y−2)

)
for any y ≥ 1. We will use this to estimate the sum deciding about posit-

ive/null recurrence of the birth/death process (we omit the term of the sum corresponding to x = 0
as it does not change the convergence/divergence of the sum):

∞∑
x=1

λ0λ1 . . . λx−1
µ1µ2 . . . µx

=

∞∑
x=1

exp

(
x∑
y=1

(
c− 1

y
+O(y−2)

))
=

∞∑
x=1

e(c−1) ln(x)+O(1) �
∞∑
x=1

xc−1,

therefore the sum is divergent for any c > 0. We can conclude that (Xt) is not positive recurrent if
b = 1. Now let us estimate the sum deciding about recurrence/transience of the birth/death process
when b = 1. Note that µy

λy
= y

c+y = exp
(
− c
y +O(y−2)

)
if y ≥ 1, therefore (again omitting the term

corresponding to x = 0) we have
∞∑
x=1

µ1µ2 . . . µx
λ1λ1 . . . λx

=

∞∑
x=1

exp

(
x∑
y=1

(
− c
y
+O(y−2)

))
=

∞∑
x=1

e−c ln(x)+O(1) �
∞∑
x=1

x−c,

therefore the sum is divergent if 0 < c ≤ 1, but convergent if c > 1. We can conclude that (Xt) is
null recurrent if a = b = 1 and 0 < c ≤ 1, but (Xt) is transient if a = b = 1 and c > 1.

Remark: If (Xt) is a birth-death chain, then recurrence is equivalent to lim inft→∞Xt = 0 (since the
process returns to state 0 infinitely often) while transience is equivalent to lim inft→∞Xt = +∞ (since
the total time that the process spends in each state is finite).
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2. Consider the continuous-time Markov chain with state space S = {1, 2, 3, 4} and inf. gen. matrix

G =


−4 1 1 2
2 −5 3 0
0 2 −3 1
1 0 1 −2


(a) Assuming we start from state 1, what is the probability that we reach state 3 before state 4?

(b) Assuming we start from state 1, what is the expected hitting time of the set {3, 4}?

Solution:

(a) Let h(x) = Px(T3 < T4) for x = 1, 2. In words: h(x) is the probability of reaching state 3 before
reaching state 4 if we start the process from state x. We want to find h(1). We have

h(1) =
1

4
h(2) +

1

4
· 1 + 2

4
· 0, h(2) =

2

5
h(1) +

3

5
· 1 + 0 · 0,

because (by page 148 of the scanned lecture notes) if we are in state 1, then we jump to state 2 with
probability 1/4, we jump to state 3 with probability 1/4 and we jump to state 4 with probability
2/4, while if we start from state 2, then we jump to state 1 with probability 2/5 and we jump to
state 3 with probability 3/5.
Solving this system of linear equations, we obtain h(1) = 4

9 and h(2) = 7
9 .

(b) Let f(x) = Ex(T{3,4}) for x = 1, 2. In words: f(x) is the expected time until hitting the set {3, 4}
if we start from state x. We want to find f(1). We have

f(1) =
1

4
+

1

4
f(2) +

(
1

4
+

2

4

)
· 0, f(2) =

1

5
+

2

5
f(1) +

(
3

5
+ 0

)
· 0,

because (by page 148 of the scanned lecture notes) if we are in state 1, then the time until the next
jump has EXP(4) distribution (hence the expected time until the next jump is 1/4), moreover we
jump to state 2 with probability 1/4 and we jump to the set {3, 4} with probability 1/4 + 2/4; and
if we are in state 2, then the time until the next jump has EXP(5) distribution (hence the expected
time until the next jump is 1/5), moreover we jump to state 1 with probability 2/5 and we jump to
the set {3, 4} with probability 3/5 + 0.
Solving this system of linear equations, we obtain f(1) = 1/3 and f(2) = 1/3.
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3. Consider a barbershop with one barber and three chairs: one chair for cutting hair and two other chairs
for the customers waiting in line. Time is measured in hours. The distribution of the time it takes to cut
the hair of one customer is EXP(3). Customers arrive according to a Poisson point process with rate 1.
If all three chairs are occupied and a new costumer arrives, she leaves immediately without sitting down.

(a) Find the fraction of potential customers that get their hair cut in this barbershop.
(b) If currently there are three customers in the barbershop, what is the expected time until the barber

can take a break?
(c) The barbershop has already been operating for a long time. I enter the barbershop: what is the

expected time that I spend with waiting for my hair to be cut?

Solution:

(a) There are (at least) two different ways of answering this question.
First solution: let us denote by Xt the number of customers in the barbershop at time t. Then
the process (Xt) is a continuous time birth and death chain with state space S = {0, 1, 2, 3}, birth
(arrival) rates λ0 = λ1 = λ2 = 1 and death (departure) rates µ1 = µ2 = µ3 = 3. Let us find the
stationary distribution π of (Xt). By the detailed balance condition we have π(x)λx = π(x+1)µx+1

for x = 0, 1, 2. Thus π(0) · 1 = π(1) · 3, that is π(1) = 1
3π(0). Similarly π(2) = 1

3π(1) = 1
9π(0)

and π(3) = 1
3π(2) = 1

27π(0). Thus π(0) =
(
1 + 1

3 + 1
9 + 1

27

)−1
= 27

27+9+3+1 = 27
40 , and π(1) = 9

40 ,
π(2) = 3

40 and π(3) = 1
40 . Now if we look at (Xt) for 109 hours then the length of time when three

chairs are occupied is roughly π(3) · 109. All customers that arrive when three chairs are occupied
go away immediately. Customers arrive at rate 1 per hour, so the total number of customers that
arrived is roughly 109 and the number of customers that go away immediately is roughly equal to
the length of time when three chairs are occupied, roughly π(3) · 109. In conclusion, the fraction of
potential customers that get their hair cut in this barbershop is 39

40 .
Second solution: Denote by NA

t the counting process of a PPP with rate 1 and denote by ND
t the

counting process of an independent PPP with rate 3. Denote by Nt = NA
t + ND

t the counting
process of the merged PPP, which has rate 4. Consider the continuous-time Markov chain (Xt)
which jumps to the right if there is arrival in the NA

t process and jumps to the left if there is arrival
in the ND

t process, with the extra conditions that if it is in 0 then it cannot jump to the left and
if it is in 3 then it cannot jump to the right. The resulting (Xt) has exactly the same dynamics as
the barbershop chain of the exercise. Consider the discrete-time birth and death chain (Yn) which
makes a jump when there is an arrival of Nt. The transition matrix of (Yn) on the state space
S = {0, 1, 2, 3} is

P =


3/4 1/4 0 0
3/4 0 1/4 0
0 3/4 0 1/4
0 0 3/4 1/4


Note that 4P−I = G, where G is the infinitesimal generator matrix of (Xt), therefore the stationary
distribution of the discrete chain (Yn) is exactly the same as the stationary distribution of the
continuous-time chain (Xt), see bottom of page 147 of scanned lecture notes. Now by the law of
large numbers for the two-step chain (c.f. page 32 of scanned), we have limn→∞

1
n

∑n
k=1 1[Yk ≤

Yk+1] = π(0)p(0, 1)+π(1)p(1, 2)+π(2)p(2, 3)+π(3)p(3, 3) = 1
4 (this is the fraction of jumps of (Yn)

corresponding to customer arrivals), moreover limn→∞
1
n

∑n
k=1 1[Yk = 3, Yk+1 = 3] = π(3)p(3, 3) =

1
4π(3) (this is the fraction of jumps of (Yn) corresponding to customer arrivals when all chairs are
occupied). Thus the fraction of arriving customers that find no empty chair is π(3) and the fraction
of arriving customers that do find an empty chair is 1− π(3) = 39

40 .
(b) Let f(x) = Ex(T0), i.e., the expected hitting time of state 0 if we start from state x. We want to

find f(3). We have f(0) = 0 and

f(1) =
1

4
+

3

4
0 +

1

4
f(2), f(2) =

1

4
+

3

4
f(1) +

1

4
f(3), f(3) =

1

3
+ f(2).

Solving this system of equations we obtain f(1) = 13
27 , f(2) =

25
27 and f(3) = 34

27 .

(c)
∑3
x=0 π(x)

1
3x = 27

40
0
3 + 9

40
1
3 + 3

40
2
3 + 1

40
3
3 = 3

20 , because cutting the hair of x customers takes 1
3x

time on average and π(x) is the probability of finding x customers there if I enter the barbershop
when it is in stationary state.
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