
Stoch. Proc. HW assignment 12. Due Tuesday, December 12
1. Let us consider the discrete-time birth/death process (Xn) with state space N and transition rules

P(Xn+1 = x+ 1 |Xn = x ) = px, x = 1, 2, 3, . . .

P(Xn+1 = x− 1 |Xn = x ) = qx, x = 1, 2, 3, . . . ,

P(Xn+1 = x |Xn = x ) = 1− px − qx, x = 1, 2, 3, . . .

P(Xn+1 = 0 |Xn = 0 ) = 1.

Let us define the function α : N→ R by

α(x) =

x−1∑
y=0

q1q2 . . . qy
p1p2 . . . py

. (Note: α(0) = 0 and α(1) = 1)

Show that (Mn) is a martingale, where Mn := α(Xn). Hint: See page 177 of scanned lecture notes.

Solution: We only need to show that α : N→ R is a harmonic function, i.e.,

α(x) ≡ qxα(x− 1) + (1− px − qx)α(x) + pxα(x+ 1).

Rearranging this, we only need to show that

qx · (α(x)− α(x− 1)) ≡ px · (α(x+ 1)− α(x)) .

This is indeed true, because

qx · (α(x)− α(x− 1)) = qx ·
q1q2 . . . qx−1
p1p2 . . . px−1

= px ·
q1q2 . . . qx
p1p2 . . . px

= px · (α(x+ 1)− α(x)) .

Note that the x = 0 case is a bit different: in this case the equation α(0) =
∑

y∈N p(0, y)α(y) reduces to
α(0) = α(0), which trivially holds.

Remark: We have already solved this exercise on page 45-46 of the scanned lecture notes.
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2. You are in a casino. If you bet 1 dollar in the n’th round then your your net profit in that round is ξn
dollars where P(ξn = +1) = p, P(ξn = −1) = q, q+p = 1, p > 1/2 and ξ1, ξ2, . . . are i.i.d. In other words:
with probability q < 1/2 you lose the bet and with probability p = 1− q > 1/2 you double your bet. You
bet Cn dollars in the n’th round. Obviously, your betting strategy has to be predictable, i.e., when you
make your n’th bet, you do not yet know the value of ξn, so let us assume that Cn is measurable w.r.t.
(ξ1, . . . , ξn−1). Denote by y0 your initial wealth and by Yn your total wealth after the end of the n’th
round. You cannot go in debt, so let’s assume 0 ≤ Cn ≤ Yn−1, n > 0. You are allowed to play N rounds.

Your goal is to maximize your expected rate of return E(log YN − log y0).

(a) Define
f(x) := p ln (1 + x) + (1− p) ln (1− x) , 0 ≤ x ≤ 1.

Show that f is strictly concave. Find max0≤x≤1 f(x) and show that max0≤x≤1 f(x) > 0.

(b) Show that for any predictable betting strategy we have E
(
ln(Yn+1) | (ξ1, . . . , ξn)

)
= ln(Yn)+f(

Cn+1

Yn
).

(c) Let Zn := log Yn − nα, where α = p log p + q log q + log 2. Prove that for any predictable betting
strategy the process (Zn) is a supermartingale. Show that this implies E(log YN − log y0) ≤ Nα.
Hint: See page 182 of the scanned lecture notes for the definition of a supermartingale.

(d) Describe the betting strategy for which Zn is a martingale and that E(log YN − log y0) = Nα is
achieved by this strategy. (Sometimes they call this the log-optimal portfolio in economics)

Solution:

(a) We have f ′(x) = p
1+x −

1−p
1−x and f ′′(x) = −p

(1+x)2 −
1−p

(1−x)2 , thus f is strictly concave and attains its
unique maximum at x∗ where f ′(x∗) = 0, that is x∗ = 2p − 1. Note that 0 < x∗ < 1 follows from
our assumptions.

max
0≤x≤1

f(x) = f(x∗) = p ln (1 + 2p− 1) + (1− p) ln (1− 2p+ 1) =

p · (ln(p) + ln(2)) + q · (ln(q) + ln(2)) = α.

It remains to show that max0≤x≤1 f(x) = α > 0. This follows from the fact that the strictly convex
function p 7→ p log p+ (1− p) log(1− p) + log 2 attains its unique minimum at p = 1

2 , and that this
minimum is equal to 0.

(b) Let us introduce xn = Cn

Yn−1
, i.e., the fraction of your money that you bet in the n’th round. Since

0 ≤ Cn ≤ Yn−1, we have 0 ≤ xn ≤ 1. Also note:

Yn+1 = Yn + Cn+1ξn+1 = Yn · (1 + xn+1ξn+1) . (1)

Now we calculate

E(ln(Yn+1) | (ξ1, . . . , ξn))
(1)
= E(ln(Yn) + ln (1 + xn+1ξn+1) | (ξ1, . . . , ξn))

(∗)
=

ln(Yn) + p ln (1 + xn+1) + (1− p) ln (1− xn+1) = ln(Yn) + f(xn+1),

where in the equation marked by (∗) we used that Yn and xn+1 are measurable w.r.t. (ξ1, . . . , ξn)
and that ξn+1 is independent from (ξ1, . . . , ξn).

(c) First we show that (Zn) is a supermartingale:

E(Zn+1 | (ξ1, . . . , ξn)) = E(ln(Yn+1) | (ξ1, . . . , ξn))− (n+ 1)α =

ln(Yn) + f(xn+1)− (n+ 1)α ≤ ln(Yn) + max
0≤x≤1

f(x)− (n+ 1)α = ln(Yn)− nα = Zn. (2)

Since (Zn) is a supermartingale, we have E(ZN ) ≤ E(Z0) (see page 182 of the scanned lecture notes),
thus E(ln(YN )−Nα) ≤ ln(y0), thus E(log YN − log y0) ≤ Nα.

(d) The best strategy is to bet Cn+1 = (2p − 1)Yn in round n + 1 (which makes xn+1 = x∗), so that
f(xn+1) = max0≤x≤1 f(x) = α and thus we have equality everywhere in (2), therefore we have
E(Zn+1 | (ξ1, . . . , ξn)) = Zn, therefore (Zn) is a martingale. This implies E(Z0) = E(ZN ) (see page
176 of the scanned lecture notes) and E(log YN − log Y0) = Nα.
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3. There are two amoebae at time 0 in a Petri dish: one of them is red, the other one is blue. An amoeba
splits after an EXP(1) distributed waiting time into two amoebae which are identical to the original one.
Denote by Xn the number of blue amoebae after the n’th split. Note that X0 = 1 and that the total
number of amoebae in the Petri dish after the n’th split is n+ 2.

(a) Calculate P(Xn+1 = x |Xn = x ) and P(Xn+1 = x+ 1 |Xn = x ) for x ∈ {1, . . . , n+ 1}.
(b) Let us define Mn = Xn

n+2 (i.e., Mn is the fraction of blue amoebae). Show that (Mn) is a martingale.
(c) Calculate P(X2 = x ) for x = 1, 2, 3. Calculate P(X3 = x ) for x = 1, 2, 3, 4.
(d) Based on the pattern that you see in the previous sub-exercise, make a conjecture about the distri-

bution of Xn for general n and verify your conjecture using induction on n.

Solution: The Markov chain (Xn) is famous, it is called Pólya’s urn model.

(a) If Xn = x, then there are n + 2 amoebae in the Petri dish and x of them are blue. Each of these
n+ 2 amoebae have their own independent EXP(1) clock. Since the ringing rates are the same for
all of the amoebae, each of them has the same chance of being the first one whose clock rings. Thus
the one who splits next is a uniformly chosen amoeba, therefore it is blue with probability x

n+2 .
This gives

P(Xn+1 = x |Xn = x ) = 1− x

n+ 2
, P(Xn+1 = x+ 1 |Xn = x ) =

x

n+ 2
. (3)

(b) We will show that (Mn) is a martingale w.r.t. the filtration of (Xn), i.e., that E(Mn+1 |Xn) =Mn.
Let ηn be the indicator of the event that n’th split produced a new blue amoeba. In other words,
let ηn+1 = Xn+1 −Xn. It follows from (3) that

E(ηn+1 |Xn) =Mn. (4)

Now
Mn+1 =

Xn+1

n+ 3
=
Xn + ηn
n+ 3

=
(n+ 2)Mn + ηn+1

n+ 3
= (1− 1

n+ 3
)Mn +

1

n+ 3
ηn+1. (5)

In words: Mn+1 is the weighted average of Mn and ηn+1. We can now conclude

E(Mn+1 |Xn)
(5)
= (1− 1

n+ 3
)E(Mn |Xn) +

1

n+ 3
E(ηn+1 |Xn)

(4)
= (1− 1

n+ 3
)Mn +

1

n+ 3
Mn =Mn.

(c) P(X1 = 1 ) = P(X1 = 2 ) = 1
2 .

P(X2 = 1 ) = P(X1 = 1 ) 23 = 1
3 ,

P(X2 = 2 ) = P(X1 = 1 ) 13 + P(X1 = 2 ) 13 = 1
3 ,

P(X2 = 3 ) = P(X1 = 2 ) 23 = 1
3 .

One can also similarly show P(X3 = 1 ) = P(X3 = 2 ) = P(X3 = 3 ) = P(X3 = 4 ) = 1
4 .

(d) We will prove by induction on n the statement

P(Xn = k) =
1

n+ 1
for any n ≥ 0 and 1 ≤ k ≤ n+ 1. (6)

In words: we will show that Xn is uniformly distributed over the set {1, 2, . . . , n+ 1}.
The statement (6) is true for n = 0, since P(X0 = 1) = 1. Assuming that (6) holds for some n ≥ 0,
we will show that (6) holds for n+ 1 and any 1 ≤ k ≤ n+ 2, i.e., we will deduce

P(Xn+1 = k) =
1

n+ 2
for any 1 ≤ k ≤ n+ 2. (7)

First we show (7) for k = 1:

P(Xn+1 = 1)
(3)
= P(Xn = 1)

n+ 1

n+ 2

(6)
=

1

n+ 2
.

Now we show (7) for k = n+ 2:

P(Xn+1 = n+ 2)
(3)
= P(Xn = n+ 1)

n+ 1

n+ 2

(6)
=

1

n+ 2
.
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Now we show (7) for 1 < k < n+ 2:

P(Xn+1 = k)
(3)
= P(Xn = k − 1)

k − 1

n+ 2
+P(Xn = k)

n+ 2− k
n+ 2

(6)
=

1

n+ 1

k − 1

n+ 2
+

1

n+ 1

n+ 2− k
n+ 2

=
1

n+ 1

n+ 1

n+ 2
=

1

n+ 2

We have checked that (7) holds, so by induction (6) holds.

Alternative Solution: Let us prove (6) without induction, using combinatorics.
As the new amoebae are born, let us write down the sequence of their colours. For example BRRBR
means that the first newborn was blue, the next one red, then red, then blue, then red. We can
arrive at the event {Xn = k} using

(
n

k−1
)
different colour sequences of length n with k− 1 blues and

n− k+1 reds in it. We claim that every such color sequence occurs with probability (k−1)!(n−k+1)!
(n+1)! .

We first derive (6) from this claim:

P(Xn = k) =

(
n

k − 1

)
(k − 1)!(n− k + 1)!

(n+ 1)!
=

n!

(k − 1)!(n− k + 1)!

(k − 1)!(n− k + 1)!

(n+ 1)!
=

1

n+ 1
.

Now we prove the claim. We can write the probability of the occurrence of a particular colour
sequence of length n as the product of n fractions, where each term of the product is the conditional
probability that the next colour appears in the sequence, given the present proportion of reds and
blues determined by the colours of previous births. For example, the product corresponding to
BRRBR is 1

2
1
3
2
4
2
5
3
6 . In a colour sequence of length n with k − 1 blues and n − k + 1 reds in it,

the product of the denominators is (n+ 1)!, the product of the blue numerators is (k − 1)! and the
product of the red numerators is (n− k + 1)!.

Remark: More can be said about Pólya’s urn model, but unfortunately our Stochastic Processes course
has come to an end. If you are interested, Google Pólya’s urn model.
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