
Stoch. Proc. HW assignment 4. Due Friday, October 6 at start of class
1. Each day it rains with probability 1/4, independently from what happens on other days. Moreover if it

rains then it rains exactly at noon. An old gardener waters his garden in the afternoon if he sees that
the garden has not been watered (by either rain or himself) in the last three days (i.e., today, yesterday
and the day before yesterday). Roughly how many times does he water his garden per year?

Solution:

The garden can be in four different states in the afternoon (after potential rain, but before potential
watering by the gardener): state 0 means that it rained today at noon, state 1 means that the last time
the garden was watered (by rain or gardener) was yesterday, state 2 means that the last time the garden
was watered (by rain or gardener) was the day before yesterday and state 3 means that the last time
the garden was watered (by rain or gardener) was three days ago. The state space is S = {0, 1, 2, 3}.
Transition matrix:

P =


1/4 3/4 0 0
1/4 0 3/4 0
1/4 0 0 3/4
1/4 3/4 0 0


The stationary distribution π = (π0, π1, π2, π3) solves the system of equations
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The first four equations state that π is a left eigenvector of P corresponding to the eigenvalue 1. The
fifth equation guarantees that π is a probability distribution. The sum of the first four equations is the
trivial identity

π0 + π1 + π2 + π3 = π0 + π1 + π2 + π3,

this trivial identity follows from the property that the sum of each row of P is equal to 1. Therefore the
first four equations together are redundant, we can throw away the first equation.

Solving the resulting system of linear equations we obtain

π0 =
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4
, π1 =
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148
, π2 =
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, π3 =

27

148
.

The gardener waters the garden if it is in state 3. By the law of large numbers for Markov chains, he
waters the garden roughly 365 · π3 times per year, that is, roughly 66.58 times per year.

Alternative solution:

Let us consider the renewal process (see page 73 of the scanned lecture notes) where the watering (by
either rain or gardener) plays the role of a renewal. If a renewal occurred today then the expected time
(in days) that passes until the next renewal is

m =
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· 2 +
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.

Thus by the classical law of large numbers for i.i.d. random variables, the number of renewals per year is
roughly 365/m ≈ 157.83. A renewal period ends with the gardener watering the garden with probability(
3
4

)3. Thus, again by the classical law of large numbers, the number of renewal periods in a year that
end with watering is roughly equal to 157.83 ·

(
3
4

)3 ≈ 66.58.
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2. There is a queue of university students standing in line in front of the Central Office of Education. Each
second, a new student arrives and joins the queue with probability p and a student is served in the office
and thus leaves the queue with probability q. The maximal length of the queue is 30. Any student
arriving when there are already 30 students standing in line will be immediately sent away.

(a) If p = 0.01 and q = 0.012 and assuming that the queue is stationary, what is the probability that
the length of the queue is at most 15?

(b) If p = 0.01 and q = 0.008 and assuming that the queue is stationary, what is the probability that
the length of the queue is at most 15?

(c) If p = 0.01 and q = 0.01 and assuming that the queue is stationary, what is the probability that the
length of the queue is at most 15?

(d) If p = 0.01 and q = 0.012 and the current queue length is 15, what is the probability that the queue
becomes empty before it reaches its maximal length?

(e) If p = 0.01 and q = 0.008 and the current queue length is 15, what is the probability that the queue
becomes empty before it reaches its maximal length?

(f) If p = 0.01 and q = 0.01 and the current queue length is 15, what is the probability that the queue
becomes empty before it reaches its maximal length?

Solution: Denote by Xn the length of the queue at time n (time is measured in seconds). Then (Xn)
is birth-and-death process with transition probabilities px = p for any 0 ≤ x ≤ 29 and qx = q for any
1 ≤ x ≤ 30 (here we cheated since we ignored the possibility that a student arrives and another one
departs in the same second, which happens with probability pq, which is small compared to p and q).
Also note that P(Xn+1 = Xn) is close to 1, however this fact will not manifest itself in our calculations.

Now we recall some facts about birth-and-death processes from page 45 of the scanned lecture notes.

Stationary distribution:

π(x) =
p0p1 . . . px−1
q1q2 . . . qx

π0 =

(
p

q

)x
π0, π0 =

(
30∑
x=0

(
p

q

)x)−1
.

Let h(x) be the probability of the event that the length of the queue reaches 30 before reaching 0.

h(15) =
α15

α30
, αx =

x−1∑
y=0

(
q

p

)y
.

(a) p
q = 5

6 and thus 1
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(
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the length of the queue is at most 15 is very high:
∑15
x=0 πx ≈ 1−

(
5
6

)15 ≈ 0.935

(b) p
q = 5
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≈ 4
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5
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probability that the length of the queue is at most 15 is very small:
∑15
x=0 πx = 1−

∑14
x=0 π30−x ≈(

4
5

)14 ≈ 0.04

(c) p
q = 1, πx = π0, the stationary distribution is uniform, thus the probability that the length of the
queue is at most 15 is 16

31 ≈
1
2 .

(d) q
p = 6

5 , α15 =
∑14
y=0

(
6
5

)y
=

( 6
5 )

15−1
6
5−1

, thus h(15) = ( 6
5 )

15−1

( 6
5 )

30−1
≈
(
5
6

)15 ≈ 0.065. The probability that

the queue becomes empty before it reaches its maximal length is very high: 1− 0.065 = 0.935.

(e) q
p = 4

5 , α15 =
∑14
y=0

(
4
5

)y
=

1−( 4
5 )
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1− 4
5

, thus h(15) =
1−( 4

5 )
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1−( 4
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30 ≈ 1 −
(
4
5

)15. The probability that the

queue becomes empty before it reaches its maximal length is small:
(
4
5

)15 ≈ 0.035

(f) q
p = 1, αx = x, h(15) = 1

2 . The probability that the queue becomes empty before it reaches its
maximal length is 1− h(15) = 1

2 .

Moral of the story: Arrival rate: p, service rate: q. If p < q then the queue is short, if p > q then the
queue is long, if p = q then the queue length is all over the place.
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3. Consider the Markov chain on state space {1, 2, 3, 4, 5} with transition matrix

P =


0 1/3 2/3 0 0
0 0 0 1/4 3/4
0 0 0 1/2 1/2
1 0 0 0 0
1 0 0 0 0

 . (1)

(a) Show that the Markov chain is irreducible by drawing its accessibility graph.
(b) What is the period of this Markov chain?
(c) Find the stationary distribution (π1, . . . , π5) of the Markov chain.
(d) Find P 2018.

Solution:

(a) Sorry, I won’t draw it.
(b) The period is equal to 3.
(c) First note that the walker returns to state 1 in every third step. Thus it spends one third of the

time in state 1 on the long run:

π1 = lim
n→∞

1

n

n∑
k=1

1[Xk = 1] =
1

3
.

From the second and third column of the transition matrix we see that

π2 =
1

3
π1 =

1

9
, π3 =

2

3
π1 =

2

9
.

From the fourth and fifth column of the transition matrix we obtain

π4 =
1

4
π2 +

1

2
π3 =

5

36
, π5 =

3

4
π2 +

1

2
π3 =

7

36
.

Sanity check: indeed π1 = π4 + π5, as required by the first column of the transition matrix.
Sanity check: indeed π1 + · · ·+ π5 = 1.

(d) The first row of P 2018 is the distribution of X2018 we start from state X0 = 1. Note that if X0 = 1

then P[X2016 = 1] = 1 (since 2016 is divisible by 3) and thus P[X2017 = 2] = 1
3 and P[X2017 = 3] = 2

3 ,
moreover

P[X2018 = 4] = P[X2017 = 2]p(2, 4) + P[X2017 = 3]p(3, 4) =
1

3

1

4
+

2

3

1

2
=

5

12
,

P[X2018 = 5] = P[X2017 = 2]p(2, 5) + P[X2017 = 3]p(3, 5) =
1

3

3

4
+

2

3

1

2
=

7

12
.

Therefore the first row of P 2018 is (0, 0, 0, 5
12 ,

7
12 ).

The second row of P 2018 is the distribution of X2018 if we start from state X0 = 2. Note that in
this case P[X2 = 1] = 1 and thus P[X2018 = 1] = 1, thus the second row of P 2018 is (1, 0, 0, 0, 0).
Similarly we can calculate all rows:

P 2018 =


0 0 0 5/12 7/12
1 0 0 0 0
1 0 0 0 0
0 1/3 2/3 0 0
0 1/3 2/3 0 0

 .

Remark: Clearly the sequence Pn does not converge as n→∞ as the Markov chain is periodic. However
let us note that Pn+3 = Pn if n ≥ 3 and thus if we define Q = 1

3

(
P 3 + P 4 + P 5

)
then QP = Q, and since

the stationary distribution is unique this must mean that every row of Q is the stationary distribution. As

a consequence, limn→∞
1
3

(
Pn + Pn+1 + Pn+2

)
= Q, meaning that if we „randomize” the time parameter

in a way that the remainder modulo the period is uniformly distributed then convergence to stationarity
does hold. This final conclusion also holds for any periodic irreducible Markov chain.
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