
Stoch. Proc. HW assignment 6. Due Friday, October 20 at start of class
1. Recall the notion of a renewal process from page 73 of the lecture notes. Let τ1, τ2, . . . denote i.i.d.

random variables which have the same distribution as the random variable τ . We assume that τ takes
positive integer values. Now τk is the length of the k’th renewal interval. Denote by px = P[τ = x] for
any x ∈ N. Let us define Tn =

∑n
i=1 τi, thus Tn is the time of the n’th renewal. Denote by αt the time

that has elapsed since the last renewal at time t, where t = 0, 1, 2, . . . (if t = Tn is a renewal time then
we let αt = 0).

(a) Briefly argue that αt, t = 0, 1, 2, . . . is an irreducible Markov chain and write down the state space
and the transition matrix of this Markov chain.

(b) What do we have to assume about the distribution of τ if we want the Markov chain (αt) to be
positive recurrent? In the positive recurrent case, find the stationary distribution of the Markov
chain (αt).

(c) Verify that the earlier homework exercise pertaining to the wine bottle recycling habits of Miles
Raymond is a special case of this exercise. Find the distribution of τ corresponding to the wine
bottle exercise and use part (b) of this exercise to re-derive the stationary distribution in the case
of the wine bottle exercise.

Solution:

(a) The state space is {0, 1, 2, . . . ,M −1}, where M = sup{x : px > 0 }. Of course, M =∞ is possible
in which case the state space is N. Let us define

ax = P[τ ≥ x] =
∑
y≥x

py.

Note that a1 = 1, aM = pM and px + ax+1 = ax.
The transition matrix on the state space {0, 1, 2, . . . ,M − 1} is

P =



p1/a1 a2/a1 0 0 0 . . . 0
p2/a2 0 a3/a2 0 0 . . . 0
p3/a3 0 0 a4/a3 0 . . . 0
p4/a4 0 0 0 a5/a4 . . . 0

... 0 0 0 0
. . . 0

pM−1/aM−1 0 0 0 . . . 0 aM/aM−1
pM/aM 0 0 0 0 . . . 0


,

because P (αt+1 = x+ 1 |αt = x ) = P[τ > x+ 1 | τ > x] = ax+2/ax+1 and
P (αt+1 = 0 |αt = x ) = P[τ = x+ 1 | τ > x] = 1− ax+2/ax+1 = px+1/ax+1.

(b) The expected return time from state 0 to state 0 is E[τ ], so the Markov chain is positive recurrent
if and only if E[τ ] < +∞.
Let us show that µ : {0, . . . ,M − 1} → R+ defined by µ(x) = ax+1 is a stationary measure. Indeed,
let us check that µP = µ. Note that there is an equation corresponding to each column of P , namely
µ(x) =

∑M−1
y=0 µ(y)p(y, x) is the equation corresponding to column x, where x ∈ {0, . . . ,M − 1}.

However, these M equations are redundant, because if we sum these M equations, we obtain the
trivial

∑M−1
x=0 µ(x) =

∑M−1
x=0 µ(x), since the matrix P is stochastic. So it is enough to check that

µ(x) =
∑M−1
y=0 µ(y)p(y, x) holds for x ∈ {1, . . . ,M − 1} and then µ(0) =

∑M−1
y=0 µ(y)p(y, 0) (the

equation corresponding to the leftmost column) will automatically follow. Now if x ∈ {1, . . . ,M−1},
then

∑M−1
y=0 µ(y)p(y, x) = ax

ax+1

ax
= ax+1 = µ(x). In order to find the stationary distribution, we

need to find the total mass of the stationary measure µ:

M−1∑
x=0

µ(x) =

M∑
y=1

ay =

M∑
y=1

M∑
x=y

px =

M∑
x=1

x∑
y=1

px =

M∑
x=1

xpx = E[τ ].

Therefore the stationary measure of the Markov chain (αt) is π, where

πx =
µ(x)

E[τ ]
=

P[τ > x]

E[τ ]
.

1



(c) In this case a renewal time is a recycling time, αt is the number of wine bottles on the shelf (after
possible recycling) in the evening of day t, thus τ is the length of the time interval between two
recycling events and

p1 =
1

2
, p2 =

1

4
, p3 =

1

8
, p4 =

1

16
, p5 =

1

16
, a1 = 1, a2 =

1

2
, a3 =

1

4
, a4 =

1

8
, a5 =

1

16
.

Therefore E[τ ] = a1 + · · ·+ a5 = 2− 1
16 = 31

16 and

(π0, π1, π2, π3, π4) = (
a1
E[τ ]

,
a2
E[τ ]

,
a3
E[τ ]

,
a4
E[τ ]

,
a5
E[τ ]

) = (
16

31
,

8

31
,

4

31
,

2

31
,

1

31
).

Remark:
So T (n) = τ1 + · · ·+ τn is the time of the n’th renewal and Nt = max{n : T (n) ≤ t } is the number of
renewals up to time t, where t = 0, 1, 2, . . . We can write

αt = t− T (Nt), βt = T (Nt + 1)− t, γt = αt + βt = T (Nt + 1)− T (Nt) = τNt+1

In words: αt is the time that has elapsed since the last renewal at time t. βt is the time until the next
renewal at time t. γt is the length of the renewal interval that contains t.
Here is a summary of some of the results of HW5.3 and HW6.1, combined with the law of large numbers
for Markov chains:

lim
t→∞

1

t

t−1∑
s=0

1[αs = x, βs = y ] =
px+y
E[τ ]

, lim
t→∞

1

t

t−1∑
s=0

1[ γs = z ] =
zpz
E[τ ]

, lim
t→∞

1

t

t−1∑
s=0

1[αs = x ] =
P[τ > x]

E[τ ]

Here is an alternative way of obtaining these results. Observe that

T (n)−1∑
s=0

1[αs = x, βs = y ] =

n∑
k=1

1[ τk = x+ y ] (1)

T (n)−1∑
s=0

1[ γs = z ] =

n∑
k=1

z1[ τk = z ] (2)

T (n)−1∑
s=0

1[αs = x ] =

n∑
k=1

1[ τk > x ]. (3)

(1): in each renewal interval of length x+ y there is exactly one time s for which αs = x and βs = y.
(2): these are two ways of counting the total length of renewal intervals of length z.
(3): in every renewal interval of length greater than x there is exactly one time s for which αs = x.
Now by the classical law of large numbers for i.i.d. random variables, we have

lim
n→∞

1

T (n)

T (n)−1∑
s=0

1[αs = x, βs = y ]
(1)
= lim

n→∞

n

T (n)

∑n
k=1 1[ τk = x+ y ]

n
=

1

E[τ ]
px+y (4)

lim
n→∞

1

T (n)

T (n)−1∑
s=0

1[ γs = z ]
(2)
= lim

n→∞

n

T (n)

∑n
k=1 z1[ τk = z ]

n
=

1

E[τ ]
zpz (5)

lim
n→∞

1

T (n)

T (n)−1∑
s=0

1[αs = x ]
(3)
= lim

n→∞

n

T (n)

∑n
k=1 1[ τk > x ]

n
=

1

E[τ ]
P[τ > x] (6)

So the waiting time paradox is the following phenomenon: if we assume aperiodicity, then convergence
to stationarity holds, so we have

lim
t→∞

P[τNt+1 = z] = lim
t→∞

P[γt = z] =
zpz
E[τ ]

,

in contrast to the trivial limn→∞ P[τn = z] = pz. The moral of the story is that if t � 1 then γt is
essentially a size-biased sample from the renewal interval length distribution: t falls into longer intervals
with bigger probability.
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2. A hunter is trying to shoot a rabbit, the rabbit tries to escape. The rabbit is running around on the
locations indexed by S = {−10,−9,−8, . . . , 8, 9, 10}. The movement of the rabbit is unpredictable, she
performs simple, symmetric random walk on S. In each time-step, the rabbit moves to a location adjacent
to its current location, and in each time-step, the hunter shoots at the rabbit (first the hunter shoots,
then the rabbit moves). Each shot of the hunter is successful with probability 1/100, but he misses the
rabbit with probability 99/100. As soon as the rabbit reaches the rabbit-holes located at site −10 and
site 10, she is safe. If the rabbit initially starts from site 0, what is the probability that she survives this
encounter with the hunter?

Solution:

Let us add a cemetery state ∆ to the state space S, i.e., let S′ = S ∪ {∆}. So if the rabbit is still alive
and she is at location x ∈ {−9,−8 . . . , 8, 9}, then she will move to state ∆ with probability 0.01, she will
move to state x− 1 with probability 0.495 and she will move to state x+ 1 with probability 0.495.

(Let us assume that the states −10, 10 and ∆ are absorbing states.)

Denote by h(x) the probability that she survives if she starts from site x ∈ S′. Ultimately we want to
find h(0).

Of course we have h(−10) = h(10) = 1 and h(∆) = 0. We also have

h(x) = ah(x− 1) + ah(x+ 1), x ∈ {−9,−8 . . . , 8, 9}, a = 0.495 =
99

200
. (7)

We first try to find the basic solutions of this system of homogeneous linear difference equations:

We first look for a solution of (7) of form h(x) = λx. Now λx = aλx−1 + aλx+1 holds if and only if
1 = a 1

λ + aλ, or, equivalently, λ = a + aλ2, or, equivalently aλ2 − λ + a = 0. Solving this with the
quadratic formula we obtain

λ1,2 =
1±
√

1− 4a2

2a
.

Note that λ1 · λ2 = 1 and if a = 0.495 then λ1 ≈ 1.1526 and λ2 ≈ 0.8676.

Thus the general solution of (7) is of form h(x) = α1λ
x
1 +α2λ

x
2 , that is h(x) = α1λ

x
1 +α2λ

−x
1 . In order to

satisfy the boundary conditions h(−10) = h(10) = 1, and also taking into account the built-in symmetries
of the exercise, we have to find α1 = α2 = α so that α ·

(
λ101 + λ−101

)
= 1, this gives α ≈ 0.2283, so

h(x) = α ·
(
λx1 + λ−x1

)
, α ≈ 0.2283, λ1 ≈ 1.1526.

In particular, h(0) = α · (1 + 1) ≈ 0.4566, this is the probability of the event that the rabbit survives.
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3. Let X1, X2, . . . denote i.i.d. non-negative integer-valued random variables which have the same distribu-
tion as the random variable X.
Let pk = P[X = k], k = 0, 1, 2, . . . . Let us assume that p0 > 0 and that

∑∞
k=0 kpk = E(X) > 1.

Let Y0 = 0 and let us recursively define

Yn = max{ 0, Yn−1 + 1−Xn }, n = 1, 2, 3, . . .

(a) Write down the transition matrix of the irreducible Markov chain (Yn).
(b) Let G(z) :=

∑∞
k=0 z

kpk. Show that the equation z = G(z) has exactly one solution z∗ ∈ (0, 1).
Hint: G(0) =?, G(1) =?, G′(1) =?, what can you say about G′′(z) if 0 ≤ z ≤ 1?

(c) Find the stationary distribution of the Markov chain (Yn).
Hint: We have already found the stationary distribution in the special case when

P[X = 2] = q, P[X = 0] = p, P[X = 1] = 1− p− q,

see page 81-82 of the scanned lecture notes. The stationary distribution in the general case will look
very similar to the stationary distribution in the special case, but note that the method of proof has
to be different, because in the general case (Yn) is not necessarily a birth-and-death chain!

Solution:

(a) Let us define ak =
∑∞
`=k p`. The transition matrix on the state space {0, 1, 2, 3, . . . } is

P =


a1 p0 0 0 0 . . .
a2 p1 p0 0 0 . . .
a3 p2 p1 p0 0 . . .
a4 p3 p2 p1 p0
...

...
...

...
. . .

 .

(b) We proved this in class when we discussed the extinction probability of a supercritical branching
process, c.f. page 103 of the scanned lecture notes.

(c) Let us show that µ : N → R+ defined by µ(x) = zx∗ is a stationary measure. Indeed, let us check
that µP = µ. Note that there is an equation corresponding to each column of P , namely µ(x) =∑∞
y=0 µ(y)p(y, x) is the equation corresponding to column x, where x ∈ {0, 1, 2, . . . }. However, these

equations are redundant, because if we sum them, we obtain the trivial
∑∞
x=0 µ(x) =

∑∞
x=0 µ(x),

since the infinite matrix P is stochastic. So it is enough to check that µ(x) =
∑∞
y=0 µ(y)p(y, x) holds

for x ≥ 1 and then µ(0) =
∑∞
y=0 µ(y)p(y, 0) (the equation corresponding to the leftmost column)

will automatically follow.
Now if x ∈ {1, 2, 3, . . . }, then

∞∑
y=0

µ(y)p(y, x) = µ(x− 1)p0 + µ(x)p1 + µ(x+ 1)p2 + · · · = zx−1∗ G(z∗) = zx−1∗ z∗ = zx∗ = µ(x).

In order to find the stationary distribution π, we need to normalize the measure µ by its total mass.
We obtain

π(x) = (1− z∗)zx∗ , x = 0, 1, 2, . . . ,

i.e., the stationary distribution is GEO(1− z∗).

Remark: Returning to the special case mentioned in the hint of part (c), if P[X = 2] = q,
P[X = 0] = p and P[X = 1] = 1− p− q, then E[X] = 1− p+ q, thus E[X] > 1 if and only if q > p.
Also note that in this case we have

G(z) = p+ (1− p− q)z + qz2,

so if we want to find z∗ then we need to solve the quadratic equation z = p + (1 − p − q)z + qz2,
which is equivalent to qz2 + (−p − q)z + p = 0. The solutions of this equation are z1 = 1 and
z2 = p/q ∈ (0, 1), thus z∗ = p/q and thus the stationary distribution is GEO(1− p/q), in agreement
with page 81-82 of the scanned lecture notes.
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