Stoch. Proc. HW assignment 7. Due Friday, October 27 at start of class

1. Consider a graph G with vertex set \mathbb{Z}^d , where a pair of vertices $\underline{x} = (x_1, \ldots, x_d)$ and $\underline{y} = (y_1, \ldots, y_d)$ are connected by and edge if and only if $\|\underline{x} - \underline{y}\|_1 = d$ and $\|\underline{x} - \underline{y}\|_{\infty} = 1$, where $\|\underline{v}\|_1 = \sum_{j=1}^d |v_j|$ and $\|\underline{v}\|_{\infty} = \max_{1 \le j \le d} |v_j|$. Consider a random walk (X_n) on this graph which starts at $X_0 = \underline{0} = (0, \ldots, 0)$, i.e., the origin. The goal of this exercise is to decide whether the Markov chain (X_n) is recurrent or transient (the answer will depend on the value of d).

Let us also consider the stochastic process

$$Y_n = \underline{\eta}_1 + \dots + \underline{\eta}_n$$

where the increments $(\underline{\eta}_i)_{i=1}^{\infty}$ are i.i.d. \mathbb{Z}^d -valued random variables and each increment $\underline{\eta}_i$ has the same distribution as the random vector $\eta = (\eta_1, \ldots, \eta_d)$, where η_1, \ldots, η_d are i.i.d. with distribution

$$\mathbb{P}(\eta_j = 1) = \mathbb{P}(\eta_j = -1) = \frac{1}{2}, \quad j \in \{1, \dots, d\}.$$

- (a) Show that the stochastic processes (X_n) and (Y_n) have the same law.
- (b) If d = 1, give an explicit formula for the return probability $p^{(n)}(0,0) = \mathbb{P}(X_n = 0)$ for any $n \in \mathbb{N}$.
- (c) Give an explicit formula for the return probability $p^{(n)}(\underline{0},\underline{0}) = \mathbb{P}(X_n = \underline{0})$ for any $d \in \mathbb{N}_+$.
- (d) Use Stirling's formula to find $\alpha > 0$ for which $p^{(2n)}(0,0) \simeq n^{-\alpha}$ in the one-dimensional case. *Hint:* Stirling's formula: $n! \simeq e^{-n} n^{n+\frac{1}{2}}$, where $a(n) \simeq b(n)$ means that there exist $0 < c \le C < +\infty$ such that for each $n \in \mathbb{N}_+$, we have $c \le \frac{a(n)}{b(n)} \le C$.
- (e) For which values of d is the Markov chain (X_n) recurrent? For which values of d is it transient?

Solution:

(a) Denote by $H = \{ \underline{v} \in \mathbb{Z}^d : \|\underline{v}\|_{\infty} = 1, \|\underline{v}\|_1 = d \}$. If $(v_1, \ldots, v_d) = \underline{v} \in H$ then we must have $|v_1| = |v_2| = \cdots = |v_d| = 1$, thus $v_i \in \{-1, +1\}$ for all $i \in \{1, \ldots, d\}$. Therefore $H = \{-1, +1\}^d$. In particular, we have $|H| = 2^d$ and thus if $\underline{\eta} = (\eta_1, \ldots, \eta_d)$ is uniformly distributed on H then η_1, \ldots, η_d are i.i.d. with distribution $\mathbb{P}(\eta_j = 1) = \mathbb{P}(\eta_j = -1) = \frac{1}{2}$ for any $j \in \{1, \ldots, d\}$. Therefore, both (X_n) and (Y_n) are Markov processes with $X_0 = Y_0 = \underline{0}$, and for any $\underline{x}, y \in \mathbb{Z}^d$ we have

$$\mathbb{P}\Big(X_{n+1} = \underline{y} \,|\, X_n = \underline{x}\Big) = \frac{\mathbb{1}\big[\underline{y} - \underline{x} \in H\big]}{|H|} = \mathbb{P}\Big(Y_{n+1} = \underline{y} \,|\, Y_n = \underline{x}\Big)$$

We see that (X_n) and (Y_n) are both Markov chains with the same state space, transition rule and initial state, hence have the same law.

- (b) In the one-dimensional case, the process (X_n) is just a simple symmetric random walk on \mathbb{Z} . The walker can only return to the origin in an even number of steps, thus $p^{(2n+1)}(0,0) = 0$. Now we calculate $p^{(2n)}(0,0)$. In order to return to the origin, the walker has to make exactly n steps to the left and exactly n steps to the right. There are $\binom{2n}{n}$ nearest neighbour trajectories of length 2n which make exactly n steps to the left and exactly n steps to the right, and the probability of seeing a particular trajectory is $\left(\frac{1}{2}\right)^{2n}$. Therefore $p^{(2n)}(0,0) = \binom{2n}{n}4^{-n}$.
- (c) We only need to realize that each coordinate of the *d*-dimensional (X_n) is a one-dimensional simple symmetric random walk and that these *d* one-dimensional random walks are independent. Now the *d*-dimensional (X_n) returns to $\underline{0}$ in *k* steps if and only if each coordinate returns to 0 in *k* steps. Therefore $p^{(2n+1)}(\underline{0},\underline{0}) = 0$ and $p^{(2n)}(\underline{0},\underline{0}) = \left(\binom{2n}{n}4^{-n}\right)^d$

(d)
$$p^{(2n)}(0,0) = \frac{(2n)!}{(n!)^2} 4^{-n} \approx \frac{e^{-2n}(2n)^{2n+\frac{1}{2}}}{(e^{-n}n^{n+\frac{1}{2}})^2} 4^{-n} \approx \frac{n^{2n+\frac{1}{2}}}{(n^{n+\frac{1}{2}})^2} = n^{-1/2}$$
, thus $\alpha = 1/2$.

(e) Using (c) and (d), in the *d*-dimensional case we have $p^{(2n)}(\underline{0},\underline{0}) \approx n^{-d/2}$. Thus $\sum_{k=0}^{\infty} p^{(k)}(\underline{0},\underline{0}) \approx \sum_{n=1}^{\infty} n^{-d/2}$. If d = 1 or d = 2 then $\sum_{n=1}^{\infty} n^{-d/2} = +\infty$ and thus (X_n) is recurrent, but if $d \ge 3$ then $\sum_{n=1}^{\infty} n^{-d/2} < +\infty$ and thus (X_n) is transient. In both cases, we used the equivalent characterisation of recurrence stated on page 75 of the scanned lecture notes.

Remark: The result we have just proved is a variant of the famous *Pólya's recurrence theorem*. Anecdotally speaking: a drunk person always finds his way back home (since the d = 2 case is recurrent) but a drunken bird might get lost forever (since the d = 3 case is transient). 2. Let us consider a *critical* Galton-Watson branching process (X_n) with GEO $(\frac{1}{2})$ offspring distribution and $X_0 = 1$. Denote by $G_n(z)$ the generating function of X_n .

- (a) Use induction on n to find a simple explicit formula for G_n for any $n \in \mathbb{N}$.
- (b) Find $\mathbb{E}(X_n)$.
- (c) Find $\mathbb{P}[X_n = k]$ for each $k = 0, 1, 2, \dots$ Hint: $G_n(z) = \sum_{k=0}^{\infty} \mathbb{P}[X_n = k] z^k$.
- (d) Find $\mathbb{P}[X_n = k | X_n > 0]$ for each k = 0, 1, 2, ..., i.e., the distribution of the number of individuals in generation n under the condition that the branching process did not become extinct by time n.
- (e) Find $\mathbb{E}[X_n | X_n > 0]$.

Solution:

(a) $G_0(z) = z$ $G_1(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k+1} z^k = \frac{1}{2} \frac{1}{1-z/2} = \frac{1}{2-z}$ $G_2(z) = G_1(G_1(z)) = \frac{1}{2-1/(2-z)} = \frac{2-z}{3-2z}$ $G_3(z) = G_2(G_1(z)) = \frac{2-1/(2-z)}{3-2/(2-z)} = \frac{3-2z}{4-3z}$

There is a pattern here. We will prove $G_n(z) = \frac{n - (n-1)z}{(n+1) - nz}$ by induction:

$$G_{n+1}(z) = G_n(G_1(z)) = \frac{n - (n-1)/(2-z)}{(n+1) - n/(2-z)} = \frac{2n - nz - n + 1}{2n + 2 - (n+1)z - n} = \frac{(n+1) - nz}{(n+2) - (n+1)z}$$

(b) $G'_n(z) = \frac{1}{(nz - (n+1))^2}$, thus $\mathbb{E}(X_n) = G'_n(1) = 1$. (c)

$$G_n(z) = G_n(0) + (G_n(z) - G_n(0)) = \frac{n}{n+1} + \frac{1}{(n+1)^2} \frac{z}{1 - \frac{n}{n+1}z} = \frac{n}{n+1} + \frac{z}{(n+1)^2} \sum_{\ell=0}^{\infty} \left(\frac{n}{n+1}z\right)^{\ell} = \frac{n}{n+1} + \frac{1}{(n+1)^2} \sum_{\ell=0}^{\infty} \left(\frac{n}{n+1}\right)^{\ell} z^{\ell+1} = \frac{n}{n+1} + \sum_{k=1}^{\infty} \frac{n^{k-1}}{(n+1)^{k+1}} z^k,$$

therefore $\mathbb{P}[X_n = 0] = \frac{n}{n+1}$ and $\mathbb{P}[X_n = k] = \frac{n^{k-1}}{(n+1)^{k+1}}$ if k = 1, 2, ...

- (d) Denote by $p_{n,k} = \mathbb{P}[X_n = k \mid X_n > 0]$. First note that $\mathbb{P}[X_n > 0] = 1 \mathbb{P}[X_n = 0] = \frac{1}{n+1}$. We have $p_{n,0} = 0$ and $p_{n,k} = \frac{\mathbb{P}[X_n = k]}{\mathbb{P}[X_n > 0]} = \frac{n^{k-1}}{(n+1)^k} = \frac{1}{n+1} \left(1 - \frac{1}{n+1}\right)^{k-1}$ if k = 1, 2, 3, ...In other words, the distribution of the number of individuals in generation n under the condition that the branching process did not become extinct by time n is (optimistic) GEO $\left(\frac{1}{n+1}\right)$.
- (e) $\mathbb{E}[X_n | X_n > 0] = n + 1$, since the expected value of optimistic GEO (p) is 1/p.

Remark: If $p \neq \frac{1}{2}$ then it is not so easy to guess the form of the generating function $G_n(z)$ of X_n . First note that if $f(z) = \frac{az+b}{cz+d}$, then we can associate the matrix $\underline{\underline{A}} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with f, and it is straightforward to check that if $\underline{\underline{B}}$ is the matrix associated to another such function g, then the matrix associated to $f \circ g$ will be $\underline{\underline{A}} \underline{\underline{B}}$. Now the matrix associated to G(z) is $\underline{\underline{C}} = \begin{pmatrix} 0 & p \\ p-1 & 1 \end{pmatrix}$, thus by diagonalizing $\underline{\underline{C}}$ we obtain a formula for $G_n(z)$, i.e., the function associated to $\underline{\underline{C}}^n$:

$$G_n(z) = \frac{\left(p(1-p)^n - (1-p)p^n\right)z + \left(p^{n+1} - p(1-p)^n\right)}{\left((1-p)^{n+1} - (1-p)p^n\right)z + \left(p^{n+1} - (1-p)^{n+1}\right)}$$

Let us denote $\gamma = \frac{1-p}{p}$. We have $\mathbb{P}[X_n = 0] = \frac{1-\gamma^n}{1-\gamma^{n+1}}$. Now if $p > \frac{1}{2}$ then $\gamma < 1$, the branching process is subcritical and $\mathbb{P}[X_n = 0]$ converges to 1 at an exponential speed as $n \to \infty$ (i.e., the branching process dies out quickly). But if $p < \frac{1}{2}$ then $\gamma > 1$, the branching process is supercritical and $\mathbb{P}[X_n = 0]$ converges to $1/\gamma$, in agreement with page 104-105 of the scanned lecture notes.

If $p \neq \frac{1}{2}$ then the conditional distribution of X_n under the condition that $X_n > 0$ is optimistic $\operatorname{GEO}(p_n^*)$ with $p_n^* = \frac{1-\gamma}{1-\gamma^{n+1}}$. If $p > \frac{1}{2}$ then $\gamma < 1$, the branching process is subcritical and $\lim_{n\to\infty} p_n^* = 1-\gamma$, thus $\mathbb{E}[X_n | X_n > 0] \approx \frac{1}{1-\gamma}$, while if $p < \frac{1}{2}$ then $\gamma > 1$, the branching process is supercritical and $p_n^* \approx \gamma^{-n}$, thus $\mathbb{E}[X_n | X_n > 0] \approx \gamma^n$, this is a huge number: in the supercritical case the population grows exponentially (if it does not die out).

In conclusion:

Subcritical case: $\mathbb{P}[X_n > 0] \to 0$ at exponential speed and $\mathbb{E}[X_n | X_n > 0] \to C < \infty$ as $n \to \infty$. Supercritical case: $\mathbb{P}[X_n > 0] \to c > 0$ and $\mathbb{E}[X_n | X_n > 0] \to \infty$ at exponential speed as $n \to \infty$. Critical case: $\mathbb{P}[X_n > 0] \to 0$ slowly but $\mathbb{E}[X_n | X_n > 0] \to \infty$ slowly as $n \to \infty$.

- 3. Each year one hundred thousand students graduate from high school. Each high school student tries to become an astronaut with probability 0.0001. The astronaut entrance exam has two rounds: the first round tests the physical aptitude of the candidate, while the second round is an IQ test. Let us assume that these qualities are independent. A candidate passes the first exam with 20% chance and the second exam with 50% chance. Give simple closed formulas for the following probabilities:
 - (a) What is the probability that next year at most one person passes the astronaut entrance exam?
 - (b) This year 10 people passed the first round. What is the chance that at least two of them gets accepted?
 - (c) Last year n high school graduates became astronauts. What is the probability that k candidates failed the entrance exam? (You can assume that n and k are not very big numbers)

Solution: Denote by X the number of aspiring astronauts among high school students in a year.

 $X \sim BIN(n, p)$ with $n = 10^5$ and $p = 10^{-4}$, thus $\mathbb{E}(X) = np = 10$.

Clearly $n \gg 1$ and $p \ll 1$ and $\lambda := np \approx 1$, thus it makes sense to use Poisson approximation and assume that $X \sim \text{POI}(10)$.

(a) A candidate passes the first exam with $\frac{1}{5}$ chance and the second exam with $\frac{1}{2}$ chance, and we assumed independence, so the probability that a candidate passes both exams is $\frac{1}{10}$. If we color each candidate with colors "pass" and "fail" and if we denote by X_2 the number of candidates with "pass" color, then by the coloring property of Poisson distribution we have $X_2 \sim \text{POI}(10 \cdot \frac{1}{10})$, thus the probability that next year at most one person passes the astronaut entrance exam is

$$\mathbb{P}(X_2 \le 1) = \mathbb{P}(X_2 = 0) + \mathbb{P}(X_2 = 1) = e^{-1}\frac{1^0}{0!} + e^{-1}\frac{1^1}{1!} = 2e^{-1}$$

(b) If 10 people passed the first round, then the number of people Y passing the second round has binomial distribution: $Y \sim BIN(10, \frac{1}{2})$. It makes no sense to use Poisson approximation, since the number of trials is equal to ten (not too big) and the chance of a successful trial is equal to a half (not too small). Thus the chance that at least two out of 10 gets accepted is

$$\mathbb{P}(Y \ge 2) = 1 - \mathbb{P}(Y < 2) = 1 - \mathbb{P}(Y = 0) - \mathbb{P}(Y = 1) = 1 - \binom{10}{0} \left(\frac{1}{2}\right)^0 \left(1 - \frac{1}{2}\right)^{10} - \binom{10}{1} \left(\frac{1}{2}\right)^1 \left(1 - \frac{1}{2}\right)^9 = 1 - \frac{11}{1024}.$$

(c) Recall that we denote by X the number of aspiring astronauts among high school students in a year and that $X \sim \text{POI}(10)$. If we color each candidate with colors "pass" and "fail" and if we denote by X_1 the number of candidates with "fail" color and X_2 the number of candidates with "pass" color, then by the coloring property of Poisson distribution we have $X_1 \sim \text{POI}(10 \cdot \frac{9}{10})$ and $X_2 \sim \text{POI}(10 \cdot \frac{1}{10})$, moreover X_1 and X_2 are *independent*, thus conditioning on the occurrence of the event $\{X_2 = n\}$ has no effect on the probability of the event $\{X_1 = k\}$. Thus

$$\mathbb{P}(X_1 = k \,|\, X_2 = n) = \mathbb{P}(X_1 = k) = e^{-9} \frac{9^k}{k!}.$$