Stoch. Proc. HW assignment 8. Due Friday, November 3 at start of class

Note: Each of the 3 questions is worth 10 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises with a horizontal line. Highlight the final answer. Paper format is preferred, but if you submit your homework electronically, pdf format is preferred.

- 1. Consider a time-homogeneous Poisson point process with rate λ on \mathbb{R}_+ . T(n) denotes the time of the *n*'th arrival, N_t denotes the number of arrivals up to time *t* and $N_{(s,t]}$ denotes $N_t N_s$, i.e., the number of arrivals between *s* and *t*, where $0 \le s \le t$.
 - (a) Find $\mathbb{P}[N_4 = k | N_3 = n]$ for any $k, n \in \mathbb{N}$ and $\mathbb{E}[N_4 | N_3 = n]$, $\operatorname{Var}[N_4 | N_3 = n]$ for any $n \in \mathbb{N}$.
 - (b) Find $\mathbb{P}[N_{(3,4]} = k \mid N_5 = n]$ for any $k, n \in \mathbb{N}$ and $\mathbb{E}[N_{(3,4]} \mid N_5 = n]$, $\operatorname{Var}[N_{(3,4]} \mid N_5 = n]$, $n \in \mathbb{N}$.
 - (c) Find $\mathbb{P}[N_{(3,6]} = k \mid N_4 = n]$ for any $k, n \in \mathbb{N}$ and $\mathbb{E}[N_{(3,6]} \mid N_4 = n]$, $\operatorname{Var}[N_{(3,6]} \mid N_4 = n]$, $n \in \mathbb{N}$.
- 2. The lifetime of a light bulb has $\Gamma[2, 1]$ distribution, in other words the density function of the lifetime of a light bulb is $te^{-t}\mathbb{1}[t \ge 0]$. If a light bulb burns out, I immediately replace it with a new one. At time zero, I start with a new light bulb.
 - (a) Find the density function of the time when the third light bulb burns out.
 - (b) Find the probability that at time t = 5 the third light bulb is on.
 - (c) Denote by β_t the remaining lifetime of the lightbulb that is on at time t. In other words, β_t is the length of the time interval that starts with t and ends with the next light bulb-switch. Find $\mathbb{P}(\beta_t \ge s)$ for any $s, t \in \mathbb{R}_+$. Find the density function $f_t(s)$ of the random variable β_t for any $t \in \mathbb{R}_+$. Find $\lim_{t\to\infty} f_t(s)$.
 - *Hint:* The questions (a),(b),(c) become much easier if you find the PPP hidden in the exercise!
- 3. It rains one hundred times a year on average. Let us assume that the storms are instantaneous and that they arrive according to a PPP. An old gardener waters his garden if it has not been watered (by either rain or himself) in the last 48 hours.
 - (a) What is the distribution of the number of storms between two manual waterings?
 - (b) What is the expected time that elapses between two manual waterings?
 - (c) Roughly how many times does he have to water his garden manually this year?