
Stoch. Proc. HW assignment 8. Due Friday, November 3 at start of class
1. Consider a time-homogeneous Poisson point process with rate λ on R+. T (n) denotes the time of the
n’th arrival, Nt denotes the number of arrivals up to time t and N(s,t] denotes Nt −Ns, i.e., the number
of arrivals between s and t, where 0 ≤ s ≤ t.

(a) Find P[N4 = k |N3 = n ] for any k, n ∈ N and E[N4 |N3 = n ], Var[N4 |N3 = n ] for any n ∈ N.
(b) Find P[N(3,4] = k |N5 = n ] for any k, n ∈ N and E[N(3,4] |N5 = n ], Var[N(3,4] |N5 = n ], n ∈ N.
(c) Find P[N(3,6] = k |N4 = n ] for any k, n ∈ N and E[N(3,6] |N4 = n ], Var[N(3,6] |N4 = n ], n ∈ N.

Solution:

(a) N4 = N3 + N(3,4], where N3 ∼ POI(3λ) and N(3,4] ∼ POI(λ · (4 − 3)) are independent. Thus if
we condition on N3 = n then the conditional distribution of N4 is the same as the distribution of
n+N(3,4], where N(3,4] ∼ POI(λ), since conditioning on the value of the random variable N3, which
is independent of N(3,4], will not affect the distribution of N(3,4]. Thus

P[N4 = k |N3 = n ] = P[n+N(3,4] = k ] = P[N(3,4] = k − n ] =

{
0 if n > k

e−λ λk−n

(k−n)! if n ≤ k

E[N4 |N3 = n ] = E[n+N(3,4]] = n+ E[N(3,4]] = n+ λ

Var[N4 |N3 = n ] = Var[n+N(3,4]] = Var[N(3,4]] = λ

(b) N5 = N(0,3] + N(3,4] + N(4,5], where N(0,3] ∼ POI(3λ), N(3,4] ∼ POI(λ), N(4,5] ∼ POI(λ) are
independent. Let X = N(0,3] + N(4,5], thus N5 = X + N(3,4] and X ∼ POI(4λ) (by the merging
property of Poisson random variables, see page 108), moreover X and N(4,5] are independent.

P[N(3,4] = k |N5 = n ] = P[N(3,4] = k |X +N(3,4] = n ] =
P[N(3,4] = k , X +N(3,4] = n ]

P[X +N(3,4] = n ]
=

P[N(3,4] = k , X = n− k ]

P[N5 = n ]

(∗)
=

e−λ λ
k

k! · e
−4λ (4λ)n−k

(n−k)!

e−5λ (5λ)n

n!

=

(
n

k

)(
1

5

)k (
4

5

)n−k
,

where (∗) holds since N(3,4] ∼ POI(λ) and X ∼ POI(4λ), and they are independent.
Alternative solution: we know that given that five arrivals occurred on the interval [0, 5], the locations
of these points U1, . . . , U5 are i.i.d. with uniform distribution on the interval [0, 5] (see page 120).
Thus, if we condition on N5 = n then N(3,4] =

∑n
k=1 1[3 < Uk ≤ 4] is the number of points (out of

n) that fall in the interval (3, 4]. Now P[3 < Uk ≤ 4] = 4−3
5 = 1

5 , thus if we condition on N5 = n then
the conditional distribution N(3,4] is BIN(n, 15 ), therefore P[N(3,4] = k |N5 = n ] =

(
n
k

) (
1
5

)k ( 4
5

)n−k.
E[N(3,4] |N5 = n ] = n · 15 , this is the expected value of BIN(n, 15 ).
Var[N(3,4] |N5 = n ] = n · 15 ·

4
5 , this is the variance of BIN(n, 15 ).

(c) N(3,6] = N(3,4] +N(4,6], where N(4,6] ∼ POI(2λ), and N(4,6] is independent of anything that happens
up to time 4, in particular N(3,4] and N(4,6] are conditionally independent given N4 = n. If we
condition on N4 = n then the conditional distribution of N(3,4] is BIN(n, 14 ), since a point which is
uniformly distributed on [0, 4] will fall in (3, 4] with probability 1/4. Therefore

P[N(3,6] = k |N4 = n ] =

k∑
`=0

P[N(3,4] = `, N(4,6] = k − ` |N4 = n ]
(∗)
=

k∑
`=0

P[N(3,4] = ` |N4 = n ]P[N(4,6] = k − ` ] =

k∑
`=0

(
n

`

)(
1

4

)`(
3

4

)n−`
e−2λ

(2λ)k−`

(k − `)!
,

where in (∗) we used that N(3,4] and N(4,6] are conditionally independent given N4 = n and that
N(4,6] is independent of N4.
E[N(3,6] |N4 = n ] = E[N(3,4] |N4 = n ] + E[N(4,6] ] = n/4 + 2λ, since the expectation of BIN(n, 14 )
is n/4 and the expectation of POI(2λ) is 2λ.

Var[N(3,6] |N4 = n ]
(∗)
= Var[N(3,4] |N4 = n ] + Var[N(4,6] ] = n 3

16 + 2λ, where (∗) holds since N(3,4]

and N(4,6] are conditionally independent given N4 = n, moreover the variance of BIN(n, 14 ) is n 1
4
3
4

and the variance of POI(2λ) is 2λ.
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2. The lifetime of a light bulb has Γ[2, 1] distribution, in other words the density function of the lifetime of
a light bulb is te−t1[t ≥ 0]. If a light bulb burns out, I immediately replace it with a new one. At time
zero, I start with a new light bulb.

(a) Find the density function of the time when the third light bulb burns out.

(b) Find the probability that at time t = 5 the third light bulb is on.

(c) Denote by βt the remaining lifetime of the light bulb that is on at time t. In other words, βt is
the length of the time interval that starts with t and ends with the next light bulb-switch. Find
P(βt ≥ s) for any s, t ∈ R+. Find the density function ft(s) of the random variable βt for any
t ∈ R+. Find limt→∞ ft(s).
Hint: The questions (a),(b),(c) become much easier if you find the PPP hidden in the exercise!

Solution: A random variable with Γ[2, 1] distribution is a sum of two independent random variables
with EXP(1) distribution. Therefore, in order to obtain the renewal times of a renewal process where the
renewal intervals have i.i.d. Γ[2, 1] distribution, it is enough to take a Poisson point process with rate 1
and erase the first, third, fifth, etc. points.

Let τ1, τ2, . . . denote i.i.d. random variables with EXP(1) distribution. Let τ̃k = τ2k−1 + τ2k for k =

1, 2, 3, . . . . Let T (n) = τ1 + · · · + τn and T̃ (n) = τ̃1 + · · · + τ̃n = τ1 + · · · + τ2n = T (2n). Then
T̃ (n) is the time when the n’th light bulb burns out. Denote by Nt = max{n : T (n) ≤ t } and
Ñt = max{n : T̃ (n) ≤ t } = max{n : T (2n) ≤ t }, thus Ñt is the number of light bulb changes up to
time t.

(a) T̃ (3) = T (6) ∼ Γ(6, 1), thus the density function is f(t) = e−t t
5

5!1[t ≥ 0].

(b) {T̃ (2) ≤ 5} \ {T̃ (3) ≤ 5} = {T (4) ≤ 5} \ {T (6) ≤ 5} = {4 ≤ N5 < 6} = e−5 54

4! + e−5 55

5!

(c) {βt ≥ s} occurs if and only if there is no light bulb-switch in the interval [t, t+ s], i.e., either Nt is
even and N[t,t+s) ≤ 1 or Nt is odd and N[t,t+s) = 0. Thus

P(βt ≥ s) = P[Nt is even and N[t,t+s) ≤ 1 ] + P[Nt is odd and N[t,t+s) = 0 ]
(∗)
=

P[Nt is even ]P[N[t,t+s) ≤ 1 ] + (1− P[Nt is even ])P[N[t,t+s) = 0 ]
(∗∗)
=

1 + e−2t

2
e−s(1 + s) +

1− e−2t

2
e−s = e−s +

1 + e−2t

2
e−ss

where in(∗) we used that Nt and N[t,t+s) are independent in a PPP, and in (∗∗) we used that

P[Nt is even ] =

∞∑
k=0

P[Nt = 2k] =

∞∑
k=0

e−t
t2k

(2k)!
= e−t

∞∑
k=0

t2k

(2k)!
= e−t cosh(t) =

1 + e−2t

2
.

We obtain the density function

ft(s) = − d

ds
P(βt ≥ s) = e−s +

1 + e−2t

2
(e−ss− e−s) =

1− e−2t

2
e−s +

1 + e−2t

2
e−ss.

We obtain the limit f∞(s) = limt→∞ ft(s) = 1
2e
−s(1 + s).

Remark: Quite similarly to the solution of HW6.1(b), one obtains that for any renewal process with
absolutely continuous renewal times, the stationary probability density function of the remaining
lifetime is

f∞(s) =
P[τ̃1 ≥ s]
E[τ̃1]

,

where τ̃1 is the first renewal interval. In the case when τ̃1 ∼ Γ[2, 1], we have E[τ̃1] = 2 and
P[τ̃1 ≥ s] = P[Ñs = 0] = P[Ns ≤ 1] = e−s(1 + s).
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3. It rains one hundred times a year on average. Let us assume that the storms are instantaneous and that
they arrive according to a PPP. An old gardener waters his garden if it has not been watered (by either
rain or himself) in the last 48 hours.

(a) What is the distribution of the number of storms between two manual waterings?

(b) What is the expected time that elapses between two manual waterings?

(c) Roughly how many times does he have to water his garden manually this year?

Solution:

(a) The intensity of the rain PPP per day is λ = 100
365 . The length of a dry time interval is t0 = 2 days.

The inter-arrival time intervals between rains are τ1, τ2, . . . i.i.d. with EXP(λ) distribution. If we
denote p := P(τn > t0) = e−λt0 and we denote by X the the number of storms between two manual
waterings, then X ∼ GEO(p) (pessimistic geo. distribution), i.e.,

P(X = k) = p(1− p)k = e−λt0(1− e−λt0)k = e−
200
365 (1− e− 200

365 )k, k = 0, 1, 2, . . .

(b) Assuming that there was a manual watering at time zero, denote by Y the time that elapses until
the next manual watering. We want to find m := E(Y ). First let us find E( τ1 | τ1 ≤ t0 ). Here is
how to calculate this without integration:

1

λ
= E( τ1 ) = E( τ1 | τ1 ≤ t0 )P(τ1 ≤ t1) + E( τ1 | τ1 > t0 )P(τ1 > t1) =

E( τ1 | τ1 ≤ t0 )(1− e−λt0) + E( τ1 | τ1 > t0 )e−λt0
(∗)
=

E( τ1 | τ1 ≤ t0 )(1− e−λt0) + (t0 +
1

λ
)e−λt0 ,

where (∗) holds since E( τ1 | τ1 > t0 ) = t0+λ by the memoryless property of exponential distribution:
given τ1 > t0, the time that we have to wait until the first rain after t0 has exponential distribution
with parameter λ. Rearranging the formula 1

λ = E( τ1 | τ1 ≤ t0 )(1−e−λt0)+(t0 + 1
λ )e−λt0 we obtain

E( τ1 | τ1 ≤ t0 ) =
1

λ
− t0

e−λt0

1− e−λt0
. (1)

Now we can calculate

m = E(Y ) = E(Y | τ1 ≤ t0 )P(τ1 ≤ t1) + E(Y | τ1 > t0 )P(τ1 > t1)
(∗∗)
=

E( τ1+Y ∗ | τ1 ≤ t0 )(1−e−λt0)+t0e
−λt0 = (E( τ1 | τ1 ≤ t0 )+E(Y ∗ | τ1 ≤ t0 ))(1−e−λt0)+t0e

−λt0 (∗∗∗)
=

(
1

λ
− t0

e−λt0

1− e−λt0
+m)(1− e−λt0) + t0e

−λt0 =

(
1

λ
+m

)
(1− e−λt0),

where in (∗∗) we denoted by Y ∗ the time that elapses between τ1 and the first manual watering
after τ1 and in (∗ ∗ ∗) we used (1) and that Y ∗ is independent of τ1 and E(Y ∗) = m.
Rearranging this we obtain that the the expected number of days that elapses between two manual
waterings is

m =
1

λ

1− e−λt0
e−λt0

=
eλt0 − 1

λ
=
e

200
365 − 1
100
365

≈ 2.66

(c) Roughly 365/m ≈ 137.2 waterings per year by the law of large numbers for renewal processes.
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