Stoch. Proc. HW assignment 9. Due Friday, November 17 at start of class

Note: Each of the 3 questions is worth 10 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises with a horizontal line. Highlight the final answer. Paper format is preferred, but if you submit your homework electronically, pdf format is preferred.

1. On Murphy's law: why does my tram have so many passengers? Trams arrive according to a PPP, once in five minutes on average. Passengers arrive at my station according to a PPP, one passenger per second on average. The trams have already been in service for a long time, all day, every day.
(a) I arrive at the station, I let the first tram go away, and then I take the next tram. However, all of the other passengers take the first tram that they see. What is the distribution of the number of other passengers that I take the tram with? What is the expectation of the number of other passengers that I take the tram with?
(b) I arrive at the station (independently from other passengers) and I take the first tram. What is the distribution of the number of other passengers that I take the tram with (i.e., what is the probability of the event that I take the tram with k other passengers)? What is the expectation of the number of other passengers that I take the tram with?
2. A population model with immigration and killing (but no reproduction). Let us consider the Markov chain (X_{n}) with state space $S=\{0,1,2, \ldots\}$ and transition matrix

$$
p(x, y)=\sum_{z=0}^{y}\binom{x}{z} p^{z}(1-p)^{x-z} e^{-\lambda} \frac{\lambda^{y-z}}{(y-z)!}, \quad x, y \in S
$$

where $p \in(0,1)$ and $\lambda \in(0,+\infty) . X_{n}$ denotes the number of individuals in a population in round n.
(a) Explain how to obtain X_{n+1} from X_{n} in plain words using the notion of „killing" and „immigration". Hint: Read the official solution of HW8.1 carefully.
(b) Find the entries of the n-step transition matrix $p^{(n)}(x, y), x, y \in S$.

Hint: Assuming that $X_{0}=x$, first try to express the distribution of X_{n} by iterating the ,killing" and ,immigration" operations. Then you will realize that $p^{(n)}(x, y)$ has a form similar to $p(x, y)$.
(c) Find the stationary distribution of $\left(X_{n}\right)$.
3. Let T denote a random variable with distribution $\mathbb{P}\left(T=t_{k}\right)=p_{k}$, where $t_{1}, t_{2}, \cdots \in \mathbb{R}_{+}$and $\sum_{k=1}^{\infty} p_{k}=1$. Starting at time zero, satellites are launched at times of a PPP with rate λ. A satellite stops working after a random amount of time. The lifetimes of satellites are independent from each other and their launching times. The lifetime of a satellite has the same distribution as T. Let X_{t} denote the number of working satellites at time $t \in \mathbb{R}_{+}$.
(a) Find the distribution of X_{t}.
(b) Find the limiting distribution of X_{t} as $t \rightarrow \infty$.

