
Stoch. Proc. HW assignment 9. Due Friday, November 17 at start of class
1. On Murphy’s law: why does my tram have so many passengers? Trams arrive according to a PPP, once

in five minutes on average. Passengers arrive at my station according to a PPP, one passenger per second
on average. The trams have already been in service for a long time, all day, every day.

(a) I arrive at the station, I let the first tram go away, and then I take the next tram. However, all of the
other passengers take the first tram that they see. What is the distribution of the number of other
passengers that I take the tram with? What is the expectation of the number of other passengers
that I take the tram with?

(b) I arrive at the station (independently from other passengers) and I take the first tram. What is the
distribution of the number of other passengers that I take the tram with (i.e., what is the probability
of the event that I take the tram with k other passengers)? What is the expectation of the number
of other passengers that I take the tram with?

Solution:

(a) When the first tram goes away, I am the only passenger at the tram station. The expected arrival
time of the second tram is 300 seconds, thus the PPP of tram arrivals is of rate 1/300. Let’s
merge this with the PPP of passengers, which is of rate 1. The merged PPP is of rate 301/300.
We can obtain the original tram and passenger Poisson point processes from the merged process by
colouring each arrival as a „tram” with probability 1/301 and a „passenger” with probability 300/301.
Thus the number X of passengers before the first tram has pessimistic GEO(1/301) distribution:
P(X = k) = 1

301

(
300
301

)k, k = 0, 1, 2, . . . , and E(X) = 300.

(b) Let us say that I arrive at time zero. The past and the future tram arrivals are independent Poisson
point processes. The past and the future passenger arrivals are independent Poisson point processes.
Thus if we denote by X1 the number of passengers that were already there waiting for a tram when
I arrived, and by X2 the number of passengers that arrive between my arrival and the next tram’s
arrival, then X1 and X2 are independent with pessimistic GEO(1/301) distribution. The number
Y of other passengers that I take the tram with is Y = X1 +X2. We have already calculated the
distribution of Y in class, see page 97-98 of the scanned lecture notes (negative binomial distribution):

P(Y = k) =

(
k + 1

k

)
p2(1− p)k = (k + 1)

(
1

301

)2(
300

301

)k
, k = 0, 1, 2, . . .

E(Y ) = E(X1 +X2) = E(X1) + E(X2) = 300 + 300 = 600.

Remark: The difference between the solution of (a) and (b) is another incarnation of the waiting time
paradox (already discussed that the Remark after the solution of HW6.1). Another way to arrive at the
result of part (b) given the result of part (a) is as follows: if we arrange passengers into groups and the
cardinality of the groups are i.i.d. with pessimistic GEO(1/301) distribution (i.e., the probability that
the group is of size k is pk = 1

301

(
300
301

)k, where k = 0, 1, 2, 3, . . . ), and then we choose a passenger (me)
uniformly from all of the passengers who took the tram in 2017 in this tram stop, then the distribution of
the size of my group will be size-biased, i.e., the probability that my group is of size k will be proportional
to kpk. Since

∑∞
k=0 kpk = 300, the probability that my group (including me) is of size k is qk := 1

300kpk,
where k ≥ 1. The probability that I take the tram with k other passengers is qk+1, where k ≥ 0. Thus
if we denote by Y the number of other passengers that I take the tram with then for any k = 0, 1, 2, . . .
we have

P(Y = k) = qk+1 =
1

300
(k + 1)pk+1 =

1

300
(k + 1)

1

301

(
300

301

)k+1

= (k + 1)

(
1

301

)2(
300

301

)k
.

This is exactly the same formula as the one derived in part (b).
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2. A population model with immigration and killing (but no reproduction). Let us consider the Markov chain
(Xn) with state space S = {0, 1, 2, . . . } and transition matrix

p(x, y) =

y∑
z=0

(
x

z

)
pz(1− p)x−ze−λ λy−z

(y − z)!
, x, y ∈ S,

where p ∈ (0, 1) and λ ∈ (0,+∞). Xn denotes the number of individuals in a population in round n.

(a) Explain how to obtain Xn+1 from Xn in plain words using the notion of „killing” and „immigration”.

(b) Find the entries of the n-step transition matrix p(n)(x, y), x, y ∈ S.
(c) Find the stationary distribution of (Xn).

Solution:

(a) The number of individuals in our population in round n is Xn. Let us assume that Xn = x. In the
next round, every individual dies with probability 1− p, independently of other individuals. Denote
by Zn+1 the number of individuals that did not die. Thus Zn+1 ∼ BIN(x, p). Also, Wn+1 new
individuals immigrate, where Wn+1 ∼ POI(λ). Thus Xn+1 = Zn+1 +Wn+1. Now for any x, y ∈ S

P(Xn+1 = y |Xn = x ) =

y∑
z=0

P[Zn+1 = z]P[Wn+1 = y − z] =
y∑
z=0

(
x

z

)
pz(1− p)x−ze−λ λy−z

(y − z)!

(b) We will show that ifX0 = x thenXn will be the sum of a BIN(x, pn) random variable (the individuals
that are still there from the start and did not die yet) and an independent POI(λn) random variable
(the immigrants).
Indeed: p0 = 1 and λ0 = 0.
At the end of first round p1 = p and λ1 = λ, this is just the probabilistic meaning of the one-step
transition rule that we discussed in the solution of part (a).
We will argue that pn+1 = p · pn and λn+1 = pλn + λ. Indeed:

• If we consider the x individuals that were there at the start, each of them is still alive after
n rounds with probability pn, now in round n + 1, each of the remaining guys stays alive
with probability p, thus by the end of round n + 1 each of them will be alive with probability
pn+1 = pn · p, independently form the others.
• Now if the number of immigrants at the end of round n has POI(λn) distribution and each

of them stays alive with probability p (independently from the others) then (by the colouring
property) the number of guys that are still alive has POI(pλn) distribution. Also, POI(λ) new
immigrants arrive and merge with those that are already there, thus the number of immigrants
at the end of round n+ 1 will have POI(pλn + λ) distribution.

Now it is easy to see that pn = pn and λn = λ
∑n−1
k=0 p

k = λ 1−pn
1−p for n = 1, 2, 3, . . . , and thus

p(n)(x, y) =

y∑
z=0

(
x

z

)
pzn(1− pn)x−ze−λn

λy−zn

(y − z)!
, x, y ∈ S

(c) limn→∞ pn = 0 and limn→∞ λn = λ
1−p =: λ∞, thus

lim
n→∞

p(n)(x, y) = e−λ∞
λy∞
y!
, x, y ∈ S.

In words: ultimately each individual of the original population dies and the distribution of immig-
rants converges to POI(λ∞). Thus the unique stationary distribution is π(x) = e−λ∞ λx

∞
x! , x ∈ S.

Also note that λ∞ = pλ∞ + λ, i.e., λ∞ is the fixed point of the iteration λn+1 = pλn + λ.

Remark: This model is a discrete time version of the M/M/∞ queue, see page page 159-160 of the
scanned lecture notes.
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3. Let T denote a random variable with distribution P(T = tk) = pk, where t1, t2, · · · ∈ R+ and
∑∞
k=1 pk = 1.

Starting at time zero, satellites are launched at times of a PPP with rate λ. A satellite stops working
after a random amount of time. The lifetimes of satellites are independent from each other and their
launching times. The lifetime of a satellite has the same distribution as T . Let Xt denote the number of
working satellites at time t ∈ R+.

(a) Find the distribution of Xt.

(b) Find the limiting distribution of Xt as t→∞.

Solution:

(a) Let us color the satellites by their lifetime: if it is ti then we give the satellite color i. By the
colouring property of PPP’s, the PPP which consists of the launching times of the satellites with
lifetime ti is a time-homogeneous PPP with intensity piλ, moreover these PPP’s are independent.
At time t a satellite of color i is alive if its launching occurred after t − ti. Thus, the number of
satellites of color i at time t has POI(piλ ·min{ti, t}) distribution, since the time interval that starts
at max{0, t− ti} and ends at t has length min{ti, t}. Merging gives that the total number of working
satellites at time t has Poisson distribution with parameter

∑∞
i=1 piλ ·min{ti, t} = λE(min{T, t})

(b) limt→∞ E(min{T, t}) = E(T ) by the monotone convergence theorem, thus the limiting distribution
of Xt as t→∞ is POI(λE(T )).

Remark: If the lifetime of a satellite is exponentially distributed with rate µ then (Xt) is in fact an
M/M/∞ queue, see page 159-160 of the scanned lecture notes.
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