Curriculum vitae                             Hungarian version                   Math. Genealogy

 

Date of Birth:     February 10, 1936
City of Birth:     Budapest
Diploma:           L. Eötvös University,  Budapest , 1959
 

 Scientific qualifications: 
        1.     Dr. rer. nat. from  L. Eötvös Univesity in Budapest, 1960

       2.   Candidate of Math. Sci. from the Hungarian Academy of Sciences, 1960
       3.   Doctor of Math. Sci. from the Hungarian Academy of Sciences, 1969
 Positions: 
 Honours:

        G. Grünwald Prize awarded by the János Bolyai Soc. (1958)
        Mathematical Prize awarded
by Hungarian Academy of Sci. (1974)
        József Nádor prize awarded by the Technical Univ. of Budapest (1999)
        Honorary member of the Alfréd Rényi Institute (2001-)
        Széchenyi Professorial Scholarship (1999-2002)
        Farkas Bolyai Prize awarded by Hungarian Academy of Sci. (2004)
         
 Albert Szent-Györgyi Prize  awarded by Ministery of Education (2006)
           Béla Szőkefalvi-Nagy Medal awarded by the Bolyai Institute, University of Szeged  (2008).  
The medalpdf  

Editorial Bords: 

       Studia Sci. Math. Hungar. (1971-1992)                                              
        Beiträge zur Algebra und  Geometrie, Germany (1970-)
        Algebra Universalis, Canada (1994-2008)

Visiting professorships Aboard: 

        Martin Luther Universität, Halle GDR (1965-1968)
        University of  Kassel, Germany (1980-1981)
        University of Calgary, Canada (1987-1988)
        University of Winnipeg, Canada (1991-1996 several times)

The most important results:

    1.  Congruence lattices of universal algebras [19]

                Every algebraic lattice is isomrphic to the congruence lattice of a universal algera

    2.  Congruence lattices of lattices [47],  ( see also [27],[40])

                The ideal lattice of a distributive lattice with zero is the congruence lattice of a lattice.

    3. congruence lattices of  (complemented ) modular lattices [34] ,[47],

                 Every  finite lattice L is the congruence lattice of a  complemented modular lattice.

    4.  The lattice of complete congruences of a complete lattice [70]:

                  Every complete lattice K can be represented as the lattice  of complete congruences 

                 of a complete distributive lattiece L.

    5.  congruence-preserving and congruence-isomrphic extensions [88] ,   [91], [96]

                 Every finite lattice has a congruence-preserving  extension to a   1. regular lattice,

                2 complemented lattice, 3 semimodular lattice. 

    6.   semimodular lattices [119], [123]

                Every  finite  2-dimensional semimodular lattice is the patchwork of patch lattices   

                  (Conjecture: Every  finite  semimodular lattice is the patchwork of patch lattices).

 

Privat life:  

        Married  Judit,  I have two sons, Gábor (1964-2009) and George (1967)

 

my sons

my grandchildren, december 2012

Golden wedding, 02.07.20011


 

 

 

Oberwolfach, 1961  with Garett Birkhoff             Brno, 1963  with  László Fuchs

 

  

with Manfred Stern and András Huhn

 

With Gábor Czédli, 2008 Szeged

  January 2016