January 25,  2016   Hungarian Scientific Bibliography,  MTMT

 
pdf version 


     Mathematical articles
 
 
 

 1.     G. Grätzer and E. T. Schmidt,  Ideals and congruence relations in lattices, I, (Hungarian),  Magyar Tud. Akad.  Mat. Fiz. Oszt. Közl. 7 (1957),  93-109.
        pdf

 2.     G. Grätzer and E. T. Schmidt, Über die Anordnung von Ringen (German),  Acta Math. Acad. Sci. Hungar. 8 (1957),  259-260 .
        pdf 

 3.     G. Grätzer and E. T. Schmidt, On the Jordan-Dedekind chain condition,  Acta Sci. Math. (Szeged) 18 (1957),  52-56.
        pdf

 4.     G. Grätzer and  E. T. Schmidt, Ideals and congruence relations in lattices, II,  (Hungarian),  Magyar Tud. Akad. Mat.  Fiz. Oszt. Közl. 7 (1957),  417-434.
        pdf

 5.     G. Grätzer and E. T. Schmidt, On the lattice of all join-endomorphisms of a lattice,  Proc. Amer. Math. Soc. 9 (1958),  722-726.
        pdf

 6.     G. Grätzer and E. T. Schmidt, On a problem of M. H. Stone,  Acta Math. Acad. Sci. Hungar. 8 (1957),  455-460.
        pdf

 7.     G. Grätzer and E. T. Schmidt, Characterizations of relatively complemented distributive lattices,  Publ. Math. Debrecen 5 (1958),  257-287.
        pdf

 8.     G. Grätzer and E. T. Schmidt, Two notes on lattice-congruences,  Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958),  83-87.
        pdf

 9.     G. Grätzer and E. T. Schmidt, On ideal theory for lattices,  Acta Sci. Math. (Szeged) 19 (1958),  82-92.
        pdf

10.     G. Grätzer and E. T. Schmidt, Ideals and congruence relations in lattices,  Acta Math. Acad. Sci. Hungar.  9 (1958),  137-175.

        pdf
11.     G. Grätzer and E. T. Schmidt, On a theorem of Gábor Szász (Hungarian),  Magyar Tud. Akad. Mat. Fiz. Oszt. Közl.  9 (1959),  255-258.
        pdf

12.     G. Grätzer and E. T. Schmidt, On the generalized Boolean algebra generated by a distributive lattice Indag. Math.  20 (1958),  547-553.
        pdf

13.     E. T. Schmidt, Algebrai strukturák kongruenciaháloiról,  (Hungarian),  Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959),  163-174.
          pdf

14.     G. Grätzer and E. T. Schmidt,  An associativity theorem for alternative rings Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959),  259-264.
        pdf

15.     G. Grätzer and E. T. Schmidt, Standard ideals in lattices Acta Math. Acad. Sci. Hungar. 12 (1961), 17-86.
        pdf

16.     G. Grätzer and E. T. Schmidt, Über einfache Körpererweiterungen (German),  Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960),  283-285.
        pdf

17.     G. Grätzer and E. T. Schmidt, On inaccessible and minimal congruence relation, I.,  Acta Sci. Math. (Szeged)  21 (1960),  337-342.
        pdf

18.     G. Grätzer and E. T. Schmidt, On a problem of L Fuchs concerning universal subgroups and universal homomorphic images of abelian groups, Indag. Math. 23 (1961),  253-255.
        pdf

19.     G. Grätzer and E. T. Schmidt, On congruence lattices of lattices Acta Math. Acad. Sci. Hungar. 13 (1962),  179-185.
        pdf

20.     G. Grätzer and E. T. Schmidt, A note on a special type of  fully invariant subgroups of Abelian groups Ann. Univ. Sci. Budapest Eötvös Sect. Math. 3-4 (1960/1961),  85-87.
        pdf

21.     G. Grätzer and E. T. Schmidt, Characterizations of congruence lattices of abstract algebras,  Acta Sci. Math. (Szeged) 24 (1963),  34-59.
        pdf

22.     E. T. Schmidt, Über die Kongruenzverbände der Verbände, Publ. Math. Debrecen 9 (1962),  243-256.
        pdf

23.     E. T. Schmidt, Universalen Algebren mit gegebenen Automorphismengruppen und Unteralgebrenverbänden, Acta Sci. Math 24 (1963),  251-254.
        pdf

24.     E. T. Schmidt, Universalen Algebren mit gegebenen Automorphismengruppen und Kongruenzverbänden, Acta Sci. Math. (Szeged) 15 (1964),  37-45.
        pdf

25.     E. T. Schmidt, Remark on a paper of  M. F. Janovitz, Acta Math. Acad. Sci. Hungar. 16 (1965),  289.
        pdf

26.     E. T. Schmidt, On the definitions of homorphism kernels of lattices, Matematische Nachrichten 33 (1967),  25-30.
        pdf

27.     E. T. Schmidt,  Zur Charakterisierung der Kongruenzverbände der Verbände, Math. Casopis 18 (1968),  3-20.
        pdf

28.     E. T. Schmidt, Eine Verallgemeinerung des Satzes von Schmidt-Ore, Publ. Math. Debrecen  17 (1970),  283-287.
        pdf

29.     E. T. Schmidt,  Über regulare Mannigfaltigkeiten, Acta Sci. Math. (Szeged) 31 (1970),  195-201.
        pdf

30.     E. T. Schmidt, Unabähngikeitrelationen in Halbverbänden, Periodica Math. Hungar. 1 (1971),  45-52.
        pdf

31.     E. T. Schmidt, On  n-permutable equational classes, Acta Sci. Math. (Szeged) 33 (1972),  29-30.
        pdf

32.     B. Csákány and E. T. Schmidt, Translations of regular algebras, Acta Sci. Math. (Szeged)  31 (1970),  157-160.
        pdf

33.     E. T. Schmidt, Every finite distributive lattice is the congruence lattice of a modular lattices, Algebra Universalis 4 (1974),  49-57.
        pdf

34.     E. T. Schmidt, Über die Kongruenzrelationen der modularen Verbände, Beiträge zur Algebra und Geometrie 3 (1974),  59-68.
        pdf

35.     E. T. Schmidt, On the length of the congruence lattice of a lattice, Algebra Universalis 5 (1975),  98-100.
        pdf

36.     E. T. Schmidt,  A remark on lattice varieties defined by partial lattices, Studia Sci. Math. Hungar 18 (1974),  195-198.
        pdf

37.     E. T. Schmidt, On finitely generated simple modular lattices,  Periodica Math. Hungar 6(1975),  213-216.
        pdf

38.     E. Fried and E. T. Schmidt,  Standard sublattices, Algebra Universalis  5 (1975),  203-211.
        pdf

39.     E. T. Schmidt,   Lattices generated by partial lattices, Proceedings of coll. Math, Szeged 14. LatticeTheory, 14 (1974),  343-353.
        pdf

40.     E. T. Schmidt,  On the Characterization of the Congruence Lattices of Lattices, Proceedings Lattice Theory Conference, Ulm, (1974), 162-179.
        pdf

41.     E. T. Schmidt,  On the variety generated by all modular lattices of breadth two, Houston Journal of Math. 2 (1976),  415- 418.
        pdf

42.     E. T. Schmidt,  Starre Quotienten in modularen Verbänden, Proceedings of the Klagenfurt Conference (1978),  331-339.
        pdf

43.     E. T. Schmidt,  On splitting modular lattices, Proceedings of the Univesal Algebra Conference Esztergom (1977),  697-703.
        pdf

44.     E. T. Schmidt,  Remarks of finitely projected modular lattice, Acta Sci. Math. (Szeged) 41 (1979),  187-190.
        pdf

45.     E. T. Schmidt,  Remark on generalized function lattices, Acta Math. Acad. Sci. Hungar. 34 (1979),  337-339.
        pdf

46.     E. T.  Schmidt, On finitely projected modular lattices,  Acta Math. Acad. Sci. Hungar. 38 (1981),  45-51.
        pdf

47.     E. T. Schmidt,  The ideal lattice of a distributive lattice with 0 is the congruence lattices of a lattice,  Acta Sci. Math. (Szeged) 43 (1981),  153-168.
        pdf

48.     E. T.  Schmidt,  Remark on compatible and order-preserving function on lattices,  Studia Sci. Math. Hungar. 14 (1979),  139-144.
        pdf

49.     E. T.  Schmidt and R.Wille,  Note on compatible operations of modular lattices,  Algebra Universalis 16 (1983),  395-397.
        pdf

50.     E. T. Schmidt,  Congruence lattices of complemented modular lattices, Algebra Universalis 18 (1984),  386-395.
        pdf

51.     G. Czédli, A. Huhn and E. T. Schmidt,  Weakly independent subsets in lattices, Algebra Universalis 20 (1985),  194-196.
        pdf

52.     E. T. Schmidt,  Remarks on dependence relations in relational database models, Alkalmazott Matematikai Lapok 8 (1982), 177-182.
        pdf

53.     K. Kaarli, L. Márki and E. T. Schmidt,  Affin complete semilattices, Monatshefte für Mathematik 99 (1985),  297-309.
        pdf

54.     E. Fried, G. E. Hansoul, E. T. Schmidt and J. Varlet,  Perfect distributive lattices, Proceedings of the Vienna-Conference (1984), 125-142.
        pdf

55.     E. T. Schmidt,  Congruence relations related to a given automorphism group of a Boolean Lattice, Annales Univ.Sci. Budapestiensis de R. Eotvos nom. 29 (1970),  269-272.
        pdf

56.     E. T. Schmidt,  Homomorphism of distributive lattices as restriction of congruences, Acta Sci. Math. (Szeged),  51 (1987),  209-215.
        pdf

57.     E. T. Schmidt,  On locally order-polynomially complete modular lattices, Acta Math. Acad. Sci., Hungar. 49 (1987),  481-486.
        pdf

58.     E. T. Schmidt,  On a represantation of distributive lattices,  Periodica Math. Hungar. 19 (1988),  25-31.
        pdf

59.     E. T. Schmidt,  Polynomial automorphisms of lattices,  Proceedings of the Vienna-Conference, (1988),  233-240.
        pdf

60.     E. T. Schmidt,  Cover-preserving embedding,  Periodica Math. Hungar. 23 (1991),  17-24.
        pdf

61.     E. T. Schmidt,  Pasting and semimodular lattices Algebra Universalis 27 (1990),  595-596.
        pdf

62.     E. Fried, G. Grätzer and E. T. Schmidt,  Multipasting of lattices,  Algebra Universalis 30 (1993),  241-261.
        pdf

63.     R. Freese, G.Grätzer and E. T. Schmidt,  On complete congruence lattices of complete modular lattices, Internat. J. Algebra Comput. 1 (1991),  147-160.
        pdf

64.     G. Grätzer and E. T. Schmidt,  Algebraic lattices as congruence lattices: The m-complete case, Lattice theory and its applications, Darmstadt,  (K. A. Baker and R. Wille eds.),   Heldermann Verlag, ( 1995),  91-101.
        pdf

65.     G. Grätzer, H. Lakser and E. T. Schmidt,  Congruence lattices of small planar lattices, Proc. Amer. Math. Soc. 123 (1995),  2619-2623.
        pdf

66.     G. Grätzer, P.M. Johnson and E. T. Schmidt,   A representation of m-algebraic lattices, Algebra Universalis 32 (1994),  1-12.
        pdf
67.     G. Grätzer and E. T. Schmidt,  On the congruence lattice of a Scott-domain, Algebra Universalis 30 (1993),  297-299.
        pdf

68.     G. Grätzer and E. T. Schmidt,  "Complete-simple" distributive lattices, Proc. Amer. Math. Soc. 119 (1993),  63-69.
       pdf

69.     G. Grätzer and E.T. Schmidt,  Another construction of complete-simple distributive lattices,  Acta Sci. Math. (Szeged)  58 (1993),  115-126.
        pdf

70.     G. Grätzer and E.T. Schmidt,  Complete congruence lattices of complete distributive lattices,  J. of Algebra 171 (1995),  204-229.
        pdf

71.     E. T. Schmidt,  Homomorphisms of distributive lattices as restriction of congruences: the planar case Studia Sci. Math. Hungar. 30 (1995), 283-287.
        pdf

72.      G. Grätzer and E. T. Schmidt,  Congruence lattices of p-algebras, Algebra Universalis 33 (1995),  470-477.
        pdf

73.     E. T. Schmidt,  Congruence lattices of modular lattices,  Publicationes Mathematice 43 (1993),  129-134.
        pdf

74.     G. Grätzer and E. T. Schmidt,  Do we need complete-simple distributive lattices? , Algebra Universalis 33 (1995),  140-141.
        pdf

75.      G. Grätzer and E. T. Schmidt,  The Strong Independence Theorem for automorphismgroups and congruence lattices of finite lattices, Beiträge Algebra Geom. 36 (1995),  97-108.
        pdf

76.     E. Fried and E. T. Schmidt,  Cover-preserving embedding of modular lattices, Periodica Math. Hungar.  28 (1994), 73-77.
      pdf

77.      G. Grätzer and E. T. Schmidt,  A lattice construction and congruence-preserving extensions,  Acta Math. Hungar.  66 (1995),  275-288.
        pdf

78.     G. Grätzer and  E. T. Schmidt,  Congruence lattices of function lattices, Order 11 (1994),  211-220.
      pdf

79.     G. Grätzer, H. Lakser and E. T. Schmidt,  On a result of Birkhoff Period. Math. Hungar.  30 (1995),  183-188.
        pdf

80.     G. Grätzer and E. T. Schmidt,  On isotone functions with the Substitution Property in distributive lattices,  Order 12 (1995),  221-231.
        pdf

81.     G. Grätzer and E. T. Schmidt,  Complete congruence lattices of join-infinite distributive lattices,  Algebra Universalis 37 (1997),  141-143.
        pdf

82.     G. Grätzer, H. Lakser and E. T. Schmidt,  Congruence representations of join homomorphisms of distributivelattices: A short proof,  Math. Slovaca  46  (1996), 363-369.
        pdf

83.     G. Grätzer, H. Lakser and E. T. Schmidt,  Isotone maps as maps of congruences. I. Abstractmaps,  Acta Math. Acad. Sci. Hungar. 75 (1997), 105-135.
        pdf

84.     G. Grätzer, E. T. Schmidt and Dabin Wang,  A short proof of a theorem of Birkhoff,  Algebra Universalis 37 (1997),  253-255.
        pdf

85.     G. Grätzer and E. T. Schmidt,  Some cominatorial aspects of congruence lattice representations, Theoret. Comput. Sci. 217 (1999),  291-300.
        pdf

86.     G. Grätzer and E. T. Schmidt,  On finite automorphism groups of simple arguesian lattices, Studia Sci. Math. Hungar.  35 (1999),  247-258.
        pdf

87.     G. Grätzer, H. Lakser and E. T. Schmidt,  Congruence lattices of finite semimodular lattices,  Canadian Math. Buletin. 41 (1998),  290-297.
        pdf

88.     G. Grätzer and E. T. Schmidt,  Congruence-preserving extensions of finite lattices into sectionally complemented lattices, Proc. Amer. Math. Soc. 127 (1999), 1903-1915.
        pdf

89.     G. Grätzer, H. Lakser and E. T. Schmidt,  Restriction of  standard congruenceson lattices, Contributions to general Algebra 10 (Proceedings of the Klagenfurt Conference)  (1997),  167-175.
        pdf

90.      E. T.  Schmidt,  On finite automorphism groups of simple arguesian lattices, Publicationes Math. (Debrecen)  53 (1998),  383-387.
        pdf

91.     G. Grätzer and E. T. Schmidt,  Congruence-preserving extensions of finite lattices to semimodular lattices, Houston Journal of Math.  27 (1) (2001),  1-9.
        pdf

92.     G. Grätzer and E. T. Schmidt,  On the Independence Theorem of related structures for modular (arguesian) lattices,  Studia Sci. Math. Hungary.  40 (2003), 1-12.
         pdf

93.     G. Grätzer and E. T. Schmidt,  Sublattices and standard congruences,  Algebra Universalis  41 (1999),  151-153.
         pdf

94.     G. Grätzer, H. Lakser and E. T. Schmidt,  Congruence representations of join-homomorphisms of distributive lattices with small lattices. Size and breadth,  J. Australian  Math.  Soc. Ser. A.  68 (2000),  85-103.
         pdf

95.     G. Grätzer and E. T. Schmidt,  Representations of  join- homomorphisms of distributive lattices with doubly 2-distributive lattices Acta Sci. Math. (Szeged)  64 (1998),  373-387.
         pdf

96.     G. Grätzer and E. T. Schmidt,  Regular congruence-preserving extensions of lattices Algebra Universalis  46 (2001),  119-130.
        pdf

97.      G. Grätzer and E. T. Schmidt,  Complete congruence repsentations with 2-distributive modular lattices,  Acta Sci. Math. (Szeged)  67 (2001), 39-50.
        pdf

98.     G. Grätzer,  H. Lakser and E. T. Schmidt,  Isotone maps as maps of congruences. II.Concrete maps,  Acta Math. Acad. Sci. Hungar.  92 (2001),  233-238.
        pdf

 

99.     G. Grätzer and E. T. Schmidt Representing congruence lattice of lattices with partial unary operations as congruence lattices  of lattices I. Interval equivalence,  Journal of Algebra 269 (2003),  136-159.
        pdf)
 
100.    G. Grätzer E. T. Schmidt and K. Thomsen, Congruence lattices of  unifom lattices, Houston  Journal of Math.  29 (2003),  247-263..
          pdf
 
101.    G. Grätzer, M. Greenberg and E. T. Schmidt, Representing congruence lattice of lattices with partial unary operations as congruence lattices  of lattices II. Interval ordering,   Journal of Algebra 286 (2005), 307-324.
        pdf
 
102.    G. Grätzer and E. T. Schmidt, Finite lattices with isoform congruences  Tatra Mountain Mathematical Publications 27 (2003), 111-124.
        pdf

103.    G. Grätzer and E. T. Schmidt, Congruence class sizes in finite sectionally complemented lattices Canadian Mathematical Bulletin 47 (2004), 191-205. 
        pdf
 

104.    G. Grätzer and E. T. Schmidt, Finite lattices and congruences. A survey,  Algebra Universalis 52 (2004),  241-278.
        pdf  

105.    G. Grätzer, R. W. Quackenbush and E. T. Schmidt, Congruence-preserving extensions  of   finite lattices to isoform lattices, Acta Sci. Math. (Szeged) 70 (2004), 473-494.
         pdf 
106    G. Czédli and E. T. SchmidtFrankl's conjecture for large semimodular and  planar semimodular lattices, Acta  Univ. Palacki, Olomouc,  47 (2008), 47-53 .
         pdf   
107.    G. Czédli and E. T. SchmidtHow to derive finite semimodular lattices from distributive lattices? Acta Math. Acad. Sci. Hungar. , 121 (2008), 277-282.
         pdf
   
108.     G. Czédli and E. T. Schmidt, CDW-independent subsets in distributive lattices,  Acta  Sci. Math. (Szeged),  75 (2009),  297-301.
         pdf 
109.     G. Czédli,  M. Hartmann  and E. T. SchmidtCD-independent subsets in distributive lattices, Publicationes Math. (Debrecen) 74 (2009), 1-8.
         pdf          
110.      G. Czédli, M. Maróti and E. T. SchmidtOn the scope of averaging  for Frankl's  conjecture, Order, 26 (2009),  31-48. 
         pdf     
111.     E. T. Schmidt, Cover-preserving embeddings of finite length semimodular lattices into simple semimodular lattices,  Algebra Universalis ,  64 (2010), 101-102,  ( doi: 10.1007/s00012-010-0091-2)

         pdf                      

112.   E. T. Schmidt,  Semimodular lattices  and the Hall-Dilworth gluing construction, Acta Math.  Hungar. 127 (2010),  220-224.  (doi:10.1007./s10474-010-9120-z)

         pdf      

113.   G. Czédli and E. T. Schmidt, Finite distributive lattices are congruence lattices of almost-geometric lattices,  Algebra Universalis,  65 (2011), 91-108.
         pdf      
114.   G. Czédli and E. T. Schmidt, Some results  on semimodular lattices, Proc.  Olomouc Conference (2010), Johannes Hein Verlag, Klagefurt, 45-56.

          pdf

115.   G. Czédli and E. T. Schmidt,  A cover-preserving embedding  of  semimodular lattices into geometric lattices, Advances in Mathematics  225 (2010),  2455-2463.
         pdf
116.    E. T. Schmidt, Congruence lattices and cover-preserving embeddings of finite length semimodular lattices,  Acta  Sci. Math. (Szeged), 77  (2011), 47-52.

         pdf     

117.   G. Czédli and E. T. Schmidt, The Jordan-Hölder Theorem with Uniqueness for groups and semimodular lattices,  Algebra Universalis,  66 (2011), 69--79.

          pdf

118.   G. Czédli and E. T. Schmidt, Slim semimodular lattices. I. A visual aproach, Order, 29  (2012),  481--497  (DOI: 10.1007/s11083-011-9215-3)

          pdf

119.   G. Czédli and E. T. Schmidt, Slim semimodular lattices. II. A description by patchwork systems, Order,  30  (2013), 689--721(DOI: 10.1007/s11083-012-9271-3 ).

           pdf

120.     G. Grätzer and  E. T. Schmidt,   A short proof of the  congruence representation theorem of rectangular lattices,  Algebra Universalis, 71 (2014), 65--68,  arXiv

          pdf

121.    G. Czédli and E. T. Schmidt,  Composition series in groups and the structure of slim semimodular lattices,  Acta  Sci. Math. (Szeged), 79 (2013),  369-390,  arXiv

          pdf

122.     G. Grätzer and  E. T. Schmidt,  An extension theorem for planar semimodular lattices,  Periodica Math.   69 (2014),  32-40. 

          pdf

123.     E. T. Schmidt, A structure theorem of of semimodular lattices and the Rubik's cubeSubmitted to  Algebra Universalis,   75 (2016), xx--yy.

          pdf

 

      

                 Online manuscripts 

 

124.     E. T. Schmidt, A characterisation of the sources  in semimodular lattices (2012/2016)  

          pdf

 125.     E. T. Schmidt, A new look at the semimodular lattices, a geometric approach (results, ideas and conjectures), (2015) 

          pdf

126.   E. T. Schmidt, Diamond-free patch lattices,  (2015) 

          pdf           

127.  E. T. Schmidt,  Rectangular hulls of semimodular lattices, (2011)

          pdf

128..  E. T. Schmidt,  An extension theorem for finite semimodular lattices, (2014,  new version:  2016)

          pdf

129.    E. T. Schmidt, A new look at the semimodular lattices, a geometric approach.  Survay,  (2011) 

          pdf

130.    E. T. Schmidt, A structure theorem of semimodular lattices: the patchwork representation, (2012)  

          pdf

131    E. T. Schmidt, Semimodular lattices,  Slide show (2012) 

          pdf

132.    E. T. Schmidt, Rectangular lattices as geometric shapes, (2013)  online

          pdf

133.     E. T. Schmidt,  Congruences of 2-dimensional semimodular lattices ,     (2014), 

          pdf


 

              The most important results:

 

    1.  Congruence lattices of universal algebras: [19]

                Every algebraic lattice is isomrphic to the congruence lattice of a universal algera.

    2.  Congruence lattices of lattices:  [47],  ( see also [27],[40])

                The ideal lattice of a distributive lattice with zero is the congruence lattice of a lattice.

    3. Congruence lattices of  (complemented ) modular lattices [34] ,[47],

                 Every  finite lattice L is the congruence lattice of a  complemented modular lattice.

    4.  The lattice of complete congruences of a complete lattice:  [70]:

                  Every complete lattice K can be represented as the lattice  of complete congruences  of a

                comlete distributive lattiece L.

    5.  Congruence-preserving and congruence-isomrphic extensions:  [88] ,   [91], [96]

                 Every finite lattice has a congruence-preserving  extension to a   1. regular lattice,

                2.  complemented lattice, 3 semimodular lattice. 

    6.   Semimodular lattices: [119], [123]

                Every  finite  2-dimensional semimodular lattice is the patchwork of patch lattices .

               (Conjecture: Every  finite   semimodular lattice is the patchwork of patch lattices )

 


          Books

 

1.     E. T. Schmidt,  Kongruenzrelationen algebraischer Strukturen, VEB Verlag der Wissenschaften, (1969). 

2.     E. T. Schmidt,  A Survey of Congruence Lattice Representations,  Teubner Texte zur Mathematik, Band 42, Teubner Verlagsgesellschaft Lepzig (1982)

3.     E. T. Schmidt,  Algebra, (Hungarian)  Lectures notes(1974).  276 pages.

4.     G. Grätzer and E. T. Schmidt,  Congruence lattices of  lattices, 519-530,  Appendix C  in G. Grätzer's book: General Lattice Theory (Birkhauser Verlag,  new edition in 1998). 
        pdf

5.     G. Grätzer and E. T. Schmidt,  Congruences and Constructions, The Concise Handbook  of  Algebra, Alexander V. Mikhalev and Günter F. Pilz, eds.   Kluwer Academic Publishers, Dordrecht  (2002),  ISBN 0-7923-7072-4,  417-420. 
        pdf

    Miscellaneous

 

1.     Matematikai Kislexikon,  Mûszaki Könyvkiadó,  Budapest, 1972. (with coauthors).

2.      E. T. Schmidt,  Meditation on an algebra textbook for school, (Hungarian) Matematikai Lapok  23 (1972),  349--354.
        pdf

3.     E. T. Schmidt,  A Tribute to András Huhn  Order 2 (1986),  331--333.
        pdf

4.     E. T. Schmidt,  A survey of the hungarian algebraic research, (Hungarian) Matematikai Lapok, 24 (1983),  191--200.
        pdf

5.     E. T. Schmidt,  On the algebraic work of József Kürschák (Hungarian) Matematikai Lapok, 34 (1983--1987),  247--248.
        pdf

6.     E. T. Schmidt,  Ervin Fried is 60 years old,  (Hungarian) Matematikai Lapok, 34 (1983--1987),  49--252, 
        pdf

7.     G.Czédli  and  E. T. Schmidt,  Concept lattices (Hungarian) Polygon IV, 2 (1994),  27-46.
        pdf

8.     E. T. Schmidt,  The new Mathematical Institute of the Technical University, Jövô Mérnöke, 18/1 (1996).
        pdf

9.     E. T. Schmidt, The History of algebra and mathematical logic in the Mathematical Institute,(Hungarian) MTA Közgyûlési Elõadások (2002), 123-126.
        pdf

10.     E. T. Schmidt,  Richard Wiegandt Septuagenarian, Math. Pannonica, 13/2 (2002),  149-157.
pdf

11.     E. T. Schmidt,  Miért lettem matematikus ?, (Hungarian) TYPOTEX  Kiadó,  Budapest (2003),  225-226.
        pdf

12.     E. T. Schmidt,  Geometriai terek az algebra szemszögébôl, (Geometric spaces from algebraic aspect), Középiskolai Matematikai Lapok, April (2004).
        pdf

13.     E. T. Schmidt, Matematika a BME-n 1990 után.   A BME Matematika Intézet honlapja (2008.)

        pdf    html
14.     Fuchs László köszöntése 90. születésnapján (2014. június 30.  MTA)

        pdf   
 


 

     Editor of conference proceedings

1. Proceedings of the Colloquium on Abelian groups. Edited by L. Fuchs and E. T. Schmidt, Publishing House of the Hungarian Academy of Sci., Budapest  (1964).

2. Lattice Theory. Edited by A. P. Huhn and E. T. Schmidt, Colloquia Mathematica Societatis János Bolyai,  14,  North Holland,  (1976).

3. Universal Algebra. Edited by B. Csákány, E. Fried and E. T. Schmidt, Colloquia Mathematica Societatis János Bolyai, 29, North Holland,  (1982).

4. Contributions to Lattice Theory. Edited by A. P. Huhn and E. T. Schmidt, Colloquia Mathematica Societatis János Bolyai, 33,  North Holland,  (1983)


       

     Slide shows

1.  Big Five Conference, 2004 Budapest            The ppt version

June 2004 meeting in Budapest honoring 5 ×80 of János Aczél, Ákos Császár,
      László Fuchs, István Gál and János Horváth 

2.  Short tour of congruence lattices, 2006      The ppt version

     My lecture on the Conference on Lattice Theory in honour of the 70th birthday
      of George Grätzer and E. Tamás Schmidt, Budapest, June 5-9, 2006

    This slide was supported by the Hungarian National Foundation for Scientific Research,
      under Grant T049433

3.  The charactrization of congruence lattices

     This is a "Proof-by-pictures" presentation of the theorem: every algebraic lattice is the

     congruence lattice of an algebra.

4. A lecture in the Renyi Institute, 2006.  Hungarian

5.  A Szõkefalvi-Nagy Béla érem átadása, 2008, december 17.     ppt     pdf

6.  A lecture in the Renyi Institute, 2010. május 17.  Hungarian



 

      January 10,  2016