January 25, 2016 |
Hungarian Scientific Bibliography, MTMT
|
Mathematical
articles
1.
G. Grätzer and E. T. Schmidt, Ideals and congruence
relations in lattices, I, (Hungarian), Magyar Tud.
Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 93-109.
2. G.
Grätzer and E. T. Schmidt, Über die Anordnung von Ringen (German),
Acta Math. Acad. Sci. Hungar. 8 (1957), 259-260 .
3. G.
Grätzer and E. T. Schmidt, On the
Jordan-Dedekind chain condition, Acta Sci. Math. (Szeged)
18 (1957), 52-56.
4. G.
Grätzer and E. T. Schmidt, Ideals
and congruence relations in lattices, II, (Hungarian),
Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 417-434.
5. G.
Grätzer and E. T. Schmidt, On the lattice of all join-endomorphisms
of a lattice, Proc. Amer. Math. Soc. 9 (1958), 722-726.
6. G.
Grätzer and E. T. Schmidt, On a problem
of M. H. Stone, Acta Math.
Acad. Sci. Hungar. 8 (1957), 455-460.
7. G.
Grätzer and E. T. Schmidt, Characterizations of relatively complemented
distributive lattices, Publ. Math. Debrecen 5 (1958),
257-287.
8. G.
Grätzer and E. T. Schmidt, Two notes
on lattice-congruences, Ann. Univ. Sci. Budapest. Eötvös Sect.
Math. 1 (1958), 83-87.
9. G.
Grätzer and E. T. Schmidt, On ideal
theory for lattices, Acta Sci. Math. (Szeged) 19 (1958),
82-92.
10. G. Grätzer and E. T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Acad. Sci. Hungar. 9 (1958), 137-175. pdf
12. G. Grätzer
and E. T. Schmidt, On the generalized
Boolean algebra generated by a distributive lattice, Indag.
Math. 20 (1958), 547-553.
13. E. T. Schmidt,
Algebrai strukturák kongruenciaháloiról, (Hungarian),
Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959), 163-174.
14. G. Grätzer
and E. T. Schmidt, An associativity theorem for alternative
rings, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959),
259-264.
15. G. Grätzer
and E. T. Schmidt, Standard ideals in lattices, Acta
Math. Acad. Sci. Hungar. 12 (1961), 17-86.
16. G. Grätzer
and E. T. Schmidt, Über einfache Körpererweiterungen (German),
Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 283-285.
17. G.
Grätzer and E. T. Schmidt, On inaccessible and minimal congruence
relation, I., Acta Sci. Math. (Szeged) 21 (1960),
337-342.
18. G. Grätzer
and E. T. Schmidt, On a problem of L Fuchs concerning universal
subgroups and universal homomorphic images of abelian groups, Indag.
Math. 23 (1961), 253-255.
19. G. Grätzer
and E. T. Schmidt, On congruence lattices of lattices,
Acta Math. Acad. Sci. Hungar. 13 (1962), 179-185.
20. G. Grätzer
and E. T. Schmidt, A note on a special type of fully invariant
subgroups of Abelian groups, Ann. Univ. Sci. Budapest Eötvös
Sect. Math. 3-4 (1960/1961), 85-87.
21. G. Grätzer
and E. T. Schmidt, Characterizations of congruence lattices of abstract
algebras, Acta Sci. Math. (Szeged) 24 (1963), 34-59.
22. E. T. Schmidt,
Über die Kongruenzverbände der Verbände, Publ. Math. Debrecen
9 (1962), 243-256.
23. E. T. Schmidt,
Universalen Algebren mit gegebenen Automorphismengruppen und Unteralgebrenverbänden,
Acta Sci. Math 24 (1963), 251-254.
24. E. T. Schmidt,
Universalen Algebren mit gegebenen Automorphismengruppen und Kongruenzverbänden,
Acta Sci. Math. (Szeged) 15 (1964), 37-45.
25. E. T. Schmidt, Remark
on a paper of M. F. Janovitz, Acta Math. Acad. Sci. Hungar.
16 (1965), 289.
26. E. T. Schmidt,
On the definitions of homorphism kernels of lattices,
Matematische Nachrichten 33 (1967), 25-30.
27. E. T. Schmidt,
Zur Charakterisierung der Kongruenzverbände der Verbände,
Math. Casopis 18 (1968), 3-20.
28. E. T. Schmidt,
Eine Verallgemeinerung des Satzes von Schmidt-Ore,
Publ. Math. Debrecen 17 (1970), 283-287.
29. E. T. Schmidt,
Über regulare Mannigfaltigkeiten, Acta Sci. Math.
(Szeged) 31 (1970), 195-201.
30.
E. T. Schmidt, Unabähngikeitrelationen in Halbverbänden,
Periodica Math. Hungar. 1 (1971), 45-52.
31. E. T. Schmidt,
On n-permutable equational classes, Acta Sci.
Math. (Szeged) 33 (1972), 29-30.
32. B. Csákány
and E. T. Schmidt, Translations of regular algebras, Acta
Sci. Math. (Szeged) 31 (1970), 157-160.
33. E. T. Schmidt,
Every finite distributive lattice is the congruence lattice of a
modular lattices, Algebra Universalis 4 (1974), 49-57.
34. E. T. Schmidt,
Über die Kongruenzrelationen der modularen Verbände,
Beiträge zur Algebra und Geometrie 3 (1974), 59-68.
35. E. T. Schmidt,
On the length of the congruence lattice of a lattice,
Algebra Universalis 5 (1975), 98-100.
36. E. T. Schmidt,
A remark on lattice varieties defined by partial lattices,
Studia Sci. Math. Hungar 18 (1974), 195-198.
37. E. T. Schmidt,
On finitely generated simple modular lattices,
Periodica Math. Hungar 6(1975), 213-216.
38. E. Fried
and E. T. Schmidt, Standard sublattices, Algebra
Universalis 5 (1975), 203-211.
39. E. T. Schmidt,
Lattices generated by partial lattices, Proceedings
of coll. Math, Szeged 14. LatticeTheory, 14 (1974), 343-353.
40. E. T. Schmidt,
On the Characterization of the Congruence Lattices of Lattices,
Proceedings Lattice Theory Conference, Ulm, (1974), 162-179.
41. E. T. Schmidt,
On the variety generated by all modular lattices of breadth
two, Houston Journal of Math. 2 (1976), 415- 418.
42.
E. T. Schmidt, Starre Quotienten in modularen
Verbänden, Proceedings of the Klagenfurt Conference (1978),
331-339.
43. E. T. Schmidt,
On splitting modular lattices, Proceedings of
the Univesal Algebra Conference Esztergom (1977), 697-703.
44. E. T. Schmidt,
Remarks of finitely projected modular lattice, Acta
Sci. Math. (Szeged) 41 (1979), 187-190.
45. E. T. Schmidt,
Remark on generalized function lattices, Acta Math. Acad.
Sci. Hungar. 34 (1979), 337-339.
46. E. T.
Schmidt, On finitely projected modular lattices, Acta
Math. Acad. Sci. Hungar. 38 (1981), 45-51.
47. E. T. Schmidt,
The ideal lattice of a distributive lattice with 0 is the congruence
lattices of a lattice, Acta Sci. Math. (Szeged) 43 (1981),
153-168.
48. E. T.
Schmidt, Remark on compatible and order-preserving
function on lattices, Studia Sci. Math. Hungar. 14 (1979),
139-144.
49. E. T.
Schmidt and R.Wille, Note on compatible operations of modular
lattices, Algebra Universalis 16 (1983), 395-397.
50. E. T. Schmidt,
Congruence lattices of complemented modular lattices,
Algebra Universalis 18 (1984), 386-395.
51. G. Czédli,
A. Huhn and E. T. Schmidt, Weakly independent subsets
in lattices, Algebra Universalis 20 (1985), 194-196.
52. E. T. Schmidt,
Remarks on dependence relations in relational database models,
Alkalmazott Matematikai Lapok 8 (1982), 177-182.
53. K. Kaarli,
L. Márki and E. T. Schmidt, Affin complete semilattices,
Monatshefte für Mathematik 99 (1985), 297-309.
54. E. Fried,
G. E. Hansoul, E. T. Schmidt and J. Varlet, Perfect
distributive lattices, Proceedings of the Vienna-Conference
(1984), 125-142.
55.
E. T. Schmidt, Congruence relations related
to a given automorphism group of a Boolean Lattice, Annales
Univ.Sci. Budapestiensis de R. Eotvos nom. 29 (1970), 269-272.
56. E. T. Schmidt,
Homomorphism of distributive lattices as restriction of congruences,
Acta Sci. Math. (Szeged), 51 (1987),
209-215.
57. E. T. Schmidt,
On locally order-polynomially complete modular lattices,
Acta Math. Acad. Sci., Hungar. 49 (1987), 481-486.
58. E. T. Schmidt,
On a represantation of distributive lattices, Periodica
Math. Hungar. 19 (1988), 25-31.
59. E. T. Schmidt,
Polynomial automorphisms of lattices, Proceedings
of the Vienna-Conference, (1988), 233-240.
60. E. T. Schmidt,
Cover-preserving embedding, Periodica Math. Hungar.
23 (1991), 17-24.
61. E. T. Schmidt,
Pasting and semimodular lattices, Algebra Universalis
27 (1990), 595-596.
62. E. Fried,
G. Grätzer and E. T. Schmidt, Multipasting of lattices,
Algebra Universalis 30 (1993), 241-261.
63.
R. Freese, G.Grätzer and E. T. Schmidt, On complete
congruence lattices of complete modular lattices, Internat. J. Algebra
Comput. 1 (1991), 147-160.
64. G. Grätzer
and E. T. Schmidt, Algebraic lattices as congruence
lattices: The m-complete case, Lattice theory and its applications,
Darmstadt, (K. A. Baker and R. Wille eds.), Heldermann
Verlag, ( 1995), 91-101.
65. G. Grätzer,
H. Lakser and E. T. Schmidt, Congruence lattices of
small planar lattices, Proc. Amer. Math. Soc. 123 (1995),
2619-2623.
66. G. Grätzer,
P.M. Johnson and E. T. Schmidt, A representation
of m-algebraic lattices, Algebra Universalis 32 (1994), 1-12.
68. G. Grätzer
and E. T. Schmidt, "Complete-simple" distributive lattices,
Proc. Amer. Math. Soc. 119 (1993), 63-69.
69. G. Grätzer
and E.T. Schmidt, Another construction of complete-simple
distributive lattices, Acta Sci. Math. (Szeged) 58 (1993),
115-126.
70. G. Grätzer
and E.T. Schmidt, Complete congruence lattices of complete
distributive lattices, J. of Algebra 171
(1995), 204-229.
71. E. T. Schmidt,
Homomorphisms of distributive lattices as restriction of congruences:
the planar case, Studia Sci. Math. Hungar. 30 (1995), 283-287.
72. G.
Grätzer and E. T. Schmidt, Congruence lattices of p-algebras,
Algebra Universalis 33 (1995), 470-477.
73. E. T. Schmidt,
Congruence lattices of modular lattices, Publicationes
Mathematice 43 (1993), 129-134.
74. G. Grätzer
and E. T. Schmidt, Do we need complete-simple distributive
lattices? , Algebra Universalis 33 (1995), 140-141.
75. G.
Grätzer and E. T. Schmidt, The Strong Independence
Theorem for automorphismgroups and congruence lattices of finite lattices,
Beiträge Algebra Geom. 36 (1995), 97-108.
76.
E. Fried and E. T. Schmidt, Cover-preserving
embedding of modular lattices, Periodica Math. Hungar. 28
(1994), 73-77.
77. G.
Grätzer and E. T. Schmidt, A lattice construction and congruence-preserving
extensions, Acta Math. Hungar. 66 (1995),
275-288.
78. G. Grätzer
and E. T. Schmidt, Congruence lattices of function
lattices, Order 11 (1994), 211-220.
79. G. Grätzer,
H. Lakser and E. T. Schmidt, On a result of Birkhoff,
Period. Math. Hungar. 30 (1995), 183-188.
80. G. Grätzer
and E. T. Schmidt, On isotone functions with the Substitution
Property in distributive lattices, Order 12 (1995),
221-231.
81. G. Grätzer
and E. T. Schmidt, Complete congruence lattices of
join-infinite distributive lattices, Algebra Universalis 37
(1997), 141-143.
82. G. Grätzer,
H. Lakser and E. T. Schmidt, Congruence representations
of join homomorphisms of distributivelattices: A short proof,
Math. Slovaca 46 (1996), 363-369.
83. G. Grätzer,
H. Lakser and E. T. Schmidt, Isotone maps as maps of
congruences. I. Abstractmaps, Acta Math. Acad. Sci. Hungar.
75 (1997), 105-135.
84. G. Grätzer,
E. T. Schmidt and Dabin Wang, A short proof of a theorem of
Birkhoff, Algebra Universalis 37 (1997), 253-255.
85. G. Grätzer
and E. T. Schmidt, Some cominatorial aspects of congruence
lattice representations, Theoret. Comput. Sci. 217 (1999),
291-300.
86. G. Grätzer
and E. T. Schmidt, On finite automorphism groups of simple
arguesian lattices, Studia Sci. Math. Hungar. 35 (1999),
247-258.
87. G. Grätzer,
H. Lakser and E. T. Schmidt, Congruence lattices of
finite semimodular lattices, Canadian Math. Buletin. 41 (1998),
290-297.
88. G. Grätzer
and E. T. Schmidt, Congruence-preserving extensions
of finite lattices into sectionally complemented lattices, Proc.
Amer. Math. Soc. 127 (1999), 1903-1915.
89. G. Grätzer,
H. Lakser and E. T. Schmidt, Restriction of standard
congruenceson lattices, Contributions to general Algebra 10 (Proceedings
of the Klagenfurt Conference) (1997), 167-175.
90. E.
T. Schmidt, On finite automorphism groups of
simple arguesian lattices, Publicationes Math. (Debrecen)
53 (1998), 383-387.
91. G. Grätzer
and E. T. Schmidt, Congruence-preserving extensions
of finite lattices to semimodular lattices, Houston Journal of Math.
27 (1) (2001), 1-9.
92. G. Grätzer
and E. T. Schmidt, On the Independence Theorem of related
structures for modular (arguesian) lattices, Studia Sci. Math.
Hungary. 40 (2003), 1-12.
93. G. Grätzer
and E. T. Schmidt, Sublattices and standard congruences,
Algebra Universalis 41 (1999), 151-153.
94. G. Grätzer,
H. Lakser and E. T. Schmidt, Congruence representations
of join-homomorphisms of distributive lattices with small lattices. Size
and breadth, J. Australian Math. Soc. Ser. A.
68 (2000), 85-103.
95. G. Grätzer
and E. T. Schmidt, Representations of join- homomorphisms
of distributive lattices with doubly 2-distributive lattices,
Acta Sci. Math. (Szeged) 64 (1998), 373-387.
96.
G. Grätzer and E. T. Schmidt, Regular congruence-preserving
extensions of lattices, Algebra Universalis 46 (2001),
119-130.
97. G.
Grätzer and E. T. Schmidt, Complete congruence repsentations
with 2-distributive modular lattices, Acta Sci. Math. (Szeged)
67 (2001), 39-50.
98. G. Grätzer,
H. Lakser and E. T. Schmidt, Isotone maps as maps of
congruences. II.Concrete maps, Acta Math. Acad. Sci. Hungar.
92 (2001), 233-238.
|
|
Books
1. E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, VEB Verlag der Wissenschaften, (1969). 2. E. T. Schmidt, A Survey of Congruence Lattice Representations, Teubner Texte zur Mathematik, Band 42, Teubner Verlagsgesellschaft, Lepzig (1982). 3. E. T. Schmidt, Algebra, (Hungarian) Lectures notes, (1974). 276 pages. 4. G. Grätzer
and E. T. Schmidt, Congruence lattices of lattices,
519-530,
Appendix C in G. Grätzer's book: General Lattice Theory
(Birkhauser Verlag, new edition in 1998).
5. G. Grätzer
and E. T. Schmidt, Congruences and Constructions,
The Concise Handbook of Algebra, Alexander V. Mikhalev
and Günter F. Pilz, eds. Kluwer
Academic Publishers, Dordrecht (2002), ISBN 0-7923-7072-4,
417-420.
|
Miscellaneous
1. Matematikai Kislexikon, Mûszaki Könyvkiadó, Budapest, 1972. (with coauthors). 2.
E. T. Schmidt, Meditation on an algebra textbook for school,
(Hungarian) Matematikai Lapok 23 (1972), 349--354.
3. E. T. Schmidt,
A Tribute to András Huhn, Order 2 (1986),
331--333.
4. E. T. Schmidt,
A survey of the hungarian algebraic research, (Hungarian)
Matematikai Lapok, 24 (1983), 191--200.
5. E. T. Schmidt,
On the algebraic work of József Kürschák, (Hungarian)
Matematikai Lapok, 34 (1983--1987), 247--248.
6. E. T. Schmidt,
Ervin Fried is 60 years old, (Hungarian)
Matematikai Lapok, 34 (1983--1987), 49--252,
7.
G.Czédli and E. T. Schmidt, Concept
lattices, (Hungarian) Polygon
IV, 2 (1994), 27-46.
8. E. T. Schmidt,
The new Mathematical Institute of the Technical University,
Jövô Mérnöke, 18/1 (1996).
9. E. T. Schmidt,
The History of algebra and mathematical logic in the Mathematical
Institute,(Hungarian) MTA Közgyûlési Elõadások (2002), 123-126.
10. E. T. Schmidt,
Richard Wiegandt Septuagenarian, Math. Pannonica,
13/2 (2002), 149-157.
11. E. T. Schmidt,
Miért lettem matematikus ?, (Hungarian) TYPOTEX
Kiadó, Budapest (2003), 225-226.
12. E. T. Schmidt,
Geometriai terek az algebra szemszögébôl, (Geometric
spaces from algebraic aspect), Középiskolai Matematikai Lapok,
April (2004).
13. E. T. Schmidt, Matematika a BME-n 1990 után. A BME Matematika Intézet honlapja (2008.)
pdf html
Editor of conference proceedings 1. Proceedings of the Colloquium on Abelian groups. Edited by L. Fuchs and E. T. Schmidt, Publishing House of the Hungarian Academy of Sci., Budapest (1964). 2. Lattice Theory. Edited by A. P. Huhn and E. T. Schmidt, Colloquia Mathematica Societatis János Bolyai, 14, North Holland, (1976). 3. Universal Algebra. Edited by B. Csákány, E. Fried and E. T. Schmidt, Colloquia Mathematica Societatis János Bolyai, 29, North Holland, (1982). 4. Contributions to Lattice Theory. Edited by A. P. Huhn and E. T. Schmidt, Colloquia Mathematica Societatis János Bolyai, 33, North Holland, (1983)
Slide shows 1. Big Five Conference, 2004 Budapest The ppt version June 2004 meeting in Budapest honoring 5 ×80 of
János Aczél, Ákos Császár,
2. Short tour of congruence lattices, 2006 The ppt version My lecture on the Conference
on Lattice Theory in honour of the 70th birthday
This slide was supported by the Hungarian National
Foundation for Scientific Research,
3. The charactrization of congruence lattices This is a "Proof-by-pictures" presentation of the theorem: every algebraic lattice is the congruence lattice of an algebra. 4. A lecture in the Renyi Institute, 2006. Hungarian 5. A Szõkefalvi-Nagy Béla érem átadása, 2008, december 17. ppt pdf 6. A lecture in the Renyi Institute, 2010. május 17. Hungarian
|
January 10, 2016 |