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Abstract. For the study of hard ball systems, the algebro-geometric approach
appeared in 1999 — in a sense surprisingly but quite efficiently — for proving
the hyperbolicity of typical systems (see [25]). An improvement by Simányi [22]
also provided the ergodicity of typical systems, thus an almost complete proof of
the Boltzmann–Sinai ergodic hypothesis. More than that, at present, the best
form of the local ergodicity theorem for semi-dispersing billiards, [6] also uses
algebraic methods (and the algebraicity condition on the scatterers). The goal
of the present paper is to discuss the essential steps of the algebro-geometric
approach by assuming and using possibly minimum information about hard
ball systems. In particular, we also minimize the intersection of the material
with the earlier surveys [28] and [20].

1. Introduction. In 1994 the scientific world celebrated the 150th anniversary of
the birth of Ludwig Boltzmann, whereas in 2006 we commemorated the centenary
from his death. My lecture held in 1994 in Vienna (cf. [28] gave me the opportunity
to get absorbed by the history of Boltzmann’s ergodic hypothesis. I followed, in
particular, how it led to the birth of ergodic theory, to the first ergodic theorems and
to the notion of ergodicity in and around 1930, and then how, in 1963 Sinai’s form of
Boltzmann’s ergodic hypothesis, the so-called Boltzmann–Sinai ergodic hypothesis,
got formulated for the dynamics of N ≥ 2 elastic hard balls moving on the ν-torus
(ν ≥ 2). Finally, I surveyed the major steps reached until 1994 toward establishing
the Boltzmann–Sinai ergodic hypothesis. The actuality of that survey was enhanced
by the 1987 result of Chernov–Sinai on the ergodicity of the system of 2 hard balls
in dimensions higher than 2 (based on their then recent local ergodicity theorem
for semi-dispersing billiards) and by the 1991–92 results of the Budapest school on
special systems of N balls with N > 2. (The ergodicity of planar Sinai-billiards,
and consequently that of the system of two discs was proven in Sinai’s celebrated
1970 paper [18] and in [7]). These works gave then an impetus to activities in the
direction of establishing the Boltzmann–Sinai ergodic hypothesis. Indeed, during
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the more than ten years that have elapsed since 1994, there is an almost complete
solution of the problem.

After the study of particular systems reviewed in [28] and [20], our work [25] with
Simányi introduced a completely new, algebro-geometric approach. As a result
of this work and the forthcoming achievements of Simányi, the Boltzmann–Sinai
ergodic hypothesis is, at the time of writing this paper, almost completely solved in
a rather general form. Since the algebraic, algebro-geometric methods have become
important for the solution of other problems, related to the theory of dispersing
or semi-dispersing billiards (cf. [6], [5] and [2]), it has become desirable to explain
the method itself, without the technicalities connected to the concrete problem
of hyperbolicity/ergodicity of hard ball systems, where the method had appeared.
This is actually the basic aim of the present paper. Moreover, we also discuss
the main results related to the Boltzmann–Sinai ergodic hypothesis of the period
elapsed since 1999.

Before doing that we mention two types of sincere criticisms as to the efforts
toward proving the Boltzmann–Sinai ergodic hypothesis. The first one relies on
the fact that Boltzmann, when formulating his ergodic hypothesis during laying
down the foundations of statistical physics, needed to substitute time averages by
ensemble averages not for a wide class of measurements, but for very simple func-
tions, only. This is true as concerns to Boltzmann’s usage. However, ergodicity
is only a qualitative property, and in most physical applications one needs quan-
titative properties that can be contrasted to measurements, like correlation decay,
transport coefficients, etc. Now only the sophisticated methods developed for set-
tling the Boltzmann–Sinai ergodic hypothesis, can provide the basis for describing
the deeper statistical properties of the systems of interest. These methods reveal
the mechanism behind the ergodic (or random or chaotic) behavior and without
their understanding it is, indeed, hopeless to obtain the delicate properties of the
dynamics.

Let me make an additional remark about these methods. It is well-known that
hard ball systems are isomorphic to certain semi-dispersing billiards. Consequently,
the efforts toward establishing the Boltzmann–Sinai ergodic hypothesis were based
on the theory of hyperbolic billiards. This theory having been born from the theory
of dynamical systems later developed somewhat independently of it. Different is the
case with the stochastic properties. Hyperbolic billiards are hyperbolic dynamical
systems with singularities, and they often behave similarly to some one-dimensional
maps or to the Hénon-map. The approaches toward statistical properties of hyper-
bolic billiards borrow several ideas from the theories of these systems. Indeed, since
1994, a new branch in the theory of dynamical systems was born: that of hyperbolic
dynamical systems with singularities (cf. [30] or the 1996 workshop Hyperbolic Sys-
tems with Singularities held at the Erwin Schrödinger Institute in Vienna). It is,
however, beyond the scope of the present work to discuss these methods, though
their progress in last decade has been most spectacular. As to ideas born in the
first part of the last decade we refer to the excellent expository survey [11], whereas
several important new ideas and also problems are explained in [9].

In fact, the foundations of the general theory of (nonuniformly) hyperbolic smooth
dynamical systems were worked out in the celebrated paper of Pesin [15]. Later the
theory was extended to some hyperbolic systems with singularities, most impor-
tantly to billiards by Katok and Strelcyn [12]. Though Pesin’s original theory has
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been about smooth systems, many of his ideas and methods have been indeed fun-
damental in the theory of hyperbolic systems with singularities. Later Yasha Pesin
also got interested and also made important contributions directly to the theory of
hyperbolic systems with singularities, see for instance [16].

Let us now turn to the second criticism, which is, contrary to the first one,
completely right. Namely, it refers to the original formulation of Boltzmann: time
averages can be substituted with ensemble averages for large systems of particles
in equilibrium. One main advantage of Sinai’s version of Boltzmann’s hypothesis
is that it refers to systems of fixed size, i.e. to systems, which ergodic theory (and
ergodicity) is originally about. Consequently, methods of ergodic theory and that of
dynamical systems are applicable. On the other hand, typical hamiltonian systems
are not expected to be ergodic, and the second main advantage of Sinai’s formu-
lation was that it had found the interaction, which, nonetheless, leads to ergodic
systems. Once the Boltzmann–Sinai ergodic hypothesis gets established or at least
it seems to be within reach, it is time to return to Boltzmann’s original conjecture.
Unfortunately, it is not formulated in a mathematically rigorous way, but this is
not a serious problem. Most experts agree that it is realistic and at the same time
physically relevant to expect that given a typical interaction, in the phase space of
larger and larger systems there arises a dominant ergodic component, whose mea-
sure tends to 1 as the size of the system tends to infinity. This is, however, a much
harder question than the Boltzmann–Sinai ergodic hypothesis, which itself has not
been that easy either. There exist no rigorous results at all in this generality. In the
Boltzmann–Sinai ergodic hypothesis, ergodicity of the systems arises as the result
of the — at least — partial hyperbolicity of the hard ball interaction. For large me-
chanical systems with a typical hamiltonian interaction, the appearance of a large
ergodic component should, as Boltzmann did assume, be the result of the large size
of the system. At present, there are no tools at hand to grasp this phenomenon.
Probably one should copy here the approach of equilibrium statistical mechanics:
first one has to understand the behavior of infinite systems.

As aid, the goal of this paper to summarize and explain the developments of
the last decade toward proving the Boltzmann–Sinai ergodic hypothesis. We also
note that it would be desirable to discuss what is known or done in understanding
Boltzmann’s ergodic hypothesis for infinite systems, and for large ones as well, but
this lies beyond the scope of the present work.

In order to keep the presentation within limits, first of all, I do not repeat details,
in particular those about the history of the Boltzmann and the Boltzmann–Sinai
Ergodic Hypotheses, and those about that of ergodic theory, which were contained
in my earlier paper [28]. To this end, there exists, moreover, the excellent survey by
Simányi [20], complementing my earlier work in a successful way and also containing
new developments after the appearance of mine. Also, the exposition concentrates
on explaining the main flow of ideas and, consequently, avoids the discussion of
several technical issues. The importance of algebraic methods is motivated by the
fact, that beside proving hyperbolicity or ergodicity, the algebraic approach has
recently been used, and is so far, the only way available for the verification of
the fundamental “local ergodicity theorem” for higher dimensional semi-dispersing
billiards (cf. [6]). Moreover, in the problem of establishing the complexity condition
in the form of [30], basic for demonstrating exponential correlation decay for higher
dimensional dispersing billiards (cf. [5]) it seems for me that the most promising
way is to use the algebraic approach.
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2. Sinai’s version of Boltzmann’s Ergodic Hypothesis. Billiards.

The Boltzmann–Sinai Ergodic Hypothesis, [17]. The system of N hard balls
given on Tν ; ν ≥ 2 is ergodic for any N ≥ 2.

In fact, Sinai formulated the conjecture for the physical dimensions ν = 2, 3, but
the case ν = 3 seems to reveal all the difficulties of the general case.

The reader familiar with the basic definitions about billiards can skip the follow-
ing brief reminder. We note that the balls have no rotational degrees of freedom!

Billiards. A billiard is a dynamical system describing the motion of a point par-
ticle in a connected, compact domain Q ⊂ Td called the configuration space. The
boundary of the domain is assumed to be a finite union of C3-smooth pieces. Inside
Q the motion is uniform while the reflection at the boundary ∂Q is elastic. As the
absolute value of the velocity is a first integral of motion, the phase space of the
billiard flow is fixed as M = Q×Sd−1 – in other words, every phase point x is of the
form x = (q, v) with q ∈ Q and v ∈ Rd, |v| = 1. The Liouville probability measure
µ on M is essentially the product of the Lebesgue measures, i.e. dµ = const. dqdv.
The resulting dynamical system (M, SR, µ) is the (toric) billiard flow.

Let n(q) denote the unit normal vector of a smooth component of the boundary
∂Q at the point q, directed inwards Q. Throughout the paper we restrict our atten-
tion to semi-dispersing billiards (and sometimes even to dispersing ones: we require
for every q ∈ ∂Q the second fundamental form K(q) of the boundary component to
be non-negative (or positive resp.).

The boundary ∂Q defines a natural cross-section for the billiard flow. Namely
consider

∂M = {(q, v) | q ∈ ∂Q, 〈v, n(q)〉 ≥ 0}.

This set actually has a natural bundle structure (cf. [6]). The Poincaré section map
T , also called the billiard map is defined as the first return map on ∂M. The invari-
ant measure for the map is denoted by µ1, and we have dµ1 = cµ1

|〈v, n(q)〉| dqdv,

where cµ1
is the normalizing constant

(∫

∂M
|〈v, n(q)〉|dqdv

)−1
. Throughout the pa-

per we work with this discrete time dynamical system (∂M, T, µ1). Recall the usual
notation: for (q, v) ∈ M one denotes by π(q, v) = q the natural projection.

The boundary of this phase space consists of singular collisions denoted by S0

(they are either tangencies, i.e. the orbit is tangent or multiple collisions, i.e. the
collision occurs at intersection of smooth boundary components). The dynamics
resp. the inverse dynamics is non-continuous on backward resp. forward images of
this set. We will denote Si = T iS0; i ∈ Z.

Step 1. The first step follows the way of thinking of physics: we re-

place the N particles with just one high-dimensional one. I.e., we unite the
configuration vectors of all centers of balls into a high dimensional configuration
vector, and we do the same with the velocity vectors. The interesting, absolutely
fundamental and at the same time easy observation is that then the original system
of elastic hard balls becomes isomorphic to a high dimensional billiard. To be more
definite, the dimension of the configuration vector of the big system is Nν, and —
because of energy conservation — that of the velocity vector is Nν − 1. However,
momentum is also invariant, and if we assume that it is equal to 0 (if it is not, then
to the motion of the system with zero momentum a quasi-periodic motion should
be added), then the center of mass is also invariant, so we assume, in addition, that
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it is also zero. Consequently, the dimension of the configuration vector of the big
system is d = (N − 1)ν and that of its velocity is d − 1.

The scatterers of this high-dimensional billiard are determined by the hard core
condition: the centers of any pair of balls can not get closer than 2r. It is easy to
see that these conditions determine spherical scatterers if N = 2, and cylindrical
ones, if N ≥ 3.

Consequently, the isomorphic billiard is a dispersing one (i.e. the scatterers are
strictly convex) if N = 2, and is a semi-dispersing one (i.e. the scatterers are just
convex) if N ≥ 3. (In the forthcoming discussion we will assume that N ≥ 3, since
the case N = 2 is an easy consequence of the local ergodicity theorem of [24].)

Fortunately, an analogous reduction also works if the balls have not necessarily
identical masses, as is explained in detail in [25], [20], [22].

Step 2. After the reduction of Step 1, our object is the study of certain

semi-dispersing billiards, where the scatterers are on the one hand cylin-

ders, and on the other hand their position also reflects the symmetrical

role played by the balls. Let us first recall the local ergodicity theorem for semi-
dispersing billiards. To this end we have to introduce the fundamental definition of
sufficiency of a phase point.

Let us consider a nonsingular finite trajectory segment for the flow: S[a,b]x, where
a < 0 < b and a, b, 0 are not moments of collision. N0(S

[a,b]x), the neutral subspace
at time 0 for the segment S[a,b]x is defined as follows:

N0(S
[a,b]x) := {w ∈ R

d : ∃(δ > 0) s.t. ∀α ∈ (−δ, δ)

v(Sa(q(x) + αw, v(x))) = v(Sax)&

v(Sb(q(x) + αw, v(x))) = v(Sbx)}.

Observe that v(x) ∈ N0(S
[a,b]x) is always true, the neutral subspace is at least 1

dimensional. Neutral subspaces at time moments different from 0 are defined by
Nt(S

[a,b]x) := N0(S
[a−t,b−t](Stx)), thus they are naturally isomorphic to the one

at 0.
The non-singular trajectory segment S[a,b]x is sufficient if for some (and in that

case for any) t ∈ [a, b] : dim Nt(S
[a,b]x) = 1. Denote by M0 the set of orbits

containing no singular collision at all, and by M1 the set of those containing exactly
one singular collision. A point x ∈ M0 is said to be sufficient if its entire trajectory
S(−∞,∞)x contains a finite sufficient segment. Singular points are treated by the
help of trajectory branches (see [13]): a point x ∈ M1 (this precisely means that the
entire trajectory contains one singular reflection) is sufficient if both of its trajectory
branches are sufficient.

All these concepts have their natural counterparts for the billiard map phase
space ∂M .

3. Local ergodicity for semi-dispersing billiards. Before formulating the local
ergodicity theorem let us start with some remarks. Among the assumptions of the
theorem there are some about the geometry of the billiard table. For brevity, we
do not repeat them here, except for one, namely the algebraicity condition,

and suggest the reader to consult any of the works [24], [13], or [6].

Condition 1 (Algebraicity Condition). The smooth pieces of the boundary ∂Q of
the billiard table are algebraic submanifolds.
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In fact, the authors of [24] and [13] have overlooked a gap in their proofs and,
as shown in [6], the algebraicity condition saves the proof for algebraic billiards, at
least. Fortunately, so far the interesting multi-dimensional applications of the local
ergodicity theorem, like hard ball systems, and the Bunimovich–Rehacek stadia [4],
were algebraic, but on the other hand, all experts expect that this requirement is
not really needed. Though there exist partial results for resolving this insufficiency
of the theory (see [1] with its companion paper [3] and [2]), no satisfactory results
have yet been obtained.

We recall, however, an additional substantial condition:

Condition 2 (Chernov–Sinai Ansatz, Condition 3.1 from [13]). For νS0
-almost

every point x ∈ S0 we have x ∈ ∂M∗ := M0∪M1 and, moreover, the positive semi-
trajectory of the point x is sufficient. (Here νS0

denotes the Riemannian measure
on S0.)

Step 3. Local ergodicity theorem. Also we are going to provide a “soft” formu-
lation of the local ergodicity theorem which is amply sufficient for our present
purpose. A more technical formulation requiring several additional definitions can
be found in the aforementioned works.

Theorem 3.1. Under the Chernov–Sinai Ansatz, Condition 2 plus the Algebraicity
Condition 1 and some other geometric conditions (see [24],[13], [6]) the following
is true: Assume that the orbit of the sufficient phase point x ∈ M does not hit the
singularity set S0 more than once. Then x has an open neighborhood which belongs
to one ergodic component of the system.

Assume that the conditions of the theorem hold. Then, if we were so lucky
that all points were sufficient, then, of course, the whole phase space would make
just one ergodic component. In general, this is not the case and the right way to
show ergodicity is to demonstrate that the set of non-sufficient phase points has
measure zero and has topological codimension at least two. If we can only show
that this codimension is at least one, then we can still claim that for a. e. phase
points the relevant Lyapunov exponents are nonzero, and consequently the system
is hyperbolic. Then its phase space can be decomposed into a countable number of
ergodic components of positive measure.

From now on we will only consider hard ball systems.
Since for semi-dispersing billiards there are no trajectories at all with a finite

accumulation point of collision moments, for an arbitrary non-singular orbit seg-
ment S[a,b]x of the standard billiard ball flow, there is a uniquely defined maximal
sequence a ≤ t1 < t2 < · · · < tn ≤ b : n ≥ 0 of collision times and a uniquely
defined sequence σ1 < σ2 < · · · < σn of “colliding pairs”, i.e. σk = {ik, jk} when-

ever Q(tk) = π(Stkx) ∈ ∂C̃ik,jk
. The sequence Σ := Σ(S[a,b]x) := (σ1, σ2, . . . , σn) is

called the symbolic collision sequence of the trajectory segment S[a,b]x.

Definition 3.2. We say that the symbolic collision sequence Σ = (σ1, . . . , σn) is
connected if the collision graph of this sequence:

GΣ := (V = {1, 2, . . . , N}, EΣ := {{ik, jk} : where σk = {ik, jk}, 1 ≤ k ≤ n})

is connected. (The vertices of the collision graph are the balls whereas its edges are
determined by the colliding pairs of balls during the time interval under investiga-
tion.)
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Definition 3.3. We say that the symbolic collision sequence Σ = (σ1, . . . , σn)
is C-rich, with C being a natural number, if it can be decomposed into at least C
consecutive, disjoint collision sequences in such a way that each of them is connected.

Let us note that for hard ball systems the conditions of the local ergodicity
theorem are satisfied almost trivially except for the Chernov–Sinai Ansatz, whose
proof is a hard work. Since in this paper our main aim is to explain the algebraic
approach to billiards, we will not go into details about the proof of the Chernov–
Sinai Ansatz and will rather assume it throughout. Then, as explained in [28] and
in [20], the proof of hyperbolicity or ergodicity consists of two completely different
parts and is based on a suitable selection of the constants C = C(N) used in the
definition of richness (N is the number of balls).

Part I. Show that the subset of non C(N)-rich phase points has measure zero and
topological codimension at least 2. The proof of this statement was given in the
most general case in [19] for C =? implying the statement sufficient for our purposes.
We note that these points form a Cantor-type set. On the other hand one can see
that, for any C, the subset of the C-rich yet insufficient orbits is a countable union
of algebraic submanifolds (the scatterers are quadratically defined!), and so the next
task is:

Step 4. Task of the algebro-geometric part.

Part IIh. For demonstrating hyperbolicity: Show that the (algebraic=topological)
codimension of C(N)-rich, yet insufficient phase points is at least 1.

Part IIe. For demonstrating ergodicity: Show that the (algebraic=topological)
codimension of C(N)-rich, yet insufficient phase points is at least 2.

The goal of the forthcoming part of the work is, on the one hand, to explain
the basic moments of the algebro-geometric approach of [25] for executing the task
of Part IIh, and, on the other hand, to hint to the main improvement of [22], for
completing Part IIe.

The starting point is the masterly connecting Path Formula (CPF) of Simányi,
[19], whose extension to systems of hard balls with different masses is straightfor-
ward and was done in [25] (see also [20]).

Step 5. Connecting path formula.

Remark. The essential content of the CPF is a characterization of the neutral
subspace of an orbit segment through a system of linear equations in terms of the
advance functionals of collisions appearing in the symbolic collision sequence of the
orbit segment; the coefficients for the advance functional of a given collision are
linear functions of the velocity jumps of the particles participating in the collision
in question.

4. Connecting path formula. The goal of this section is the formulation of
Proposition 1 requiring a series of definitions. In a sense, all these definitions are
not essential for the application of the CPF. Therefore in the above Remark we
have distilled those properties of the CPF which are necessary for understanding
the forthcoming arguments. The reader not interested in the CPF itself can jump
over the definitions and concentrate on grasping the Proposition and the Remark.
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The CPF gives an explicit characterization of the neutral subspace. The reader
is reminded that for non-sufficient points the neutral subspace should contain a
nontrivial direction apart from the trivial flow direction.

First we introduce the definition of the advance. Consider a non-singular orbit
segment S[a,b]x with symbolic collision sequence Σ = (σ1, . . . , σn) (n ≥ 1). For x =
(Q, V ) ∈ M and W ∈ Z, ‖W‖ sufficiently small, denote TW (Q, V ) := (Q + W, V ).

Definition 4.1. For any 1 ≤ k ≤ n and t ∈ [a, b], the advance

α(σk) : Nt(S
[a,b]x) → R

is the unique linear extension of the linear functional defined in a sufficiently small
neighbourhood of the origin of Nt(S

[a,b]x) in the following way:

α(σk)(W ) := tk(x) − tk(S−tTW Stx).

Remark. It is worth observing that exactly for the perturbations in the neutral
subspace the orbits remain parallel, and perturbations of their collision points at
the consecutive scatterers move along lines. (Roughly speaking it is true that in the
neutral subspace perturbations always see a linear structure.) This fact explains
why the advance α(σk) (and similarly why ∆qi(t) below) is a linear functional.

Consider a phase point x0 ∈ M whose trajectory segment S[−T,0]x0 is not sin-
gular, T > 0. In the forthcoming discussion the phase point x0 and the positive
number T will be fixed. All the velocities vi(t) ∈ Rν i ∈ {1, 2, . . . , N}, −T ≤ t ≤ 0
appearing in the considerations are velocities of certain balls at specified moments t
and always with the starting phase point x0. (vi(t) is the velocity of the i-th ball at
time t.) We suppose that the moments 0 and −T are not moments of collision. We
label the balls by the natural numbers 1, 2, . . . , N (so the set {1, 2, . . . , N} is always
the vertex set of the collision graph) and we denote by e1, e2, . . . , en the collisions
of the trajectory segment S[−T,0]x0 (i.e. the edges of the collision graph) so that the
time order of these collisions is just the opposite of the order given by the indices.
A few more definitions and notations:

1. ti = t(ei) denotes the time of the collision ei, so 0 > t1 > t2 > · · · > tn > −T .
2. If t ∈ R is not a moment of collision (−T ≤ t ≤ 0), then

∆qi(t) : N0(S
[−T,0]x0) → R

ν

is a linear mapping assigning to every element W ∈ N0(S
[−T,0]x0) the displace-

ment of the i-th ball at time t, provided that the configuration displacement
at time zero is given by W . Originally, this linear mapping is only defined for
vectors W ∈ N0(S

[−T,0]x0) close enough to the origin, but it can be uniquely
extended to the whole space N0(S

[−T,0]x0) by preserving linearity.
3. α(ei) denotes the advance of the collision ei, thus

α(ei) : N0(S
[−T,0]x0) → R

is a linear mapping (i = 1, 2, . . . , n).
4. The integers 1 = k(1) < k(2) < · · · < k(l0) ≤ n are defined by the requirement

that for every j (1 ≤ j ≤ l0) the graph {e1, e2, . . . , ek(j)} consists of N − j
connected components (on the vertex set {1, 2, . . . , N}, as always!) while the
graph {e1, e2, . . . , ek(j)−1} consists of N − j + 1 connected components and,
moreover, we require that the number of connected components of the whole
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graph {e1, e2, . . . , en} be equal to N − l0. It is clear from this definition that
the graph

T = {ek(1), ek(2), . . . , ek(l0)}

does not contain any loop, especially l0 ≤ N − 1.

Here we make two remarks commenting the above notions.

Remark. We often do not indicate the variable W ∈ N0(S
[−T,0]x0) of the lin-

ear mappings ∆qi(t) and α(ei), for we will not be dealing with specific neutral
tangent vectors W but, instead, we think of W as a typical (running) element of
N0(S

[−T,0]x0) and ∆qi(t), α(ei) as linear mappings defined on N0(S
[−T,0]x0) in

order to obtain an appropriate description of the neutral space N0(S
[−T,0]x0).

Remark. If W ∈ N0(S
[−T,0]x0) has the property ∆qi(0)[W ] = λvi(0) for some

λ ∈ R and for all i ∈ {1, 2, . . . , N} (here vi(0) is the velocity of the i-th ball at time
zero), then α(ek)[W ] = λ for all k = 1, 2, . . . , n. This particular W corresponds to
the direction of the flow. In the sequel we shall often refer to this remark.

Let us fix two distinct balls α, ω ∈ {1, 2, . . . , N} that are in the same connected
component of the collision graph Gn = {e1, e2, . . . , en}. The CPF expresses the
relative displacement ∆qα(0) − ∆qω(0) in terms of the advances α(ei) and the
relative velocities occuring at these collisions ei. In order to be able to formulate
the CPF we need to define some graph-theoretic notions concerning the pair of
vertices (α, ω).

Definition 4.2. Since the graph T = {ek(1), ek(2), . . . , ek(l0)} contains no loop and
the vertices α, ω belong to the same connected component of T , there is a unique
path Π(α, ω) = {f1, f2, . . . , fh} in the graph T connecting the vertices α and ω.
The edges fi ∈ T (i = 1, 2, . . . , h) are listed up successively along this path Π(α, ω)
starting from α and ending at ω. The vertices of the path Π(α, ω) are denoted by
α = B0, B1, B2, . . . , Bh = ω indexed along this path going from α to ω, so the edge
fi connects the vertices Bi−1 and Bi (i = 1, 2, . . . , h).

When trying to compute ∆qα(0) − ∆qω(0) by using the advances α(ei) and the
relative velocities at these collisions, it turns out that not only the collisions fi

(i = 1, 2, . . . , h) make an impact on ∆qα(0) − ∆qω(0), but some other adjacent
edges too. This motivates the following definition:

Definition 4.3. Let i ∈ {1, 2, . . . , h − 1} be an integer. We define the set Ai of
adjacent edges at the vertex Bi as follows:

Ai = {ej : j ∈ {1, 2, . . . , n} & (t(ej) − t(fi)) · (t(ej) − t(fi+1)) < 0 &

Bi is a vertex of ej}.

We adopt a similar definition to the sets A0, Ah of adjacent edges at the vertices
B0 and Bh, respectively:

Definition 4.4.

A0 = {ej : 1 ≤ j ≤ n & t(ej) > t(f1) & B0 is a vertex of ej} ;

Ah = {ej : 1 ≤ j ≤ n & t(ej) > t(fh) & Bh is a vertex of ej} .

We note that the sets A0,A1, . . . ,Ah are not necessarily mutually disjoint.
Finally, we need to define the “contribution” of the collision ej to ∆qα(0)−∆qω(0)

which is composed from the relative velocities just before and after the moment t(ej)
of the collision ej.
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Definition 4.5. For i ∈ {1, 2, . . . , h} the “contribution” Γ(fi) of the edge fi ∈
Π(α, ω) is given by the formula

Γ(fi) =



































































































v−

Bi−1
(t(fi)) − v−

Bi
(t(fi)),

if t(fi−1) < t(fi) & t(fi+1) < t(fi);

v+

Bi−1
(t(fi)) − v+

Bi
(t(fi)),

if t(fi−1) > t(fi) & t(fi+1) > t(fi);

1

mBi−1
+ mBi

[

mBi−1

(

v−

Bi−1
(t(fi)) − v−

Bi
(t(fi))

)

+mBi

(

v+

Bi−1
(t(fi)) − v+

Bi
(t(fi))

)]

,

if t(fi+1) < t(fi) < t(fi−1)

1

mBi−1
+ mBi

[

mBi−1

(

v+
Bi−1

(t(fi)) − v+
Bi

(t(fi))
)

+mBi

(

v−

Bi−1
(t(fi)) − v−

Bi
(t(fi))

)]

,

if t(fi−1) < t(fi) < t(fi+1).

Here v−Bi
(t(fi)) denotes the velocity of the Bi-th particle just before the collision

fi (occuring at time t(fi)) and, similarly, v+
Bi

(t(fi)) is the velocity of the same
particle just after the mentioned collision. We also note that, by convention, t(f0) =
0 > t(f1) and t(fh+1) = 0 > t(fh). Apparently, the time order plays an important
role in this definition.

Definition 4.6. For i ∈ {0, 1, 2, . . . , h} the “contribution” Γi(ej) of an edge ej ∈ Ai

is defined as follows:

Γi(ej) = sign (t(fi) − t(fi+1))
mC

mBi
+ mC

·
[

(v+
Bi

(t(ej)) − v+
C (t(ej))) − (v−Bi

(t(ej)) − v−C (t(ej)))
]

,

where C is the vertex of ej different from Bi.

Here again we adopt the convention of t(f0) = 0 > t(ej) (ej ∈ A0) and t(fh+1) =
0 > t(ej) (ej ∈ Ah). We note that, by the definition of the set Ai, exactly one of
the two possibilities t(fi+1) < t(ej) < t(fi) and t(fi) < t(ej) < t(fi+1) occurs. The
subscript i of Γ is only needed because an edge ej ∈ Ai1 ∩ Ai2 (i1 < i2) has two
contributions at the vertices Bi1 and Bi2 which are just the endpoints of ej.

We are now in the position of formulating the Connecting Path Formula:

Proposition 1. Using all definitions and notations above, the following sum is an
expression for ∆qα(0) − ∆qω(0) in terms of the advances and relative velocities of
collisions:

∆qα(0) − ∆qω(0) =
h

∑

i=1

α(fi)Γ(fi) +
h

∑

i=0

∑

ej∈Ai

α(ej)Γi(ej).

5. Algebro-geometric methods. Now we arrived at the heart of the algebro-
geometric methods.

Step 6. Form of the induction. All experts had agreed that the Boltzmann–
Sinai ergodic hypothesis should be proved by induction on the number of balls

and we also follow this approach. The novelty of the approach is, however,

(6/A) to consider the masses m1, . . . , mN and the (for simplicity, common) radius
r as variables,
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(6/B) and to execute the inductive argument by letting the mass of one, suitably
selected particle converge to 0.

Step 7. Translation to algebraic language: Lifting orbits to euclidean

space. The algebraic structure of the torus is not suitable for our purposes. For to
apply appropriate algebraic tools, we have to lift the trajectories given on the torus
to those in euclidean space.

This can be done without any difficulty. However, there is one important detail
to be taken into account and to keep record of: when an orbit segment gets lifted
to euclidean space, then the lift of a scatterer given on the torus is not unique, in
fact, it can be indexed by vectors of Zν . For avoiding too lengthy technicalities, we
are satisfied by having mentioned this circumstance, but will not introduce further
notations, and from now on we will rather concentrate on the logical structure of
the proof.

To this end, nevertheless, we introduce the following notations: having fixed the
symbolic collision sequence Σ = (σ1, . . . , σn) (n ≥ 1), consider an orbit with this
specific symbolic collision sequence:

{

qk−1
i , vk−1

i | i = 1, . . . , N ; k = 1, . . . , n
}

(here, of course, qk−1
i ∈ Tν). The lifted orbit segment will be denoted then by

{

q̃k−1
i , vk−1

i | i = 1, . . . , N ; k = 1, . . . , n
}

,

where q̃k−1
i ∈ Rν .

Step 8. Calculation of orbit from the initial coordinates. Complexifica-

tion and field extensions. Now the coordinates of the lifted orbit segment can
be calculated step by step from the coordinates x̃ =

{

q̃0
i , v0

i

}

∈ R2νN of the initial
point. Two important remarks: (i) in the forthcoming algebraic arguments one
can forget about the reductions prescribed by the trivial invariants of the motion,
and this is why we so far have been considering the initial phase point in 2νN -
dimensional space; (ii) Since we were taking the mass vector −→m = (m1, . . . , mN)
and the radius r as – also complex – variables the basic variable of our initial field
will be x = (x̃,−→m, r) ∈ R2νN+N+1. The stepwise solution is nothing else than solv-
ing quadratic equations: the initial coordinates determine a line and we have to
determine its intersection with the (lifted) scatterer and afterwards determine the
outgoing velocity vector. Here again there occurs an important difficulty and two
technical ones, too.

The important one: For having an algebraically closed field we should work with
C2νN+N+1 rather than with R2νN+N+1. Therefore we complexify the dynamics.
The advantage is that we can calculate the orbits step by step, though the price to
pay is that we loose geometric intuition.

The technical difficulties will only be mentioned and even not formulated pre-
cisely: (i) to deal with the quadratic equations and extensions as needed, the method
requires some assumptions on the coordinates at each step. These require the ex-
clusion of certain algebraic submanifolds and for executing the procedure we are
describing we should ensure at each step that these assumptions hold; (ii) More-
over, at each step, when the arising quadratic equation is reducible, then we can
select any of the two, algebraically non-conjugate roots, therefore we have to make
a selection and we should also keep record of the selection. Again, by keeping in
mind this circumstance, we will not introduce further notations for this ambiguity.
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In fact, we do not really solve the equations, but rather introduce step by step
quadratic field extensions determined by the subsequent quadratic equations. Any-
way, at the end of the procedure, from the CPFs characterizing the set of non-
hyperbolicity conditions for the given trajectory segment, one obtains a finite set
{Pj(x) | j ∈ J} of polynomials over C2νN+N+1. These polynomials only depend
on the fixed symbolic collision sequence (and as mentioned above: on the selection
of the set of Z

ν lattice vectors when lifting and on the sequence of decisions about
which root to select).

Remark. The procedure of solving these quadratic equations or equivalently of the
subsequent field extensions is completely analogous to the field extensions arising
in the classical theory of geometric constructions by a compass and a ruler.

Step 9. Polynomial equations for non-hyperbolicity. As the result of the
previous procedure we have arrived at the so-called hyperbolicity polynomials of the
orbit segment.

Pseudo-Definition 5.1. The set of polynomials {Pj(x) | j ∈ J} is called the
hyperbolicity polynomials of the orbit segment.

The reader can already guess that the following statement is true. Since we do
not formulate it in a technical way, we will call it (and other similar statements to
come) a pseudo-Theorem.

Pseudo-Theorem 5.2 (dichotomy corollary). Given a symbolic collision sequence
(and the other parameters, decisions described above), either at least one hyperbolic-
ity polynomial does not vanish identically, and then the phase points with the given
collision structure are sufficient (except perhaps a proper algebraic subvariety), or
every phase point with the given collision structure is non-sufficient.

(for the precise statement cf. Corollary 4.7 of [25]).

6. Hyperbolicity of typical hard ball systems. Denote by R0 := R0(N, ν, L)
the interval of those values of r > 0, for which the interior IntM = IntQ× E of the
phase space of the standard billiard ball flow is connected.

Our aim now is to sketch the proof of

Theorem 6.1 ([25]). For N ≥ 2, ν ≥ 2 and r ∈ R0, none of the relevant Lya-
punov exponents of the standard billiard ball system (M, {SR}, µ)~m,r vanishes —
apart from a countable union of proper analytic submanifolds of the outer geometric
parameters (~m; r) ∈ R

N+1
+ .

We note that this proof does not use the local ergodicity theorem so we do not
have to worry about the Chernov–Sinai Ansatz either.

Step 10. Inductive lemma about sufficiency. For preparing the induction we
formulate a simple statement which is, heuristically at least, not much surprising
and is utmost important.

Consider a symbolic collision sequence: Σ = (σ1, . . . , σn) (n ≥ 1) and assume
that the N -th particle is “infinitely light” compared to the others, i.e. suppose that
mN = 0 but m1 · · · · · mN−1 6= 0.

Pseudo-Lemma 6.2. Suppose that mN = 0 and m1 · · · · · mN−1 6= 0. Assume
further that there exist indices 1 ≤ p < q ≤ n such that N ∈ σp, N ∈ σq and
N /∈ σj for j = p + 1, . . . , q − 1. Then an orbit segment with the fixed collision
sequence is sufficient (i.e. dimC N (ω) = ν + 1) if
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(1) the {1, 2, . . . , N − 1}-part
{

q̃k
i (ω), vk

i (ω), | i = 1, . . . , N − 1; k ∈ IN

}

of the orbit segment is sufficient as an orbit segment of the particles 1, . . . , N−
1 and

(2) the relative velocities vp
N (ω) − vp

ip
(ω) and vq−1

N (ω) − vq−1
iq

(ω) are not parallel.

(Here ip(iq) is the index of the ball colliding with the N -th particle at σp(σq),
and the index set IN ⊂ {0, 1, . . . , n} contains 0 and those indices i > 0 for which
N /∈ σi.)

(for the precise statement cf. Lemma 4.9 of [25]).

Step 11. Combinatorial lemma for richness. The next, purely combinatorial
lemma is the last ingredient of the inductive proof of the key lemma.

Lemma 6.3. Define the sequence of positive numbers C(N) recursively by taking
C(2) = 1 and C(N) = N

2 · max {C(N − 1); 3} for N ≥ 3. Let N ≥ 3, and suppose
that the symbolic collision sequence Σ = (σ1, . . . , σn) for N particles is C(N)-rich.
Then we can find a particle, say the one with label N , and two indices 1 ≤ p < q ≤ n
such that

(i) N ∈ σp ∩ σq,

(ii) N /∈
⋃q−1

j=p+1 σj,

(iii) σp = σq =⇒ ∃j p < j < q & σp ∩ σj 6= ∅,

and

(iv) Σ′ is C(N − 1)-rich on the vertex set {1, . . . , N − 1}.

Here we denote by Σ′ the symbolic sequence that can be obtained from Σ by
discarding all edges containing N .

Step 12. Pseudo-induction. Now we can give our pseudo-arguments for proving
the following

Pseudo-Theorem 6.4. There exists a positive number C(N) (depending merely
on the number of balls N ≥ 2) with the following property: If a symbolic sequence
Σ = (σ1, . . . , σn) is C(N)-rich, then dimC N (ω) = ν + 1 (i.e. the trajectory is
sufficient) for almost every phase point x ∈ C2νN+N+1. The real version of this
result is also valid.

(cf. Key Lemma 4.1 in [25]).

Pseudo-Proof of Pseudo-Theorem 6.4. First we treat the complex version.
The key ingredients of the proof are now collected, and we can sketch the proof.
Assume that the statement is true for all C(N −1)-rich symbolic collision sequences
of (N − 1) balls. Select C(N) as indicated by Lemma 6.3. Assume on the contrary
to the statement that there exists a C(N)-rich symbolic collision sequence Σ =
(σ1, . . . , σn), such that all its hyperbolicity polynomials (cf. Pseudo-Definition 5.1)
identically vanish. Then select the ball N according to Lemma 6.3. By substituting
mN = 0 we obtain the hyperbolicity polynomials {Pj(x)mN =0 | j ∈ J} of the system
of balls 1, 2, . . . , (N − 1) that also vanish. But, because of Lemma 6.3, the reduced
symbolic collision sequence of the system of balls 1, 2, . . . , (N − 1) is C(N − 1)-rich
and we arrive at a contradiction.

Finally, since a nonzero polynomial Pi(~x) (1 ≤ i ≤ s) takes nonzero values almost
everywhere on the real space R2νN+N+1, we immediately obtain the validity of the
real version of the statement. � �
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7. Ergodicity of typical hard ball systems. The statement of Theorem 6.1 got
improved in 2004 by N. Simányi, who could establish the Boltzmann–Sinai ergodic
hypothesis, in general, for typical parameters.1

Theorem 7.1 ([22]). For N ≥ 2, ν ≥ 2 and r ∈ R0, the standard billiard
ball system (M, {SR}, µ)~m,r is ergodic and completely hyperbolic — apart from a
countable union of proper analytic submanifolds of the outer geometric parameters
(~m; r) ∈ R

N+1
+ .

The idea of the proof uses the fact that for a family of polynomials not to have a a
non-trivial common divisor is equivalent to the property that the common solution
set of the polynomials has topological codimension at least two. Thus our goal is
to show that the hyperbolicity polynomials do not have any non-constant common
divisor. The basic observation the proof of the theorem is based upon is elementary.

Lemma 7.2 ([22]). The hyperbolicity polynomials {Pj(x) | j ∈ J} are homoge-
neous in the masses m1, . . . , mN , and consequently, any common divisor of these
polynomials is also homogeneous in the masses.

The combinatorial Lemma 6.3 now gets replaced by a bit stronger lemma.

Lemma 7.3. Define the sequence of positive numbers C(N) recursively by taking
C(2) = 1 and C(N) = N

2 ·(2C(N − 1) + 1) for N ≥ 3. Let N ≥ 3, and suppose that
the symbolic collision sequence Σ = (σ1, . . . , σn) for N particles is C(N)-rich. Then
we can find a particle, say the one with label N , and two indices 1 ≤ p < q ≤ n
such that

(i) N ∈ σp ∩ σq,

(ii) N /∈
⋃q−1

j=p+1 σj,

(iii) σp = σq =⇒ ∃j p < j < q & σp ∩ σj 6= ∅,

and

(iv) Σ′ is (2C(N − 1) + 1)-rich on the vertex set {1, . . . , N − 1}.

Here we denote by Σ′ the symbolic sequence that can be obtained from Σ by
discarding all edges containing N .

Again, we dismiss talking about — not easy — technical details, nontheless, we
recall Simányi’s key lemma revealing the main new element of his approach.

Pseudo-Theorem 7.4 ([22]). There exists a positive number C(N) (depending
merely on the number of balls N ≥ 2) with the following property: If a symbolic
sequence Σ = (σ1, . . . , σn) is C(N)-rich, then dimC N (ω) = ν+1 (i.e. the trajectory
is sufficient) apart from an algebraic variety of codimension at least two, in other
words the hyperbolicity polynomials {Pj(x) | j ∈ J} do not have a non-constant
common divisor.

Pseudo-proof. If, on the contrary, for some C(N)-rich collision sequence the claim
does not hold, then there exists a non-constant polynomial Q(x) such that ∀jQ(x) |
Pj(x). Then choose again the ball N by the combinatorial Lemma 7.3 and put mN =

0. For a polynomial R(x) denote R̃(x(N)) = R(q̃i, vi; i = 1, . . . , N ; m1, . . . , mN−1,

mN = 0). Of course, ∀jQ̃ | P̃j . We claim that Q̃ 6= const. If it were, then we would
have Q = c + mNQ∗. c 6= 0 is impossible since then Q were not a homogeneous
polynomial contradicting to Lemma 7.2. However, if c = 0, then the polynomials

1For his work [22] Nándor Simányi was awarded the 2004 Prize of Annales Henri Poincaré.
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Pj have a common divisor mN , i. e. mN = 0 alone implies non-sufficiency, which
statement can be easily falsified by a constructive dynamical argument. �

8. Cylindrical billiards. Cylindric billiards, a much interesting subfamily of semi-
dispersing billiards were introduced in 1992 in my paper [27]. Cylindric billiards
are interesting for,

on one hand, they contain hard ball systems, a fundamental model from the
aspects of statistical physics and a much beautiful one, we believe, from the point
of view of mathematics; and

on the other hand, this is apparently the widest subclass of semi-dispersive bil-
liards where the search for transparent necessary and sufficient conditions of ergod-
icity is promising.

Indeed, in [27], it was conjectured that such a condition only depends on the
generator subspaces of the scatterers-cylinders. Also, such a condition: there exists
at least one sufficient trajectory got formulated in [27]. A constructive form of such
a condition was conjectured in [26]: This condition requires that the action of a
Lie-subgroup G of the orthogonal group SO(d) (d being the dimension of the billiard
in question) be transitive on the unit sphere Sd−1. If C1, . . . , Ck are the cylindric
scatterers of the billiard, then G is generated by the embedded Lie-subgroups Gi of
SO(d), where Gi consists of all transformations g ∈ SO(d) of Rd that leave the
points of the generator subspace of Ci fixed (1 ≤ i ≤ k). It is worth mentioning
that Gi is nothing else than the full rotation group around the axis subspace of the
cylinder Ci.

2

In their paper, the authors showed that

(1) this condition is necessary for ergodicity,
(2) and cylindric billiards isomorphic to hard ball systems satisfy this condition;

consequently, the conjecture is stronger than the Boltzmann–Sinai ergodic
hypothesis.

9. Results for every hard ball system. In [21], Simányi proved hyperbolicity
for cylindric billiards satisfying some additional conditions beyond the transitivity
one. In particular, his theorem implies the following improvement of Theorem 6.1:

Theorem 9.1. Every hard ball system is completely hyperbolic.

Recall that the proof of hyperbolicity does not use the local ergodicity theorem,
and is consequently independent of establishing the Chernov–Sinai Ansatz. Now,
— for me unexpectedly — at present the final verification of the Boltzmann–Sinai
ergodic hypothesis hangs on the Chernov–Sinai Ansatz. Concretely, Simányi, [23]
has recently shown

Theorem 9.2 ([23]). For N ≥ 2, ν ≥ 2, the standard billiard ball system
(M, {SR}, µ)~m,r is hyperbolic and ergodic for every value of the outer geometric
parameters (~m; r) ∈ RN

+ × (0, R0) if we assume that the Chernov-Sinai Ansatz (see
Condition 2 above) holds true for the standard billiard ball system and all its sub-
systems.

One can only hope that soon there will be a non-hypothetical, final proof of the
Boltzmann–Sinai ergodic hypothesis.

2The authors called the conjecture based on this condition the Erdőtarcsa Conjecture, in honor
of the village, where a mansion belonging to the Hungarian Academy of Sciences is situated; the
authors found this condition and the results of [26] during their work there.
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[6] P. Bálint, N. Chernov, D. Szász and I.P. Tóth, Multi-dimensional Semi-Dispersing Billiards:

Singularities and the Fundamental Theorem, Annales Henri Poincaré, 3 (2002), 451–482.
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