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Abstract. Consider a nice hyperbolic dynami-
cal system (singularities not excluded). Statements
about the topological smallness of the subset of or-
bits, which avoid an open subset of the phase space
— for every moment of time, or just for a not too
small subset of times — play a key role in showing hy-
perbolicity or ergodicity of semi-dispersive billiards,
in particular, of hard ball systems. Beside surveying
the characteristic results, called ball-avoiding theo-
rems, and giving an idea of the methods of their
proofs, their applications are also illustrated. Fur-
ther we also discuss analogous questions (which had
arisen, for intance, in number theory), when Haus-
dorff dimension is taken instead of the topological
one. The answers strongly depend on the notion
of dimension which is used. Finally, ball avoiding
subsets are naturally related to repellers extensively
studied by physicists. For the interested reader we
also sketch some analytic and rigorous results about
repellers and escape times.
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1. INTRODUCTION.

The seminal work of Chernov and Sinai [S-Ch(1987)] not only established the K-
property of dispersive billiards in the general, multidimensional case, but — through
their Theorem on Local Ergodicity for semi-dispersive billiards — also opened the
possibility to think about showing the K-property of semi-dispersive billiards . In-
deed, by using this fundamental tool, in 1989, A. Kramli, N. Simanyi and the
present author [K-S-Sz(1989)] could first show the K-property of a billiard , which
was semi-dispersive but not dispersive . Our method, which has later been further
developed in a series of works (for a survey of the results see [Sz(1996)]), consists of
three essential parts using dynamical-topological, geometric-algebraic, and finally
dynamical-measure-theoretic tools, respectively. The dynamical-topological meth-
ods of these proofs are distilled in so-called ball-avoiding theorems, whose content
we are just going to formulate, and which will be the content of this survey.

Assume (M, F, SR+, 1) is a semigroup of endomorphisms (or (M, F, S¥, i) is a
group of automorphisms) of a probability space (M, F, ). For formulating topo-
logical statements, we will, in general, assume that M is a Riemannian manifold
with or without boundary. Most of our methods will use some hyperbolicity and/or



May 26, 1999 3

mixing properties of the dynamics involved. Fix an arbitrary subset H of Ry (or of
R) and a subset B C M. For B and H given in this way, the ball-avoiding subset
Ag(B) C M is defined as follows:

Ag(B)={zeM: SHzn B =0}.

In words, it consists of phase points whose orbits avoid the subset B in prescribed
moments of time (B, in general, need not be a ball, but often it is, and the term ball-
avoiding already has traditions). If B is not too small, e. g. it is open, then Ay (B),
as a collection of nontypical trajectories, is expected to be small. Ball-avoiding
theorems claim that, by assuming that B is not very small and H is unbounded
(or semi-unbounded, at least), Ay (B) is small in a well-defined sense (i. e. its
topological codimension is at least one or two, and, moreover, u{Ag(B)} = 0) —
under weaker or stronger assumptions on the hyperbolic and/or ergodic behaviour
of the dynamics. It is worth stressing that, though some general results have only
been formulated for semi-dispersive billiards, their validity is wider: they are true
for a class of ‘hyperbolic’ systems with singularities possessing a smooth invariant
probability measure.

If M is a separable and metrizable space, then let {B; : i =1,2,...} be a basis
of the topology in M (then each Ag(B;) is closed provided that the group S® is
continuous). Denote

(1.1) ND:= {z € M: S®z is not everywhere dense in M}

Plainly, ND = U;(Ar_(B;) N Ar, (B;)). 1f one shows that each Ag_(B;) N Ag, (B;)
is a zero-measure subset of codimension two, then N D will necessarily be slim (for
the definition see section 3), i. e. topologically small.

Though the question, ball-avoiding theorems answer, is natural, in this form
they seem to have not been treated before [K-S-Sz(1989)] . In the particular case
H =R the set Ag(B) is an invariant subset. These sets were used by Smale (cf.
[H(1970)]) and later by others to analyze possible dimensions of compact, proper
invariant subsets of a hyperbolic diffeomorphism. The difference between their
treatment of the problem and between ours reflects the very difference between
smooth (Anosov) systems and those with singularities. On the other hand, there is
a very active and interesting direction of research investigating, in particular, the
same subsets N D from a different point of view. These results generalize a classical
theorem of Jarnik, [J(1929)] and of Besicovitch, [B(1934)] claiming that the set of
badly approximable (or Diophantine) numbers in the interval [0, 1] has Hausdorff
dimension 1. The typical result then claims that the Hausdorff-dimension of the
subset ND is maximal, i. e. agrees with dim M. In other words, despite the fact
that these orbits are non-typical, nevertheless, the Hausdorff-dimension does not
sense this atypicality.

Also, in the last years physicists got interested in open systems, e. g. in open
billiards, which actually live on a ball-avoiding subset of the phase space of a closed
billiard. As a consequence, these systems got also investigated from the mathe-
matical point of view. Since the interest of their authors was different from ours
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(cf. [Ch-M-T(1998)]) we will be satisfied to give a brief account of their main
characteristic results.

This work is partitioned into three parts. In the first one, consisting of sections
2-5, the simplest ball-avoiding theorems are presented: a weak one in section 2, and
— after a brief summary of some useful notions from topological dimension theory
given in section 3 — some strong ones in sections 4 and 5. In the second part,
consisting of sections 6 to 9, first the relevance of ball-avoiding theorems for hard
ball systems is explained. Then various forms of them are surveyed. Our additional
aim is to present the different methods used in their proofs, or at least to hint to
them, and to also collect the most interesting open problems. Finally, in Part III
some related directions mentioned above are reviewed.

I. Weak and Strong Ball-Avoiding Theorems
2. AN (ABSTRACT) WEAK BALL-AVOIDING LEMMA

Let (M, F,S®+, 1) be a semigroup of endomorphisms of a probability space
(M, F, ). Fix an arbitrary subset H of Ry satisfying sup H = +oo.

Lemma 2.1 [K-S-Sz(1989)] . If the semigroup S®+ is mizing, then, for any
B € F with u{B} > 0, one has

w{An(B)} =o.
Since the proof is extremely simple, it will be presented below.

Proof. Denote
AL (B) :={z e M: SO Iz B =@},

Then, on one hand,

(22) p{Ag(B)} N n{Au(B)}
if 7 — 0o0. On the other hand, for every t € H, we have
(2.3) {AL(B)N{S*z ¢ B}} > n{An(B)}

Then, by mixing and (2.2), (2.3) leads to
lim =~ lm p{AL(B)N{S'z ¢ B}} = p{An(B)}u{B} > n{Au(B)}

T—>00 t—00,tE

implying u{Ag(B)} =0 for u{B} > 0. O

Remark. Any irrational rotation of R/Z serves as an example of an ergodic auto-
morphism for which the claim of the Lemma is not valid. Different is the situation
if H = R since then ergodicity is, of course, sufficient to imply u{Ag(B)} = 0.

Remark. The proof of the Lemma immediately implies that its analogue for
discrete time semigroups T2+ is also true.
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3. SIMPLE FACTS FROM TOPOLOGICAL DIMENSION THEORY

Here we briefly summarize some necessary notions and facts from topological
dimension theory (for details see [E(1978)] or [H-W(1941)]).

Assume first, in general, that X is a separable metric space. We will denote
dim X the small inductive topological dimension of X whose recursive definition
will just be recovered.

Definition 3.1.
(i) dim X = —1 if and only if X = (;
(ii) dim X < n if and only if there exists a basis U of open neighbourhoods for
X such that for every U € U one has dimoU <n—-1 (n=0,1,2,...);
(iii) dim X = n if and only if dim X < n and it is not true that dim X <n — 1.

Definition 3.2. If A C X, and for some natural number k one has dimA <
dim X — k, then we say that the topological codimension of A in X is at least k (or
often we briefly say that the topological codimension is k).

From now on we assume that M is a connected, smooth manifold (boundary
permitted) and p is a smooth measure on M.

Proposition 3.3. For any A C M, dimA < dimM — 1 (in other words, the
topological codimension of A in M is at least 1) if and only if IntA = ().

Proposition 3.4. If FF C M is closed, then the following statements are equivalent:
(i) codimpg F' > 2;

(ii) F # M and, for every open connected set G C M, the difference set G\ F
18 also connected;

(iii) Int F = 0 and for every point x € M and for any neighborhood V' of x in
M there exists a smaller neighborhood W C V' of the point x such that, for
every pair of points y,z € W \ F, there is a continuous curve -y in the set
V \ F connecting the points y and z.

For the main applications of strong ball-avoiding theorems we need another con-
cept of topological smallness closely related to being of codimension two (this will
be clear from the content of section 5).

Definition 3.5 [K-S-Sz(1989)] . We say that A C M is a slim subset if and
only if it is the subset of an F, zero-set of codimension at least two (A is a zero-set

if p{A} =0).
By their definition, slim subsets of M form a o-ideal. The key property of slim
subsets is expressed by the following

Proposition 3.6 [K-S-Sz(1989)] . IfM is connected, and A is slim, then M\ A
contains an arcwise connected Gs-set of full measure.

In applications, in particular in the inductive arguments, the following integra-
bility property of codimension two subsets is often very useful.
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Proposition 3.7 [K-S-Sz(1989)]. If M = N; x Ny, where Ny and No are
connected smooth manifolds, and F C M 1is a closed subset such that, for every
w € Ny, the (closed) section F, := {p € No: (w,p) € F} obeys

codimn, F,, > 2,

then
codimpg F' > 2.

4. THE SMALE-WILLIAMS THEOREM FOR ANOSOV-DIFFEOMORPHISMS

Assume M is a smooth Riemannian manifold and 77 : M — M is an Anosov
C'-diffeomorphism. Smale and Williams (see [H(1970)]) proved the following nice
theorem.

Theorem 4.1. Assume that the set of periodic points of T is dense in M. If F is
a compact invariant subset of M satisfying codimyg F' > 1, then codimyg F > 2.

The combination of Theorem 4.1 with our weak Lemma 2.1 provides a strong
ball-avoiding statement for smooth systems:

Corollary. For any B # ) C M open, Az(B) is a closed set of topological codi-
mension is at least two.

Proof of the Corollary. Topological transitivity, the invariance of Az(B), and the
openness of B imply that IntAz(B) # 0. Proposition 3.3 then proves the claim.

g

Proof of Theorem 4.1. Throughout the whole paper we will denote by {v°} and
{7"} the invariant foliations defined by the dynamics in question, and by 2 (z) and
~v%(x) the local invariant manifolds of size € through the point z.

Denote by P the set of periodic points of M \ F. We use the following simple
statements:

Claim 1. P is dense in M.
Claim 2. If z € P, then y*(z) N F =*(z) N F = (.

These claims easily provide the truth of the Theorem. Indeed, let ¥y € F' and
choose € > 0 small. The foliations {y*}, {v°} define a local product structure
and using it we can consider a parallelogram v*(y) x v3(y). Moreover, we define
Fo = Fn (v*(y) x v:(y)). By Claim 2, for any = € P, (v*(z) U~%(z)) N F = 0,
and, consequently, Fo C (72(y) \ Uzer7®(2)) X (72(¥) \ Uzepy* ().

Claim 1 and Proposition 3.3 then say that the factors of the previous product
set have codimension at least one each. Hence the Theorem follows by the product
theorem (cf. Theorem III.4 of [H-W(1941)]).

Let us now prove Claim 1. Take an arbitrary open subset G of M. The open
set G\ F is not empty for otherwise we would have dim F' = n. Since P was dense
in M\ F, we also have (G\ F)NP # 0.
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Turn next to Claim 2. We prove v*(z) N F = () for an arbitrary z € P. Assume
TPz = z. Select an open neighbourhood G of z disjoint from F'. By invariance,
(UnezT™G) N F = (). Now for any y € v*(z) p(T*Py,z) — 0 if kK — oo, and thus,
for k sufficiently large, T*Py € G implying y ¢ F.

O
Remark 4.2. After the aforementioned result, the study of compact invariant
subsets was continued — among others by Franks [F(1977)], Hancock [H(1978)]
and Mané [M(1978)]. Since the sets Ar(B) provide natural examples of compact,
invariant subsets — in fact, all compact invariant subsets are of this form —, this
description has been used by several authors. In particular, for every 0 < k < d—2,
Przytycki [P(1980)] found examples of sets By such that dim Ag(Bg) = k.

5. A STRONG BALL-AVOIDING THEOREM FOR HYPERBOLIC
SYSTEMS (WITH OR WITHOUT SINGULARITIES)

For simplicity, we formulate the theorem for discrete time groups (M, F, TZ, i) of
hyperbolic systems since the generalization to continuous time is straightforward.
Our setup is that M is a compact C'°°-manifold and g is a smooth, invariant
probability measure. We also want to permit singularities as it is done in [L-
W(1995)] or in [Y(1998)] or in [Ch(1998)]. For saving space, we do not list the
conditions formulated in these works since we only use some standard consequences
of them. Namely: the p-a. e. existence of the local invariant manifolds and the
absolute continuity of the canonical isomorphism between them, and further the
simple fact that if in case of singularities we define trajectory branches as it is
described, for instance, in 7777, then can always be considered continuous on these
trajectory branches. On the other hand, the kind of hyperbolicity needed will be
implicitly ensured by our assumptions. Start with the corresponding definition.

Definition 5.1. A point x € M is called a zigzag point if one can find arbitrary
small open neighbourhoods U of x such that for every zero-set A C M there exists
another zero-set A' O A with the property: for every y,y' € U\ A’ there exists a
chain (also called Hopf-chain)

’Yl%c(zﬂ)ﬂ ’Ylsoc(zl)v ’Yl%c (21)7 ’)/ISOC(Zz), KR ’Yl’lf)c(zn—l)7 ’Ylsoc (Zn)

(here zg = y, zn = y') of local unstable and stable invariant manifolds inside U such
that each intersection
’quf)c(z’i) ﬁ'Ylsoc(z’i-i-l) (7’ =0,...,n— 1)
and
'7lsoc(zi)ﬂ711(L)c(zi) = {Z’L} (Z: 1,...,n—1)
consists of exactly one point belonging to U \ A’.

The following theorem generalizes Lemma 4.3 of [K-S-Sz(1989)] , and its proof
is also based on its ideas.
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Theorem 5.2. Assume that
(i) the group (M, F,T%, i) is mizing;
(ii) for the subset Z of zigzag points of M, M\ Z is slim;
(iii) B # 0 (C M) is open;
(iv) H (C Z) satisfies sup H = —inf H = oc.

Then Ag(B) (C M) is a closed zero-set of codimension at least two.

Remark 5.3. For the first glance, condition (ii) of Theorem 5.2, as formulated,
might seem too restrictive, but, fortunately, this is not the case. In the case of
hyperbolic systems with singularities, with billiards included (cf. [L-W(1995)]), the
singularities, to be denoted by S (in other words the set of points where T or 71
is not smooth) form one-codimensional submanifolds of the phase space. Let us
denote

A, = U_n<k<i<n (TkS N TlS)

further

and
M?:= M\uX _T*S.

Then, as one can see, for instance in [K-S-Sz(1990)] , for our main model: semi-
dispersive billiards, in general, the zigzag property holds not only for sufficient
points of My, but also for those of M* and, in the interesting cases, M \ M* has
codimension at least two.

Proof. 1. By definition, Ay (B) is closed once B is open.
2. Denote the inner radius of B by r and choose a ball B C B such that
d(B, B®) > r/2. Define

D:={zeM: p»*(z) >0 and inf{ne€ H: T"z € B} = —
and sup{n € H: T"z € B} = co}.

Here p**(z) denotes the inner radius of the local unstable (stable) invariant mani-
fold v*(x) (v*(x)) through z. By (ii) and Lemma 2.1 (this presupposes (i)) we have
p{D} = 1.

3. Since, by (ii), non-zigzag points make a slim subset, by Lindel6f’s theorem, it
is sufficient to check that every zigzag point z has a neighbourhood U = U(z) such
that Ag(B) N U is slim. This is what we do. Fix thus z and its neighbourhood
according to Definition 5.1 in such a way that diam U < r/2. To A = U\ D
select A D> A according to the same definition. We claim that every pair of points:
y,y' € U\ A can be connected by a curve belonging to U \ Ag(B). Since Ay (B)
is closed, both y and y’ have neighbourhoods in U disjoint of Ay (B). Also, since
U\ A is dense in U, we can choose 7 and ' (€ U\ A) in these neighbourhoods and
connect y with 3 and analogously ¥y’ with ¢’ inside these tiny neighbourhoods not
intersecting Ag(B).
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Connect now ¢ and %' with a Hopf-chain ensured by Definition 5.1. Since
diam U < r/2, we know that the outer diameters of all local manifolds figuring
in the chain are < r/2. Observe that the property that the intersection points w
belong to U \.;1 ensures that they belong to D. This implies that for infinitely many
n € HNZ, one has T"w € B. Then for n large enough, T™v*(w) C B holds, too,
implying that v*(w) N Ag(B) = 0. Analogously, for the unstable local manifolds
figuring in the chain we have y*(w) N Ag(B) = () and thus the desired connection
between g and ' is, indeed, constructed. [

Remark. Compare Theorem 5.2 with the Corollary of the Smale-Williams The-
orem 4.1. Instead of requiring the density of periodic points we have a smooth,
invariant and mixing measure. Furthermore, we also permit singular systems, and
our assumption on H is much weaker, for it can even have zero density.

An immediate consequence is the following

Corollary. Assume that (M, F, S®, 1) is a group of automorphisms satisfying the
conditions of Theorem 5.2 suitably modified to the continuous time case (in par-
ticular, H C R, and otherwise satisfies the same assumtions). Then Ag(B) is a
closed zero-set of codimension at least two.

By copying this proof one can give a simple generalization of Theorem 5.2, which
will be applied in section 6. Namely, let B_, B, (C M), and define

Ag(B_,By):={zeM: SH-znB_=S"*znB, =0}

where H_ := HNR_ and Hy := HNRy

Theorem 5.4. Assume that beside (i), (ii) and (iv) of Theorem 5.2, the following
condition is satisfied

(i53)* B_ # 0 and By # () (C M) are open;

Then Ag(B_, By) is a closed zero-set of codimension at least two.

Proof. The same as that of Theorem 5.2 with the natural modification that now
we select B_ C B_ and By C By in such a way that d(B—,B_) > r/2 and
d(B+,By) > r/2, and define

D:={zreM: p»*(z)>0andinf{ne H: T"z € B_} = —c0
andsup{n € H: Tz € B,} = co}.



May 26, 1999 10

11. Ball-Avoiding Theorems and Hyperbolic Properties
6. HYPERBOLIC AND ERGODIC PROPERTIES OF HARD-BALL SYSTEMS

ISOMORPHY TO SEMI-DISPERSIVE BILLIARDS

The main aim of this section to provide a motivation and explanation how ball-
avoiding theorems enter in proofs of hyperbolicity and ergodicity of hard-ball sys-
tems, or more generally, of semi-dispersive billiards . Consequently, in our exposi-
tion the details are surrendered to this goal.

Let us assume, in general, that a system of N (> 2) balls of unit mass and of radii
r > 0 are given on T”, the v-dimensional unit torus (v > 2). (The assumption that
the masses and the radii are identical is not an essential restriction for our purposes.)
Denote the phase point of the ¢'th ball by (g;,v;) € TY x R”. The configuration

space Q of the N balls is a subset of TV from TV we cut out (g ) cylindric
scatterers

(6]—) Cz,] = {Q = (q17' 7QN) € TN'V : ||qz - QJ“ < 2T}7

1<i<j<N. Theenergy E = 3 lev v? and the total momentum P = Zjlv v; are
first integrals of the motion. Thus, without loss of generality, we can assume that
E = % and P = 0 and, moreover, that the sum of spatial components B = Zjlv q;
is equal to 0 (if P # 0, then the center of mass has an additional conditionally
periodic or periodic motion). For these values of E, P and B, the phase space of

the system reduces to M := Q x S%1 where
. ) N
Q:= {Q € Q\UicicjenCij: Y ai= 0}
1

and d := dimQ = N - v — v (here S* denotes, in general, the k-dimensional unit
sphere). It is easy to see that

Propostition 6.2. The dynamics of the N balls, determined by their uniform
motion with elastic collisions on one hand, and the billiard flow {S* : t € R} in Q
with specular reflections at 0Q on the other hand, are isomorphic and they conserve
the Liouville measure dy = const - dq - dv. (Thus both dynamics can be denoted by
(M, S¥, dp).)

We recall that a billiard is a dynamical system describing the motion of a point
particle in a connected, compact domain Q € R? or Q ¢ T¢ = Tor?, d > 2 with
a piecewise C2-smooth boundary. As usual, the phase space M of the system is
identified with the unit tangent bundle over Q. In other words, the configuration
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space is Q while the phase space is M = Q x S9!, The natural projections
7:M — Qand p: M — 8! are defined by 7(q,v) = ¢ and by p(q,v) = v,
respectively. The billiard dynamical system (M, S®, i), where p is the Liouville-
measure, is called the standard billiard flow. If it is isomorphic to a hard ball
system in the sense of Proposition 6.2, then it is called the standard hard ball flow
or standard billiard ball flow.

Suppose that 0Q = UY9Q; where 0Q; are the smooth components of the bound-
ary. Denote 0M = 0Q x S9~! and let n(q) be the unit normal vector of the bound-
ary component 0Q; at ¢ € 0Q; directed inwards Q. (In billiards, isomorphic to
hard ball systems, the scatterers are convex cylinders if N > 3, and are (strictly
convex) balls if N = 2).

Definition 6.3. We say that a billiard is dispersive if each 0Q; is strictly convex,
and we say it is semi-dispersive if each 0Q; is convex.

LOCAL ERGODICITY OF SEMI-DISPERSIVE BILLIARDS

Our next aim to introduce the notion of sufficiency, basic for the study of semi-
dispersive billiards . Assume that S!*blz is a finite trajectory segment of a semi-
dispersive billiard , which is regular, i.e. it avoids singularities. Let S°z = (Q,V) €
M and consider the hyperplanar wavefront T'(S%z) := {(Q+dQ, V) : dQ small € R

and (dQ,V) = 0} (indeed, 7(I") is part of a hyperplane).

Definition 6.4 [S-Ch(1987)] . We say that the trajectory segment Sz is
sufficient if w(S°T) is strictly convex at S°z. A phase point x € M is sufficient if
its entire trajectory is sufficient (i.e. it contains a sufficient trajectory segment).

We note that, for semi-dispersive billiards , the tangent vectors of convex orthog-
onal manifolds (cf. [K-S-Sz(1990)]) form an invariant cone field in the tangent space
of M in the sense of [W(1985)] . Then the sufficiency of an € M is equivalent
to saying that the cone field along the orbit S®z is eventually strictly invariant in
the sense of [W(1985)] . Simple geometric considerations (cf. [K-S-Sz(1990)]) show
that a sufficient trajectory segment generates an expansion rate uniformly larger
than 1 in some neighbourhood of the point S%x.

By using Poincaré recurrence and the ergodic theorem, it is easy to prove

Lemma 6.5 [S-Ch(1987)] . If x € M is sufficient, then there ezists an open
neighbourhood U C M of x such that the relevant Lyapunov exponents of the system
are not zero p—almost everywhere inU. (In case of singular orbits, we only consider
neighbourhoods in the phase spaces of the corresponding trajectory branches.)

In other words, in this neighbourhood, the system is hyperbolic. A very deep
and delicate result is

Theorem 6.6 Local Ergodicity of Semi-Dispersive Billiards
[S-Ch(1987)] . Assume that a semi-dispersive billiard satisfies some geometric
conditions and the Chernov — Sinai ansatz, a condition strongly connected with the
singularities of the system (the conditions are formulated in detail in
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[K-5-52(1990)] ; also, for a generalization to hyperbolic symplectomorphisms with
singularities, see [L-W(1995)]).

If x € M* is a sufficient point, then it has an open neighbourhood U, which
belongs to one ergodic component.

If almost every phase point of a semi-dispersive billiard is sufficient, then, of course,
it may have at most a countable number of ergodic components. In some cases it is
not hard then to derive the global ergodicity of the system, i.e. to show that there
is just one ergodic component in the phase space. A much important consequence
is thus the following

Corollary [S-Ch(1987)]. Fvery dispersive billiard is ergodic, and, moreover, is
a K-flow. In particular, the system of N = 2 balls on the v-torus is a K-flow if
r<g.

RICHNESS OF A SYMBOLIC COLLISION SEQUENCE

Consider a semi-dispersive billiard . M* will denote the set of phase points
whose orbits contain not more than one is singular collision, and M? the set of
phase points with no collision at all. M° C M* \ M? will be the subset of regular
phase points, and finally we set M' := M*\ (M°UM?). Moreover, SR C oM will
denote the collection of all phase points x € OM for which the reflection, occurring
at x, is singular (tangential or multiple) and, in the case of a multiple collision,
is supplied with the outgoing velocity V. We remind the reader that a trajectory
segment Stz is called regular (or non-singular) if it does not hit singularities (
Slably N SRT = ).

Definition 6.7. Consider a non-singular trajectory segment S\*tlz, —co < a <
b < oo,z € M. Assume that during the interval [a,b] the orbit hits the boundary
0Q in times a < ty,...,ty, < b (i. e. forVi: 1 <i<n Stz e 0Qji, and if
t#t; (1 <i<mn)butt € [a,b], then Sz ¢ 0Q). Then the symbolic collision
sequence ¥ = (01,...,05) of the orbit segment is (j(1),...5(n)). (If the trajectory
hits one or several singularities, then, of course, there is a finite number of such
sequences since every trajectory branch has its own symbolic collision sequence.)

In applications one usually defines a combinatorial property, called richness, for
symbolic sequences of orbit segments. The usefulness of such a notion will be clear
from Key Lemmas 6.9 and 6.10 and Theorems 6.12 and 6.16, valid for hard ball
systems, where the definition of richness is actually very clear and simple.

Since, as said above, hard ball systems are isomorphic to billiards where the
scatterers are the cylinders (6.1), the symbolic collision sequence of an orbit is, in
this case, a sequence X2 = (071, ...,0,) of “colliding pairs”, i. e. o = {ik, jx } when-
ever Q(t,) = w(S*z) € 8C;, j,. The sequence ¥ := %(Stly) := (01,09,...,0,)
is called the symbolic collision sequence of the trajectory segment Sl

Definition 6.8 [S-Sz(1995)] . We say that the symbolic collision sequence Y. =
(01,...,04) is connected if the collision graph of this sequence:

gE — (v = {1,2, .. .,N},gg = {{Zka]k} : where O = {Zka]k}a 1< k < n})
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s connected.

We say that the symbolic collision sequence ¥ = (01,...,0,) is C-rich, with C
being a natural number, if it can be decomposed into at least C consecutive, disjoint
collision subsequences in such a way that each of them is connected.

THE ROLE OF BALL-AVOIDING THEOREMS IN
PROVING HYPERBOLICITY OR ERGODICITY

The definition of C-richness should be so strong that one could establish the
following hypotheses, formulated as "key lemmas”.

(Weak) ”Key Lemma” 6.9. Assume that C € N is suitably fized and for a non-
singular orbit segment Sl%tlz the symbolic collision sequence E(S[“’b]:v) 1s C'-rich.
Then there exists an open neighbourhood U of x and a submanifold N such that
(1) for everyy € U\N Sy is sufficient;
(2) codimy N > 1.

(Strong) ”Key Lemma” 6.10. Assume that C € N is suitably fived and for a
non-singular orbit segment S\*tz the symbolic collision sequence E(S[“’b]x) is C-
rich. Then there exists an open neighbourhood U of © and a submanifold N such
that

(1) for everyy e U\N Slably is sufficient;

(2) codimy N > 2.

An analogous statement holds for phase points x € M, too, where S
exactly one singularity.

[@.b]4: contains

Denote for some C € N
(6.11) Mg :={z € M: S®+z is not C-rich}.

Our next theorem shows the role a weak ball-avoiding theorem — actually equa-
tion (6.13) — plays in establishing the hyperbolicity of a hard-ball system.

Theorem 6.12. Assume that for a semi-dispersive billiard , isomorphic to a hard-
ball system,

(1) the weak "Key Lemma” 6.9 and
(2) the statement

(6.13) p{lic} =0
hold true, where C' is the constant from Lemma 6.9.

Then the system is hyperbolic.

A system is said to be hyperbolic if all its relevant Lyapunov exponents do not
vanish for p-a. e. phase point.

Proof. By (6.13), for almost every point z € M, S®+z is (non-singular and) C-
rich. Now the application of "Key Lemma” 6.9, of Lemma 6.5 and of Lindelof’s
theorem provide the statement. [
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Let P be a non-trivial, two-class partition of the set {1,..., N} of balls and
denote

(6.14) F, :=F_ (P):={z € M : S®+z is P-partitioned}

We say that SR+x is P-partitioned if the non-negative semi-trajectory of z does
not contain collisions between pairs of balls belonging to different classes of the
partition P.

Corollary 1. The claim of Theorem 6.12 holds whenever instead of (6.13) we
require that for any non-trivial, two-class partition P

(6.15) {Fi} =0
be true.

Proof. Follows straightforwardly from the obvious inequality
(6.16) Mo CUp U, STEHFL(P)

where Up runs over all non-trivial two-class partitions P of {1,...,N}. O

Corollary 2. Under the assumptions of Theorem 6.12, the ergodic components of
the system are of positive measure.

Proof. Consequence of Theorem 6.12 and of the Katok-Strelcyn theory (see
[K-S(1986)]). O

Now, complementing Theorem 6.12, we formulate a theorem which illustrates
the role a strong ball-avoiding theorem plays when establishing the ergodicity of a
hard-ball system.

Theorem 6.17. Assume that for a semi-dispersive billiard , isomorphic to a hard-
ball system, the geometric conditions of Theorem 6.6 hold true. Assume, moreover,

(1) the "Key Lemma” 6.10 is proved;
(2) g is a slim subset where C' is the constant from "Key Lemma” 6.10.

Then the system is ergodic.

Proof. From the geometric conditions it follows that the complement of M* is a
countable union of codimension-two submanifolds and thus is slim (cf.
[S-Sz(1995)] ). Consequently, in virtue of condition (2), apart from a slim sub-
set of M, every phase point contains at most one singularity and is C-rich. By
applying "Key Lemma” 6.10, and then Lindelof’s theorem, we obtain that, apart
from a slim subset of M, every phase point is sufficient (slim subsets form a o-
ideal!). By referring to Theorem 6.6 and once more to Lindel6f’s theorem, the
statement of the theorem follows. [

Remark 1. By [S(1992)], Condition (2) holds whenever N > 3. In the case N = 2,
however, the orbits with no collision at all form a one-codimensional submanifold.
Then the argument given above provides that we may have at most a finite number
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of open ergodic components. Tp obtain global ergodicity, one can connect these by
the dynamics in a straightforward way.

Remark 2. Among the geometric conditions of Theorem 6.6, an essential one is
the Chernov-Sinai ansatz. We note that the methods for settling it use, on one
hand, ”"key-lemma”-type statements, and they, on the other hand, are related to
ball-avoiding theorems; since the setup of these methods is more involved and the
ideas are much the same as the ones we are discussing, we do not treat them in
detail in this paper.

Corollary 1. The statement of Theorem 6.17 holds whenever instead of its con-
dition (2) we require that for any non-trivial, two-class partition P p{Fy} =0
and

codim Fy > 2

be true.
Proof. Follows from Definition 3.5 and the inequality (6.16). O

Corollary 2. Under the assumptions of Theorem 6.17, the system is K-mizing and
is, moreover, a B-system.

The K-property is standard and the B-property is proved in [Ch-H(1996)] and
[O-W(1998)].

7. INTERLUDE: AN INSTRUCTIVE EXAMPLE

Despite its very simplicity the paradigm we are going to study sheds light on
two fundamental circumstances:

(1) How ball-avoiding theorems arise and help in proving hyperbolicity or er-
godicity of semi-dispersive billiards 7

(2) In which way do their applications possess an inductive character? This also
explains the apparent contradiction: on one hand, ball-avoiding theorems
are exploited in proofs of hyperbolicity or ergodicity of the systems, but,
on the other hand, the latter properties do occur among the assumptions
of most ball-avoiding theorems.

So have a closer look at our example. Its analysis is taken over from
[K-S-Sz(1989)] , consequently our treatment here will be concise. For later use
we introduce a much interesting class of semi-dispersive billiards , that of cylindric
ones.

In words, cylindric billiards are toric billiards where the scatterers are cylinders.
In our discussion, the bases of the cylinders will be assumed to be strictly convex,
a property ensuring that the scatterers be convex, and thus the arising billiard be
semi-dispersive. Because of the simplicity of our model, let us immediately start
with a formal definition.

Definition 7.1 Cylindric Billiard. The configuration space of a cylindric bil-
liard is Q = T4\ (CL U --- U Cy), where T = RY/Z% (d > 2) is the unit torus. Here
the cylindric scatterer C; (i =1,...,k) is defined as follows:
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Let A; C R be a so called lattice subspace of the Euclidean space R, which
means that the discrete intersection A; N Z% has rank dim A;. In this case the
factor A;/(A; N Z%) naturally defines a subtorus of T¢, which will be taken as the
generator of the cylinder C; C T¢. Denote by L; = A;- the orthocomplement of A;.
Under the above conditions, the subspace L; must also be a lattice subspace. We also
assume that dim L; > 2. Let, moreover, D; C L; be a convex, compact domain with
a C?-smooth boundary 0D; so that 0 € IntD;. Suppose D; is strictly convex in the
sense that the second fundamental form of its boundary 0D; is everywhere positive
definite. Furthermore, in order to avoid unnecessary complications, we postulate
that the conver domain D; does not contain any pair of points congruent modulo
Z%. The domain D; will be taken as the base of the cylinder C;. Finally, suppose
that a translation vector t; € R® is given, playing an essential role in positioning
the cylinder C; in the ambient torus T*. Set

CiZ{a+l+ti|aEA,;, ZEDZ’, }/Zd

In order to avoid further unnecessary complications, we also assume that the inte-
rior of the configuration space Q = T\ (Cy U---U Cy) is connected.

The phase space M of our billiard will be the unit tangent bundle of Q, i. e.
M = Q x S%°L. (Here, as usual, S? is the d — 1-dimensional unit sphere.)

The dynamical system (M, S®, i) is a cylindric billiard.

As we have seen in the first part of section 5, hard ball systems actually belong
to the class of cylindric billiards.

The Example.
Consider a simple cylindric billiard on T3 with two cylindric scatterers C; and
C5, where

Ay ={(z,y,2): y=2=0}, Ay:={(z,y,2) : x=2z=0},

Dl = {(.’E,y,Z): ZEZO, y2—|—z2 S’r%}a D2 = {(.’E,y,Z): y:0, $2+Z2 S'f'%}

and r; and 7o are arbitrary. To exclude the possibility of an infinite number of
collisions in a finite time interval, we assume that no tangencies occur in the given
cylinder configuration.

Our goal here is to demonstrate how the proof of the following theorem can be
reduced to the strong ball-avoiding one.

Theorem 7.2 [K-S-Sz(1989)] . The cylindric billiard in Q = T3 \ (Cy U Cy)
defined above is ergodic (and, consequently, a K-mixing flow).

Proof. The following prerequisites are used:

(i) Lemma 4.15 of [K-S-Sz(1990)] claiming that M \ M* is a countable union of
proper closed submanifolds of codimension 2 (in our case, the reader can, in fact,
directly check the claim);

(ii) the fact that the conditions of the Theorem on Local Ergodicity (Theorem
6.6) are satisfied (as to the non-trivial Chernov-Sinai ansatz see [K-S-Sz(1989)] ),
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and Theorem 6.6 itself ensuring that every sufficient point (Q,V) € M* has an
open neighbourhood which belongs to one ergodic component.

(iii) and, finally, the fact, that the set of orbits M? with no collision at all is
the union of the one-codimensional submanifolds {v; = 0} and {v, = 0}. Thus the
argument to come ensures that the system has at most four ergodic components.
These, however, can be connected by using the dynamics providing the desired
global ergodicity.

Denote by Mg,ug the subset of sufficient points. In view of (i)-(ii) the proof of
Theorem 7.2 boils down to showing

Lemma 7.3. M*\ (Mg UM?) is a slim subset.

Since we only have two scatterers, in any symbolic collision sequence ¥ =
(01y...,0,),n >0 one has o; =1 or 2.

Definition 7.4. An orbit segment is rich if its symbolic collision sequence contains
at least one digit 1 and at least one digit 2.

The following simple observation, whose proof is left for the reader, is basic for
our whole approach. In fact, for our model, this lemma does the job of a strong
key lemma (cf. 6.10).

Lemma 7.5. Every rich orbit segment is sufficient.

Indeed, denote by J; C M* (i = 1, 2) the subset of orbits whose symbolic collision
sequence is (...,%,4,4,...). By Lemma 7.5, Lemma 7.3 will follow from

Lemma 7.6. The subsets J;, 1 = 1,2 are closed zero-sets of codimension 2.

Proof. Consider .J;. Choose an open subset I x B C C5 where I is an open interval
of the z-axis, and B is an open ball of the y — z-plane. Fix the z-coordinates
(¢z»v) of the phase point (¢g, gy, ¢z; Ve, vy, v2) (vZ 4+ v, +v7 = 1). For the fixed
(¢z, vz), consider the dispersive billiard in the y — z-plane with the sole scatterer
D} = {(y,2) : y*+ 22 < r?}. More precisely, assume 0 < |vz| < 1. An orbit
starting from (@, V) = (¢1, g2, g3, v1, V2, v3) never hits I x B if and only if

for every t € R such that g, +tv, € I 7y, 3 57(Q,V) ¢ B

where T{y,z} (q.'E7 Ay, 4z; Vz, Uy, ’Uz) = (q?ﬁ qz; Uy, vz)- Let

(Aa(B))g, v, == {(ay,qz;vy,v;) : for every t € R such that
gz + tvg € I one has F{y,z}St(Q, V) ¢ B}

i. e. (Ag(B))g, v, is understood for the projected dynamics with H := {¢ :
s + tvy € I}. We note that for the billiard 7y, .1 S*(Q, V)

(7.7) 0<UZ+U§:1—U§<1,

so the system is obtained by a linear time change from a standard dispersive billiard
flow. Consequently, — by virtue of Corollary to Theorem 6.6 — for this projected
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system, Lemma 2.1 and Corollary of Theorem 5.2 can also be applied whenever
(7.7) holds, implying that, on one hand,

M{(AH(B))mevm} =0

and, on the other hand, (Ag(B))q, v, is of codimension 2.

Fubini’s theorem then first provides u{Ag(B)} = 0, whereas Proposition 3.7
implies that Agy(B) is a codimension 2 subset. Since J; C Ay(B), Lemma 7.6
follows.

O
Lemma 7.3 easily follows from Lemmas 7.5 and 7.6. Now Theorem 7.2, in-

deed, follows from Lemma 7.3 by simple arguments left to the reader (or see
[K-S-Sz(1989)] ).

O
The reader could certainly observe in the proof of Lemma 7.6 the fundamental
role of the ball-avoiding theorems, and further the fact that in proving the hyperbol-
icity and ergodicity of a higher — in this case three- — dimensional semi-dispersive
billiard we used the hyperbolicity and ergodicity of a lower — in this case two- —
dimensional billiard.

8. RESULTS FOR HARD BALL SYSTEMS

A. Dynamical Method

As we have seen in the proof of Theorem 7.2, a substantial element has been the
strong ball-avoiding Theorem 5.2. The demonstration of Theorem 5.2, in its turn
has used the fundamental tools of the theory of hyperbolic dynamical systems. By
more sophisticated versions of the arguments of Theorems 7.2 and 5.2, in particular,
it was possible to establish

Theorem 8.1 [K-S-Sz(1991)] , [K-S-Sz(1992)] . Assume N =3 or4, v > 3.
Then the standard hard ball flow is a K-system.

The structure of the verification of this theorem is the one given in Theorem
6.17 with the slight difference that richness is not exactly a C-richness for some C,
but is introduced according to

Definition 8.2. For the models of Theorem 8.1 we say that the symbolic collision
sequence ¥ = (01,...,0,) s not rich if there exist an’ : 1 < n/ < n and two
non-trivial two-class partitions P~ and PT of the set {1,..., N} of balls such that
Y~ = (01,...,0u) is partitioned by P~ and ¥ = (0,41,...,0,) 18 partitioned by
P*, or, in other words, neither Gs,- nor Gs+ are connected (cf. Definition 6.8).
Otherwise the symbolic collision sequence is called rich.

Remark. The statement of Theorem 8.1 is also shown to hold for N = 3,v = 2
with a more stringent notion of richness.

Denote by F(P~,P%) the subset of phase points x € M for which S®-z is
partitioned by P~ and S®+z is partitioned by P*+. The role of assumption (2) of
Theorem 6.17 is now played by the following strong ball-avoiding
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Theorem 8.3 [K-S-Sz(1991)], [K-S-Sz(1992)]. If N = 3,v > 20or N =
4, v > 3, then for every pair P~ and P of non-trivial two-class partitions of
{1,..., N}, the subset F(P~,P™) is a closed zero-set of codimension two.

Remark. As always, the closedness of F(P~,P™) follows from the definition of
F(P~, PT) by considering trajectory branches in the case of singular orbit segments
(cf. sections 2 of [K-S-Sz(1992)] or of [Sim(1992)-I] ).

To substantiate the idea of the proof of Theorem 5.2, the demonstrations of
this theorem presented in [K-S-Sz(1991)] (case N = 3) and [K-S-Sz(1992)] (case
N = 4) use a quite interesting dynamical construction: that of the pasting of
dynamical systems. We do not give here a detailed argument, we only explain
it for the simplest non-trivial case: let N = 3, and set P~ := {{2},{1,3}} and
further, P* := {{1},{2,3}}. Now F(P~, P*) contains orbits where particle 2 has
no interaction in the past, whereas particle 1 has not any in the future. In other
words, the past trajectory avoids both cylinders: C 2 and Cs 3, whereas the future
one avoids C1 2 and C; 3. Since in the past there is an interaction between 1 and
3, only, and 2 has an almost periodic motion on the torus, we are in a similar
situation as in the proof of Theorems 5.2 and 5.4: we have a ball-avoiding problem
for the past orbit of the subsystem {1, 3}, which is actually known to be a K-system.
Similar is the situation with the future trajectory: particle 1 has an almost periodic
motion, and we have a ball-avoiding problem for the future orbit of the K-mixing
subsystem {2,3}. The difference from the situation of Theorem 5.4 is that the
dynamics that should now avoid some balls are different for the past and for the
future. This difficulty is resolved by the method of pasting: one uses the unstable
invariant manifolds of the subsystem {1, 3}, and the stable ones of the subsystem
{2, 3}; further on one repeats the idea of the proof of Theorems 5.2 and 5.4 and the
arising technical problems can be solved.

Fix a finite symbolic collision sequence ¥ and a pair P~ and P of partitions
as before. Denote by F := F(P~,%, PT) the subset of phase points z € M for
which S®-z is partitioned by P~, there exists a ¢ > 0 such that £(S@*z) = ¥
and, moreover, S*tR+z is partitioned by Pt. Encouraged by the success of the
previous argument, one is inclined to hope that the method of pasting also permits
to settle

Conjecture 8.4. For any N > 3,v > 2, for an arbitrary symbolic collision se-
quence Y and for any pair P~, Pt of non-trivial two-class partitions, F(P~,%, PT)
18 a closed zero-set of codimension two.

Remark 8.5.a. The statement of Conjecture 8.4 immediately implies that for any
fixed C, Il is a slim subset (for the definition of Il see (6.11)), which is exactly
assumption (2) of Theorem 6.17.

Though I strongly believe that the conjecture is true, nevertheless, the method
of pasting in its present form is not strong enough to prove Conjecture 8.4. The
reason is, roughly speaking, that one still can consider the unstable manifolds for
the subdynamics restricted to the classes of P~ in the time interval (—oo, 0] and
the stable manifolds for the subdynamics restricted to the classes of PT in the
time interval [t,00). It is, however, hard to see why the absolute continuity and
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transversality statements necessary to formulate the zigzag properties, so basic to
repeat the idea of Theorem 5.4, would hold.

Remark 8.5.b. In [K-S-Sz(1991)], the statement of Theorem 8.1 is also settled
for the case N = 3, v = 2. However, for obtaining it for this particular case, one also
had to verify Conjecture 8.4 for the case of a one-element symbolic collision sequence
¥ = (o). This was actually done in [K-S-Sz(1991)] through a concrete analysis of
the concrete situation and so far it is not clear how this argument generalizes.

Having seen the limitations of the method of pasting, we will now turn to another
method, which we call the mechanical method.

B. Mechanical Method

The mechanical method was elaborated by Simdanyi in [Sim(1992)-I] . It will be
presented in the simple case of a weak type theorem borrowed from [S-Sz(1999)] .
A novelty and an essential advantage of the upcoming formulation is that it is
absolute, i. e. it is not inductive; afterwards we will also see inductive statements.
A non-inductive formulation is needed if one is only able to show hyperbolicity of
hard ball systems since this is a weak property to permit a possible induction. For
the convenience of the reader and the brevity of exposition, the setup is simplified
to the case when the masses of the balls are identical, though, in essence, the
assumption on the identity of masses is only a minor technical one.

Denote by R* = R*(N,v) the maximal number R such that for every r € (0, R)
the interior of the configuration domain Q of the hard ball system is connected.

Theorem 8.6 [S-Sz(1999)] . Consider a system of N (> 3) particles on the v-
torus TV (v > 2) satisfyingr < R*. Let P = {Py, Py} be a given, two—class partition
of the N particles, where, for simplicity, P, = {1,...,n} and P, ={n+1,...,N}
(n < N —1). Then the closed set

Fi={zeM: S10:20) g is partitioned by P}

has measure zero.

Proof. The two cases min{n, N — n} > 2 and min{n, N — n} = 1 can be treated
similarly, and thus we only consider the first one.

Every point x € M can be characterized by the following coordinates in an
essentially unique way:

(1) mp,(x) =1 € My, (2) 7p,(x) = z9 € My,
(3) Cilw) =~ iq(w) €T (4) Li@) g
n " ’ 11 ()l ’
(5) [Ni(2)]l € Ry, (6) Ei(z)= %va(x) €R;.
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where I (z) = M Here mp,(z) : M — My, i = 1,2 acts in the following
n

way: First we separate the coordinates of balls belonging to F;. Since then we
lose the normalization conditions formulated at the beginning of section 6, wp, also
recovers them by trivial linear rescalings. Non-uniqueness only arises in choosing
Ci(z) as an arbitrary representant of 13"  ¢;(z) € TV. However, it can be
uniquely defined locally and this will be satisfactory for our purposes. In what
follows the six coordinates corresponding to the characterization given before will,
in general, be denoted by b1,...,bs, thus it will always be assumed that b; €
Miq,by € My,b3 € TV, by € Sy_l,b5,b6 € Ry. The relation M{F+} = 0 will
certainly follow if we show that for almost every such choices of the b;’s

(8.7) Kby by s bs,bs LE+ (b1, b2, b3, bs, be) } = 0,

where
F (b1,ba, b3, bs,bg) = {ya € S* 1 (b1, ba, b3, ya,bs,b6) € Fi},

and L, b, bs.bs,b; denotes the conditional measure of p under the conditions cor-
responding to fixing the values of by, by, b3, bs,bs. (This conditional measure is
equivalent to the Lebesgue measure on its support.)

The relation x € F is equivalent to saying that for every pair ¢ € P;,j € Py
and every t > (

(8.8) o (gt (z) — q;- (z),0) > 2r,

where o(.,.) denotes the euclidean distance. For simplicity, fix i = 1 and j = n+ 1.

Now we will be considering the subdynamics corresponding to our two-class
partition P (cf. the “Subsystems, decompositions” part of Section 2 in the paper
[Sim(1992)-1]), and will denote them, for simplicity, by S; and Ss, respectively
(their phase spaces are M, and Mj, of course).

Our only task is to represent the time-displacement ¢/, ; (z) — ¢} () in terms of
the coordinates (1)-(6) and of the subdynamics S1,.S3. It is easy to see that for any
t € R and any x € M one has

N .

(8.9) gy 11(2) — gi () = @i 1 (2) - H' () - N, 1@ —1

where for any t € R we denote % := Stz and &} := Siz,, and moreover, I is the
relative velocity of the “baricenters” of the second and first subsystems (this term
appears since in M; and M5y the momenta of the subsystems are scaled to be equal
to 0); actually,

. N _N I
(8.10) I= I = [y =
—n L]

N —n N

and, finally,

a = /2E(z) — n||L(z)]?,
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n

B = \/1—2E1(x)— ~

are the corresponding time scalings.
Our task is to show that the event

2
()2

I
(8.11) V>0 o (Atm + f(t),Z”) > 2r
1

has measure zero for every fixed by, by, b3, bs, bg where A = (N —n)~(—=N)||I1|| and
fit): R>R

is an arbitrary fixed function such that f(t) = f(¢,z1, 22, Ch, ||11]|, E1). Actually,

by (8.9), N
ft) =@ () - &' (@) -

In (8.11), the canonical meaning of zero measure is that in ”f—i”
Denote by L, the lattice of balls of radius 2r centered at points of Z”. Our
proof of Theorem 8.6 will be based on the following well-known elementary lemma,

whose proof can, for instance, be found in [S-Sz(1999)] .

01 (.’13)

Lemma 8.12. Fiz a vector n € S~ for which at least one ratio of coordinates
is irrational. Consider arbitrary hyperplanes H perpendicular to i, and denote by
Bgr(z) the (v — 1)-dimensional ball of radius R in H centered at z € H. Then, for
a suitable y(7) > 0

. e oo . . meas(Bgr(z) N Lay) -
. > .
(8.13) %ggéf I?If ;éllfq meas (Bgr(z)) — 1)

Assume that the statement (8.11) is not true, i. e. the measure of the subset
K of S~ described by (8.11) is positive. Select then and fix a Lebesgue density
point 77 of K with the property that at least one ratio of the components of 7 is
irrational. Denote by G. C S¥~! the ball of radius € around 7. By (8.13) we can
choose Ry so large that for R > Ry

. .. . meas(Bgr(z) N Lo) _ (1)
f inf >
W cen meas (Br(z)) = 2

The set AtG. can be arbitrarily well approximated by a ball of radius AMte = R (R
is fixed, R > Ry) in the hyperplane orthogonal to 7 through the point Atii 4 f(t) if
only t is sufficiently large. Consequently, if R > Ry, then by choosing ¢ sufficiently
large and at the same time putting e = (M) 1R, we have

meas ((AMtG. + f(t)) N Lar) S (1)
meas ((MtGe + f(t)) — 4

But this inequality contradicts to the fact that 7 was chosen as a Lebesgue density
point of the subset K C S¥~1. Hence Theorem 8.6 follows. [
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Remark 8.14. An essential advantage of the formulation, and of the mechanical
method as well, is that the definition of F; only uses the ball avoiding property
of the non-negative semi-trajectory. For a weak theorem this is not surprising (cf.
Lemma 2.1) but for strong theorems this is a great advantage over results like
Theorem 5.2. Actually, Simanyi used the mechanical method to show

Theorem 8.15 [Sim(1992)-1] . Let (M, {S*}, 1) be the standard hard ball flow of
N (> 3) particles on the unit torus TV (v > 2). Suppose that r < R*. Assume that
for all n < N the n-billiard flow on T” is a K—flow. Let P be a given, two—class
partition of the N particles. Then the set

Fp={zeM: S10:20) g is partitioned by P}

18 a closed, zero set with codimension at least two.

Remark 8.16. By (6.16) and (6.11), the theorem immediately implies that Il is
a slim subset for an arbitrary C' € N, consequently it settles a basic assumption
(condition (2)) of Theorem 6.17.

Remark 8.17. As one can also convince himself upon reading the proof of The-
orem 8.6, the assumption that the radii be not too large is absolutely essential.
Indeed, the mechanical method is based on the conservation of the momenta of
the non-interacting subsystems. This, however, does not hold for large radii, more
precisely, for radii where the configuration domain consists of more than one con-
nected components. We note that it does not hold either when one considers hard
ball systems in a box. Simdnyi, [S(1998)] when proving the ergodicity of two hard
balls in a box, in fact, used a quite different notion of richness and had to prove a
special ball-avoiding theorem directly adapted to that notion. In fact, these (i. e.
large radii and systems confined to a box) are two important open problems of the
theory. The ball-avoiding question, however, is not isolated since it heavily depends
on the effective notion of richness.

Theorem 8.15, weak and strong at the same time, is inductive and uses the K-
property of smaller systems as its hypothesis. If one is only able or is satisfied to
establish weaker properties: hyperbolicity or openness of ergodic components, then
one uses a weaker inductive assumption and thus has to strengthen the method.
The wisdom of the previous results suggests us that, from the aspect of an inductive
proof, hyperbolicity is a weak notion. So if we want to settle hyperbolicity, then the
necessary weak ball-avoiding statement requires a non-inductive proof. On the other
hand, as Theorems 8.15 and 8.18 show, the openness of the ergodic components is
already a sufficiently strong notion to be used in an inductive argument. Such a
theorem, a weak one, was used in [S-Sz(1995)] :

Theorem 8.18 [S-Sz(1995)] . Consider a system of N (> 3) particles on the unit
torus TV with r < R*. Assume that, for all n < N, almost everywhere, none of the
relevant Lyapunov-exponents of the standard hard ball system (M, {St}, 1) vanishes,
the ergodic components of the system are open (and thus of positive measure), and
on each of them the flow has the K-property. Let P be a given, two—class partition
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of the N particles. Then the set

F, = {:E e M : SI0®) g is partitioned by P}
has measure zero.

9. HYPERBOLIC PROPERTIES OF CYLINDRICAL BILLIARDS

Orthogonal Cylindric Billiards

Cylindric billiards, a more general class than hard ball systems, were defined in
Definition 7.1. In [Sz(1994)], a special class of cylindric billiards was considered:
that of orthogonal cylindrical billiards. They are characterized by the additional
requirement that the generator subspace of any cylindric scatterer is spanned by
some of the coordinate vectors adapted to the orthogonal coordinate system where
T¢ is given. In technical terms the scatterers of such a billiard are given by a family
C7 :1< j < J of cylinders

CI = ouif{l(gr, - rqa) 1 (Y @)"* <7}
1€EKI

on the d—torus where o, denotes the translation by a vector u € T¢.

A basic role in the conditions of ergodicity of orthogonal cylindrical billiards
is played by the subsets K/ C {1,...,d}, |K?| > 2. These subsets will also be
important in defining richness.

Consider the non-singular trajectory segment Sz, —co < a < b < 00,z €
M. Tts symbolic collision sequence is the list of subsequent cylinders of collisions
(C’jl, . ..,Cjk), k > 1 of the trajectory and can be described by the sequence
(J1y---57K), 1< g1 <J, 1<1<k. (If the trajectory hits one or more singularities,
then, as usual, there is a finite number of such sequences for any finite orbit.)

Definition 9.1. We say that the trajectory segment S*tlz is connected if
{K%,...,K*} is a connected cover of the set {1,...,d}. We say that the tra-
jectory segment S\l is rich if there exists a time t € [a,b] (with Stz € OM also
permitted) such that both trajectory segments Slatly and Sy are connected. (If
the trajectory segment hits singularities, then the above properties are required for
any trajectory branch.)

Finally, the trajectory segment is poor if it is not rich.

{K7,... K} is said to be a connected cover of the set {1,...,d} if it is a
cover, and moreover, no H C {1,...,d}, H # 0H # {1,...,d} exists such that for
every 1 <53 < J K c H or KV C HE holds.

Denote by Mg the subset of non-rich phase points from MP°. It would be nice to
claim that M]g) is slim but there may exist some trivial one-codimensional subman-
ifolds of non-sufficient points for our billiard. The trajectories of points lying in
these submanifolds are non-sufficient for they (or the corresponding orbits of some
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auxiliary sub-billiards used in the proof) contain no collisions at all. Therefore we
should exclude from M a finite union of one-codimensional submanifolds, and as a
result we obtain the set M# C M. Since the introduction of these submanifolds
requires is a bit lengthy and is not deeply connected to the topic of our survey, we
omit their precise description (this is done in detail in the Appendix of [Sz(1994)] ).
With a little hand-waving we just repeat that this finite union consists all phase
points whose trajectories never collide in at least one non-trivial sub-billiard of
our system (such a sub-billiard is obtained by taking a non-empty subset of the
cylindric scatterers, and by considering the billiard with these scatterers, only; i. e.
we discard the other scatterers). We note that these submanifolds themselves are
defined by linear conditions on the velocities.

In [Sz(1994)], it is shown that the necessary and sufficient condition of the
ergodicity (and the K-property) of orthogonal cylindrical billiards is:

Condition 9.2. {K7: 1< j < .J} is a connected cover of {1,...,d}.
The ball-avoiding theorem used in the proof of sufficiency is the following:

Theorem 9.3 [Sz(1994)] . If Condition 9.2 holds, then MJNM¥ is a slim subset.

To illustrate the deep analogy with hard ball systems (cf. in particular, Theo-
rem 8.3) it is worth formulating the basic lemma which immediately provides this
theorem. To this end for any pair {P~, PT} of non-trivial two-class partitions of
the set of coordinates {1,...,d} let us define

F:=F(P~,P%):={z €M\ 0M: the K’s corresponding to %(S(%z) and
»(80:)g) are partitioned by P~ and Pt}

We note that a symbolic collision sequence Y is said to be partitioned by a non-
trivial two-class partition P of {1,...,d} if the K7s corresponding to the elements
of ¥ form a connected cover of {1,...,d}.

Lemma 9.4. If Condition 9.2 holds, then F' is a slim subset.

This lemma can again be settled by the (dynamical) method of pasting; in fact,
for cylindrical billiards the mechanical method does not make sense since the mo-
mentum, in general, is not an invariant of motion any more.

General Case

According to Remark 8.16, the ball-avoiding type condition of Theorem 6.17 is
settled once and for all by Siméanyi’s Theorem 8.15, at least if we have an inductive
proof in mind. It would be desirable to arrive at a similar success in cylindrical
billiards. One encounters several problems, however. First of all, it is not a priori
clear what a suitable definition of richness should be so that some analogue of
hypothesis (2) of Theorem 6.17 (or that of Theorem 6.12) could be checked. The
ideas of the paper [S-Sz(1998)], however, suggest the following definition.
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Definition 9.5. In a symbolic collision sequence X = (01,...,0,) everyo;: 1<
1 < n, by definition, corresponds to a cylinder with base space L;. Now we say that
Y. is connected iff there is no orthogonal splitting R* = By & By with dim B; >0
and with the property that for everyi =1,...,n either L; C By or L; C Bs.

We say that the symbolic collision sequence ¥ = (o1,...,0y) is C-rich, with C
being a natural number, if it can be decomposed into at least C consecutive, disjoint
collision subsequences in such a way that each of them is connected.

Remark 9.6. The condition of connectedness is exactly identical to the Orthogo-
nal Non-Splitting Property, formulated in [S-Sz(1998)], of the system of subspaces
Lq,...,L,. Moreover, by Theorem 4.6 and Proposition 4.9 of the same work, in the
particular case of hard ball systems our Definition 9.5 reduces precisely to Definition
6.5 given above.

Conjecture 9.7. For an arbitrary natural number C, the subset of orbits whose
symbolic collision sequence is not C-rich, is a slim subset of M.

Finally we formulate a stronger conjecture than the previous one. In principle
it is adapted to a possible proof of ergodicity by an induction on to the number of
cylinders.

Fix a finite symbolic collision sequence 3 and two cylinders: C;- and Cj+.
Denote by F(57,%,jT) the subset of phase points 2 € M for which S®-z avoids
the cylinder C-, and there exists a ¢ > 0 such that 3(S (O’t):c) = 3, and, moreover,
StR+z avoids the cylinder Cj+.

Conjecture 9.8. For an arbitrary symbolic collision sequence Y and any pair of
cylinders Cj—, Cj+, the set F(j~, ¥.,571) is a closed zero-set of codimension two.

This conjecture generalizes Conjecture 8.4 and its eventual proof has an analo-
gous difficulty as of that one.
III.Related Directions

10. REPLACING TOPOLOGICAL DIMENSION BY THE HAUSDORFF-ONE

Let T : M — M be a transitive Anosov C2-diffeomorphism of a compact Rie-
mannian manifold M. Our ball-avoiding theorems discussed so far expressed the
fact that for an orbit to be non-dense is an atypical behaviour, at least as far as the
notion of dimension we are considering is the topological one. Surprisingly enough,
if we take Hausdorff dimension, then we can not recover this atypicality as this will
be shown by the following selection of theorems.

Theorem 10.1 [U(1991)]. Let G be a non-empty open subset in M. Then
HD(G N ND) = dimM
where
ND =ND(T) := {z € M: Tz is not everywhere dense in M}
and HD denotes Hausdorff-dimension.

Urbanski has also established an analogous statement for Anosov-flows.
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Theorem 10.2 [U(1991)]. Let G be a non-empty open subset in M. Then
HD(G N ND) = dimM

where ND = ND(S) is the set from (1.1).

Dolgopyat has found an interesting strengthening of the question answered by
the previous theorems. Note that ND is the set of orbits whose limit points do not
fill up the whole space. For Z C M, a fixed subset we can consider the set

Lz :={zeM: limT?z2nZ =0}

where lim T2z denotes the set of limit points of the orbit {T"xz : t € Z}. Dolgo-
pyat’s theorem sounds as follows:

Theorem 10.3 [D(1997)]. Assume T is a topologically transitive Anosov C?-
diffeomorphism of T2, the two-torus, and denote by HD(u) the Hausdorff-dimension
of its Sinai-Ruelle-Bowen measure p. If Z C T? has Hausdorff-dimension less than
HD(u), then

HD(Lz) = 2.

Conversely, for any p > HD(u), one can find a set Z of Hausdorff-dimension less
than p for which the above statement fails.

The proofs of theorems 10.1-3 all exploit the existence of a finite Markov par-
tition. Furthermore, the verifications of Theorems 10.1-2 use a generalization of
a result of McMullen, [McM(1987)] providing a lower bound for the Hausdorff di-
mension through local densities. On the other hand, for establishing theorem 10.3,
Dolgopyat uses formulas of Manning-McCluskey, [MM(1983)] and Young, [Y(1982)]
which are valid in the two-dimensional setting and this fact explains the dimensional
restriction in Theorem 10.3.

For systems with singularities the Markov partition, even if it exists, can not
be finite and the previous methods do not work. Nevertheless it is reasonable to
expect

Conjecture 10.4. Theorems 10.1-3 are valid for Anosov systems with singularities
(for the axioms of these systems see [Y(1998)] or [Ch(1998)]).

Finally we note that results analogous to the aforementioned theorems have been
formulated for certain one-parameter subgroups of some Lie-groups but even their
listing would go beyond the scope of the present survey. For results and conjectures
we refer to [M(1990)] and [K(1998)] and we just note that in these cases again the
method of Markov partitions is not at hand but one can exploit the rich algebraic
structure instead.

11. BALL-AVOIDING IN PHYSICS: OPEN SYSTEMS AND REPELLERS

For a better understanding of the pre-turbulent behaviour of the Lorenz-model,
in 1979, Pianigiani and Yorke, [P-Y(1979)] initiated the study of open dynamical
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systems. One main model they suggested was a dispersive billiard with a hole.
Since it is close to our basic object, let us look at the questions they raise for this
model.

Assume we are given a dispersive billiard in Q and a small hole is cut in the
table. Whenever the billiard particle enters the hole, it gets absorbed with its orbit
deleted from the phase space. We select the hole to be an open subset B of the
phase space and assume that the initial phase point is given by a measure mg. Let
then

pt(t) = mo{S®z N B = 0}

be the probability that the particle stays on the table for at least time ¢, and
pi(t) == mo{Sz N B =0 and Stz € A}

the probability that it is in the set A in time £.
Question 1. What is the rate p™(¢) converges to 0 with, when ¢t — co?
Question 2. Does the weak limit of the conditional measure

+
t
lim pA( )

t—o00 p+(t) - 'u+{A}

exist and if it does what is its value?
Question 3. How does p+ depend on the initial distribution mg?
The questions can be raised in a time-symmetric way, too. Indeed, denote

p(t) :=mo{SI"t2z N B = 0}

and
pa(t) :=mo{SI4z N B =0 and Stz € A}
. palt)
mid} = tl—lglo p(t)

Then we can pose the same questions for these objects as before.

Pianigiani and Yorke answered questions 1-3 for expanding maps acting in a
domain of R?. In a recent work of Chernov, Markarian and Troubetzkoy, [Ch-
M-T(1998)] the problems are settled for Anosov diffeomorphisms on surfaces with
small holes. Their and previous rigorous results of other authors have been based
on analytic calculations obtained originally by physicists. Out of these — without
aiming at completeness — we only mention the works of Kantz and Grassberger, [K-
G(1985)] (related, in particular, to Theorem 11.5 below), of Hsu, Ott and Grebogi,
[H-O-G(1988)] (related, in particular, Theorem 11.1 below) and of Legrand and
Sornette, [L-S(1990)] (as to an analytic calculation for stadia); for a review we refer
to the survey of T¢él, [T(1996)]. Since we only plan to give the flavour of the results
of [Ch-M-T(1998)], we will omit the very technical formulation of their conditions.

Let T : M — M be a topologically transitive Anosov C't®-diffeomorphism
of a compact Riemannian surface and B C M be a nice open subset. Denote
M := M\ B and let for every n > 0

M, = ﬂ?oniﬁ and M_, = O?ZOT_iﬁ
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and, moreover,
M, = Np>1 My, M_ :=Np>1M_,, Q:=M_NM,.

The set Q is called the repeller (in physics literature, recently they are often called
chaotic saddles).
Some more notations: for every finite Borel-measure m we denote |m| = m{M},

(Tym){A} = m{T~1(ANM,)} (A C M)

Tim = if |Twm| # 0.

1
Tom) T.m
We say that the probability measure m on M is conditionally invariant under
T if Ty m = m, or equivalently if there is a Ay > 0 such that T,m = Aym. Any
conditionally invariant measure m is, of course, supported on M, and we also have
Ay = |Tem| =m{M_1NM_,} = m{M_;}. Denote by M,,, M and M the classes
of (SRB-like) probability measures supported on M,,, M, and €, respectively.

Theorem 11.1 [Ch-M-T(1998)]. There is a unique (SRB-like) conditionally
imvariant measure iy € M4, i. e. the operator Ty : M4 — My has a unique
fized point iy .

Theorem 11.2 [Ch-M-T(1998)]. For any measure mg € My, the sequence of
measures T mg converges weakly, asn — oo, to the conditionally invariant measure
iy - Moreover, the sequence of measures A" (T}'myg) converges weakly to p(mo)py,
where the functions p(mo) and p=1(my) are uniformly bounded on M.

Theorem 11.3 [Ch-M-T(1998)]. The sequence T "uy converges weakly, as
n — 00, to a T-invariant probability measure iy € M. The measure [i4 is ergodic
and K-mixing.

The aforementioned results have their natural duals by changing the signs, and
then one obtains p_, i, A_.

Theorem 11.4 [Ch-M-T(1998)]. If for every periodic point x € Q, TFz = x
we have |det DT*z| =1, then iy, = ji_ = i and Ay = A_ = X. In particular, this
happens if the given Anosov-diffeomorphism preserves a smooth invariant measure.

(In [Ch-M-T(1998)] it is also conjectured that fiy is a Bernoulli-measure, and
has a fast decay of correlations.) The following theorem not only answers Question
1, most interesting from the point of view of physical applications, but also proves
the escape rate formula of K-G(1988). We call v, := —log A, the escape rate of
the system. Denote by A, the positive Lyapunov exponent of the ergodic measure
fi+, and by h(jiy) its Kolmogorov-Sinai entropy.

Theorem 11.5 [Ch-M-T(1998)].

(11.6) Y+ = A+ — h(fy)
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An interesting feature of the escape rate formula (11.6) is that its right hand
side is defined exclusively in terms of the measure fi; given on the repeller M,
whereas 74 is the rate with which an initial measure given on whole M gets pulled
down to the repeller. It is an interesting task to generalize Theorems 11.1-5 for
Anosov-systems with singularities and subsequently for billiards.

Remark 11.7. For dynamical systems of large linear size L, which actually are
appropriate models of transport phenomena, Gaspard and Nicolis, [G-IN(1990)] de-
rived a beautiful equation replacing the escape rate formula. For definiteness, let
us think of a Lorentz-process (i. e. a dispersive, finite-horizon billiard with a
periodic configuration of scatterers) in an elongated periodic container of inte-
ger length L; the boundary condition in the direction of the y-axis is periodic,
whereas those in the direction of the z-axis at = 0 and x = L are open, i. e.
B = ({z = 0} U{x = L}) x S'. This model determines a repeller M (L) with
SRB-like invariant measure fi4 (L), for which we denote the positive Lyapunov-
exponent by Az and the K-S entropy by h(fis(L)). Then, by using the diffusion
approximation for the Lorentz-process, Gaspard and Nicolis proved analytically
that I
D= Lli_,n;o(ﬁ (Ar — h(f+(L)))

where D is the diffusion coefficient of the Lorentz process in the infinite slab (i. e. in
the same model with L = oc). Further related formulas and models are beyond the
scope of the present survey. As references on this most alive direction of research
we mention the papers of Gaspard and Dorfman, [G-D(1995)], of Tél, Vollmer and
Breymann, [T-V-B(1996)] and of Ruelle, [R(1999)]; for earlier related models of
transport see the works of Lebowitz and Spohn, [L-S(1978)] and of Kramli, Siményi
and Szész, [K-S-Sz(1987)].
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