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1. INTRODUCTION.

The physically utmost interesting examples of hyperbolic billiards
are hard ball systems. The big challenge: the Boltzmann-Sinai ergodic
hypothesis claiming their ergodicity is almost that of the past. (As
to the main steps and the state of affairs related to this celebrated
hypothesis see section 2.)

With ergodicity being a qualitative property of dynamical systems,
physicists are, in general, more interested in measurable, quantitative
behavior, on the first place in correlation decay. Moreover, good cor-
relation decay can lead to further important inference about the sys-
tem, e. g. it can be helpful in deriving central limit theorem (CLT), or
convergence to Brownian motion of some interesting physical pro-
cesses, like the periodic finite horizon Lorentz process (cf. [BS 81],
[BChS 91]) or its locally perturbed variants (cf. [DSzV 08b]). With
the two-dimensional situation fairly well understood, the big prob-
lem of the theory is correlation decay in higher-dimensions. Bálint and
Tóth have recently reached a breakthrough here, [BT 08]. Their re-
sult, however, hangs on a plausible complexity condition, whose verifi-
cation I consider the top challenge of the theory. Much the more it is
so since the general form of the local ergodicity theorem for dispers-
ing billiards given by Bálint, Bachurin and Tóth, [BBT 08] also relies
on the same condition. I am going to say more about this challenge
in section 3.

In section 4 we introduce the dispersing Penrose-billiard or better
Penrose-Lorentz process (in the plane with a finite horizon) and ask
whether the diffusive behavior of the finite horizon planar Lorentz
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process with a periodic configuration of scatterers remains valid for
the Penrose-Lorentz process. This question is connected to recent in-
vestigations of Lorentz processes, non-translationally-invariant wrt
Z

2. This section also contains an interlude: a question about the joint
motion of two Lorentz discs.

For notions related to billiards the reader is advised to turn to the
monograph of Chernov and Markarian [ChM 06] or to the collection
of surveys [Sz 00].

2. THE BOLTZMANN-SINAI ERGODIC HYPOTHESIS

In 1962, Ya. G. Sinai in his lecture on the International Congress
of Mathematicians in Stockholm (cf. [S 63]) formulated his form of
Boltzmann’s ergodic hypothesis:

Boltzmann-Sinai Ergodic Hypothesis. any number N ≥ 2 of —
sufficiently small — elastic hard balls moving on the ν = 2 or ν = 3-
dimensional torus is ergodic on the submanifold of the phase space deter-
mined by the trivial invariants of the motion.

(Since the general multidimensional case ν ≥ 2 occured to be the
same hard as the three-dimensional one, we can also call the general
conjecture the Boltzmann-Sinai ergodic hypothesis.) Sinai — in his
classical work, [S 70] — settled it for N = ν = 2 and later he and
Chernov, [SCh 87] for N = 2. It is easy to see that hard ball sys-
tems are, in general, isomorphic to semi-dispersing billiards (and if
N = 2, even to dispersing ones). At this point it is worth mentioning
that the proof — by Krámli, Simányi and the present author — of
ergodicity of the first semi-dispersing but not strictly dispersing bil-
liard appeared in the second volume of Nonlinearity precisely twenty
years ago, see [KSSz 89]. The novel ideas of that work has led to
a bunch of more and more sophisticated works and as a result of
them the story of the Boltzmann-Sinai ergodic hypothesis has been
conditionally completed by Simányi, [Sim 08] twenty years after the
appearance of the aforementioned Nonlinearity paper. In fact, he has
to assume the fulfilment of a condition of the local ergodicity theo-
rem for semi-dispersing billiards: that of the Chernov-Sinai ansatz (cf.
[SCh 87] and [KSSz 90]; as to more details see [Sz 08]). Of course,
apart from hard ball systems on tori there is an abundance of (semi)-
dispersing billiards whose ergodicity is a challenging open problem.
Here I only mention two of them closest to the Boltzmann-Sinai er-
godic hypothesis.

Problem 1. Hard balls in a box. The problem seems to be harder
than the Boltzmann-Sinai hypothesis. One reason is that the torus
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has more symmetries, in particular it has the group structure that
was heavily exploited in the algebraic methods. Another, more tech-
nical reason is that by having less invariants of motion (total mo-
mentum is not conserved any more) hyperbolicity of an orbit itself is
already a more stringent property.

Problem 2. Erdőtarcsa conjecture, [SSz 00]. It is a general conjecture
for the ergodicity of cylindrical billiards given in terms of the tran-
sitivity of a Lie group defined by the cylindric scatterers. Since the
class of cylindric billliards contains hard ball systems, the Erdőtarcsa
conjecture of Simányi and Szász is stronger than the Boltzmann-Sinai
hypothesis. (Cylindric billiards were introduced in [Sz 93], where
a naı̈ve form of the Erdőtarcsa conjecture had already been formu-
lated.)

3. THE COMPLEXITY CONDITION FOR DISPERSING BILLIARDS

To estimate correlation decay rate for axiom A systems Markov par-
titions have been most effective since they were in a sense easy to be
constructed and further there was an evident gap in the spectrum of
the transfer operator. For singular systems, like billiards, however,
Markov partitions are necessarily countable and their construction
— as it was originally designed by Bunimovich and Sinai, [BS 81]
— was fairly complicated and rigid already in the two-dimensional
case. Still restricted to d = 2, Bunimovich, Chernov and Sinai, [BChS 91]
substituted Markov partitions by more flexible objects, like Markov
sieves: these are sequences of finite families of subsets and their con-
struction has been simpler and in a sense more robust. However,
they still have only led to streched exponential decay of correlations.
A breakthrough was obtained in 1998 by the Markov-tower construc-
tion of Young, [Y 98] that provided spectral gap and exponential decay,
at least in the planar case.

After the appearance of Young’s tower construction alternative
methods have been found for obtaining stronger and finer stochastic
properties. From among them the Banach-space/transfer operator
methods (by Baladi, Gouëzel, Keller, Liverani, Tsujii, . . . ) or the geo-
metric ones (by Chernov, Dolgopyat and Young) based on growth
lemmas and coupling lemmas.

A natural goal was then to extend Young’s construction to the mul-
tidimensional case. The delicate work of Bálint and Tóth, [BT 08] has
unfolded the situation: they have, indeed, constructed Young tow-
ers for multidimensional dispersing billiards with a finite horizon.
Their result is, however, conditional since they need an additional
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geometric assumption related to the complexity condition to be ex-
plained later. This condition is plausible for at least generic billiard
tables, but so far they could not establish it for any (!) model. The
solution of this problem is a ‘must’ of the theory (and not only for
proving correlation decay!).

Let us turn to the formulation of the complexity condition. For
simplicity let us consider a (strictly) dispersing billiard on the d-
torus having finite horizon and no corner points. Denote it by (M =
∂Q̃ × S+, T, µ) where Q = T

d \ ∪p
j=1Oj is the billiard table with

Oj, 1 ≤ j ≤ p, the disjoint, C3-smooth, strictly convex scatterers,
S+ the hemisphere of outgoing unit velocities, T the billiard map,
and µ the invariant Liouville-measure. (By denoting x = (q, v) and
Tx = (x+, v+) the billiard map T is defined via q+ = inf{t >

0| q + tv ∈ ∂Q} and v+ = v − 2 < v, n+
> v where v+ is the outer

normal to ∂Q in the point q+.) Sinai, in his classical work [S 70],
worked out the fundamental ideas and tools of hyperbolic theory
for billiards, a key example of systems with singularities. He there
formulated the basic philosophy as to the possibility of such a the-
ory by saying ’expansion should prevail partitioning’. Another expres-
sion by Sinai of the same idea was the following: for (an unstable
invariant curve) to get partitioned it should first get expanded. For
planar billiards these curves are one-dimensional and the geometry
of their expansion and partitioning is simple (essentially they only
have length but no shape!).

Denote by S0 ⊂ M the set of all tangential collisions, and take the

union Sn
0 = ∪n

j=0T jS of its images under the first n iterates of T. For

n ≥ 1 consider all closures of the smooth components S
(n)
1 , S

(n)
2 , . . . , S

(n)
ln

of Sn
0 . These submanifolds partition the phase space into connected

components. Further for every phase point x ∈ ∪ln
l=1S

(n)
l it makes

sense to define the number Kn(x) of connected components of M in
sufficiently small neighborhoods of x. Denote Kn = sup

x∈∪ln
l=1S

(n)
l

Kn(x).

Definition 1. (Complexity condition, [Y 98]). Let Λ > 1 be the uni-
form minimal expansion of the billiard map over unstable vectors. The
complexity condition requires the existence of a λ < Λ and an n0 such
that ∀n ≥ n0 Kn < λn.

Then the theorem of Bálint and Tóth says

Theorem 1. (Bálint-Tóth, [BT 08]) If a finite horizon dispersing billiard
without corner points satisfies the complexity condition, then for arbitrary
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pair of Hölder functions f , g of the phase space there exist constants C, a >

0 such that ∀n ≥ 1

|
∫

M
f (x)g(Tn x)dµ −

∫
M

f (x)dµ
∫

M
g(x)dµ| ≤ Ce−an

As formulated above the complexity condition seems to be pretty
technical. Before substituting it with a more transparent form, let us
return briefly to Sinai’s philosophy. Its beautiful quantitative phras-
ing was given by Chernov, [Ch 99] in the form of growth lemmas.
The growth lemmas grasp the multidimensional shape of the smooth
pieces of images of invariant manifolds in an efficient way. The com-
plexity condition is actually used to establish them. At present I
think that requiring and using it is inevitable. One more remark:
as observed by [BBT 08], the growth lemmas, and consequently the
complexity condition, too, do also play a fundamental role in prov-
ing the local ergodicity theorem of Chernov and Sinai for general
multidimensional dispersing billiards (cf. [SCh 87], [KSSz 90] and
[B 05]). Indeed, so far this theorem has only been proved under the
additional assumption: the boundaries of the scatterers are algebraic (see
[BChSzT 02]), though everyone expects that this is only a technical
condition, and the statement holds in the C3-category.

For obtaining the promised transparent form of the complexity

condition assume that the scatterers Oj ∈ T
d : 1 ≤ j ≤ p are strictly

convex and algebraic, for instance spheres. Instead of the torus it

might be simpler to think of the case of Oj ∈ R
d : 1 ≤ j ≤ p and

one can make a simple heuristic calculation that can be made rigor-
ous easily. Note that the dimension of the phase space of the billiard

flow is 2d − 1. By introducing the vectors cj ∈ R
d : 1 ≤ j ≤ p and

considering the shifted scatterers Oj + cj ∈ R
d : 1 ≤ j ≤ p, one

expects that for typical configurations of the centers cj : 1 ≤ j ≤ p
no billiard orbit exists which would be tangent at least 2d times to
the scatterers. This can be proven rigorously locally in the neighbor-
hood of an orbit which does not have recollisions with any of the
scatterers. The transparent for of the complexity condition requires

the same when the scatterers are on T
d. The difficulty is, of course,

that then a common tangent orbit can be tangent to the same scat-
terer several times!

Transparent form of the complexity condition. Consider a toric
billiard as above. There exists a constant C(d), depending only on
d, such that for typical configuration of the centers no billiard orbit
exists with more than C(d) tangential collisions. We note that the
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complexity condition would follow if the constant C(d) depended
on the billiard table, too.

The authors of [BT 08] plan to publish their arguments that, in-
deed, this property implies the complexity condition and, moreover,
an example of a multidimensional dispersing billiard where the com-
plexity condition is not fulfilled (personal communication).

4. THE PENROSE BILLIARD OR THE PENROSE-LORENTZ PROCESS

The starting point of our last problem is the CLT for the Lorentz
process.

Theorem 2. (Bunimovich-Sinai, [BS 81]): The diffusively scaled vari-
ant WN(t) of the periodic, finite-horizon, planar Lorentz process converges
weakly to a Wiener process WD2(t) with a non-degenerate covariance ma-
trix D2.

Immediately after the appearence of this result, Sinai formulated
the following conjecture:
Sinai’s conjecture, 1981: The same statement holds for the locally per-
turbed periodic Lorentz process (finite horizon, d = 2)

Here local perturbation means that that the periodic scatterer con-
figuration is modified in a bounded domain in a rather arbitrary way.
One, should, of course, conserve the dispersive feature of the — non-
compact — billiard table, the local perturbation is otherwise suffi-
ciently arbitrary. Recently an affirmative answer has been obtained
to the conjecture, namely we have

Theorem 3. (Dolgopyat, Szász, Varjú, [DSzV 08b]) For the locally
perturbed finite-horizon, planar Lorentz Process, as N → ∞, WN(t) ⇒
WD2(t) (weak convergence in C[0, ∞]), where WD2(t) is the Wiener pro-
cess with the non-degenerate covariance matrix D2. The limiting covari-
ance matrix coincides with that for the unmodified periodic Lorentz process.

The authors of the aforementioned work also discuss other — in
a sense local — alterations of the model as compared to periodicity.
The next problem I formulate is a different kind of digression from
periodicity in the direction of quasi-periodicity.

Interlude: a related problem: two Lorentz discs. Before going over
to the problem on the Penrose-lattice, let me formulate a problem
partially related to both the local perturbed Lorentz process and to
the multidimensional case. An implication of the CLT for Hölder
functions of a finite horizon, planar, dispersing — in other words
Sinai- — billiards, is the weak convergence of the diffusively scaled
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periodic Lorentz process to the Brownian motion process. This re-
sult can also be interpreted as follows: consider a small disc par-
ticle moving among the periodic scatterers of the previous Lorentz
process (this dynamics will be called a Lorentz disc). Then the diffu-
sively scaled trajectory of the disc converges to a Brownian motion
as well (it is isomorphic to a Lorentz process with larger scatterers).
For various particle dynamics the joint rescaled motion of two par-
ticles was shown to asymptotically behave as independent (see for
instance [Sz 80]). For two Lorentz discs, however, a different picture
is expected. The reason is twofold: on the one hand, at collisions of
the two discs, there occurs an exchange of the energies between the
particles and, on the other hand, these collision are extremely scarce.
These effects cause the limiting processes of the individual particles
to be mixtures of Brownian motions. This picture have been shown
to be precise for toy models of the Lorentz discs: random walks with
internal states (work in preparation). When extending them to phys-
ical models it is reasonable to expect that the energy transfer formula
(i. e. Equ (5)) of [GG 08] will describe the change of energies in the
rare moments when the two particles actually collide.

Let us now go to our goal, to the definition of the Penrose-Lorentz
process. Consider a Penrose lattice in the plane. As described e. g.
in [TP 08], a Penrose tiling can be constructed by using two types of

isosceles triangles {L, S}. By denoting θ = π
5 and τ = 1+

√
5

2 the an-
gles of L are θ, 2θ, 2θ and its sides are 1, τ, τ, whereas the angles of S
are θ, θ, 3θ and its sides are 1, 1, τ. The symbolic rules of the construc-
tion force these triangles occur in pairs, only, a triangle reflected wrt
to a τ-side (L) or a 1-side (S) respectively. The arising quadrangles
are called kites and darts, respectively. It is known that by fixing a
vertex of the Penrose lattice, only 7 types of local neighborhoods of
any vertex are possible.

I call a finite horizon dispersing billiard in the plane a Penrose-
Lorentz process if its scatterer configuration possesses the transla-
tional invariance of the Penrose lattice. By this I mean that in each
tile of type L (and of type S, too) the scatterer configuration is iso-
morphic. The construction is easy: around each vertex one fixes a

circle of radius r <
1
2 , centered at the vertex. The fact that this bil-

liard has finite horizon follows from the aperiodicity properties of
the Penrose lattice. Let us denote the corresponding dynamical sys-
tem by (MP = ∂Q̃P × S+, TP, µP) where QP = R

2 \ ∪∞

j=1Oj is the

billiard table with Oj, 1 ≤ j ≤ ∞, the disjoint circular scatterers, TP

the billiard map, and µP the invariant (infinite) Liouville-measure.
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Denote by Sn(x) the position of the Lorentz particle in the Penrose-
Lorentz process in the moment of n′th reflection.

Conjecture. By selecting the initial phase point of the Penrose-Lorentz
process according to a probability measure absolutely continuous wrt to
the Liouville measure the diffusively scaled variant WN(t) of the Penrose-
Lorentz trajectory converges weakly to a non-degenerate, rotation-invariant
Wiener process.

The conjecture is supported by the common understanding that
the results of random walk theory provide a good guess what can
be expected for the Lorentz process (and often its methods are also
most useful). (As to recent examples cf. [DSzV 08a], [DSzV 08b],
[P 08a], [ P 08b]). On the basis of this belief I remark that for near-
est neighbor random walks on the Penrose lattice the convergence to
the Wiener process has been proven. Indeed, as early as in 2000, M.
Kunz, [K 00] already established a conditional result: under the con-

dition that harmonic coordinates exist, Sn√
n

is asymptotically normal

with zero mean and a rotation invariant covariance matrix. What is
more, as A. Telcs has informed me, there are general results for ran-
dom walks on graphs (in particular, those by Delmotte, [D 99] and
by Hambly-Kumagai, [HK 04] ), which — combined with a recent
observation of Solomon, [So 07] claiming that the Penrose lattice is
biLipschitz to the integer lattice — provide the asymptotic normality
unconditionally for a random walk on the Penrose lattice.

As to a possible proof I note that recent strong methods: growth
lemmas, generalizations of Young’s coupling, etc. of Chernov and
Dolgopyat, [ChD 07] should work more generally as stated for pur-
poses of concrete applications for billiards (op. cit) or periodic Lorentz
processes ([DSzV 08a]). For instance, I expect that the growth lem-
mas are also valid if the lengths of free jumps, and the curvatures of
the scatterers are bounded both from below and from above.

Acknowledgement. My sincere thanks are due to András Telcs
for communicating me the recent results mentioned in section 4. I
am grateful to the referee for his valuable comments.

REFERENCES

[B 05] P. Bachurin. On the structure of singularity submanifolds of dispesing billiards,
http://arxiv.org, math.DS/0505620

[BChS 91] L. A. Bunimovich, N. I. Chernov and Ya. G. Sinai. Statistical properties of
two dimensional dispersing billiards, Russian Math. Surveys 46 47–106, 1991.

[BChSzT 02] P. Bálint, N. Chernov, D. Szász and I. P. Tóth, Multi-dimensional semi-
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[KSSz 90] A. Krámli, N. Simányi and D. Szász. A “transversal” fundamental theorem
for semi-dispersing billiards, Commun. Math. Phys., 129, 535–560, 1990.

[L 06] M. Lenci Typicality of recurrence for Lorentz processes, Ergodic Theory Dynam.
Systems 26, 799–820, 2006.
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