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Abstract

As Bleher, [B 92] observed the free flight vector of the planar, infinite
horizon, periodic Lorentz process {Sn|n = 0, 1, 2, . . . } belongs to the non-
standard domain of attraction of the Gaussian law — actually with the√

n log n scaling. Our first aim is to establish his conjecture that, indeed,
Sn

√

n log n
converges in distribution to the Gaussian law (a Global Limit

Theorem). Here the recent method of Bálint and Gouëzel, [BG 06] helped
us to essentially simplify the ideas of our earlier sketchy proof [SzV 04b].
Moreover, we can also derive a.) the local version of the Global Limit The-
orem, b.) the recurrence of the planar, infinite horizon, periodic Lorentz
process, and finally c.) the ergodicity of its infinite invariant measure.

————————————————————————–
Key words: Lorentz process, periodic configuration of scatterers, infi-

nite horizon, corridors, non-normal domain of attraction of the Gaussian
law, local limit law, recurrence, ergodicity

1 Introduction

The Lorentz process is the Z
d−covering of a Sinai billiard — in other words of

a dispersing billiard — given on T
d = R

d/Zd. If the horizon is finite, i. e. the
free flight vector ψ(x) is bounded, then the Lorentz process is a most instructive
model of the Brownian motion.

We note here that though this should be true in any dimension d ≥ 2,
mathematical results only exist for d = 2. In this paper we will also restrict
our attention to this case. As suggested by the beautiful — partially rigorous,
partially heuristic — work of Bleher [B 92], in the infinite horizon case (d = 2!)
the asymptotic behaviour of the displacement Sn, taken in the moment of the nth

reflection from a scatterer, is slightly superdiffusive and Sn√
n log n

was expected

to possess a limiting Gaussian distribution. The first main aim of the present
work is to provide the first rigorous proof of this statement.
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Theorem 1 (Global limit theorem). Suppose that the direction vectors of in-
finite, collision-free flights span the plane. Let A be a bounded open set in the
plane. Then

µ

(

Sn√
n logn

∈ A
)

→
∫

A

φΣ(z)dz

where φ is a nondegenerate Gaussian density with zero expectation and covari-
ance matrix Σ.

A mostly geometric proof of this theorem was sketched in [SzV 04b]. How-
ever, before we had completed our paper with the technical proof of Theorem
1, there appeared a much interesting work of Bálint and Gouëzel, [BG 06]: for
the stadium billiard they gave a quite analytic proof of a global limit theorem
which also uses the

√
n logn scaling. The coincidence of scalings is explained

by the analogous behaviour of long free flights in our model (i. e. in corridors of
the Lorentz process) and that of the quasi integrable trajectories between the
linear sides of the stadium billiard (the neighbourhood of bouncing ball orbits).
The arguments of [BG 06] also helped us to simplify our approach substantially
at essentially three points:

1. once one has a tower construction à la Young, their Lemma 3.5 (cf. our
Theorem 13) provides a general, concise condition for the validity of a
non-standard Gaussian limit law;

2. they reduce the ”tower-sums” to a more tractable, still dominant part;

3. for describing excursions from the tail they use a delicate result of Chernov,
[Ch 99] (see in our Lemma 16).

A well-known spectacular property of discrete approximations of the Brown-
ian motion, like of simple symmetric random walks, is Pólya’s classical theorem,
claiming recurrence in the planar case.

For the diffusive, finite horizon case of the Lorentz process this had been
proved by various authors in [Sch 98], [Con 99], [SzV 04a]. (As a matter of fact,
the problem was raised by Sinai in 1979, after he, with Bunimovich, had proved
its convergence to the Brownian motion. In 1985 — as a partial solution —
the first named author jointly with A. Krámli could settle a weaker property:
quasi-recurrence of the planar, finite horizon Lorentz process, cf. [KSz 85].)

The arguments of [SzV 04a] relied on a local version, LCLT of the central
limit theorem (CLT). Our second main aim here is to first deduce a local limit
theorem (Theorem 2, a LLT), a local version of Theorem 1 and then by using it
to establish the recurrence of the planar Lorentz process with an infinite horizon
(Theorem 3).

Theorem 2 (Local limit theorem). Suppose that the direction vectors of infinite,
collision-free flights span the plane. Let kn ∈ Z

2 such that kn√
n log n

→ k ∈ R
2.

Then for the discretised position vector Sdisc
n the following holds:

n logn µ(Sdisc
n = kn)→ φΣ(k)

where φΣ is a nondegenerate Gaussian density with zero expectation from The-
orem 1.
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Theorem 3 (Recurrence).

µ(∃nk →∞ Sdisc
nk

= 0) = 1

It is worth mentioning that, for the planar Lorentz process with a finite
horizon but with a finite modification of a periodic scatterer configuration, the
problem of recurrence and of ergodicity was studied by Lenci [L 03].

The recurrence itself also has an additional interesting conclusion. Let us
note first that for the Lorentz process strong stochastic properties, like corre-
lation decay, limit laws, etc. could only be obtained in the case of a periodic
configuration of scatterers for then its factor is a Sinai billiard. For this same
case, however, it is an interesting question whether the Lorentz dynamics is
ergodic without this factorisation as well (N. B. in this case the invariant mea-
sure is infinite!). The combination of Theorem 3 with an old result of Simányi,
[Sim 89] also provides the answer:

Theorem 4. The planar Lorentz dynamics with a periodic configuration of
scatterers is ergodic.

Theorems 3 and 4 are true in the finite horizon case also (see above).
The paper is organised as follows. Section 2 is devoted to the description of

the model and to the study of its important geometric properties. In fact, we
recall the notion of corridors also discussed in Bleher’s work; they are distin-
guished parts of the phase space in whose neighbourhood the free flight vector
becomes unbounded. Here we also introduce new coordinates to make easier the
study of the tail behaviour of the free flight vector and its asymptotic Markov
property. In particular, our geometric probabilistic estimates are sharper than
those of [B 92]. Finally Section 2 closes with a brief reminder about the non-
normal domain attraction of the normal law. Section 3 is preparatory to the
technique used: it contains a reminder on Young towers and on the Fourier
transform of the Perron-Frobenius operator. Section 4 contains the proof of
Theorem 1, while section 5 those of Theorems 2, 3 and 4.

For the convenience of the reader we summarise the main results used from
other papers:

• Young’s tower construction which, in fact, is briefly recalled in section 3.1;

• The singularity structure (recalled in section 2.3) and the growth lemma
(used in the proof of lemma 16) from Chernov [Ch 99] (or alternatively
from Chapter 5 of [ChM 06]);

• Theorem 13 and Lemma 15 of this paper from [BG 06].

2 The model and its geometry

2.1 The model

Consider finitely many scatterers Oi on the 2-torus, (also called obstacles) T
2 ⊃

O = ∪Oi such that each of the scatterers is strictly convex with a C3-smooth
boundary. Let n(q) denote the unit normal vector of the boundary ∂O at the
point q, directed outwards O. The phase space of the system is:

X = {(q ∈ ∂O, v ∈ R
2) | |v| = 1, 〈v, n(q)〉 ≥ 0}.
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The dynamics T : X → X is uniform motion with v velocity vector followed
by an elastic collision (v is mirrored to the tangent line at the point of impact).
This system has a natural invariant measure: if we denote by l the total length
of ∂O, then dµ = 1

2l 〈v, n(q)〉 dqdv, is an invariant probability measure, since
∫

X 〈v, n(q)〉 dqdv = 2l. The normalising constant 1
2l will be denoted by cµ.

This phase space will be identified with a finite number of cylinders ∂O ×
[

−π
2 ; π

2

]

. So in this paper if v denotes a velocity of a phase point it is meant as

v ∈
[

−π
2 ; π

2

]

.
The boundary of this phase space consists of tangential collisions denoted

by S0. The dynamics resp. the inverse dynamics is non-continuous in backward
resp. forward images of this set. We will denote Si = T iS0, i ∈ Z.

The planar Lorentz process is the natural Z
2 cover of the above-described

toric billiard. More precisely: consider Π : R
2 → T

2 the factorisation by Z
2.

Its fundamental domain D is a square (semi-open, semi-closed) in R
2, so R

2 =
∪z∈Z2(D + z), where D + z is the translated fundamental domain.

We lift the obstacles to the plane (i. e. we take Õ = Π−1O), and define the
phase space X̃ , and the dynamics T̃ exactly the same way as above. The free
flight function ψ̃ : X̃ → R

2 is defined as follows: ψ̃(x̃) = q̃(T̃ x̃) − q̃(x̃). The
discrete free flight function κ̃ : X̃ → Z

2 is defined as follows: κ̃(x̃) = ι(T̃ x̃)−ι(x̃),
where ι(x̃) = z if q(x̃) ∈ D+z. Observe finally that ψ̃ and κ̃ are invariant under
the Z

2 action, so there are ψ and κ functions defined on X , such that ψ̃ = Π∗ψ
and κ̃ = Π∗κ. Actually for our purposes it will be more convenient to choose
the fundamental domain in such a way that ∂Õ ∩ ∂D = ∅. In this way κ will
be continuous.

Definition 5. The system is said to have finite horizon if the free flight function
is bounded. Otherwise the system is said to have infinite horizon.

2.2 The corridors, their geometry and the tail of the free

flight

¿From now on we will be only considering the infinite horizon case. It had
been observed in the physical literature (cf. [FM 84], [BD 85], [Bun 85] and
[ZGNR 86]) that, in this case, the anomalous diffusive behaviour is intimately
related to the unboundedness of the free flight vector. More precisely it is
related to its tail behaviour that is to the behaviour of the free flight vector in the
neighbourhood of collision-free orbits. This motivated Bleher [B 92] to introduce
corridors and to study probabilistic geometric estimates of the tail behaviour
of free flight vectors in these corridors. Our method, however, requires more
delicate estimates (the results are also sharper), and therefore we are starting
to build up our language.

q̃1 − q̃0d

Figure 1: Free-flight crossing a corridor, and some geometric constants

In the infinite horizon case the only reason for the unboundedness of the free
flight is the presence of corridors. These are bi-infinite strips in the billiard-table
R

2 \ Õ. The strips are tangent to the obstacles, and their slope is necessarily
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Figure 2: A corridor, and the corresponding four phase points.

rational, and, moreover, - up to Z
2 translations - there are finitely many of them.

We will suppose the - geometrically generic - condition: for each corridor, and
each side of the corridor the tangent obstacles are the images of a single scatterer
under Z

2 translations. Our results are also valid in the excluded cases, but the
geometric constants, which we will calculate would have a more complicated
form.

For such a corridor there are four corresponding points in the phase-space,
as shown on figure 2. These points are on the boundary of X , and are fixed by
the dynamics. (Without the previous condition these would be only periodic
points.) Outside of the neighbourhood of these points the free-flight is bounded.

Let us fix such a fixed point on the boundary as x0 = (q0; v0), where v0 is
either π/2 or −π/2. Let us denote by O0 the obstacle on which q0 is placed.
The free flight ψ(x0) is a lattice vector ψ(x0) = κ(x0), since Tx0 = x0. Denote
κ(x0) = w0, and the curvature of O0 at q0 by ξ0. Denote the considered (small
enough) neighbourhood of x0 by U0.

In U0 (means close enough to x0) two types of nonsingular collisions can
happen. First when the moving particle is “crossing” the corridor (see figure
1). In this case the free-flight is long (actually this is the only case), the closer
the phase point lies to x0 the longer the free-flight can be. The next collision
happens on the “other side” of the corridor. To make it precise let us denote
by x1 = (q1; v1) the phase point which corresponds to the same corridor as x0,

but v1 = −v0 and q1 6= q0 (see figure 2). Denote by ~Q0 the planar lattice vector
ι(q̃1) − ι(q̃0), where the lifting is such that q̃1 − q̃0 “crosses” the corridor (see
figure 1). We also need to define the “width” of the corridor d which is the
length of that component of q̃1 − q̃0 which is perpendicular to w0.

The other type of nonsingular trajectory in U0 is when the next collision is
on the “same side” of the corridor i. e. κ = w0. The phase point Tx is then
again close to x0, but this time it is of the first type, so consecutive “same side”
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T−1x x

Figure 3: If phase point T−1x is such that κ(x) = w0, then if x ∈ U0 the free
flight starting in q(x) “crosses” the corridor.

Figure 4: Singularity structure and singular trajectories near x0

collisions cannot happen. This can be seen on figure 3.

Proposition 6. Let U0 ⊂ X be a sufficiently small neighbourhood of x0 then

µ{x ∈ U0 | κ(x) = Nw0 + ~Q0} ∼ cµd2|w0|−1N−3

The range of κ in U0 is ~Q0 + w0Z
+ with possibly finitely many exceptions.

We postpone the sketchy proof for the first fact to section 2.4. The second
statement was essentially proved in the above text.

2.3 The singularity structure

We are going to describe the singularity structure, and the type of singular
trajectories in U0. The importance of this is that singularities bound the sets
for which we want to derive measure estimates. On figure 4 we also plot some
trajectory-segments, the configuration component of the corresponding phase
point is denoted by a small tick perpendicular to the trajectory.

There is a singularity curve from S−1 which is a preimage of tangential
collisions, denoted by thick line in figure 4, starting from x0. This consists of
phase points where the next collision will be tangential on O0 + w0. This is
called the “main” singularity. The reason for this is not that it would be more
singular, but rather the fact that other singularities end on this line.

There are singularity curves printed on the left of this one, starting on the
boundary of the phase space and ending on the main singularity. These consist of
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α

x

zw0

trajectory of x0

O0

Figure 5: The new coordinates z, α.

phase points where the free flight “crosses” the corridor, and the next collision is
tangential. Therefore this is also a part of S−1. A level-set of the discretised free-
flight function κ consists of a curvilinear rectangle bounded by two neighbouring
curves from this singularity family, the edge of the phase space and the main
singularity.

On the right of the main curve there are some curves from S−2. These also
start on the boundary and end on the main curve, but unlike the previous ones,
these curves have zero angle with the main line. These consist of phase points,
for which the first collision is on O0 + w0, and the next one is tangential after
crossing the corridor. On the right of the main singularity the next collision for
any phase point occurs on O0 +w0, therefore κ is constant w0 in this half of U0.

These two families of singularity curves have an infinite number of pieces
accumulating in x0. The closer the curve is to x0 the further the tangential
collision occurs, after the moving particle has crossed the corridor. The main
singularity curve has slope −ξ0 on the boundary of the phase space. For the
other singularity curves the slope on the boundary of the phase space is asymp-
totically −ξ0 as they approach x0.

The last singularity curve we want to describe is from S1. It consists of
phase points, where the previous collision was tangential on O0 − w0. This is
the image of the half of ∂X∩U0, namely that half where κ = w0 (on the right of
x0 on figure 4). Consequently (since x0 is fixed) this curve starts at x0. This is
drawn with a dotted line on figure 4. This curve has slope ξ0 on the boundary.
The sign of the second derivatives of all the singularity curves can be read from
the picture.

2.4 New coordinates, and the joint distribution of κ, κ◦T−1

In this subsection some proofs will be omitted, some will be sketchy or require
further estimates. However, since the missing parts rely on simple but tedious
geometrical calculations and the application of these results in later sections
does not need sharp estimates, we intended to keep this section not too long.

Instead of using the original (q0, v0) coordinates we are going to introduce
new (α, z) coordinates in U0. The new coordinates z and α are shown on figure
5 (these coordinates are also different from those of [B 92]). During the free-
flight, bouncing off the scatterer O0, the trajectory of x crosses the trajectory of
x0. This crossing point is therefore q0 + zw0 for some z ∈ R. The reader should
convince himself that the coordinate z is, in fact, a periodic one with period 1.
The other coordinate α is the angle ](w0, ψ(x)).

The reason for this change is that these coordinates are more suitable for
computations in relation with the free-flight since they are more intrinsically
related to the geometry of the model, especially asymptotically (when the free
flight goes to infinity). For example, the free flight has the asymptotic form
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|κ| ∼ d
α where d is the ’width’ of the corridor (cf. fig. 1). Also, the invariant

measure is asymptotically equal to cµ|α||w0|dzdα.
We note that the crossing point (which was the base of this coordinatisa-

tion) does not exist when the next collision occurs on O0 + w0. So these new
coordinates map only the half of U0 to the (z, α) plane. Namely that half which
is drawn on the left of the main singularity on figure 4. We will denote this
part by U ′

0 (remember that x0 and U0 are fixed). However, this restriction does
not influence the study of asymptotics, since we miss only the w0-level set of κ
inside U0.

Proof of Proposition 6. The level-set of κ is a curvilinear rectangle in the (z, α)
plane (cf. figure 6). We are going to multiply the height, the width and the
density to get the measure. The width is simply 1. The height can be obtained

from the formula α ∼ d
|κ| . Writing α′ ∼ d

|κ|+|w0| we get α − α′ ∼ d|w0|
|κ|2 . The

density is cµ|α||w0| and by substituting α we get cµd
|w0|
|κ| . So the measure is

∼ cµd2|w0|2
|κ|3 .

S0

S1

S−1
S−1

S−1

Figure 6: Level set of κ inside U0, and its intersection with a level set of κ◦T−1

(in the (z, α) coordinate plane)

Let us explain how this (z, α) image on figure 6 is related to the phase
portrait on figure 4 explained before. The largest curvilinear rectangle on figure
6 is the image of a level-set of κ under the (z, α) coordinate-mapping. This level
set is bounded by the boundary of the phase-space on the left, two singularity
curves from the first family on the top, and on the bottom, and the main
singularity on the right. There is also the dashed line, which is the singularity
line from S1, already explained before, too.

This latter line plays an important role in the joint distribution. On the
left of this line κ ◦ T−1 = w0. On the right of this line the mapping T−1 takes
values in the neighbourhood of another corridor-phase-point x1 (see subsection
2.2). We are going to use w1, ξ1, U1, U

′
1 for the point x1 in the same sense as

w0, ξ0, U0, U
′
0 have been used for the point x0. Using this notation, on the right

of the line we are describing now, there lies TU ′
1.

Talking about the joint distribution in terms of our new coordinate functions,
note that the α coordinate function is defined in U ′

0. Therefore α ◦ T−1 in the
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domain U ′
0 ∩ TU ′

1 has to be meant as applying the same coordinatisation rule
in U1. Since w1 = w0, the α coordinate functions in U0 and U1 are comparable
also as absolute angles: the observer only has to change signs.

By definition the sign of α is positive, and z is mostly positive. More precisely
remember that the asymptotic form of the invariant measure does not depend
on z meaning that in the |κ| → ∞ limit the distribution of z is uniform. Now

consider the range of z in the domain κ = ~N :

zmin
def
= min{z(x) | x ∈ U0, κ(x) = ~N}

and respectively

zmax
def
= max{z(x) | x ∈ U0, κ(x) = ~N}

Proposition 7. The asymptotics of the range of z in the domain κ = ~N when
~N is in the range of κ (see proposition 6) and | ~N | → ∞ is

zmin ∼ 1− zmax ∼
d

2|w0|ξ0| ~N |

Easy geometrical calculations yield the collision equation:

Proposition 8. On U ′
0 ∩ TU ′

1:

α ◦ T−1 ∼ −α+ 2
√

α2 + 2αz|w0|ξ0 (α→ 0)

Proposition 9. In U0 the following holds:

min |κ| ◦ T−1 ∼
√

d|κ|
8ξ0|w0|

and max |κ| ◦ T−1 ∼ 8ξ0|w0||κ|2
d

|κ| → ∞

Proof. Substituting the asymptotic maximum of z (max z → 1 as α → 0) to
the collision equation and omitting non-dominant terms we get maxα ◦ T−1 ∼
2
√

2α|w0|ξ0. Since α ∼ d
|κ| and α ◦ T−1 ∼ d

|κ◦T−1| , substituting α and α ◦ T−1

and then rearranging yields the first statement of the proposition. Using the
time-reversion symmetry for this formula we get the second one.

We can also compute the joint distribution of (κ, κ ◦ T−1).

Proposition 10.

µ({κ = ~N} ∩ {κ ◦ T−1 = ~M} ∩ U0) .
cµd

3|w0|2
4ξ0

| ~N |+ | ~M |
| ~N |3| ~M |3

Proof. For a nonempty intersection we are going to multiply the height the
width and the density to get the measure. The density and the height are the
same as in the proof of proposition 6. For the width consider the derivative of
the collision equation

∂α ◦ T−1

∂z
∼ 2α|w0|ξ0
√

α2 + 2αz|w0|ξ0
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To express the square root in terms of κ and κ ◦ T−1 we can rearrange the
collision equation, and substitute α and α ◦ T−1:

d

|κ ◦ T−1| +
d

|κ| ∼ 2
√

α2 + 2αz|w0|ξ0

We can express the increment of z as the inverse of the derivative multiplied by
the increment of α ◦ T−1. That is

d
|κ◦T−1| + d

|κ|

4 d
κ |w0|ξ0

d|w0|
(κ ◦ T−1)2

∼ d κ+ κ ◦ T−1

4ξ0(κ ◦ T−1)3

Hence the proposition.

The measure of the set {κ = ~N} ∩ {κ ◦ T−1 = ~M} ∩ U0 can be zero when
~N or ~M is not in the range of κ inside U0 (see proposition 6) or they fail
the range inequality (we only gave the asymptotics of this in proposition 9

roughly c3

√

| ~N | < | ~M | < c4| ~N |2). It can be also smaller than the expression

given in proposition 10 when the pair ( ~N, ~M) is close to the boundary of the
range inequality, but we do not want to formulate the validity precisely, we just
mention that in most part of the domain the inequality is sharp. It can also be
checked by summing the right hand side, and getting 1 in the limit.

What this essentially means is that the previous free-flight |κ◦T−1| is mostly
in the range of

√

|κ|. The measure of being in any other range can be estimated
from above with |κ| powers. To formulate precisely what we will use later in
subsection 4.1:

Proposition 11.

µ({κ = ~N} ∩ {κ ◦ T−1 > |κ| 34 } ∩ U0) = O(| ~N |−3.5)

Proof.
∑

M=N
3
4

N+M
N3M3 = O(N−3.5)

The other level set of κ ◦ T−1 which intersects U0 is the κ ◦ T−1 = w0 set.

Proposition 12.

µ({κ = ~N} ∩ {κ ◦ T−1 = w0} ∩ U0) = O(| ~N |−4)

Proof. As before the measure will be estimated with the product of the height,
density and the width. It remained to estimate only the width. The domain
is the left-hand side of the dashed line on figure 6. Going from right to left
inside the level set in figure 6, the dashed line is reached exactly when α ◦ T−1

reaches its minimum. According to proposition 9 we have to estimate what is
the value of z for which α ◦ T−1 reaches const ·α2. Exact calculations based on
the derivative of the mapping would give O(| ~N |−5) in the right hand side of the
proposition, but here it is sufficient to observe that this singularity line denoted
by the dashed curve is on the left of the z = 0 line, where α = α ◦ T−1. So the
width can be estimated by zmin which was given in proposition 7.
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Lastly we have to introduce homogeneity strips. This is a traditional tool in
the theory of hyperbolic billiards to ensure the necessary distorsion bounds (cf.
[ChM 06]).

Hk =
{

(q, v) ∈ X | π/2− k−2 < v < π/2− (k + 1)−2
}

and
H−k =

{

(q, v) ∈ X | −π/2 + (k + 1)−2 < v < −π/2 + k−2
}

for all k ≥ k0 and

H0 =
{

(q, v) ∈ X | −π/2 + k−2
0 < v < π/2− k−2

0

}

where k0 is a fixed, suitably large constant.
These strips can also be expressed in the terms of κ and κ ◦ T−1 since the

distance from the boundary of the phase-space in U ′
0 ∩ TU ′

1 is asymptotically:

d
|κ| + d

|κ◦T−1|
2

.

It follows that the smallest k index such that Hk intersects {|κ| = N} is:
max{k0, cN

1/4}.

2.5 Non-normal domain of attraction of the normal law

First we summarize the necessary information about domains of attraction fo-
cusing mainly on our interest: the non-normal domain of attraction of the nor-
mal law (cf. the monographs [IL 71], section II/6 or [F 66], section XVII/5).
A random variable R with distribution function PR belongs to the domain of
attraction of a normal distribution if its characteristic function satisfies

log

∫

eitudPR(u) = itν − 1

2
t2L(1/|t|)(1 + o(1)) (t→ 0)

for some constant ν ∈ R and a slowly varying function L : (0,∞) → (0,∞)
which is bounded below. (Note that o(1) can be complex.) Recall that the
positive function L : (0,∞) → (0,∞) is slowly varying at infinity if for each
x > 0 as t→∞

L(tx)

L(t)
→ 1

(cf. [F 66] VIII/8).
It is worth mentioning that the slowly varying function in the above equation

can be chosen as

L(x) =

∫ x

−x

u2 dPR(u).

In the sequel we fix L in this way and thus it will, of course, be a monotone
function. In general, normal domains of attractions of stable laws are charac-
terised by the fact that in the limit theorems formulated for them the scaling
has an exact polynomial form. The distribution function PR belongs to the
normal domain of attraction of the normal law if and only if L is bounded.
Our interest here, however, is its non-normal domain of attraction. Denote
χ(x) = 1 − F (x) + F (−x). Then PR belongs to the non-normal domain of the
gaussian law if and only if one of the following conditions hold:
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• L(x) =
∫ x

−x
u2 dPR(u) is an unbounded slowly varying function;

• χ(x) = l(x)
x2 where l(x) is a slowly varying function; if so, then it is true

that l(x) = o(L(x)).

Finally, for a random variable R in the non-normal domain of attraction of
the normal law, the independent sum of PR-distributed random variables S∗

n

satisfies the limit theorem:
S∗

n−nν
Bn

d→ N (0, 1) as n → ∞ in distribution, where

Bn is the normalising sequence defined by the asymptotics nL(Bn)
B2

n
→ 1.

Let us turn now to our situation. The random variable κ is a vector. It was
shown in proposition 6 that its component function belongs to the non-normal
domain of attraction of the normal law, if that component is not perpendicular
to all of the corridor-free-flights wi. In this case l(x) is a constant function
l(x) ≡ c. Since the free-flight is symmetric, we have c1 = c2 = 1

2 , and ν = 0.
Consequently L(x) ∼ 2c log x, and Bn =

√
cn log n is a normalising sequence.

The constant c depends on which component we are looking at. If we choose
~v ∈ R

2 a unit vector, then the constant of the ~v component has the following
expression in the terms of the geometric constants:

c =
∑

x∈∂X|Tx=x

cµd
2
x

〈ψ(x), ~v〉2
2|ψ(x)| . (1)

Remember that for such points ψ(x) = κ(x), and we used the notation ψ(x0) =
w0 for the fixed corridor we were investigating. Also note, that every term in
the above sum appears exactly four times (cf. figure 2 in section 2.2)!

Since the configuration is planar, the following is true: if the corridor free-
flight vectors span the plane, then every component of κ, hence the vector itself
is in the non-normal domain. If this is not the case, then one has to apply
anisotropic scaling to get a nondegenerate limit distribution. Namely it should

be
(√

n 0

0
√

n log n

)

in a basis, where the first element is perpendicular to the

corridor free-flights.
The goal of the forthcoming arguments is to establish Bleher’s hypothe-

sis: though the (stationary) process of the free flights of our model is not an
independent process, nevertheless in many respects the partial sums behave
asymptotically the same way as if the variables were independent.

3 Young towers and the Fourier transform of

the Perron-Frobenius operator

3.1 Young towers

According to our recent understanding the most efficient way for constructing
Markov partitions for billiards is to use Young towers, cf. [You 98]. We are going
to introduce the main concepts without giving a full description.

The presence of singularities prevent stable and unstable curves to possess a
lower bound for their size in any part of the phase-space. Therefore the product
structure - the key ingredient of several hyperbolic argument - can only be
introduced in a complicated set.

12



Figure 7: Young-towers, and Markov-return
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By the local ergodicity theorem for semi-dispersing billiards (cf. [Ch-S 87])
it is possible to choose an unstable curve W , which is short enough to ensure: a
high amount of the points possesses unstable curve of this length. Then define a
subset of this curve consisting of points, which remain a certain (exponentially
shrinking) distance apart from S−1 and other more technical singularities.

Ω∞ := {y ∈W | d(T ny,S) > δ1λ
−n ∀n ≥ 0}

where λ is the hyperbolicity constant. If δ1 is chosen small enough this set has
positive measure. By construction each point in Ω∞ possesses a stable curve of
length δ1.

So far we have one unstable curveW , and a family of stable curves {γs}. Let
us consider all the nearby unstable curves, which are long enough, and intersect
all the stable curves in the previous family. These two families of curves {γs}
and {γu} define the hyperbolic product-set Λ = (∪γu) ∩ (∪γs).

This set is the base of the hyperbolic Young-tower. To continue the con-
struction of the tower we are going to focus on recurring subsets of Λ. On figure
7 we can see that some parts of Λ are mapped to Λ. However we are only
interested in those returns, which respect the product structure. A subset of Λ
is said to be an s-subset if it is the product of the full family of unstable curves
and some part of the stable family. The notion of u-subset is defined -mutatis
mutandis- in the same way.

We can see three intersections on the figure, the lower and upper ones are
u-subsets. Talking about these intersections black covers grey in the unstable
direction (when the reader sees black in these intersections, then on that un-
stable curve black covers grey). On the contrary grey covers black in the stable
direction (on each stable line black can appear only where grey is already there).
The inverse image of each of these two intersections is an s-subset.

A Markov-return is an event when some T nΛ∩Λ is a u-subset, and it’s inverse
image under T−n is an s-subset. The possible non-Markov returns are when the
intersection is not a u-subset (this is printed as the middle intersection), or when
the inverse image is not an s-subset. This latter event occurs when a recurring
part goes over the edge of Λ in the stable direction.

The inverse image of the Markov-recurring part is not necessarily a solid
rectangle intersected with Λ. It can have infinitely many “holes” in it, as demon-
strated on figure 7.

The tower is built using these Markov-type returns. The basic Λ set is
divided into s-subsets according to Markov-returns, and each subset is marked
by the return time R. In this way R will be a function on Λ which is constant on
these s-subsets. Not all Markov-returns are considered, for sophisticated details
please consult [You 98]! The tower itself

∆
def
= {(x, ω) : x ∈ Λ; ω = 0, 1, . . . , R(x)− 1}

and the dynamics on the tower is

F (x, ω) =

{

(x, ω + 1) if ω + 1 < R(x)
(TRx, 0) if ω + 1 = R(x)

Note that we have a decomposition into s-subsets which give rise to a Markov
partition on the tower. This tower is only hyperbolic, and as a usual tool in this

14



field Young has also introduced a factorised version of it ∆̄. Simply collapse the
stable direction! This is also demonstrated on figure 7. We have the following
commutative diagram of measure preserving transformations:

(∆̄, µ̄∆)
π∆̄←−−−− (∆, µ∆)

πX−−−−→ (X,µ)

F̄

x




F

x




T

x





(∆̄, µ̄∆)
π∆̄←−−−− (∆, µ∆)

πX−−−−→ (X,µ)

(2)

The projection to the original phase-space is not 1-1. On figure 7 the in-
tersection in the middle has at least two inverse images. One of them is in
the ground floor, and the other is on the first floor. Since the return is not
Markovian these point are to be considered as different points on the tower.

Functions on the original phase space X can be lifted to ∆. Functions on
∆ which are constant along stable directions can be considered as functions
on ∆̄. For any function ψ on ∆ there exists functions h and ϕ, such that
ϕ − ψ = h− h ◦ F , and ϕ is constant along stable directions. In this equation
the regularity of the functions can be examined, but we will skip the details,
and only introduce distance, and function norms on the factorised tower ∆̄.

Remember that the factorised tower ∆̄ has a Cantor-structure, and a Markov-
partition. The Cantor-hierarchy can be redefined with the separation time

s(x, y) = min{k ≥ 0 |
F̄ kx and F̄ ky lie in different elements of the Markov-partition}.

With any 0 < β < 1 the function βs is a metric providing the original Cantor
topology.

On ∆̄ Young uses two kind of norms: the C norm is

‖ϕ‖C
def
= sup

l,j

∥

∥ϕ|∆l,j

∥

∥

∞ e−lε

where ‖ . ‖∞ is the essential supremum wrt µ, and the indices (l, j) refer to the
elements of the Markov-partition. The L norm is a sum of this, and the h-norm:

‖ϕ‖h
def
= sup

l,j

(

sup
x,y∈∆l,j

|ϕ(x) − ϕ(y)|
βs(x,y)

)

e−lε;

where the inner sup is again essential supremum wrt µ × µ. For a Hölder
function f on the original billiard phase-space, we can associate a function
on ∆̄ as described above, such that for any β smaller than a certain number
(computed from the original Hölder exponent of f) the resulting ϕ has a finite
h-norm.

In these definitions the role of ε is the following: without ε the Jacobian
of the mapping would be 1 except when recurring to the base of the tower.
However estimates expressed in the terms of this norm see a uniform expansion.
Not to do harm the mapping should be expanding, when recurring to the base,
so we have to choose ε smaller then the Lyapunov-exponent.

The Perron-Frobenius operator P is defined on functions on ∆̄ with finite
L-norm as the adjoint of F̄ wrt the measure µ̄∆.

∫

f · g ◦ F̄ dµ̄∆ =

∫

P (f) · g dµ̄∆ f, g ∈ L

15



It also has an algebraic form

P (f)(x) =
∑

y|F̄ y=x

f(y)

J(y)
f ∈ L

where J in the denominator is the Jacobian
∂µ̄∗

∆

∂µ̄∆
the Radon-Nikodym derivative

of the pullback measure wrt the original measure. On the top of the tower the
number of inverse images is infinite, otherwise there is a single preimage, and
the Jacobian is 1.

The main issue here is that the transfer operator P possesses a spectral gap.
This is the main reason for introducing this rather complicated and implicit
symbolic dynamics. This gives those analytical tools in our hands which we
describe now. Although κ is defined in the original phase-space X , we will use
the same notation for the function lifted to the tower. Since κ is locally constant
it can also be considered as a function on ∆̄.

3.2 Fourier transform of the Perron-Frobenius operator

In our case the Birkhoff sum Sn =
∑

k κ ◦ T k is not an independent sum. Since
Nagaev’s 1957 work, [Nag 57], for concluding a limit theorem, one traditionally
uses the Fourier-transform of the transfer operator. The Fourier transform
operator is defined on the Young-tower, since that is the symbolic space, on
which we have the full power of analytical tools built on the transfer operator:

Pt(h)
def
= P (ei〈t,κ〉h) (h ∈ L, t ∈ R

2)

It has the following simple connection with the characteristic function of the
Birkhoff-sum:

∫

exp(i 〈t, Sn〉)dµ =

∫

Pn
t (1)dµ̄∆.

For small values of t, Pt can be considered as a perturbation of P , since
P0 = P . Then one, in general, proves that Pt possesses a gap between the leading
simple eigenvalue λt and the rest of the spectrum and the gap is uniformly
bounded away from zero.

For large values of t one needs to know exactly for which t values will the unit
circle intersect the spectrum. In our case for the continuous free flight function
this occurs when t ∈ 2πZ

2. For that reason we switched to the discretised
function κ, since the latter one is an integer valued vector function, and thus
Pt = P when t ∈ 2πZ

2, so we can factorise, and consider t ∈ 2πT
2. This is the

question of minimality which is completely described in [SzV 04a].
Moreover, if our interest is a global limit law, then it is sufficient to derive

an appropriate expansion for λt for small values of t.
Indeed, this is also contained in the statement of Theorem 13 from [BG 06].

As a matter of fact, our main task will be to check the key condition of that
theorem and thus we will actually derive a simple asymptotics Pn

t = λn
t +O(ϑn),

for a suitable ϑ < 1. Consequently, the characteristic function of the dependent
sum can be approximated with a power. Thus it is only the asymptotics of λt

that has remained to be investigated, and we expect the same behaviour what
we have seen in the single term characteristic function. This will mean that
the effect of dependence is negligible: both the independent and the dependent
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sums have the same asymptotic expansion for the Fourier transform, namely
1 + cn|t|2 log |t|. (In this formula c describes the direction-dependence, and
|t| the length, remember the definition of c in (1)!) Further, relying upon the
method of [SzV 04a], we will also be able to handle the local version of the
global limit law.

4 Proof of Theorem 1: The asymptotics of λt

In the forthcoming section we are going to establish the global limit law of
Theorem 1 via an asymptotic expression at t→ 0 of λt, the leading eigenvalue
of the Fourier-transform of the Perron-Frobenius operator. We will rely upon
ideas of [BG 06] and of our work [SzV 04b].

The following theorem of [BG 06] provides a condition for a limit law in the
non-standard domain of attraction of the Gaussian law for models possessing a
Young tower with an exponential tail bound for the height function, in general.

Theorem 13. ([BG 06], Theorem 3.5) Assume that the distribution of a func-
tion g ∈ L is in the nonstandard domain of attraction of the normal law (wrt
µ̄∆). Remember that ω was the level function of the tower. Denote the “tower-
sum” by G =

∑ω
k=1 g◦ F̄−k. Let L, l be as in subsection 2.5. Assume, moreover,

that l(x log x)/l(x) → 1, L(x log x)/L(x) → 1 when x → ∞. Finally, assume
that there exists a real number a 6= −1/2 such that

∫

g(eitG − 1)dµ̄∆ = (a+ o(1))itL(1/|t|) (t→ 0). (3)

Write L1(x) = (2a+ 1)L(x), and choose a sequence Bn →∞ such that
n

B2
n
L1(Bn) → 1. Then for λt the leading eigenvalue of the Pt(h) = P (eitgh)

Fourier-transform-operator:

λt = 1− t2

2
L1(1/|t|)(1 + o(1))

and consequently for the Sn =
∑n−1

k=0 g ◦ F̄ k Birkhoff-sum:

Sn − n
∫

g

Bn

d→ N (0, 1).

We will indeed show that in our case the integral condition (3) of the above
theorem holds for g = κ with a = 0. (This is actually the case discussed by
[AD 01b].) We note that this case will allow a simpler treatment than that of the
stadium because here the expansion rate is much larger (though the logarithm
of the free flight function in a corridor does not form a random walk as it is the
case in the stadium).

Our arguments for the local limit theorem will use again the asymptotics of
the main eigenvalue λt, which is expressed for our case by the next Corollary.

Corollary 14. The Fourier transform operator of the discretised free-flight
function has the following expansion for its leading eigenvalue:

λt ∼ 1 + cn|t|2 log |t|

.
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Turn to the proof of the integral condition (3). In our case the function κ
is locally constant, so we can pass the integral immediately to ∆. Denote the
“tower-sum” by K =

∑ω
k=1 κ◦F−k. It is easy to see that the dominating terms

of the integral in (3) are those corresponding to parts of the phase space when
the process is close to a singular point say x0 (discussed in 2.2).

The estimate of this integral is based on the following fact. We have already
observed that high values of κ are typically reached rapidly: κ ◦ T−1 is in
the order of

√

|κ|. During this fast trajectory segment the tower-sum can be

estimated with the last term, hence it is also of order
√

|κ|. Since |eitK̄−1| ≤ tK̄,
the integral can be estimated by t

∑

n n
√
n ·µ{|κ| = n} = O(t). The trajectories

which do not provide fast reach have polynomially small (in |κ|) relative measure
in the level-sets. These domains can be discarded due to the following lemma:

Lemma 15. Any part of the integration domain A with measure µ(A ∩ {|κ| =
N}) = O(N−3−α) with any α > 0 can be thrown away:

∫

∆

κ(ei〈t,K〉 − 1) =

∫

∆\A

κ(ei〈t,K〉 − 1) +O(|t|)

This is proved in proposition (4.17) of [BG 06]. Though the integration do-
mains are in the hyperbolic Young-tower, if we identify the sets to be disregarded
on the original phase-spaceX , then by measure preservation their pullbacks will
satisfy the lemma.

4.1 Reduction of the integration domain

First we are going to discard that part A1 of the neighbourhood of x0 where the
last step was not fast enough, i. e. A1 = {x ∈ U0 | |κ ◦ T−1| > |κ| 34 } ⊂ X . We
also discard the set A2 of those points where κ ◦ T−1 = w0, i. e. A2 = U0 \ U ′

0.

A2

A1

Figure 8: The discarded sets A1 and A2 in the level set of κ and the foliation
with nearly unstable curves

We already know that the relative measure of (A1 ∪A2) inside {|κ| = N} is
O(N−1/2) (cf. propositions 11 and 12).

Let us foliate the remaining part with curves whose direction is nearly un-
stable (the derivative is in the unstable cone for T−1).
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The third discarded set A3 will consist of points, for which the backward
V logN -step trajectory meets the {|κ| > N

4

5 } set, where V is a large number to
be chosen later. To estimate the relative measure of A3 we prove the following
lemma:

Lemma 16. There exists a constant C such that, for any large enough integer V
it is true: for any large enough N , given any unstable curve D (for the mapping
T−1) in the set {|κ| = N} \⋃i=1,2Ai, the points for which |κ| increases above

N4/5 within V logN iterations of T−1 occupy a subset whose relative measure
is less than CN−1/40 in that curve.

Proof. The proof is a suitable modification of Lemma 4.18 of [BG 06]. We are
going to apply the growth lemma of Chernov as formulated in [Ch 06] (lemma
2.2) (or in section 5.9 of [ChM 06]). The validity of this lemma in infinite
horizon planar billiards was proved in [Ch 99]. We briefly recall the statement.
The subject of the lemma is a possibly countable collection of smooth curves γ
which satisfies the following properties:

• the derivative is in the unstable cone (then the curves are called unstable
ones),

• the components are contained in homogeneity strips (if the curve goes
through the boundary of a homogeneity strip, then the intersection with
the boundary is considered as a singularity point on the curve),

• and the lengths of the components do not exceed a fixed sufficintly small
constant δ1.

The evolution of such a curve is that the mapping is applied to it. After that,
the image is cut by boundaries of homogeneity strips. The resulting components
which are longer than δ1 are cut into pieces of length between δ1/2 and δ1. This
way the image will satisfy the same properties.

The essence of the growth-lemma is the following. When applying the above
procedure to γ it is stretched and cut. The growth lemma bounds the total
measure of points close to the boundaries of these pieces, or in other words it
provides a lower bound for the total measure of sufficiently long pieces.

Lemma 17. (Growth Lemma 2.2, [Ch 06]). There exists positive constants
δ1, c1, c2, and θ1 < 1 and λ > 1, such that if γ satisfies the above properties,
then for any n ≥ 0 and ε > 0 we have

Lebγ(rn(x) < ε) ≤ c1(θ1λ)nLebγ(r0(x) < ε/λn) + c2εLebγ(γ)

where rn means distance from the boundary in the nth image (i. e. that of the
point T nx from the boundary of the component of T nγ which contains it.

We are going to apply the lemma to the mapping T−1 and to the image
of the curve D under the above procedure (apply T−1 and cut)! We note that
distances, and Lebγ is necessarily meant in the original coordinates, rather than
the new ones. Within |κ| = N4/5 the largest homogeneity strip has index cN1/5

and width cN−3/5. Hence the points which reach |κ| > N4/5 will sit on a curve
component with length not larger than cN−3/5. We are going to estimate the
relative measure of points of the latter type using the growth lemma for all
n < V logN and for ε = cN−3/5.
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Note that in the set {|κ| = N} \ A1 one has |κ ◦ T−1| < N
3

4 . Hence the
image will intersect {|κ| = M} sets with cN1/2 < M < N3/4. We are going to
estimate the relative measure in a {|κ| = M} set:

LebT−1D∩{|κ|=M}(r0(x) < ε)

LebT−1D∩{|κ|=M}(T−1D ∩ {|κ| = M}) .

Let us first investigate M = N3/4. The set in the numerator will contain the
intersection of the curve with the union of those homogeneity strips, for which
the width is smaller than ε = cN−3/5. That is k−2 for the smallest index k
for which k−3 < ε. This set has measure cN−2/5. For each of the remaining
k indices we have 2ε. The number of the remaining indices is cN3/16 − cN1/5,
so the contribution to the measure is cN−33/80. Therefore the numerator is
cN−2/5. The denominator is cM−1/2 = cN−3/8 if the curve has a complete
intersection with {|κ| = M}. In that case the relative measure is cN−1/40. For
other M values the relative measure is even smaller. Hence if an intersection is
not complete it continues in an other {|κ| = M} domain, and for the union of
these pieces we have the same relative measure estimate. So we have the same
relative measure for the whole T−1D except possibly for the neighbourhood
of the endpoints T−1∂D. There are two of them and the neighbourhood has
relative measure at most cN−1 inside D.

Now we apply the growth lemma:

LebD(rn(x) < ε)

LebD(D)
≤ c1(θ1λ)n−1 LebD(r1(x) < ε/λn−1)

LebD(D)
+ c2ε.

The first term on the right hand side can be bounded by elements of a geometric
series, so if we sum for n < V logN it will be proportional to the first term
which is cN−1/40 from the above discussion. The second term gives a sum
cV (logN)N−3/5.

The last discarded set will be defined on the tower: We are going to throw
away that part A4 of the integration domain, which is too high on the tower
ω > V log |κ|. Since the tower has exponentially small tails, if V was chosen large
enough, then the discarded set has measure µ∆(A4 ∩ {|κ| = N}) = O(N−4),
and thus by lemma 15 the integral can be restricted to its complement.

Now it remained to estimate the integral on the non-discarded set.

Lemma 18.
∫

π−1

X
(X\S

3

i=1
Ai)\A4

κ(ei〈t,K〉 − 1) = O(|t|)

Proof. Consider the integral on the left. By the definition of the discarded sets
we have:
∣

∣

∣

∣

∣

∫

π−1

X
(X\S

3

i=1
Ai)\A4

κ(ei〈t,K〉 − 1)

∣

∣

∣

∣

∣

≤

≤ |t|
∫

π−1

X
(X\S

3

i=1
Ai)\A4

|κ||K| ≤ C|t|
∑

n

µ{|κ| = n}n logn n4/5 ≤ C|t|
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5 Proof of Theorems 2, 3 and 4

The proof of the local limit theorems (Theorems 20 and 21 below) and that
of the recurrence is -mutatis mutandis- the same as for the finite horizon case
[SzV 04a]. Here we are going to state the theorems only, and comment just the
beginning, where the different norms used by the different approaches ([BG 06]
and [SzV 04a]) could lead to a confusion.

Theorem 19 (Nagaev-type theorem, modification of [SzV 04a] Theorem 3.3).
There are constants ε > 0, K > 0 and θ < 1 and a function ρ : (−ε, ε) → L
such that

∥

∥

∥

∥

Pn
t h− λn

t ρt

∫

∆̄

hdµ̄∆

∥

∥

∥

∥

L1

≤ Kθn ‖h‖L ∀|t| < ε, n ≥ 1, h ∈ L (4)

and
‖ρt − 1‖L1 → 0 (t→ 0), λt = 1 + (1 + o(1))c|t|2 log |t|

The statement in [SzV 04a] was stronger in the sense of norms, but inequality
(4) is completely enough for the proof of our local limit theorems. The proof
of Theorem 19 can also be straightforwardly derived from considerations in
[BG 06], namely the proof of their theorem 3.5.

Theorem 20 (Local limit theorem). Suppose that the corridor free flights
{κ(x) | x ∈ ∂X, Tx = x} span the plane. Let kn ∈ Z

2 be such that kn√
n log n

→
k ∈ R

2. Then
n logn µ{Sn = kn} → ϕ(k)

where ϕ is a non-degenerate normal density function with zero expectation and
covariance matrix

∑

x∈∂X|Tx=x

cµd
2
x

2|κ(x)|

(

κ2
1(x) κ1(x)κ2(x)

κ1(x)κ2(x) κ2
2(x)

)

where κ = (κ1, κ2) is the notation for the component functions.

The proof of recurrence follows a version of the Borel-Cantelli lemma due
to Lamperti. See [SzV 04a] for the statement, conditions and the details of
application. For this part of the Borel-Cantelli lemma one needs some kind
of independence. Lamperti’s condition can be fulfilled when one proves an
asymptotic independence statement:

Theorem 21. Let jn ∈ Z
2 be such that jn√

n log n
→ j ∈ R

2, and kn ∈ Z
2 be such

that kn√
n log n

→ k ∈ R
2. If the corridor free flights span the plane, then

lim
m,n−m→∞

m logm (n−m) log(n−m) µ{Sm = jm, Sn = jm+kn−m} = ϕ(j)ϕ(k).

The proof consists of repeating twice the same integral transformations as
in the proof of the local limit theorem (again see the proof of Theorem 4.2
in [SzV 04a] for details; we note, however, that the claim of Theorem 4.2 in
[SzV 04a] contains a misprint, in fact it ought to be analogous with that of
Theorem 21).
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Theorem 22. The invariant (infinite) measure of the Lorentz process dµ̃ =
〈v, n(q)〉 dqdv (where dq is the arclength measure on the boundary of infinitely
many scatterers) is ergodic i. e. for any invariant set A either µ̃(A) = 0 or
µ̃(X̃ \A) = 0.

This follows from recurrence and [Sim 89], where the author showed the
equivalence between recurrence and the ergodicity of the infinite measure (see
also [Pen 00]).
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