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Abstract. A conjecture is formulated and discussed which
provides necessary and sufficient condition for the ergodicity of
cylindric billiards (this conjecture improves a previous one of the
second author). This condition requires that the action of a Lie-
subgroup G of the orthogonal group SO(d) (d being the dimension
of the billiard in question) be transitive on the unit sphere S%1.
If Cy,...,Ck are the cylindric scatterers of the billiard, then G
is generated by the embedded Lie-subgroups G; of SO(d), where
G consists of all transformations g € SO(d) of R? that leave the
points of the generator subspace of C; fixed (1 < i < k). In this
paper we can prove the necessity of our conjecture and we also
formulate some notions related to transitivity. For hard ball sys-
tems, we can also show that the transitivity holds in general: for
arbitrary number N > 2 of balls, arbitrary masses mq,...,mpn
and in arbitrary dimension v > 2. This result implies that our
conjecture is stronger than the Boltzmann-Sinai ergodic hypothe-
sis for hard ball systems. As a by-remark, we can give a somewhat
surprising characterization of the positive subspace of the second
fundamental form for the evolution of a special orthogonal mani-
fold (wavefront), namely for the parallel beam of light. Thus we
obtain a new characterization of sufficiency of an orbit segment.

1. INTRODUCTION.

Semi-dispersive billiards is a class of billiards evidently without any ellipticity,
actually with more or less manifest hyperbolicity; their study was initiated by
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Chernov and Sinai in 1987 [S-Ch(1987)]. Cylindric billiards, a much interesting
subfamily of semi-dispersive billiards were introduced in 1992 by the second author,
[Sz(1993)]. Cylindric billiards are interesting for,

on one hand, they contain hard ball systems, a fundamental model from the
aspects of statistical physics and a much beautiful one, we believe, from the point
of view of mathematics; and

on the other hand, this is apparently the widest subclass of semi-dispersive bil-
liards where the search for transparent necessary and sufficient conditions of ergod-
¢city is promising.

In words, cylindric billiards are toric billiards where the scatterers are cylinders.
In our discussion, the bases of the cylinders will be assumed to be stricly convex,
a property ensuring that the scatterers be convex, and thus the arising billiard be
semi-dispersive. Because of the simplicity of our model, let us immediately start
with a formal definition.

The configuration space of a cylindric billiard is Q = T?\ (Cy U - - - U Ck), where
T¢ = R¢/Z? (d > 2) is the unit torus. We note here that all notions and proofs
work well without any significant change if we allow general flat tori T¢ = R?/L,
where £ is a full lattice in R?, i. e. a discrete subgroup of the additive group
R? with maximum rank d. The cylindric scatterer C; (i = 1,...,k) is defined as
follows:

Let A; C R? be a so called lattice subspace of the Euclidean space R?, which
means that the discrete intersection A; N Z% has rank dim A;. In this case the
factor A;/(A; N Z4%) naturally defines a subtorus of T¢, which will be taken as the
generator of the cylinder C; C T¢. Denote by L; = Aj the orthocomplement of
A;. Throughout this article we will always assume that dim L; > 2. Let, moreover,
D; C L; be a convex, compact domain with a C2-smooth boundary dD; containing
the origin as an interior point. We will assume that D; is strictly convex in the
sense that the second fundamental form of its boundary 0D; is everywhere positive
definite. Furthermore, in order to avoid unnecessary complications, we assume that
the convex domain D; does not contain any pair of points congruent modulo Z<.
The domain D; will be taken as the base of the cylinder C;. Finally, suppose that
a translation vector t; € R? is given, playing an essential role in positioning the
cylinder C; in the ambient torus T?. Set

Ci={a+l+ti|ac Ay l€B;, } /2%

In order to avoid further unnecessary complications, we also assume that the interior
of the configuration space Q = T? \ (C; U ---U Cy) is connected.

The phase space M of our billiard will be the unit tangent bundle of Q, i. e.
M = Q x S, (Here, as usual, S¢~! is the d — 1-dimensional unit sphere.)

The dynamical system (M, S¥, 1), where S® is the dynamics defined by uniform
motion inside the domain and specular reflections at its boundary (the scatterers!)
and p is the Liouville measure, is a cylindric billiard we want to study. (As to
notions and notations in connection with semi-dispersive billiards the reader is
recommended to consult the work [K-S-Sz(1990)].)

In 1994, the first general result: necessary and sufficient conditions of ergodicity,
was obtained in [Sz(1994)] for the class of the so-called orthogonal cylindric billiards,
where the generator of each cylinder is parallel to some coordinate subspace of the
orthogonal system of coordinates in which the underlying torus is given. Then,



in [S-Sz(1994)], sufficient conditions were found for the ergodicity, in fact, for a
hyperbolic one, of a billiard with two non-orthogonal cylindric scatterers. The
method of the proof already revealed the intimate role which the transitivity on
S9=1 of the action of a Lie-subgroup G of the special orthogonal group SO(d) would
play in ensuring the hyperbolicity, and consequently the ergodicity, too, of the
cylindric billiard in question. To be more precise, for any cylinder C; (i = 1,...,k)
consider the group G; consisting of all orthogonal transformations U € SO(d) that
leave the points of the subspace A; fixed. Then we consider the subgroup G of
SO(d) algebraically generated by all such groups G; : 1 < i < k, which is certainly
an analytic (i. e. embedded, connected Lie- ) subgroup of SO(d). The Lie algebra
of G is obviously the Lie subalgebra of so(d) generated by the Lie algebras of the
groups G;, 1 =1,... k.

Our aim in this work is to formulate precise statements about the aforementioned
transitivity of the action of G. Having collected some necessary notions in section
2, the general results are formulated in section 3. According to our Conjecture 1,
transitivity of G is equivalent to the hyperbolic ergodicity of the flow.

Conjecture 1. For every cylindric billiard flow (M, {S*}, u) the transitivity of the
action of G on the velocity sphere S9! is equivalent to the hyperbolic ergodicity (or,
equivalently, to the hyperbolicity and Bernoulli property) of the billiard map.

The main result of section 3 is

Theorem 3.6. The irreducibility of the G-action on R? is equivalent to the tran-
sitivity on S41.

This theorem has the following important corollary:

Corollary A. The transitivity of the G-action on S*1 is a necessary condition
both for the ergodicity and the complete hyperbolicity of the cylindric billiard.

Though this corollary provides the necessity of the transitivity property, it seems
to be extremely hard to establish the sufficiency of this condition. Indeed, for the
“simple” subclass of cylindric billiards: hard ball systems, this is not known, in
general. In section 4 of the present work, we will be able to show that for hard ball
systems, transitivity of G holds for any number N of particles, in any dimension v,
and for arbitrary masses my, ..., my and radii r of the particles. As a contrast, we
note that in our recent, quite involved paper [S-Sz(1999)], we were only able to prove
hyperbolicity — and still not ergodicity — for masses my, ..., muy and radii r of the
particles not belonging to a countable union of exceptional analytic submanifolds of
parameters. In the light of this last result, the merit of the transitivity statement of
section 4 mentioned above is that it holds for arbitrary geometric parameters of the
system — without any exceptional set. Motivated by the importance of the concept
of transitivity, in section 3, we also introduce related notions: the tightness and the
orthogonal non-splitting property of G, the first of them being stronger than, while
the second one equivalent to transitivity. Furthermore, Proposition 3.18 of Section
3 gives a new, we think beatiful and quite surprising characterization of sufficiency.



2. PREREQUISITES

As to the basic notions about semi-dispersive billiards we refer to the paper [K-
S-Sz (1990)]. For convenience and brevity, we will throughout use the concepts and
notations of Sections 2 and 3 of that paper. Here we only summarize some further
notions from [K-S-Sz (1991)], [K-S-Sz (1992)], and [Sim(1992)]. These are either
new or their exposition is simpler than that given in the original work.

An often used abbreviation is the shorthand Stz for the trajectory segment
{Stz : a <t < b}. The natural projections from M onto its factor spaces are
denoted, as usual, by 7 : M — Qand p: M — S% ! or, sometimes, we simply write
m(x) = Q(z) = Q and p(z) = V(z) =V for x = (Q,V) € M. Any t € [a,b] with
Stx € OM is called a collision moment or collision time. Denote 0Q = UF_, 0C;,
where 0C; are the smooth components of the boundary. Since we want to consider
typical situations, we will always assume that at every point ¢ € 0Q of the boundary
of the configuration space Q the spherical angle subtended by the compact domain
Q s strictly positive.

As pointed out in previous works on billiards, the dynamics can only be defined
for trajectories where the moments of collisions do not accumulate in any finite
time interval (cf. Condition 2.1 of [K-S-Sz(1990)]). An important consequence of
Theorem 5.3 of [V(1979)] is that — for semi-dispersive billiards we are consider-
ing — there are no trajectories at all with a finite accumulation point of collision
moments.

As a result, for an arbitrary non-singular orbit segment S[%®lz of the cylindric
billiard flow, there is a uniquely defined sequence a < 71 < 72 < -+ < 7y, < b (M >
0) of collision times and a uniquely defined sequence o1,03,...,0, (1 < 0; < k) of
labels of cylinders with the properties that

(i) for every t € [a,b], Stz € OM if and only if t = 7; with some i = 1,...,m,
and

(ii) 7 (S7ix) € 0Cy,,i = 1,...,m.

The sequence ¥ := X(S*tz) := (01,09, ...,0.,) is called the symbolic collision
sequence of the trajectory segment Sl®tlg,

As well known, billiards are dynamical systems with singularities. A collision at
a point z € OM such that in 7(z), at least two smooth pieces of 0Q meet, is called
a multiple collision. A collision is called tangential if z € OM and p(z) € Tr(;)0Q,
i. e. p(z) is tangential to 0Q at the point of reflection. We shall use the collection
SRT of all singular reflections:

Definition 2.1. The set SR is the collection of all phase points v € OM for
which the reflection, occurring at x, is singular (tangential or multiple) and, in the
case of a multiple collision, = is supplied with the outgoing velocity V.

It is not hard to see that SR is a compact cell-complex in M and dim(SR*) =
dimM — 2 = 2d — 3.

NEUTRAL SUBSPACES AND SUFFICIENCY

Consider a non-singular trajectory segment S%%z. Suppose that a and b are
not moments of collision. Before defining the neutral linear space of this trajectory
segment, we note that the tangent space of the configuration space Q at interior

points can be identified with the common linear space R®.
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Definition 2.1. The neutral space No(S\*tlx) of the trajectory segment SI*Ply at
time zero (a < 0 < b) is defined by the following formula:

No(Se¥lz) = {W € R®: 3(§ > 0) 5. t. Vo € (=6, 0)
p(8* (Qz) + oW,V (z))) = p(S*z) &
p (S (Q(x) + aW, V(z))) = p(S"z) }.

It is known (see (3) in Section 3 of [S-Ch (1987)]) that Np(S!*¥z) is a linear
subspace of R? indeed, and V(z) € Ny(S!*¥lz). The neutral space N;(Stlz) of
the segment Sz at time t € [a, b] is defined as follows:

(2.2) N(Slablz) = A (s[a—tb—ﬂ (stx)) .

It is clear that the neutral space N;(S*®lz) can be identified canonically with
No(S [""b]x) by the usual identification of the tangent spaces of Q along the trajec-
tory S(=°)z (see, for instance, Section 2 of [K-S-Sz (1990)] ). As we will see in
Section 3, the neutral subspace is the orthocomplement of the positive subspace of
the second fundamental form of the image of a parallel beam of light, see the proof
of Proposition 3.18 later.

It is now time to bring up the basic notion of sufficiency of a trajectory (segment).
This is the utmost important necessary condition for the proof of the Theorem on
Local Ergodicity for Semi—Dispersing billiards, see Condition (ii) of Theorem 3.6
and Definition 2.12 in [K-S-Sz (1990)] .

Definition 2.3.

(1) The non-singular trajectory segment Slably (a and b are supposed not to be
moments of collision) is said to be sufficient if and only if the dimension of
N (Slblz) (¢ € [a,b]) is minimal, i.e. dim Ny(S*Yz) = 1.

(2) The trajectory segment Slably containing exactly one singularity is said
to be sufficient if and only if both branches of this trajectory segment are
sufficient.

For the notion of trajectory branches see, for example, the end of Section 2 in
[Sim(1992)-1].

Definition 2.4. The phase point x € M with at most one singularity is said to be
sufficient if and only if its whole trajectory S(—°°°°)x is sufficient which means, by
definition, that some of its bounded segments S1*Yzx is sufficient.

In the case of an orbit S(~°°°°) gz with exactly one singularity, sufficiency requires
that both branches of S(—°°)z be sufficient.

3. CHARACTERIZATION OF THE ACTION OF G

As has been said in the introduction, we consider cylindric billiards with the
configuration space Q = T¢\ (Cy U - - - U Cf,), where T¢ = R¢/Z4 (d > 2) is the unit
torus, the generator space of the cylinder C; is A; C R?, L; = AiL, and dim L; > 2.
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Recall that the linear subspace A; C R? is a lattice subspace of R%, so that it defines
a subtorus T; = A;/Z? of T¢.

For a cylinder C; (i = 1,...,k) consider the group G; consisting of all special
orthogonal transformations U € SO(d) that leave the points of the subspace A;
fixed. Since the initial studies of the close relationship between the ergodicity of
cylindric billiards and the rotation groups determined by the generator spaces (cf.
Lemma 4.4 and Sublemma 4.5 in [S-Sz (1994)] and the role of these lemmas in
the proof of Main Lemma 4.1 there) it has become apparent that the transitivity
of the action of the algebraic generate of these G;’s on the sphere S¢~! is vital for
proving ergodicity. We investigate the subgroup G of SO(d) algebraically generated
by all such groups G;, which is an analytic (embedded, connected Lie- ) subgroup
of SO(d). Observe that every orbit GV (V € S71) of the action of G on the
unit sphere S is certainly an embedded, smooth submanifold of S, for it is
naturally diffeomorphic to the homogeneous space that can be obtained by taking
G modulo the isotropy subgroup of V.

Being aware of our general, three-step strategy of proving ergodicity for semi-
dispersive billiards, it is clear that without the mentioned transitivity there would
not be a great chance to prove the hoped ergodicity for such billiards. Later on, in
Theorem 3.6, we will see that without the transitivity of the G-action actually there
must exist some very simple first integrals of the flow, thus hindering the ergodicity.
At this point, however, it is already easy to see that without that transitivity the
flow (M, {St}, i) simply can not be hyperbolic. Indeed, hyperbolicity just means
that for p—almost every point z € M the relevant Lyapunov exponents of the
system are nonzero. On the other hand, if for an x € M, the relevant exponents
do not vanish, then the point is necessarily sufficient. By the following lemma,
however, the existence of just one sufficient point already implies the transitivity
of the action of G.

Denote by d the maximum dimension of the orbits of the action of G on the unit
sphere S4-1.

Lemma 3.1. The action of G on S%1 is transitive if and only if s =d —1, i. e.
there is an open orbit.

Proof. Transitivity obviously implies § = d — 1.

Suppose that the orbit GV of some V € S 1 is an open subset of the unit sphere
S9-1. Then there exists an ¢y > 0 such that B(V; ¢y) C GV. Since G C SO(d), we
have that B(gV; ¢p) C GV for all g € G. Using the connectedness of S?~1, this is
only possible if GV =S¢-1. O

First we put forward a simple observation regarding the (possibly existing) dense
orbits of the G-action.

Lemma 3.2. Suppose that the orbit GV C S¢~! is dense for some V € S~ 1. Then
every orbit of the G-action is also dense.

Proof. Denote by G C SO(d) the closure of the group G in the orthogonal group
SO(d). It is obvious that the closure GV of the orbit GV is precisely the orbit GV
of the G-action on S%!. Thus, GV = S% ! means that the G-action is transitive,
hence GV/ = GV’ =S4 1 for every V' € S¢~1. [

Let us observe that the existence of a single dense orbit implies the irreducibility
of the G-action on the space R%. Thus, irreducibility of the G-action is a necessary
condition for transitivity.



Now we present another necessary condition for transitivity:

Definition of Orthogonal Non-Splitting Property, ONSP. We say that the
system of subspaces L1, ..., Lg has the Orthogonal Non-Splitting Property (ONSP)
iff there is no orthogonal splitting R* = By ® By with dim B; > 0 and with the
property that for everyi=1,...,k either L; C By or L; C B>.

Lemma 3.3. The irreducibility of the G-action on R* implies the ONSP.

Proof. If ONSP fails to hold, then the subspaces B; in the splitting described
above (with the property that for every i = 1,...,k either L; C By or L; C Bs)
are G-invariant.

1
We note that in this case, in addition to the total kinetic energy §||V||2, the

cylindric billiard clearly has further first integrals (invariant quantities), namely, the
kinetic energies corresponding to the invariant norm square ||Pg, (V)||> (i = 1, 2)
of the orthogonal projection of the velocity V' on the subspace B;. U

Lemma 3.4. The irreducibility of the action of G on R? is equivalent to the ONSP.

Proof. We have seen that the irreducibility implies the ONSP. Suppose now the
reducibility, i. e. the existence of an orthogonal decomposition R? = B; ® By,
dim B; > 0, and B; is G-invariant. (Recall that the orthocomplement of any in-
variant subspace is also invariant, hence we necessarily have such a decomposition.)
We show that ONSP is violated by the same splitting R* = B; & Bs.

Consider and fix an arbitrary index ¢, 1 <7 < k.

Sublemma. If the linear subspace B C R? is G;-invariant, then B has the orthog-
onal direct sum splitting B = B* & B**, where B** C A; and B* =0 or B* = L,.
(Recall that G; C G consists of all orthogonal transformations U € SO(d) that leave
all vectors of A; fized.)

Proof. If B is asubspace of A; = Lf-, then we are done: B** = B, B* = (. Assume
now that the orthogonal projection Pr,(B) is nonzero. Select a vector b € B with
Pr,(b) # 0. Since the tangent space Ty, (G;b) is equal to the orthocomplement
L; & Pr,(b) = H;, by the invariance of B we have that H; C B. Since G; acts
transitively on the unit sphere of L;, it follows that L; € B. Take B* = L;,
B*=BoL; O

Consider now the splittings By = By ® Bi*, By = B3 @ B5*. Then we have that
either BY = L; or By = L;, for By & By ¢ A;. This shows that either L; C B; or
L;CBy,i=1,...,k. O

Remark 3.5. Each of the above properties obviously implies that ﬂle A; =0.

It is now a bit surprising fact that the irreducibility of the G-action (or, equiva-
lently, the ONSP) in turn implies the transitivity of the action on S¢~!, thus giving
us an easily checkable necessary and sufficient condition for transitivity.

Theorem 3.6. The irreducibility of the G-action on R? implies the transitivity on

S4-1 4. e. these properties are actually equivalent.

Corollary A. The transitivity of the G-action on S*1 is a necessary condition
both for the ergodicity and the complete hyperbolicity of the cylindric billiard.



Proof. Without transitivity there must exist a non-trivial, orthogonal G-nvariant
1
splitting R? = B; @ Bs, and the partial kinetic energies 5 |1Pg,(V)||* are first

integrals of the motion. Similarly, the translation invariance of the entire system
in the direction of (say) B; shows that the flow is not completely hyperbolic. [

Corollary B. The Orbit Structure. The natural representation of the group G
in R? is always completely reducible, i. e. the space R splits into the orthogonal
direct sum R? = @;zl B;, where each subspace Bj is G-invariant, and the restric-
tion of the representation to Bj is irreducible. Note that the above splitting is also
unique, as long as the subspaces L; span the whole space R¢. Two subspaces L; and
L; belong to the same component By (s =1,...,7) if and only if these subspaces can
be connected by a finite chain of spaces Ly, Li(2), - - -, Ly(p) 0 that the consecutive
elements in this chain are not orthogonal to each other. It follows from Theorem
3.6 that every orbit of the G-action on S*~! has the following form:

[v st ||, )|

= 2B, j=1,...,r}.

Here the quantity E; is the flow invariant partial kinetic energy in the direction
of the subspace B;, j = 1,...,7. The orbit is uniquely determined by the vector
(Ev, Ea, ..., Ey) fulfilling E; > 0 and Z§:1 E; =1/2. Thus every orbit is compact,
for it is the product of spheres. The typical orbit is the topological product of (v;—1)-
dimensional spheres, j =1,...,r, where v; = dim B;.

Proof of Theorem 3.6. The proof will be split into several lemmas, some of them
being just very simple observations.

Lemma 3.7. Let us introduce the following equivalence relation ~; (i =1,...,k)
between vectors of R%:

Vi ~; Va if and only iof

3.8
(3:8) Vi — PVi =V, — PV, and || P V4| = || PiVa||-

(Recall that P; denotes the orthogonal projection onto L;.) Suppose that some
subgroups (not necessarily Lie subgroups) H; C G; = SO(L;) are given with the
property that H; acts transitively on the unit sphere of L;, 1 =1,...,k.

Then the algebraic generate H = (H1, ..., Hy) of the groups H; acts transitively
on S if and only if the transitive hull of the equivalence relations ~; on S (i =
1,...,k) is the trivial equivalence relation on S~! making every pair of velocities
equivalent.

Proof. The assertion of the lemma immediately follows from the definitions. [J

Based on the previous lemma, it will be convenient to say that the system of
subspaces {Li,..., Ly} of R? (dimL; > 2, i =1,...,k) is transitive if and only if
the transitive hull of the relations ~; (i = 1,..., k) associated with the subspaces
Lq,...,Lg is the trivial relation S x S on the unit sphere S of the linear span
L, + Lo+ ---+ Lg of these subspaces.

Lemma 3.9. If the systems of linear subspaces {L1, La,...,L,} and
{Ll +L2+"'+LpaLp+17"'7Lk}

are both transitive (1 < p < k), then the system {L1,..., Ly} is transitive, as well.



Proof. The lemma is an immediate consequence of Lemma 3.7. [
The next proposition deals with the transitivity of two subspaces {L1, Ly} of R%.

Proposition 3.10. The system of two subspaces {Li, L2} of R® (dimL; > 2,
i =1, 2) is transitive if and only if Ly and Ly are not orthogonal to each other.

Proof. Non-orthogonality is, of course, necessary for transitivity. Assume now
that Ly / Lo, and show that the system {Lq, Lo} is transitive. In order to simplify
the notations, we assume that L; + L, = R%.

Case I. Ly N Ly # 0. Select a vector V € S% 1 such that V ¢ (L1 N Lz)L. It is
easy to see that the tangent space Ty G;V of the orbit G;V at V (i = 1, 2) is the
linear space V- N L; where, as usual, G; denotes the group of all special orthog-
onal transformations of R? that keep the vectors of LiL = A; fixed. Elementary
computation with the dimensions shows that

dim [(V*N L)+ (VENLy)] =dimL; —1+dimLy —1— (dimL; N Ly — 1)
=d1m(L1+L2)—1:d—1

Due to Lemma 3.1, the system {Lq, Lo} is indeed transitive in Case I.

Case II. L; N Ly = 0. In this case the above calculus of dimensions provides
dim [(VEN L)+ (VINLy)] =d-2,

so we have by one less dimension than the needed d — 1. Interestingly enough, the
missing one dimension of Case Il and the trick to obtain transitivity of the action
by using Lie brackets already appeared in [K-S-Sz(1991)]. Actually, we apply now
the commutator method used in the proof of Sublemma 4.5 of [S-Sz(1994)]. Indeed,
we select two-dimensional subspaces Ly C L; (i = 1, 2) so that L; and Ly are still
not orthogonal to each other, then we consider the four-dimensional linear span
H = L, + Ls. In the spirit of Lemma 3.9, in order to prove the transitivity of the
system {L1, Lo} it is enough to show that

(A) the system {L,, Ly} is transitive,
and

(B) the system {Lj, Lo, H} is transitive.

By the result of Case I, both systems {L; + H, Lo} and {Ly, H} are transitive
and, therefore, according to Lemma 3.9, the statement of (B) is indeed true.

The only outstanding task in the proof of Proposition 3.10 is to show (A).

In order to simplify the notations, we assume that L1 + L2 = R*. We have
arrived at the set-up of Sublemma 4.5 of [S- SZ(1994)] except that now we do not
have the bit stronger assumption Lin (L2) = (0 but, rather, we only have that
L1 r L2. This means that the cosine

(3.11) b:min{||P2(a:)||‘ vels, |lol|=1}

of the maximum angle between a unit vector of L; and the plane Ly (see (4.6) in
[S-S7(1994)]) may be zero, whereas the cosine

(3.12) a= maX{HPg(:C)H‘ cel, |lz|= 1}
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of the minimum such angle (see (4.5) in [S-5z(1994)]) must be strictly between zero
and one, thanks to the conditions L; N Ly =0 and Ly £ Ls.
However, the whole machinery of computing the commutator [ X, X5] of the in-

finitesimal generators X1, X5 of the one-parameter rotation groups G; = SO (il ,

Go = SO (Eg) (presented in the proof of Sublemma 4.5 of [S-Sz(1994)]) still works,

and we obtain the matrix expansions for X;, X3, and the commutator [Xq, X5]

0 -1 0 -b 0 0 0 O
X1y 0 0 0| X=lo 5o 1|
0O 0 0 o0 a 0 1 0
(3:13) —ab 0 —=b O
[ X1, Xo] = 2 _gb (Sb _oa
0 a 0 ab

written in an appropriate basis {e1, f1, ea, fo} of R:. Here e; € L, is a unit vector
(out of the two possible, antipodal unit vectors) for which the maximum value
a of |Py(z)| is attained, e; = Py(e1)/a € Lo, whereas f; € Ly © e1 is a unit
vector (out of the two possible, antipodal ones) for which the minimum value b
of ||Py(x)| is attained, and, finally, f, € Ly © ey is a unit vector making the
angle arccos(b) with f;. Note that (eq, e2) = a, (f1, fa) = b, and (e;, f;) = 0,
i, 7 =1, 2. In order to give the reader a little glimpse of the (not at all complicated)
computation of the matrix expansions of the infinitesimal generators X; and X5 in
the given basis, we just write down here the computation of the, say, fourth column
of the matrix of X;. Recall that the infinitesimal generator X; is a 90 degree
rotation in the plane Ly transporting ey to f1 (with the appropriate orientation) and
acting as the zero operator in the orthocomplement of fjl in R* = I~/1 + Ez. Thus,
X1(f2) = X1 (bf1 + (f2 —bf1)) = —bey, for the vector bf; is just the orthogonal
projection of f2 onto the plane fjl and the vector fo — bf; is therefore orthogonal
to the plane L;.

Observe that the first columns of the three matrices above are linearly indepen-
dent, unless b = 0. (Recall that 0 < b < a < 1 and 0 < a.) In the case b = 0,
however, the sums of the second and fourth columns of the above matrices are still
linearly independent or, in other words, the vectors X;(f1 + f2), X2(f1 + f2), and
[X1, Xo](f1 + f2) are linearly independent. Anyhow, we find a unit vector in R*
with an open orbit of the G-action in S2. By Lemma 3.1, this implies the transitiv-
ity of the G-action on the unit sphere S3. This completes the proof of Proposition
3.10. O

Finishing the proof of Theorem 3.6. By using induction on the number £ of
the subspaces Ly, Lo, ..., L (dim L; > 2), we prove that the system {Lq,..., Ly}
is transitive, as long as it has the ONSP (see the definition preceding Lemma 3.3)
in the linear span Lq + Lo + - + Lg.

Indeed, the statement is obviously true for £ = 1. Let k£ > 1, and assume that
the theorem has been proven for all smaller values of k. By the ONSP of the system
{L1,...,Lg}, one can find two subspaces among Lq,..., Lk, say L, and Ly, such
that Ly / L. According to Proposition 3.10, the system {Lq, Lo} is transitive.
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The ONSP of the collection {Lq,..., L} immediately implies the ONSP for the
system {L; + Lo, L3, ..., L;}. By the induction hypothesis, the latter system is
transitive. Finally, Lemma 3.9 and the mentioned transitivity of {L1, Lo} yield the
transitivity of {Lq,..., Lx}. Theorem 3.6 is now proved. [

It is worth mentioning the following, easily checkable sufficient condition for
transitivity:

Definition 3.14. Tightness. We say that the system of subspaces L1, ..., Ly is
tight if and only if there exists a system of d — 1 linearly independent vectors e; €
L1y, e2 € Liy, -+ -, €41 € Liq_1) such that the linear span span{ei,...,eq—1}
of these vectors does not contain any of the subspaces L;(yy, ..., Liq—1)-

As a matter of fact, as we will see in the proof of the forthcoming lemma, under
the condition of tightness, transitivity can be obtained directly by merely taking
the linear span of the Lie algebras of G; instead of the entire generated Lie algebra.

Lemma 3.15. The tightness of the system Lq,..., Ly implies the transitivity of
the action of G on Sa-1,

Proof. Select a system of linearly independent vectors eq,...,eq_1 featuring the
definition of tightness. Let V € S% ! be orthogonal to all vectors ei,...,eq_1.
Consider one of these vectors, say, e1. Let us denote by P;;) the orthogonal pro-
jection onto the subspace L;). The projection P;q)V is nonzero, for L;;) ¢
span{ei,...,eq_1}. Since the tangent space Ty (Gi1)V) of the orbit G;(1)V C GV
at V is the orthocomplement L;y © span {B(l)V} of the nonzero vector P;1)V
in L;n), we have that e; € Ty (gi(l)v) C Ty (GV). By the same argument,
ej € Tv (GV) for j =1,...,d — 1 and, therefore, dim (GV) =d—-1. O

Basic examples related to the notion of tightness are given in Remarks 3.24 and
3.26. The first of them shows that transitivity does not imply tightness, whereas
the second one provides an example of a tight family.

CHARACTERIZATION OF THE POSITIVE SUBSPACE
OF THE SECOND FUNDAMENTAL FORM

We define the “parallel beam of light” B (formerly called an orthogonal manifold)
around the phase point zg = (Qo, Vo) € M as follows:

(3.16) B={z=(Q,VW) eM: Q—Qp L Vyand ||Q — Qo|| <eo}

with a fixed and sufficiently small number 9 > 0. There are two interpretations of
the manifold B:

(a) a (d — 1)-dimensional submanifold of the phase space M, or

(b) a codimension-one flat submanifold 7 (B) of the configuration space Q sup-
plied with a field of unit normal vectors, where 7 : M — Q is the natural projection.

We shall use these two interpretations alternately: when dealing with the sec-
ond fundamental form we use (b), however, when defining the image S*(B) of B
under the flow, we use the first interpretation. Consider a non-singular trajectory
segment S(%Tlz, and denote by Wy = W, (S%Tlz) the positive subspace of the
positive semi-definite, symmetric, second fundamental form W of ST(B) at the
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point STxo = (Q}, V). Since W acts in the orthocomplement (V{)+ of V{ in R?,
W, is a subspace of (V{)+.

With the first collision with the cylinder C,,, we associate a (v; — 1)-dimensional
real projective space P; = P“*~}(R) of all orthogonal reflections of the space R¢
across all possible hyperplanes H that contain the generator space A,, of the cylin-
der C,,. Plainly, such reflections (or hyperplanes H) can be characterized uniquely
by the orthocomplement line H- C L, , so the collection P; of all such reflections is
naturally diffeomorphic to the real projective space P*~1(R), where v; = dim L,,.

Similarly, other real projective spaces P; = P*i ~1(R) are attached to the symbolic

collisions ¢4, © = 1,...,m. By using these definitions, we obtain a mapping
m

(3.17) dp=0: ST x][Pi st
=1

which assignes to every (m + 1)-tuple

(Vihy,ha, ..o hn) € ST 2 [ [P

=1

the image Vhiha-...-hy = V' of V € S ! under the composite action h1hsg-. . .- hy,.
(Here, by convention, h; is applied first.) Plainly Vy = ®(Vo; 91,92, - - -, gm ), where
g; denotes the orthogonal reflection that causes the abrupt change of the velocity at
the i-th collision o; of the given orbit segment S®Tlz,. The space S¢~1 x [~ P;
will often be called the phase space of the virtual dynamics, or the phase space of
the velocity process.

0P
Now we can consider the partial derivative ﬁ(V; hi,hay ..., hy) of @ with

respect to the factor P = [[;~, Pi: It is a linear mapping from the tangent space
T (ﬁ) into the tangent space 7y/S?~ !, where V! = ®(V; hq, ha, ..., hy). The next

result characterizes the positive subspace W, as the range of the above mentioned
partial derivative:

Proposition 3.18. Using the definitions and notations from above,

0d
Wy (S[O’T]xo) = Ran (ﬁ(Vo;gl,gz, : --,gm)) :

Proof. The left-hand-side is obviously a subspace of the one on the right. Con-
versely, suppose a vector

Y = (y17y27"'7yN) € (V(;)J_

is orthogonal to W,. We will show that Y is orthogonal to

oo
Ra —~V; s 925 - -y dm ;
D(ap(oglgz g ))
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as well. Because of
0o
Ran { —(Vb3;91,92,---,9m) | =
(87?( 0, 91,92 g ))

0P .
ﬁ{Raﬂ <B—R(Vo;gl,gz,---,gm)) A 1,---,m}

it is sufficient to show that for every integer 7 (1 < i <m)

0P
Y 1R — (Vb; cesGm) ) = R;.
an (8?1( 0591, 92, ' g )>

For the sake of simplifying the notations we suppose that o; = 1. Then
R;, = {zgiﬂ...gm: z € L, zJ_VZ-Jr},

where VT is the velocity right after the i-th collision with the cylinder C;. By
the assumed neutrality of Y with respect to STl (which says that the vec-
tor Yg.1... gz-__l_l1 belongs to the linear span of A; = A,, and Vi+), we have that
Ygnt...954 L z for every vector z € L1, z L V;*. Thus, by the orthogonality of
the mapping ¢;+1...9m, we have Y | R;.

Hence Proposition 3.18 follows. [

Remark 3.19. The big advantage of the above lemma is that it gives us a new
characterization of sufficiency in terms of the pure velocity process without the
configuration history.

Proposition 3.18 pregnantly shows an intimate relationship between the suffi-
ciency of a trajectory segment SI®T1z, (i. e. when the left-hand-side in the state-
ment of that lemma has the maximum dimension d — 1) and the transitivity of
the action of G on the velocity sphere S~1. This circumstance and the results of
the papers [S-Sz(1994)], [S-Sz(1995)], and [Sim(1999)] (Especially Lemma 4.4 and
Sublemma 4.5 in [S-Sz (1994)], and the role of those lemmas in the proof of Main
Lemma 4.1 in [S-Sz(1994)]) strongly suggest the following conjectures:

Conjecture 1. For every cylindric billiard flow (M, {S*}, u) the transitivity of the
action of G on the velocity sphere S is equivalent to the hyperbolic ergodicity
(or, equivalently, to the hyperbolicity and Bernoulli property; cf. [Ch-H(1996)] and
[O-W(1998)]) of the billiard map.

Note. The hyperbolicity of the cylindric billiard flow alone automatically implies
the transitivity of the G-action, see Corollary A following Theorem 3.6. Thus,
transitivity is equivalent to the hyperbolicity, as well.

Corollary 3.20. Dichotomy. If the above conjecture holds true, then for every
cylindric billiard flow (M, {S%}, ) exactly one of the following two possibilities will
occur:

(I) The system {Lq,..., Lk} of the orthocomplements of the generators has the
ONSP in R?, and the billiard map is hyperbolic and enjoys the Bernoulli property;
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(IT) The system {L1, ..., Ly} has an orthogonal splitting R* = B; & B, (see the
definition right before Lemma 3.3), and the partial kinetic energies || Pg, (V)||* and
| Pg, (V)||? are trivial first integrals of the motion.

The above dichotomy shows that non-ergodicity can only be caused by the pres-
ence of some very simple invariant quantities, namely the kinetic energies of a
“subsystems”.

Corollary 3.21. Another consequence of Conjecture 1 is that “the more cylinders
the better”, i. e. (hyperbolic) ergodicity can not be spoilt by the removal of addi-
tional cylinders from the configuration space, that is, by adjoining more cylindric
scatterers to the billiard.

Corollary 3.22. If Conjecture 1 is valid, then the phenomena of ergodicity and
partial hyperbolicity (i. e. the case when there exist zero and nonzero relevant
Lyapunov exponents) can not coexist in cylindric billiards.

It is interesting to note that for billiards with two cylindric scatterers the recent
generalization of the result of [S-Sz(1994)] by Péter Balint [B(1999)] actually verifies
Conjecture 1 for that case.

For completeness, we recite here the conjecture appeared in [Sz(1996)] which
easily turns out to be a weakened version of the previous conjecture:

Conjecture 2. For every cylindric billiard flow (M, {S*},n) the existence of a
single sufficient trajectory is equivalent to the hyperbolic ergodicity (or, equivalently,
to the hyperbolicity and Bernoulli property) of the billiard map.

Remark 3.23. By virtue of Proposition 3.18 it is obvious that the existence of a
sufficient trajectory implies the transitivity of the G-action. Thus Conjecture 1 is
formally stronger than Conjecture 2.

Remark 3.24. Transitivity does not imply tightness. Indeed, in the model of [S-
Sz(1994)] we had d = 4, and R* was the linear direct sum of the two-dimensional
subspaces L and Lp. Thus, for any system e; € L;1), e2 € Ly(2), €3 € Lj(z) of
linearly independent vectors either L; or Ly is a subspace of span {e1, es, e3}, and
the system {Lq, Ly} is not tight, although, as has been shown in [S-Sz(1994)], the
G-action is still transitive.

Remark 3.25. Orthogonal Cylindric Billiards. In his paper [Sz(1994)] the
second author studied the so-called orthogonal cylindric billiards. i. e. the cylindric
billiards for which each space L; C R? is spanned by the coordinate axes belonging
to the set K* C {1,2,...,d}. The sufficient and necessary condition of ergodicity
found there was the following one: There is no splitting {1,2,...,d} = By U B,
Bj # 0, By N By = 0, such that every set K* is the subset of By or By. It is clear
that this condition is equivalent to our ONSP.

An interesting, special family of the above orthogonal cylindric billiards is the
one for which N5, K* # 0, UF_, K* = {1,2,...,d}. For simplicity assume that
de ﬂle K*. Then we can select the standard coordinate unit vectors e, ..., eq4_1
(in the direction of the first, second, ..., (d—1)-th coordinate axes), and this system
obviously fulfills all requirements in the definition of tightness. By the result of
[Sz(1994)], the corresponding cylindric billiard map is hyperbolic and ergodic.
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Remark 3.26. Consider the case when dimA; =1 for j = 1,...,k. Assume that
not all lines A; are parallel, for example, A; is not parallel to A;. Choose a linear

basis e1, ..., eq in R? so that {e1,es,...,eq} is a basis of Ly and {es,es,...,eq}
is a basis of La. (Thus, {es,...,eq} is automatically a basis of Ly N Ly.) Then
the system {ej,es,...,eq—1} obviously fulfills all requirements in the definition

of tightness. Thus, we obtained that any cylindric billiard with one-dimensional
generators is necessarily tight, unless all generators are parallel. (In which case the
G-action is clearly not transitive.) We note that for the required transitivity it is
actually enough to have at least two generator spaces, say, A1 and As such that
A1 N Ay ={0} and A; + Ay # R?, see Case I in the proof of Proposition 3.10.

For such models the proof of (hyperbolicity and) ergodicity can go ahead straight-
forwardly along the lines of the proof of ergodicity developed in the papers [K-S-
Sz(1989)] and [S-Sz(1995)] for two cylinders. Thus, for the case of one-dimensional
generator spaces, the methods of [K-S-Sz(1989)] and [S-Sz(1995)] actually prove
Conjecture 1.

4. HARD SPHERE SYSTEMS

Consider the system of N (> 2) hard spheres, labelled by 1,2,..., N, with pos-
itive masses m1,...,my (Zf;l m; = 1) moving uniformly and colliding elastically
in the unit v-torus (v > 2) TV = R¥/Z". For simplicity we assume that these
spheres have the common radius » > 0, so that even the interior of the configu-

ration space is connected. We make the standard reductions I = Zf\il miv; = 0,

2E = YN mi|lvi||?2 = 1, where v; = §; is the velocity of the i-th sphere, while
q; € T" is the position of its center. Corresponding to the reduction I = 0, we
need to factorize the configuration space with respect to uniform translations as
follows: the configuration (g1, ga,...,qn) is considered to be equivalent to another
configuration (qj, g3, - - -, ¢y ) iff there is an element a € TV such that ¢; — ¢; = a for
every index i. After this factorization the configuration space Q is still a torus (of
dimension d = v(N — 1)) from which we remove the convex sets

Ci,j = {(q177QN)| ||qft _QJ”e < 2T}a

1<i<j<N. Here ||.|le denotes the original Euclidean metric of TV = R¥ /Z".
The relevant Riemannian metric in Q, however, is given by (the double of) the
kinetic energy:

N
(4.1) lds]I® =" mi [|dail;
=1

With the above Riemannian metric || . || the configuration space Q is still a flat
torus and — as it is easy to see — the removed scatterers C; ; are cylinders with
a subtorus Tj ; as the generator, and a v-dimensional, solid disk D; ; as the base.
Let us understand in more detail the tangent space A; ; of the generator subtorus
T; ; and its orthocomplement L; ; = Aifj with respect to the inner product given
by the kinetic energy (4.1).
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First of all, the common tangent space of Q at all of its points is the d-dimensional
Euclidean space
k= 0}

with the Euclidean structure (4.1). Secondly, the tangent space A; ; C Z of T; ; is
easily seen to be

(4.2) Z= {z = (dai) ¥

4.3 A =Qz= qu =0 and dg; = dgq; ;.
J j

The orthocomplement L; ; = Ai‘,Lj of Ai,j is
(4.4) Lij={z= (qu),lcvzl‘ dgr, = 0 for k # 4, j and m;dg; + m;dg; = 0} .

For the norm square ||z||? = m;||dgi||? + m;||dg;||? of an element z € L; ; in (4.4)
we immediately have

my (mz‘l“ma) my(mz+ma)

(4-5) 2] = Idgilc =

_7 7
Therefore, the base D; ; of the removed body C; ; is

D;; = {z = (dax)h=1 € Lij| |lda; — dg;||, < 2r}

4.6 o
(46) :{zeLi,j ||z||<2r.,/w}.
mi—i—mj

The (d — 1)-dimensional sphere S?~! (on which the action of G is defined) is, of
course, the unit sphere

Idg;]lz.

(4.7) Sé-1t = {z = (dgp)r_, € Z

N
> " m|dg|? = 1}

k=1
of the space Z.

Remark 4.8. In Section 2 we assumed that the cylindric billiard has the following
property:

At every point g € 0Q of the boundary of the configuration space Q the spherical
angle subtended by the compact domain Q s strictly positive.

The reason for postulating this axiom was to ensure that in any trajectory the
collision times can not accumulate in finite time. Unfortunately, this property does
not hold for every hard sphere system, it only holds for typical values of the radius
r. (Apart from countably many exceptional values.) However, even if this property
fails to hold, the set of phase points

Ar = {z e M| SI%¥z contains infinitely many collisions with some =+ b > 0}

has Liouville measure zero, which is a direct consequence of the invariance of the
Liouville measure. Then we can discard the zero measure union of the above sets,
and this minor modification of the phase space does not influence in any way the
hyperbolicity status of the hard sphere system.

The result of this section is
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Proposition 4.9. In the case of the hard sphere system (N;v;r;my, ma,...,my)
the action of G on S~ is transitive.

Proof. By using (4.4), we will simply check the meaning of the orthogonality
of two subspaces L; ; and Ly; (1 < i< j < N,1 <k <!l < N). One im-
mediately sees that L; ; L Ly, if and only if the pairs {4,j} and {k,!} have no
common element. By the connectedness of the full collision graph, the system of
subspaces {L; ;| 1 < < j < N} has the ONSP. Therefore, according to Lemma 3.4
and Theorem 3.6, the G-action is transitive on S, This finishes the proof of the
proposition. [

Remark 4.10. Let us call a transformation g € G; ; (with some pair (7,7), 1 <
i < j < N) elementary.
By the compactness of the sphere S~1, there exists an upper bound

C=C(N;v;my,...,mpy) < 00

such that for every pair of velocities V7, V5 € S4-1 the velocity V5 can be obtained
from V; by applying at most C' elementary transformations or, equivalently, at most
C elementary reflections. We note that every product ¢V, V € S%1 g elementary,
can also be obtained as ¢'V, where ¢’ is the product of two orthogonal reflections
across hyperplanes.

Example 4.11. The upper bound C(N;v;mi,...,my) is far from uniform; it
depends heavily on the masses mi,ms,...,my! Actually, the bound C' may be
forced to tend to infinity, as some ratios between masses blow up. A simple example
showing this phenomenon is the following one:

Let m; = mg = M >> 1 (very big), mg =my =--- =my =1, v;1 = va = 0,
N > 4. By the theorem and the previous remark this velocity configuration can
be transformed into (V, =V, 0, 0, ..., 0) (where ||V]|? = 1/(2M)) by applying at
most C elementary transformations. We can, however, easily estimate (from above)
the maximum amount of kinetic energy that can be conveyed from the subsystem
{3,4,..., N} to the system {1,2}. Assume, for instance, that the first and third
spheres collide. It is easy to see that the maximum amount of such an energy
exchange occurs when

(a) the collision is a “head-on” collision, i. e. the two spheres move on a straight
line so that (by identifying this line with R by also suitably orienting it) the pre-
collision velocities of the colliding spheres are v > vy > 0;

(b) the velocities vy, v3 have the maximum possible values.

The simple reason for (b) to hold is that by increasing either v; or v the amount
of energy gained by the first particle during this collision also increases. Straight-
forward upper bounds for these positive velocities are v; < 1/ VM, vy < 1. An
elementary calculation shows that in the extreme case v; = 1/vV/M, v; = 1 the
after-collision velocity v; is equal to

2VM +1-M
M+1

and, therefore, the maximum order of magnitude of the amount of kinetic energy
conveyed from the subsystem {3,4,..., N} to the subsystem {1,2} (by a single
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collision) is not greater than 2/v/M. Thus, in order for the subsystem {3,...,N}
to lose its energy 1/2, there must be at least v M /4 collisions between the two
subsystems of heavy and light particles, i. e. C(N;v; M, M,1,1,...,1) > VM /4,
M >> 1.

Remark 4.12. Arbitrary collision graphs. Suppose that not all cylinders C; ;
are removed from the original, v(N — 1)-dimensional configuration torus, but, in-
stead, only the cylinders whose pair of labels {i, j} belongs to the set of edges F(G)
of a prescribed graph G of allowed collisions on the set of vertices {1,2,..., N}.
Then the proof of Proposition 4.9 yields that the G-action corresponding to the
arising cylindric billiard is transitive if and only if the graph G is connected on the
whole vertex set {1,2,..., N}. Hyperbolic ergodicity, that is, actually Conjecture
1 was proved to be true in [S-Sz(1995)] for such classes of generalized hard sphere
systems in the case v > 4, provided that the connected graph G is either the simple
path of length N — 1 or the simple loop of length N. For such graphs of allowed
collisions, in the case of v = 3, the complete hyperbolicity of the flow is proved
there, too.

Finally, by taking into account (4.3), observe the interesting fact that, in the
realm of such generalized hard sphere systems, the condition ﬂ(i, J)EE(G) Aij =0
is also equivalent to the connectedness of the graph G. Thus, at least for these
generalized hard sphere systems, the transitivity and the otherwise much weaker
property ﬂi’ ; Aij = 0 are equivalent.
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