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Abstract

We consider discretizations fy of expanding maps f : I — I in the strict sense: i.e. we
assume that the only information available on the map is a finite set of integers. Using this
definition for computability, we show that by adding a random perturbation of order 1/N, the
invariant measure corresponding to f can be approximated and we can also give estimates of
the error term. We prove that the randomized discrete scheme is equivalent to Ulam’s scheme
applied to the polygonal approximation of f, thus providing a new interpretation of Ulam’s
scheme. We also compare the efficiency of the randomized iterative scheme to the direct solution
of the N x N linear system.

1 Introduction

Computer simulations of chaotic dynamical systems necessarily distort the qualitative behaviour
due to roundoff errors. In particular, the invariant measure (if it exists) cannot be preserved: any
computer simulation generates only a finite set of orbits with finite period. Our main aim is to
understand how and how efficiently one can reconstruct the original invariant measure based on
the finite information provided by the computer.

Our conceptual approach relies upon the following earlier methods:
1. Shortly after Rényi [14] discovered the existence of invariant measures for a wide class of maps,
Ulam [19] already addressed the problem of their computability. His approach, called ‘Ulam’s
scheme’, reduces the infinite-dimensional problem to a finite dimensional one by averaging the
density function between meshpoints. Nevertheless, the direct, exact computation of this discrete
problem is still impossible, since the coefficients depend on the ezact behaviour of the original map
between meshpoints.
2. Liverani recognized this difficulty ([13]) and proposed to compute the Ulam scheme corre-
sponding to a piecewise linear approximation of the original map; we will refer to this approach as
‘Liverani’s scheme’. He proved that the density function associated with this scheme still converges
to the original density function.

In Liverani’s work the piecewise linear approximation is constructed by evaluating the function
on a (uniform) mesh and connecting the meshpoints. He did not consider the roundoff errors



occuring during the evaluation of the function values, thus he interpreted the independent variable
as an integer (rational) number, while the function value was represented by a real number. In this
paper we adopt the point of view that the only thing given in any computer code is a finite set of
(binary) integers, and therefore there is no reason to neglect the effect of the roundoff errors in the
function value once we considered the discrete character of the independent variable. By adopting
this view, we are able to stick consistently and precisely to the actual framework provided by digital
computer arithmetic.

Our first goal is to utilize Liverani’s results to prove convergence for the Ulam scheme associated
with the ‘true’ digital image of the original function. This image will be constructed on an N x M
mesh, N and M describing the arithmetic precision in the z and y directions, respectively (thus
the roundoff errors will be of order 1/N, 1/M). One of our main results — in fact, Theorem 3
from subsection 4.4 — is that (N/M) — 0 is sufficient (and most likely also needed) to achieve
convergence, which indicates that Liverani’s scheme provides a qualitatively correct model of well-
constructed real computer simulations. What is more, this agreement is at the same time also
quantitatively precise as far as an error estimate of the same Theorem for finite N, M is concerned.
By considering the more precise model, we provide a justification for Liverani’s approach, and
simultaneously we provide an algorithm which can be implemented on any computer. (We note
that although convergence requires (M/N) — 0, the N = M case is of considerable mathematical
interest since it guarantees the Markov property of the piecewise linear approximation and we will
investigate this case separately in subsection 3.3).

One might expect that the suggested, more precise interpretation of roundoff errors will result
in a less elegant mathematical construction. This expectation is partially fulfilled, since the proof
of convergence, while relying heavily on Liverani’s strong results, is at some points technically more
involved. On the other hand, it turns out that the ‘true’ digital scheme, including all roundoff errors,
provides an interesting and absolutely new interpretation (cf. subsection 3.2): the probability
transition matrix associated to the Ulam scheme defined for the ‘true’ digital image is identical with
the same matrix for a Markov chain, which is constructed as a special (‘micro’-) random perturbation
of the discrete map. This interesting connection enables us to compute the invariant density
associated with the Ulam scheme with considerably less effort. The second, equally important goal
of the paper is to introduce this perturbation method and show its connection to Ulam’s scheme.

Let us explain the idea behind our micro-perturbation. It is well-known ([10]) that the quality
of the simulation can be radically improved by adding random noise to the system. Earlier research
(see [10] and references there) concentrated on methods where the order O(e) of the random pertur-
bation exceeded the order of roundoff errors O(1/N), 1/N denoting the smallest number differing
from zero in the computer arithmetic.

Although the random perturbation improves the model in the statistical sense, it necessarily
distorts (‘smears out’) the original map, hence it is desirable to reduce it to the necessary minimum.
The special random perturbation associated with the Ulam scheme is on the scale O(1/N) of the
roundoff errors. As opposed to previous approaches, our random perturbation is sensitive to the
local behaviour of the map; the key observation is that the amount of information lost in the
discretization is -in first approximation- proportional to the derivative of the function, so the
range of the added random noise should have the same order as the lost information.This ‘micro-
perturbation’ introduced in subsection 3.1 minimizes the distortion of the original map, in fact, this
is a perturbation with minimal range capable of reproducing the discretized version of the invariant
density function. Since we approach the problem from the point of view of real computations, we
not only prove convergence but also provide rigorous, essentially effective error bounds for finite
N, M.



In a recent study ([13]) Liverani listed some fundamental questions about the computability
of ergodic maps. In this paper we interpret ‘computability’ in the strict sense of doing operations
with integers. In subsection 5.2 we give non-rigorous estimates for our method to make possible its
comparison with the computation effort of different schemes. We prove our results for expanding
maps on the unit interval and formulate conjectures on some generalizations.

The main thrust of the paper is to obtain new mathematical insight by utilizing strong results
from earlier work combined with our ideas and theorems, also, our goal is to obtain an ‘optimal’
practical tool to be used in simulations. This tool connects two, apparently distinct approaches:
Ulam’s scheme and the random perturbation approach.

Section 2 contains the basic assumptions and definitions, it introduces the Perron-Frobenius
operator and the associated Ulam scheme. Section 3 describes the micro-perturbation, and as a
main result it shows its identity to the Ulam scheme.The last subsection formulates results con-
cerning the N = M quadratic grid. Section 4 describes the second main result: a rigorous error
bound for the density function obtained via the micro-perturbation.The proof utilizes several strong
results from the literature. Section 5 describes the diadic map as a rather transparent example and
provides non-rigorous comparison to the direct solution of the linear system. Section 6 summarizes
the results and points out possible generalizations and conjectures.

The paper is structured in such a way that the readers primarily interested in the application
of the new algorithm can concentrate on subsections 2.1, 2.2, 3.1 and on sections 5 and 6.

2 Assumptions and definitions

2.1 Assumptions about the continuous map f

We investigate maps of the unit interval f : [0,1] — [0,1] with independent variable z € [0, 1].
Assuming certain properties (like piecewise smooth, expanding, topologically mixing, Markov) im-
plies the existence of a unique, absolutely continuous invariant measure p(x) with corresponding
density function p(z). We will introduce the polygonal approximation fy(z), which, for sufficiently
high N, inherits several of the the mentioned properties and generates the density function py(z).
These fundamental concepts are defined below in more detail.

We assume about the map f : [0, 1] — [0, 1] that it is

(PS) piecewise C%-smooth, i. e. Jag = 0 < a3 < ... < a; = 1 such that f is C?-smooth in
every I; = (a;,a;,1) (and its extension to each I¢ is also C%; i =0,1,...,1 — 1).

(E) expanding, i. e. 3a € (0,1), such that |f'(z)| > 1/a for every z € UZI;.

Note: In almost all derivations the assumption a < 1 will be satisfactory, except for Theorem
3, where we will need a@ < 1/2, because in the proof we utilize Lemma 4.1 of Liverani [13]. This
latter assumption of course holds for a sufficiently high iterate of a map satisfying (E). .

Under these conditions, the map f is known to have at most a finite number of absolutely
continuous f-invariant measures u (for details, weaker conditions, further references see [1], [13],
[20], [22]:we note that since [13] is a recent comprehensive survey, in many cases we do not cite the
original sources, rather we refer to the survey paper.) For simplicity of notation, the map is also
assumed to be piecewise increasing, but this requirement is absolutely not essential.

To ensure the uniqueness of the measure p(z) we suppose

(TM) topological mixing, i. e. there exists an interval I* C [0, 1] such that f(I*) = I*, and
every orbit { f"(z) : n € Z,},z € (0,1) eventually enters I*, and finally f|I* is topologically mixing
meaning that for every interval J C I* one can find an index n such that f™(J) = I*.

Under this condition the unique density will be denoted by p(x).



Finally, only in part of our discussion (see subsection 3.3) the Markov property of maps will
also be used:

(M) f is Markov, i. e. for every i = 0,1,...,0 —1 3 g; € {0,1,...,] — 1} such that f(I;) C
Ujegilj‘?l. (In our case, an equivalent formulation of Markovity is just: f(40), f(a1£0),..., f(a;_1%
0), f(1 —0) € {ag,a1,...,a;}.)

2.2 Assumptions about the discretized map fy and the polygon fy

The discretized map can be interpreted on the N x M lattice, where N is the integer describing
the arithmetic precision of the computer in the independent variable z (the smallest value of =
different from zero is 1/N), M is the integer describing the arithmetic precision of the function
values f(z). It might appear natural to assume N = M, however, this could severely handicap the
simulation. On a quadratic grid the derivative of a polygonal line can only have integer values and
thus it will differ by O(1) quantities from f’(z), no matter how dense the grid. In other words, the
approximating polygon is a ‘zigzag’ line, with large relative angles. In order to obtain convergence
in the first derivative, we need

lim 2 — o, (1)

which can be guaranteed by defining M as a super-linear function of N, e.g. M = NlogN. For
simplicity, and observing computer arithmetic (see below) we will assume K = M/N =integer
throughout the paper.

If we want to realize the above described N x M grid on a digital computer, careful attention must
be payed to the actual arithmetic of the CPU. Current processors, using the IEEE Standard 754-1985 [15]
represent ‘real’-type variables in logarithmic form as binary fractions, consequently the mesh on [0, 1] is far
from being uniform. Nevertheless, on any interval [2% 2¥+1] the mesh is uniform, so one has to transform
the map onto such an interval [17]. The different mesh densities N and M can be realized by defining z as
a single precision variable and f(z) as a double precision one, resulting in M = 22* N = 2% M = N2. Both
the uniformization of the mesh and the construction of two different mesh densities can be also performed
by the direct truncation of the variables after prescribed number (log,(N),log,(M)) of binary digits, which
is equivalent to using fixed-point variables instead of floating-point ones (cf. [17]). As mentioned, due to the
binary representation we always have M = 2% N = 2!, however, we do not use this fact.

The discretization will depend on the two mesh densities M and N, however, in the forthcoming
discussion we regard M as a fixed function of N (satisfying (1)) and use only the single subscript
N. After these preliminaries, we define the discretized map as

i 1 i
—)=—|Mf(=)|.,i=0,1,2,...,N 2
v = 37 [MIGp] i =012, )
where | | denotes the integer part of a real number. We also define the difference operator on fy as
i i+ 1 i .

Since f is piecewise increasing, the discrete derivative should be positive. Nevertheless, close to each
discontinuity of f(z), dfn(i/N) will be typically non-positive for one value of i. To eliminate this discrepancy,
we introduce the corrected discrete derivative D fy:

i dfn(d) if dfn(3) >0
DfN(ﬁ)_{ df N %) otherwise. N (4)



As mentioned before, the discrete map produces a finite set of orbits with finite periods. The
information about f(z), carried by the point-set fy(i/N) is rather limited in many other respects
as well: f(z) may take arbitrary values between the meshpoints i/N (observing the expanding
property (E)). One could interpolate different functions fy(z) between the points fn(i/N); the
simplest assumption would be Oth order: fy(z) = fn(i/N),i/N < x < (i + 1)/N, however, this
piecewise constant function would not inherit the expanding property (E) of f(x). The simplest
interpolating function which does satisfy this condition (for sufficiently large N) is the piecewise
linear interpolation, yielding the polygonal line

In@) = (fn() +Df(E) (@~ 4)) mod 1, )
z € 1;,1=0,1,2,... N — 1,
where a mod 1 = a — [a] and I; denotes the interval £+ <z < L.
The latter truncation is necessary, since otherwise, due to the corrected discrete derivative D fy,
at the discontinuities of f(z) the polygon could exit the unit square.
We can imagine the unit square subdivided into N vertical and M horizontal stripes. As the
polygon fy(z) traverses the ith vertical stripe, simultaneously it traverses

. M
si=Dfn(i/N)5 (6)
horizontal stripes. We will utilize this approach in subsection 3.2 when we tie the Ulam scheme to
the random perturbaton. B
As we will show later, for sufficiently high N, fy(z) inherits the expanding (E) and topological
mixing (TM) property of f(z), resulting the existence of the unique density py(z).

2.3 The Perron-Frobenius operator P

The fundamental tool for the rigorous study of piecewise expanding maps is the so-called transfer
operator (also called the Perron-Frobenius or the Ruelle-Perron-Frobenius operator) defined as
follows

Pi(z) = Prole) = Y

fy=z

#(y)
Fo 0TS

The spectral properties of this operator over the Banach space Bgy of functions of bounded
variation supplied by the norm

ol By = Var(¢) + |p|1 (7)

are well-understood. Below we present in a nutshell the most important properties of the
transfer operator, necessary for our discussion.

It is suitable to work in two Banach spaces of functions: Bgy and L£q. Of course, BgyC £ and
Il i < |lBv (cf. (7)), and moreover, these spaces are adapted, meaning that every Bpy-bounded
set is precompact in L1, i.e. for every set of functions who'’s || ||gy norms are bounded, one can
select a subsequence which converges in the || ||; norm (cf. [2]). It is appropriate to consider
transfer operators P : Bgy — Bpy with the norm

1P| = sup{|Phlx |1 € Bay, |[hllsy < 1} (8)



The theory is based on the so called Doeblin-Fortet or Lasota-Yorke inequality valid for maps
satisfying (PS) and (E): there exist C7,Cy > 0 such that for every n € N and for every h € By

|P"h| By < Cra”||h| By + Collhl|1, 9)

see [9], [13] and [20]. We note that under our conditons the essential spectral radius Regs of the
transfer operator P is not larger than a. For obtaining the constants C1 and Cs in a simple form,
Liverani [13] assumes « < 1/2 and obtains C = 2, Cy = 1.(cf. [9] and [13], footnote 7.)

For us the following properties will be important:

Property 1. (PS) and (E) imply that apart from a finite number of eigenvalues lying on the
unit circle |z| = 1 the spectrum of P lies in a disc of radius a < 1. In addition, there exists at least
one absolutely continuous f-invariant density p(z).

Property 2. If, moreover, (TM) is also satisfied, then the only eigenvalue of P on the unit circle
is 1, it is simple and its eigenfunction is the only absolutely continuous f-invariant density p(z).

2.4 Ulam’s scheme as an operator: Uy y

As early as 1960, S. Ulam already addressed the computational aspects of dynamical systems. In
doing so, he introduced a discretization scheme for the calculations of maps, continuous in space.
Later several authors took up the investigation of this scheme, most notably they were interested
in the quality of this approximation, in particular, in its speed of convergence.

For simplicity, we will only recall Ulam’s scheme in the case of expanding maps of the interval.

Mathematicians prefer to consider operators in suitable Banach spaces, so for definiteness, we
use the Banach space Bpy of functions of bounded variation defined by the norm || ||gy (cf.(7)).
The idea is to discretize functions in space by using the averaging operator Ay : Bpy — Bpy
defined by

i41

An®(z) = N/_ " ®(y)dy whenever =z € I;.

7

N

Then Ulam’s scheme is the operator Uy x : Bpy — Bpy defined via
Urn® = AvPiAN®

The polygonal approximation fn(z) (introduced in (2)) is piecewise linear on each subinterval
I : x <z < % As pointed out by Liverani, in this case Uf, y is completely described by the
probability transition matrix

P = m(f&lI] NI

! m(L)
where m is the Lebesgue measure. P is also called the area overlaps Markov chain because P;; is
the proportion of Lebesgue area in I; which is mapped into I; under one iteration of fn. Clearly,
we have Z;-V:l P;j =1 for each i (cf. [7], [13]). As Liverani points out, the Ulam operator has
also one eigenfunction associated with the single eigenvalue on the unit circle, we will denote this
invariant density for Uy, y by pn,u. This density can be computed by solving the linear system
for p;:

(10)

N
> Pijpi = p; (11)
=1



3 The micro-perturbation f3, and its interpretation as an Ulam
scheme Uy, y

In this section we will introduce a random micro-perturbation f3; associated with fx and show that
it is, in essence, identical to the Ulam operator Uy, . so the corresponding invariant densities pjy
and py  are identical as well. We discuss the special case N = M where Ulam’s operator becomes
identical with the Perron-Frobenius operator and for this case we will prove the identity of p} and

PN-

3.1 Definition of the micro-perturbation f3,

In the further discussion we assume (PS), (E), (M) and (TM). The key observation motivating the
suggested random perturbation is that the amount of information lost during discretization is -in
first approximation- proportional to the discrete derivative df: the larger df, the more intermediate
lattice points are omitted while the independent variable moves by 1/N. The added random
perturbation will be represented by the random variables €}, the superscript referring to the discrete
time of the iteration, the subscript to the discrete variable of the map; the random variables €} are
independent in both respect. Based on these considerations the randomized discrete map f is the
following;:

filqp) = (i) + €t mod 1, (12)
where
P — L p_ Lppiy 1N
B P =0) = P(ed = ) = .= Pl = wDIx() = 3 = ypoocese ()

Returning to the idea of stripes, introduced in subsection 2.2, we can interpret P; as the prob-
ability of hitting one horizontal stripe if we are in the ith vertical stripe.

3.2 The micro-perturbation interpreted as an Ulam scheme

Our goal is to prove
Theorem 1 p}(i/N) = pnu(z) if z € I;.

Proof of Theorem 1: Let us return to the probability transition matrix P;; (10) associated with
the Ulam scheme Uy, y, and determine the elements of this matrix. We identified the number s;
of horizontal stripes traversed by fy(z) for z € I; in (6). Now we introduce s;; as the number
of stripes traversed by fy for z € I;, fx(z) € I;. The length of the horizontal projection of this
segment can be calculated by simple proportionality as

si5 1 Sij

m(f*]\—fljj ﬂfz') — 5_1ﬁ = W’ (14)

and, using (10) and m(I;) = 1/N, the overlap ratio can be expressed as

N

10 = S0 D N

(15)

Now we can construct a probability transition matrix 7' for the randomized scheme f5: the
element Tj; will denote the probability P(fx (i/N) € I;). As we noted after equation (13), the



probability of hitting one horizontal stripe is P;, since there are s;; horizontal stripes involved, we
have, based on (13):

N

b = o0l = S D G

(16)
so we have clearly
Py =Ty,ij€{1,2,...N}. (17)

Since the two matrices coincide, the eigenfunctions coincide as well. Q.e.d.

3.3 Exact results for the N x N mesh

If our goal is to obtain limy_ o pv,u — p then (as we will see later) it is essential that (1) is
observed. On the other hand, the M = N special case offers interesting mathematical aspects since
the polygon fy(z) constructed on a N x N quadratic mesh automatically satisfies the conditions
of the Markov property M. This leads to the following result:

Theorem 2 py(z) = piy(%), if N =M and z € I,.
The first step is to prove

Lemma 1 If f'(z) is constant in each interval I; : i = 0,1,...,1 — 1, then p(z) is also piecewise
constant on the same intervals as f'(x).

Proof of Lemma 1:
Instead of the R-P-F operator Py let us consider its discretized version over R/

P () — $(4)
W= 2 P

where y € I; is an arbitrary point such that f(y) € I;; i =0,1,...,l — 1. From our conditions it is
evident that P(@ is correctly defined. Moreover, analogously to Properties 1. and 2. from section
2, it is a contraction in R’, whose only eigenvalue on the unit circle is 1 with a unique positive
eigenvector

P@gd) — 4(d) (18)

satisfying the normalization Zﬁ;é (@) () = 1. Obviously, the function ¢(z) = ¢@ (i) if z € I; is a
solution of the fixpoint equation P¢ = ¢, therefore it is the unique f-invariant probability density.
Q.e.d.

The polygon fy(z) satisfies the conditions of Lemma 1: it inherited the expanding property
from f(z) and it has piecewise constant derivative on equal subintervals of length 1/N the images
of which are unions of such subintervals, so the Markov property is also guaranteed. Hence we have

Corollary 1 py(x) is piecewise constant on all sub-intervals I;.

Since py (z) is piecewise constant, the averaging operator Ay is identity, so we have px = pn v,
and, via Theorem 1, we arrive at the statement of Theorem 2. Q.e.d.

As we can see, for the N = M case the Ulam operator Uf, n becomes identical with the
Perron-Frobenius operator Py, .



4 The convergence result: bound for ||pny — pl1

In this section we investigate the N — oc limit. However, we not only want to prove convergence
for the density function py 7, our goal is to give a rigorous bound on the error ||pn7 — p||1. These
densities are the eigenfunctions belonging to the eigenvalue 1 of the corresponding operators, so our
first goal is to estimate the distance of the densities assuming that the distance |||Uf, — Pyl of the
operators in the norm (8) is available; this will be performed in subsection 4.1. In the next step,
following Liverani’s ideas, we decompose the estimate of the operators’ distance into two difference
norms and estimate |||Uf, — Pf, ||| and ||| Pf, — Py||| independently; this is the topic of subsection
4.2. The latter estimate requires the distance d(f, fn), which we supply in subsection 4.3. Finally,
the main result on the error bound will be formulated in subsection 4.4.

Most of these estimates follow from a series of strong results obtained in [13], [7], [8] and [9]
which we will summarize concisely, supplemented with our own considerations, in particular, the
distance estimate in subsection 4.3.

4.1 The distance ||gyu — p||1 of the densities estimated based on the distance
|Us, — Psl|| of the corresponding operators

Proposition 1 Consider pairs of maps f and g satisfying (PS) and (E) and fiz f. [9], [13]. Then
we have

log

1. Let r € (a,1) and n = logé > 0. If X is an isolated eigenvalue of Py with |A| > r and §

satisfies Bs(\) Noa(Pyr) = {QA}, then 3 a constant K1 = K1(d,r) such that

W) ,
IT0p° = T2 < K I[Py — Pyll|”
Here Bs(\) ={z € C‘|z — Al <8} and, in general,

1 1
H)\’é = —/ dZ
f 2mi JoBs(n) 2 — Py

denotes the projection of Py onto the part of its spectrum lying in Bs()).

2. If d(f,g) and 6 are small enough, then

Rank H}\’5 = Rank H;"‘S

3. For X =1, 2 is true and 1 is also valid if we change the right hand side to Ki|||P; —
Pl [1og]lIPy — Pyl

From statement 3 it actually follows that

1on0 = Pl = Kiu|log ul (19)

where

u= Uz = Fxlll- (20)
and K is explicitly given in [2],[7],[8]. Our next goal is to identify w.



4.2 The distance ||Uf, — Ps||| between the operators

Following Liverani [13], will decompose the distance into two parts:
IUfy = Prlll < U7y = Prylll + [[1P7y — Pyl (21)

The first term on the left-hand side can be identified by using Lemma 4.1 of Liverani ([13]),
yielding after simple calculations using the constants given in subsection 2.3 and considering o < 1/2
(c.f. the note in subsection 2.1, after the definition of the expanding property):

1 1 2.5
Uz = Pyl < (1 +20)(1+ 50) < = (22

We identify the second term on the left-hand side of (21) by using

Proposition 2 Consider pairs of maps f and g satisfying (PS) and (E) and fiz f [9], [13]. Then

we have
I1Pr = Pylll < 12d(f, 9)
where
d(f,g) = inf {ﬁ >0|3ACIL,3w:1—1 sth.m(A) >1—k, w is a diffeo,
fla=gow|a and sup|w(z) — z| < Kk, sup |1/ (z) — 1| < & }
xz€el zel
By setting
do = d(f, fn), (23)
Proposition 2 yields B
1Py — Py Il < 12d(f. f) = 12do. (24)
Now we can express the original distance as
2.5
w= Uy, = Pl < 12dg + =2, (25)

and the only remaining task is to compute an upper bound for dy; this will be done in the next
subsection.

4.3 The distance d; between the maps f and fy

Our goal is to find the distance d(f, fx) defined (23), so we have to show the existence of a
diffeomorphism w : A — A, where A C I,1 —m(A) < k, such that

flacw= fnla, (26)

with |w(z) — z| < K, |1/w’ — 1| < k and we have to provide an explicit estimate x in terms of the
discretization parameters N, M and other properties of f(z).

The set Ay is defined as the union of all sub-intevals I; : [i/N, (i + 1)/N] on which f has no
discontinuities, so we have

) J
m(A)=1-—k, K= 55 (27)



where J denotes the number of discontinuities of f(z). Let
L = sup |f”($)|a$ € Aa

so the Taylor series of f(z) at x = zy can be written as

£(z) = Fao) + ' (@)(w — 70) + g1 bl < 1. (28)

(In the forthcoming formulas we will use similar constants |¢;| < 1.) Analogously, the derivative
can be expressed as
2L
) = f(a0) + oo (29)
Let 29 = i/N, f'(zo) =b > 1, fi(z0) =a > 1, X = & — z¢;in the sub-interval X € [0,1/N] we
can express these functions as
NX) = aX+C
F(X) = bX +p33; +C+ o1y,
where o3 = M(f(z0) — fn(w0)), C = fn(z¢). Based on (26) and (30) we can express the diffeo-
morphism as

(30)

- b L 1
-1
w(X) = fy (f(X)):EX+('04F+<p5M (31)
where @4 = ¢1/a, p5 = p3/a. We are interested in
b L 1
X)X =(2-1DX + pr—s + 05— 2
W(X) =X = (2 )X +puncy + s (32)
where (b/a — 1) can be expressed based on Figure 1 as
b L N
R T -
a P TP (33)

where g5 = 197, 99 = @1, po = M(f((i +1)/N) — fn((i + 1)/N)), 7 = 1/a, see Figure 1.
Using (32) and (33) we can write

2L 2 1 L
X) = X = g1 Y i 4
w(X) Pripg TPy < <M+N2>’ (34)
where p11 = (psp10 + ©4)/2, 12 = (p9p10 + ¢5)/2, w10 = NX. Similar considerations yield
1 fn(w(X)) 3L N 3L N
|UJ’(X) | | f’(X) | P7P13 N + <P7<P6M < N + M’ ( )

where 13 = (2¢2¢1)/3.

This diffeomorphism w is valid in a ‘large’ sub-interval of each interval I; : [i/N, (i + 1)/N]
belonging to A, at each end a segment of length 1/M has to be chopped off; the union of the
remaining ‘large’ sub-intervals will be denoted by A, for illustration see Figure 1. The Lebesgue
measure of A can be expressed as

J 2N -1J)

m(A):l—lﬁ},hI:ﬁ—FT (36)

The three expressions (34), (35) and (36) are simplified (and also minimized in leading order) if
we set M = N2. Our next goal is to choose d(f, fx) as the largest of the three estimates, yielding

- 2L+2 3L+1 J+2 3L+1 J+2
dOZd(fafN):max{ N2 N ' N }Zmaw{ N 77}

which can be evaluated for any given J, L, N.

(37)
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Figure 1: The linearized local behaviour of f and fy and the diffeomorphism w on z € [i/N, (i +
1)/N].

4.4 The final result for the error bound

Using all the preliminary computations in subsections 4.1, 4.2 and 4.3 we can now formulate our
final result on the error bound associated with the computed density function py :

Theorem 3
lono = pllt = Kiu|logul
where o5
w < 12do + 57,
3L +1 ﬂ}
N ' N 7
L =sup|f'(z)|,z € A,

dp = maz{

and J denotes the number of discontinuities of f(x),z € I.

The proof of the theorem is contained in section 4, in particular we used equations (19) (25)
and (23) to construct the statement.
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5 Example and comparison to other methods

5.1 The diadic map

We illustrate our results on the diadic map
f(z) =2z mod 1, (38)

which is also known as the roughest qualitative approximation of the Lorenz attractor ([5]). The
map (38) obviously satisfies the criteria for the properties (PC),(E) and (TM) and generates on
I the uniform invariant density p(z) = 1. Not only is (38) piecewise linear, its derivative is
an integer, so VN : f(z) = fn(z), if we assume M = 2¥N, and consequently VN : p(z) =
pn(z) = pnu(z). Due to the very transparent structure of the map, the pi(i/N) — pn(z)
correspondence can be demonstrated by an elementary argument, without referring to Theorem
2, even for the otherwise problematic N = M case: Since Vi : Dfy(i/N) = 2, any trajectory of
length k, belonging to fy is a binary tree, the 2% endpoints of which cover the discrete unit interval
I=1{0,1/N,2/N,...,(N —1)/N,1} Ky = [2¥/N] times without gaps, in addition they cover once
the remaining fraction of length F = 2¥ — NKy. Thus the expected number of iterates in each cell
differs from the ‘uniform’ value 2¥ /N maximally by 1, the density quickly converges to the uniform
one as k — oo. (Note that for the practically interesting case for real-type computer arithmetic
N = 2% we have convergence already at k = kg, cf [17].)

Up to now we were concerned with the comparison of the continuous map f and the randomly
perturbed discrete map fr and we proved that under certain conditions the latter can -in the
statistical sense- approximate the previous one. One can only hope for weaker results when looking
at the deterministic discrete dynamics of fy: as mentioned previously, it differs radically from the
continuous one, since the discrete system possesses only a finite number of orbits with finite periods.
We will use the diadic map to illustrate this behaviour and to compare it with the continuous case.

The structure of the discrete dynamics depends sensitively on N: as reported in [4] and [10],
different arithmetic precision yielded drastically different global behaviour. There are several op-
tions to measure the similarity between the discrete and continuous dynamics. In the cited works
this measurement was not rigorous, the authors selected some trajectories based on individual con-
siderations and observed the long-term behaviour. The rigorous measurement could be done on
different principles:

(a) The ‘strict’ principle measures the statistics of the endpoints belonging to a (large) collection
of trajectories with fixed length, the initial values of which are confined to an interval of length
< 1/N. In the continuous case, the endpoints will be spread over I according to the density p(x),
while in the discrete system, due to the deterministic iteration, each endpoint will be identical,
regardless of f and N .

(b) The ‘liberal’ principle measures the statistics of one trajectory, the starting point of which
is selected at random, statistical event is each step of iteration. In this case the results depend
sensitively on f and .

A systematic analysis of the second, ‘liberal’ similarity measure is carried out in [3], where the
diadic map is investigated in detail; we emphasize some interesting features below.

The global behaviour of fy can be described either by a (degenerate) transition matrix T,
where each of the transition probabilities is either 0 or 1, or with an oriented graph, which we
will call the symbolic dynamics. The structure of this graph is very informative: e.g. in case of
the diadic map, if N = M = 2*, then the graph is a binary tree, promising the worst possible
statistics under the ‘liberal’ definition, since instead of being spread out, all trajectories converge
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to the same point. The ‘optimal’ statistics, most similar to the uniform density of the continuous
system, would be produced if (almost) all cells would be included in a single cycle. Although in
real (computer) applications one has very limited choice of N, and we have always N = 2F, it
is of theoretical interest to ask whether there exists such N to which the ‘optimal’, cyclic graph
belongs. A more detailed number-theoretic study of the problem ([21]) reveals that the answer is
positive, if N is a prime of the form N = 4p + 1, where p is also prime, N — 1 cells will form a
single cycle. However, the structure of the graph changes abruptly as N is varied: we illustrate
N = M = 651,652, 653,654 in Figure 2. Observe the cyclic structure for N = 653 = 4 % 163 + 1
and the appearance of large number of small cycles for N = 651. For more details on the evolution
of the graph structure see [3] and [18].

The example of the diadic map illustrates that the deterministic discrete system has little in
common with the continuous map, the graph describing the structure of the discrete map is highly
sensitive to the applied arithmetic precision. The simple structure of the diadic map allowed us
to make exact statements based on number theory. Although such precise formulations are hardly
possible in case of other maps, the above mentioned qualitative features are rather general and
explain the phenomena reported in [4] and [10].

5.2 Comparison to other methods

The perturbation described in (12) can be added to the computer code with very few lines, it
provides a useful tool for simulations [17]. In general, it is an open question how this method
compares to previously suggested ones (cf. [10],[13]) in terms of computing time and efficiency. In
particular, comparison to the direct solution of the linear equation system (11) would be of interest;
as Kifer [10] observes, statistical simulations based on random perturbation are generally believed
to be faster than the direct solution of the linear equation system. Liverani [12] raised a more
specific question: is it possible to define under which conditions the iteration of the randomized
scheme (12-13) is more efficient than the direct solution of (11)7 This comparison is meaningful,
since the iteration of the scheme produces a statistical approximation of p*, the linear equation
yields prn, and Theorem 1 guarantees that the two objects are identical. A rigorous answer to
Liverani’s question would be difficult not only from the mathematical point of view (estimate on
the £1-distance of the statistical approximation of p*, px and p), it would involve many parameters
(e.g. the number of floatig point operations used by the random number generator) so the final
result would be hard to interpret. Our goal is not to give a rigorous answer, rather, we would like
to provide some rough estimates which emphasize only the essential parameters and give an idea
for computations.

We will assume that the application of the scheme (12) is equivalent to the random sampling of
the variable py. (This is, strictly speaking, not true if we regard one iterative step as one statistical
event (‘liberal’ principle of statistical measurement, as defined in subsection 5.1), if we adopt the
‘strict’ principle and regard the endpoint of a trajectory of fixed (short) length as a statistical event
then we are somewhat closer to the assumption.) Under this assumption, using one iterative step as
a statistical event (and neglecting the above mentioned computational effort to produce a random
number), the computational ‘cost’ Cg of one statistical event is

Cp =F, (39)

where F is the number of floating point operations (FLOPs) needed to evaluate f(z). The x? test
for goodness of fit [11] requires approximately

10

Pmin

E > (40)
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Figure 2: Graphs characterizing the discretized diadic map at N = M = 651,652,653, 654. Circle
indicate cyclic parts of the graph, length of cycle written inside circle. Fixed point corresponds to
cycle with length 1. Software by R. Téth.
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statistical events, where p,,;, denotes the smallest probability associated with p*. (If p* is uniform,
then ppn = 1/N.) Combining (39) with (40) provides an estimate for the necessary computation
effort Cyiqr in FLOPs:

10F

Pmin

Cstat = ECE =

(41)

Since we are interested in the eigenvector p; in (11), corresponding to the largest eigenvalue Ay = 1,
pi can be succesively approximated by computing the powers of F;;. This requires roughly

Ciin = FN + kN? (42)

FLOPs, the first term corresponds to the computation of the coefficients, the second term to k
iterative steps, each involving N® FLOPs. The convergence of this iteration is controlled by the
ratio i—; of the eigenvalues. For simplicity, we will assume that a minimum of £ = 10 iterative
steps are needed to reduce the error to a tolerable level. For large N, this value of k is certainly
not sufficient. Comparing the two estimated computation efforts Cj;, and Cgqr, we can make the
following observation:

If pin > F/N2 then the statistical simulation is faster.

This condition implies that the solution of the linear system (11) is faster if we apply very low
arithmetic precision and the function f(z) is very difficult to evaluate and/or the sought density
function py is very far from uniform. Such a situation could arise if f(z) is a Poincaré map and it is
evaluated via the integration of a very complicated differential equation and we are only interested in
a precision sufficient for graphics: assuming F' = 1000, N = 10000 and p.in = (1/N)/10 = 0.00001
the two methods are approximately equal. We must not forget that both estimates Cgsq; and Cj;y,
were based on a very modest requirement concerning the accuracy. Comparison based on equal
errors would be much more difficult, however, we believe based on numerical experience that it
would yield similar results. Our rough estimates indicate that if we move to higher N, the statistical
simulation is the only feasible choice.

6 Summary and concluding remarks

In this paper we studied the relationship between the statistical properties of piecewise continuous,
expanding maps and their discretized versions. The discretization was performed both in the
independent variable and in the function value, so we investigated an exact model of schemes
generated by the application of finite computer arithmetic precision; we believe that this is a new
approach. We investigated the following objects:

e f(x), a piecewise continuous, expanding map on the unit interval,

fn(i/N), the discretized version of f(z), generated on an N x M, M > N lattice by a
computer with maximal precision 1/M,

fn(z), the polygonal line defined by the points fy(i/N),

U, n» the Ulam operator associated with f,

fx(@/N), the randomized version of fy(i/N),

p(x), the density function generated by f(z),

pn,u(z), the density function generated by the Ulam scheme Uy, y,
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e py(i/N), the discrete density, generated by f3 (i/N).

The relationships between these objects are illustrated in scheme (43):

/(@) > plx)
SO 1
) fv(@) = Upn = pnvolo) (43)
o 1
InGIN) = f4(i/N) = pi(i/N)

In this scheme single arrows indicate that one object defines/generates the other one, double
arrows indicate some kind of convergence. Observe that only the three objects in the third row are
‘real’ in the sense that they appear directly in the computer simulation. The objects in the upper
two rows exist only as far as we can obtain information on them from the computer simulation or,
possibly, from the physical system. We can observe that the polygonal approximation serves as an
intermediate tool for the approximation of the continuous system. As we can see, our main goal
was to approximate p(x), based on information contained in fy(i/N), a finite set of integers.

The step from the ‘real’ objects in the third row to the ‘intermediate’ objects in the second row
is performed in section 3: we proved that the density pj;, generated by the suggested randomization
[ is identical with the invariant measure py,x of the Ulam scheme associated with the polygonal
approximation of the original function. At a given level of discretization this is the most one can
ask for.

The next step was to show the relationship between the ‘intermediate’ second row and the
objects of real physical interest in the first row; section 4 was devoted to this task. The proof of
Theorem 3, stating the convergence py 7 — p, required strong results from the literature, combined
with our considerations. In fact, Theorem 3 claims more than convergence, it establishes an error
bound, implying that with the suggested scheme the original invariant density function p(z) can
be approximated with arbitrary precision (for sufficiently large N).

It is interesting to observe that for the latter result we required unequal mesh densities N and
M on the horizontal ad vertical axis respectively, with M /N — 0 as N — oco. The computer offers
the same maximal mesh density in both directions, so using unequal densities (e.g. by using single
and double precision arithmetic) is equivalent to omit certain information, nevertheless, this proves
to be the efficient strategy. This is explained by considering that although the omitted data carries
additional information on the function values, it blocks the convergence in the derivative. Omitting
this data is analogous to ‘averaging’ the oscillating values of the discrete derivative and provides a
smaller error in the approximated density, even for finite V.

Scheme 43 can serve as an illustration to Liverani’s comment [13]: ‘...the linear approximation
is used to control the nonlinearity, while the Ulam scheme is used to control the lack of the Markov
property.” In our approach, the linearization fy(z) served both the purpose of controlling the
nonlinearity, and, due to the discretization in both directions, also as an ezact model of finite
computer arithmetic. The role of the Ulam scheme is specially highlighted in subsection 3.3, where
we investigate the N = M quadratic grid. This discretization guarantees the Markov property of
fn(z), consequently the Ulam scheme ‘vanishes’ and becomes identical with the Perron-Frobenius
operator.

If we have f = fu, then of course the randomized map produces the ezact density p(z); this is
the situation in case of the diadic map if we apply a mesh with M = 2¥ N, discussed in subsection
5.1. We also illustrated the extreme sensitivity of the deterministic discrete map to the arithmetic
precision 1/N: in case of the diadic map this could be explained in exact number theoretic terms,

17



however, the sensitivity itself is characteristic of more complicated maps as well. Our results show
that the randomly perturbed discrete map is much more robust: small variation of N will not
change the statistical properties.

Subsection 5.2 dealt with the comparison to the direct solution of the linear equation system.
Based on non-rigorous estimates and arguments we found that the choice between the methods
depends primarily on the computational complexity of f(x) and the applied precision N. If the for-
mer is very large while the latter is very small, the direct solution of the linear system is preferable,
otherwise our randomized iteration scheme proves to be the feasible choice.

Although we only proved our results for expanding maps, we expect this algorithm to be helpful
in the computation for non-expanding maps as well, in fact, we expect this algorithm to perform
in such cases better compared to other perturbation methods. In case of such maps the statistical
behaviour can depend infinitely sensitively on parameters [6], [16]; needless to say that based on
finite information one can not hope to capture this sensitivity. On the other hand, stable fixedpoints
and their neighbourhood are not affected by our random perturbation (D fx = 0), so one can hope
to capture stable attractors reliably in a sufficiently fine discretization. In fact, simple inspection of
equation (11) reveals that stable fixed points are preserved for sufficiently high N. This property
is not shared with other random perturbations which are insensitive to the local properties of the
map. Based on the above considerations we believe that the suggested method can be a useful tool
when one tries to answer at fixed arithmetic precision the fundamental questions raised by Liverani
([13]): whether the map is ergodic, mixing, or expanding.

Acknowledgement

The authors thank Yuri Kifer, Carlangelo Liverani, Imre Szeberényi and Réka Téth for their helpful
suggestions and remarks. Special thanks to Gerhard Keller for his comments on subsection 5.2.
The support of OTKA grant T031744 and the Bolyai Fellowship (GD) and OTKA grants T26176
and T32022 (DSz). is gratefully acknowledged.

References

[1] V. Baladi. Transfer operators and decay of correlations. In Advanced Series in Nonlinear
Dynamics, volume 16, Singapore, 2000. World Scientific.

[2] M. Blanc and G. Keller. Random perturbations of chaotic dynamical systems: stability of the
spectrum. Nonlinearity, 11:1351-1364, 1998.

[3] G. Domokos. Digital modelling of chaotic motion. Studia Sci. Math. Hung., 25:323-341, 1990.

[4] G. Haller and G. Stépan. Micro-chaos in digital control. J. Nonlinear Science, 6:415-448,
1996.

[5] P.J. Holmes and F.C Moon. Strange attractors and chaos in nonlinear mechanics. Trans.
ASME Ser.E, J. Appl. Mech., 50:1021-1032, 1983.

[6] M. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-
dimensional maps. Comm. Math. Phys., 81:39-88, 1981.

[7] R. Keane, M. Murray and L.S. Young. Computing invariant measures for expanding circle
maps. Nonlinearity, 11:27-46, 1998.

18



8]

[9]

[10]

[11]

[12]
[13]

G. Keller. Stochastic stability in some chaotic dynamical systems. Monatsh. Math., 94:313-333,
1982.

G. Keller and C. Liverani. Stability of the spectrum for transfer operators. Ann. Scuola Norm.
Sup. Pisa Cl Sci (4), 28:141-152, 1999.

Yu. Kifer. Computations in dynamical systems via random perturbations. Discrete and Con-
tinuous Dynamical Systems, 3:457-476, 1997.

G.A. Korn and T. M. Korn. Mathematical handbook for scientists and engineers. McGraw-Hill
Book Company, New York, St. Louis, etc., second edition, 1968.

C. Liverani. Oral communication to the authors. 2001.

C. Liverani. Rigorous numerical investigation of the statistical properties of piecewise expand-
ing maps - a feasibility study. Nonlinearity, 14:463-490, 2001.

A. Rényi. Representations of real numbers and their ergodic properties. Acta Math.Acad. Sc.
Hung., 8.:477-493, 1957.

W. Stallings. Computer organization and architecture. IEEE Computer Society, 1985.

H. Thunberg. Unfolding of chaotic unimodal maps and the parameter dependence of natural
measures. Nonlinearity, 14:323-337, 2001.

L.I. T6th. Digital simulation of chaotic systems. Budapest University of Technology and
Economics, Scientific Student Competition, 2002.

R. Téth. Discrete dynamics of the diadic map. Budapest University of Technology and Eco-
nomics, Scientific Student Competition, 2002.

S. Ulam. Problems in modern mathematics. Interscience Publishers, 1960.

M. Viana. Stochastic dynamics of deterministic systems. In Col. Bras. de Matematica, lecture
notes, 1997.

.M. Vinogradov. Foundations of number theory (in Russian). State Editing House for Theo-
retical Technical Literature, Moscow, Leningrad, 1949.

L.S. Young. Statistical properties of dynamical systems with some hyperbolicity. Annals of
Mathematics, 147:585-650, 1998.

19



