EXISTENCE OF LOCAL INVARIANT MANIFOLDS FOR THE SINGULAR CAT.

DOMOKOS SZÁSZ

Let $T_A \equiv Ax \pmod{\mathbb{Z}^2}$ an algebraic auto of \mathbb{T}^2 with invariant measure $\mu = Leb$. Here, for simplicity, $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Its singular version T is an endo of the unit square $Q = [0,1]^2$ with the same invariant measure. (By a simple argument the ergodicity of T is a direct consequence of that of T_A .) Denote $S_n = T^n \partial Q : n \in \mathbb{Z}$. **Facts:**

- (1) the set of discontinuities of *T* is S_{-1} ;
- (2) for $n \ge 1$, the set of discontinuities of T^n is $\bigcup_{l=1}^{l=n} S_{-l}$;
- (3) for $n \ge 1$, the set of discontinuities of T^{-n} is $\bigcup_{l=1}^{l=n} S_l$.

Denote $S\mathcal{R}_+ = \bigcup_{l=0}^{\infty} S_l$ and $S\mathcal{R}_- = \bigcup_{l=0}^{\infty} S_{-l}$. (Note: *T* is an auto on $Q \setminus (SR_- \cup SR_+)$.) Reminder:

$$\gamma^{s(u)}(x) = \{y | \lim_{n \to \infty} dist(T^{n(-n)}x, T^{n(-n)}y) = 0\}$$

therefore

$$\gamma^{s(u)}(x) = \{x + te^{s(u)} | t \in \mathbb{R}\}$$

Definition 1. *Consider the subinterval* $[x, y] \in \gamma^s(x)$ *.*

 $\gamma_{loc}^{s}(x) := \{y \in \gamma^{s}(x) | \forall n \ge 0 \text{ the interval } T^{n}[x, y] \text{ never intersects } SR_{-}\}$ or in other words

$$\gamma_{loc}^{s}(x) := \{y \in \gamma^{s}(x) | \forall n \ge 0 \ T^{n} \text{ is continuous on } [x, y] \}$$

Definition 2. *Consider the subinterval* $[x, y] \in \gamma^s(x)$ *.*

 $\gamma_{loc}^{u}(x) := \{y \in \gamma^{u}(x) | \forall n \leq 0 \text{ the interval } T^{n}[x, y] \text{ never intersects } SR_{+} \}$ or in other words

$$\gamma_{loc}^{u}(x) := \{ y \in \gamma^{u}(x) | \forall n \le 0 \ T^{-n} \text{ is continuous on } [x, y] \}$$

Theorem 1. (Existence of local invariant manifolds.) For *a. e.* $x \in Q$, $\exists \delta(x) > 0$, *s. t.* $|\gamma_{loc}^{u}(x)|, |\gamma_{loc}^{s}(x)| > 2\delta(x)$ holds.

Proof. Denote length measured along γ_{loc}^{u} by d^{u} and the unstable eigenvalue of A by $\lambda^{u} > 1$. Let $\alpha > 1$ and c > 0. By simple geometry,

(1)
$$\mu\{x|d^u(x,S_0) \le \varepsilon\} \le const.\varepsilon$$

By Definition 2 we need:

for a. e.
$$x \in Q \exists \delta(x) > 0$$
, s. t. $\forall n \ge 0 d^u(x, S_n) > \delta(x)$

i. e.

for a. e.
$$x \in Q \exists \delta(x) > 0$$
, s. $t. \forall n \ge 0 d^u(T^{-n}x, S_0) > \frac{\delta(x)}{(\lambda^u)^n}$

By (??) and measure preserving

$$\sum_{n\geq 0}\mu(d^u(x,S_0)\leq \frac{c}{n^{\alpha}})=\sum_{n\geq 0}\mu(d^u(T^{-n}x,S_0)\leq \frac{c}{n^{\alpha}})<\infty$$

thus, by Borel-Cantelli, for a. e. point *x* – apart from a finite set of indices $n \ge 0$ –

$$d^u(T^{-n}x,S_0)>\frac{c}{n^\alpha}$$

Consequently for a. e. *x*

$$\exists c(x) > 0 \ s. \ t. \ \forall n \ge 0 \ d^u(T^{-n}x, S_0) > \frac{c(x)}{n^{\alpha}}$$

or equivalently

$$\forall n \ge 0 \ d^u(x, S_n) > (\lambda^u)^n \frac{c(x)}{n^{\alpha}}$$

Let $\delta(x) := \min_{n \ge 0} ((\lambda^u)^n \frac{c(x)}{n^{\alpha}}) > 0$. Now it is easy to see that the theorem holds with this function $\delta(x)$.

Remark. The proof, of course, works in the same way, for any hyperbolic algebraic auto of \mathbb{T}^d : d > 2. For d > 2, the linear map A may have eigenvalues outside the unit circumference in conjugate pairs. Then one uses the eigenvalues of $(AA^*)^{1/2}$. In the general case of hyperbolic diffeos of a compact Riemannian manifold with an invariant measure one uses Oseledec' theorem for defining the real Lyapunov exponents $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{d^s} < 0 < \lambda_{d^s+1} \leq \cdots \leq \lambda_{d^s+d^u}$, and then the definition of the invariant manifolds $\gamma^u(x), \gamma^s(x)$ is itself non-trivial. However, if a hyperbolic diffeo of a compact Riemannian manifold with an invariant measure – like a semi-dispersing billiard – has (not too pathological) singularities, then under rather general conditions the above procedure is still applicable to show that local invariant manifolds exist almost everywhere.

2

EXISTENCE OF LOCAL INVARIANT MANIFOLDS FOR THE SINGULAR CAT. 3