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Let TA ≡ Ax ( mod Z2) an algebraic auto of T2 with invariant

measure µ = Leb. Here, for simplicity, A =
(

2 1
1 1

)
. Its singular

version T is an endo of the unit square Q = [0, 1]2 with the same
invariant measure. (By a simple argument the ergodicity of T is a
direct consequence of that of TA.) Denote Sn = Tn∂Q : n ∈ Z.
Facts:

(1) the set of discontinuities of T is S−1;
(2) for n ≥ 1, the set of discontinuities of Tn is ∪l=n

l=1 S−l;
(3) for n ≥ 1, the set of discontinuities of T−n is ∪l=n

l=1 Sl.
Denote SR+ = ∪∞

l=0Sl and SR− = ∪∞
l=0S−l. (Note: T is an auto on

Q \ (SR− ∪ SR+).) Reminder:

γs(u)(x) = {y| lim
n→∞

dist(Tn(−n)x, Tn(−n)y) = 0}

therefore
γs(u)(x) = {x + tes(u)|t ∈ R}

Definition 1. Consider the subinterval [x, y] ∈ γs(x).

γs
loc(x) := {y ∈ γs(x)|∀n ≥ 0 the interval Tn[x, y] never intersects SR−}

or in other words

γs
loc(x) := {y ∈ γs(x)|∀n ≥ 0 Tn is continuous on [x, y]}

Definition 2. Consider the subinterval [x, y] ∈ γs(x).

γu
loc(x) := {y ∈ γu(x)|∀n ≤ 0 the interval Tn[x, y] never intersects SR+}

or in other words

γu
loc(x) := {y ∈ γu(x)|∀n ≤ 0 T−n is continuous on [x, y]}

Theorem 1. (Existence of local invariant manifolds.) For a. e. x ∈ Q,
∃δ(x) > 0, s. t. |γu

loc(x)|, |γs
loc(x)| > 2δ(x) holds.
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Proof. Denote length measured along γu
loc by du and the unstable

eigenvalue of A by λu > 1. Let α > 1 and c > 0. By simple ge-
ometry,

(1) µ{x|du(x, S0) ≤ ε} ≤ const.ε.

By Definition 2 we need:

for a. e. x ∈ Q ∃δ(x) > 0, s. t.∀n ≥ 0 du(x, Sn) > δ(x)

i. e.

for a. e. x ∈ Q ∃δ(x) > 0, s. t.∀n ≥ 0 du(T−nx, S0) >
δ(x)
(λu)n

By (??) and measure preserving

∑
n≥0

µ(du(x, S0) ≤ c
nα

) = ∑
n≥0

µ(du(T−nx, S0) ≤ c
nα

) < ∞

thus, by Borel-Cantelli, for a. e. point x – apart from a finite set of
indices n ≥ 0 –

du(T−nx, S0) >
c

nα
.

Consequently for a. e. x

∃c(x) > 0 s. t. ∀n ≥ 0 du(T−nx, S0) >
c(x)
nα

or equivalently

∀n ≥ 0 du(x, Sn) > (λu)n c(x)
nα

Let δ(x) := minn≥0((λu)n c(x)
nα ) > 0. Now it is easy to see that the

theorem holds with this function δ(x).
Remark. The proof, of course, works in the same way, for any hyper-
bolic algebraic auto of Td : d > 2. For d > 2, the linear map A may
have eigenvalues outside the unit circumference in conjugate pairs.
Then one uses the eigenvalues of (AA∗)1/2. In the general case of hy-
perbolic diffeos of a compact Riemannian manifold with an invariant
measure one uses Oseledec’ theorem for defining the real Lyapunov
exponents λ1 ≤ λ2 ≤ · · · ≤ λds < 0 < λds+1 ≤ · · · ≤ λds+du , and
then the definition of the invariant manifolds γu(x), γs(x) is itself
non-trivial. However, if a hyperbolic diffeo of a compact Riemannian
manifold with an invariant measure – like a semi-dispersing billiard
– has (not too pathological) singularities, then under rather general
conditions the above procedure is still applicable to show that local
invariant manifolds exist almost everywhere.
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