Differential Equations 2. homework

Deadline: November 15, 2018. On the practical lecture in paper format or send your solution to szokemarton3@gmail.com.

1. exercise Find the solution of the initial value problem with Laplace transformation.

$$
\begin{gathered}
y^{\prime \prime}-y^{\prime}-12 y=2+e^{2 x} \\
y(0)=1 \\
y^{\prime}(0)=2
\end{gathered}
$$

2. exercise Solve the following initial value problem.

$$
\begin{gathered}
y^{\prime \prime}+2 x\left(y^{\prime}\right)^{2}=0 \\
y(0)=1 \\
y^{\prime}(0)=4
\end{gathered}
$$

3. exercise Solve the following initial value problem.

$$
\begin{gathered}
(1-x) y^{\prime \prime}+x y^{\prime}-y=0 \\
y(0)=2 \\
y^{\prime}(0)=-1
\end{gathered}
$$

Hint: Try to guess a solution of the equation.
4. exercise Find the general solution of the following differential equation.

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}-3 \frac{y}{x^{2}}=1+\frac{1}{x}
$$

5. exercise Give the lowest order linear homogeneous differential equation with real constant coefficients, for which $y=2 \cosh x+3 x e^{-2 x} \sin x$ is a solution.
6. exercise Find the general solution of the following system of differential equations by variation of parameters.

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\binom{x}{y}+\binom{e^{-2 t}}{-2 e^{t}}
$$

7. exercise Give the general solutions of the following system of differential equations in the cases a $=-4 ; 0 ;+0.25$ and +4 , and draw the phase portraits in 3 different cases. Determine the type of the fixed points.

$$
\begin{aligned}
& \dot{x}=-x+a y+1 \\
& \dot{y}=x-y-1
\end{aligned}
$$

8. exercise Find the fixed points of the following system of differential equations, and sketch the phase portrait.

$$
\begin{aligned}
& \dot{x}=2 x-x y \\
& \dot{y}=x^{2}-2-y
\end{aligned}
$$

9. exercise Draw the phase portrait of the following system of differential equations.

$$
\begin{aligned}
& \dot{x}=-y-x y^{2}-x^{3} \\
& \dot{y}=x-y^{3}-x^{2} y
\end{aligned}
$$

Hint: Use polar coordinates, then multiply one of the equation by $\cos \varphi$ and the other one by $\sin \varphi$. After that sum the two new equations and subtract one of them from the other to get an equation for \dot{r} and one for $\dot{\varphi}$.
10. exercise Write down and solve the variational system of the following initial value problem.

$$
\begin{aligned}
\dot{x} & =e^{y}-1 \\
\dot{y} & =2 x \\
x_{0} & =x(0)=0 \\
y_{0} & =y(0)=0
\end{aligned}
$$

