First midterm

Partial differential equations

Solutions

1. Find the solution $u \in C^{2}\left(\mathbb{R}^{2}\right)$ of the following Cauchy problem!

$$
\left\{\begin{aligned}
\partial_{x y} u(x, y) & =0 \\
u(x, 0) & =x^{2} \\
u(0, y) & =4 y^{2}
\end{aligned}\right.
$$

Solution: By integrating the equation:

$$
\begin{gathered}
\partial_{x y} u(x, y)=0 \\
\partial_{y} u(x, y)=f(y) \\
u(x, y)=F(y)+g(x)
\end{gathered}
$$

Now by using the boundary conditions:

$$
\begin{gathered}
u(x, 0)=F(0)+g(x)=x^{2} \\
u(0, y)=F(y)+g(0)=4 y^{2}
\end{gathered}
$$

Now if $F(0)=c$, then $g(x)=x^{2}-c$, and by substituting this into the second equation we get

$$
F(y)-c=4 y^{2}
$$

meaning that $F(y)=4 y^{2}+c$. Thus, $F(y)=4 y^{2}+c, g(x)=x^{2}-c$ and

$$
u(x, y)=4 y^{2}+c+x^{2}-c=4 y^{2}+x^{2} .
$$

2. Give two, at least second order, two-variable polynomials P and Q in a way that $\Delta P=0, \Delta Q=0$ and $\Delta(P Q)=0$.
Solution: To minimize the amount of calculations, just assume that P and Q are both second order polynomials.
Let us define them as

$$
\begin{aligned}
& P(x, y)=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6} \\
& Q(x, y)=b_{1} x^{2}+b_{2} x y+b_{3} y^{2}+b_{4} x+b_{5} y+b_{6}
\end{aligned}
$$

Then

$$
\begin{array}{r}
\Delta(P)=\partial_{x}^{2} P+\partial_{y}^{2} P=2 a_{1}+2 a_{3}=0 \\
\Delta(Q)=\partial_{x}^{2} Q+\partial_{y}^{2} Q=2 b_{1}+2 b_{3}=0
\end{array}
$$

So choose for example $a_{4}=a_{5}=a_{6}=b_{4}=b_{5}=b_{6}=0$. Then

$$
\begin{gathered}
P \cdot Q=\left(a_{1} x^{2}+a_{2} x y-a_{1} y^{2}\right)\left(b_{1} x^{2}+b_{2} x y-b_{1} y^{2}\right)= \\
=a_{1} b_{1} x^{4}+a_{1} b_{2} x^{3} y-a_{1} b_{1} x^{2} y^{2}+a_{2} b_{1} x^{3} y+a_{2} b_{2} x^{2} y^{2}-a_{2} b_{1} x y^{3}-a_{1} b_{1} x^{2} y^{2}-a_{1} b_{2} x y^{3}+a_{1} b_{1} y^{4}= \\
=a_{1} b_{1} x^{4}+x^{3} y\left(a_{1} b_{2}+a_{2} b_{1}\right)+x^{2} y^{2}\left(a_{2} b_{2}-2 a_{1} b_{1}\right)+x y^{3}\left(-a_{2} b_{1}-a_{1} b_{2}\right)+a_{1} b_{1} y^{4}
\end{gathered}
$$

Which means that

$$
\begin{gathered}
\Delta(P Q)=12 a_{1} b_{1} x^{2}+6 x y\left(a_{1} b_{2}+a_{2} b_{1}\right)+2\left(a_{2} b_{2}-2 a_{1} b_{1}\right) x^{2}+2\left(a_{2} b_{2}-2 a_{1} b_{1}\right) y^{2}-6 x y\left(a_{1} b_{2}+a_{2} b_{1}\right)+12 a_{1} b_{1} y^{2}= \\
=2 x^{2}\left(4 a_{1} b_{1}+a_{2} b_{2}\right)+2 y^{2}\left(4 a_{1} b_{1}+a_{2} b_{2}\right)
\end{gathered}
$$

which gives the condition $6 a_{1} b_{1}+a_{2} b_{2}=0$. If we choose $a_{1}=b_{1}=1$ and $a_{2}=2, b_{2}=-2$, then it is satisfied. Therefore a good choice is

$$
\begin{aligned}
& P(x, y)=x^{2}+2 x y-y^{2} \\
& Q(x, y)=x^{2}-2 x y-y^{2}
\end{aligned}
$$

3. Give that solution $u \in C^{1}\left(\mathbf{R}^{2}\right)$ of the first order partial differential equation

$$
y \partial_{x} u(x, y)+x^{3} \partial_{y} u(x, y)=\frac{1}{2} x^{3}
$$

which equals x^{4} on the x-axis !
Solution: This is a first order quasi-linear equation. The auxiliary problem is

$$
y \partial_{x} v(x, y, u)+x^{3} \partial_{y} v(x, y, u)+\frac{1}{2} x^{3} \partial_{u} v(x, y, u)=0
$$

and the characteristic system is

$$
\left\{\begin{aligned}
x^{\prime}(t) & =y(t) \\
y^{\prime}(t) & =(x(t))^{3}, \\
\hat{u}^{\prime}(t) & =\frac{1}{2}(x(t))^{3}
\end{aligned}\right.
$$

Our task is now to find first integrals of this system. From the second and third equation, it is easy to see that

$$
\frac{1}{2} y^{\prime}(t)-\hat{u}^{\prime}(t)=\frac{1}{2}(x(t))^{3}-\frac{1}{2}(x(t))^{3}=0
$$

So $\varphi_{1}(x, y, \hat{u})=\frac{1}{2} y-\hat{u}$ is a first integral. Also,

$$
\left((x(t))^{4}\right)^{\prime}=4(x(t))^{3} x^{\prime}(t)=4 y^{\prime}(t) x^{\prime}(t)=4 y^{\prime}(t) y(t)=2\left((y(t))^{2}\right)^{\prime}
$$

So $\varphi_{2}(x, y, \hat{u})=x^{4}-2 y^{2}$ is also a first integral, meaning that we have

$$
\begin{aligned}
& \frac{1}{2} y-u=\Psi\left(x^{4}-2 y^{2}\right) \\
& u=\frac{1}{2} y-\Psi\left(x^{4}-2 y^{2}\right)
\end{aligned}
$$

The boundary condition means that $u(x, 0)=x^{4}$. Substituting this into our solution:

$$
u(x, 0)=-\Psi\left(x^{4}\right)=x^{4}
$$

meaning that $\Psi(x)=-x$, so our solutions are in the form

$$
u(x, y)=\frac{1}{2} y+x^{4}-2 y^{2}
$$

4. Define the non-constant two-variable polynomials $a(x, y)$ and $b(x, y)$ in a way that the second order differential operator defined as

$$
L u=a(x, y) \partial_{x}^{2} u+x \partial_{x y} u+y \partial_{y x} u+b(x, y) \partial_{y}^{2} u
$$

is elliptic in the open strip between the lines $x=-y-1$ and $x=-y+1$, but is hyperbolic outside of these lines.
Solution: First let us write the operator into a symmetric form:
$L u=a(x, y) \partial_{x}^{2} u+x \partial_{x y} u+y \partial_{y x} u+b(x, y) \partial_{y}^{2} u=a(x, y) \partial_{x}^{2} u+\frac{x+y}{2} \partial_{x y} u+\frac{x+y}{2} \partial_{y x} u+b(x, y) \partial_{y}^{2} u$
Then the matrix associated with this operator is

$$
A=\left(\begin{array}{cc}
a(x, y) & \frac{x+y}{2} \\
\frac{x+y}{2} & b(x, y)
\end{array}\right)
$$

Then the determinant of this matrix is $\operatorname{det}(A)=a(x, y) b(x, y)-\frac{(x+y)^{2}}{4}$. Our goal is that this expression is positive if $-y-1<x<-y+1$, and negative for $-y-1>x$ and $x>-y+1$. This can be achieved if our expression is a quadratic function, which (for a fixed y value) has roots at $-y-1$ and $-y+1$, and it positive for $x=-y$. Let us then assume that $a(x, y)$ and $b(x, y)$ are both first order polynomials, namely $a(x, y)=a_{1} x+a_{2} y+a_{3}$ and $b(x, y)=b_{1} x+b_{2} y+b_{3}$. Then we want that the expression

$$
F(x, y)=\left(a_{1} x+a_{2} y+a_{3}\right)\left(b_{1} x+b_{2} y+b_{3}\right)-\frac{(x+y)^{2}}{4}
$$

has its roots for $x=-y-1$ and $x=-y+1$. Substituting the first one:

$$
\begin{gathered}
F(-y-1, y)=\left(a_{1}(-y-1)+a_{2} y+a_{3}\right)\left(b_{1}(-y-1)+b_{2} y+b_{3}\right)-\frac{(-y-1+y)^{2}}{4}= \\
=\left(y\left(a_{2}-a_{1}\right)+a_{3}-a_{1}\right)\left(y\left(b_{2}-b_{1}\right)+b_{3}-b_{1}\right)-\frac{1}{4}= \\
=y^{2}\left(a_{2}-a_{1}\right)\left(b_{2}-b_{1}\right)+y\left[\left(a_{3}-a_{1}\right)\left(b_{2}-b_{1}\right)+\left(a_{2}-a_{1}\right)\left(b_{3}-b_{1}\right)\right]+\left(a_{3}-a_{1}\right)\left(b_{3}-b_{1}\right)-\frac{1}{4}
\end{gathered}
$$

Let us choose

$$
\begin{gathered}
a_{2}=a_{1} \\
b_{2}=b_{1} \\
\left(a_{3}-a_{1}\right)\left(b_{3}-b_{1}\right)=\frac{1}{4}
\end{gathered}
$$

Also, the equation for the 2 nd root is:

$$
\begin{gathered}
F(-y+1, y)=\left(a_{1}(-y+1)+a_{2} y+a_{3}\right)\left(b_{1}(-y+1)+b_{2} y+b_{3}\right)-\frac{(-y+1+y)^{2}}{4}= \\
=\left(y\left(a_{2}-a_{1}\right)+a_{3}+a_{1}\right)\left(y\left(b_{2}-b_{1}\right)+b_{3}+b_{1}\right)-\frac{1}{4}= \\
=y^{2}\left(a_{2}-a_{1}\right)\left(b_{2}-b_{1}\right)+y\left[\left(a_{3}+a_{1}\right)\left(b_{2}-b_{1}\right)+\left(a_{2}-a_{1}\right)\left(b_{3}+b_{1}\right)\right]+\left(a_{3}+a_{1}\right)\left(b_{3}+b_{1}\right)-\frac{1}{4}
\end{gathered}
$$

from which we also get that

$$
\left(a_{3}+a_{1}\right)\left(b_{3}+b_{1}\right)=\frac{1}{4}
$$

Let us choose $a_{3}-a_{1}=1$ and $a_{3}+a_{1}=\frac{1}{4}$, from which we get that $a_{1}=a_{2}=-\frac{3}{8}$ and $a_{3}=\frac{5}{8}$. Similarly, if $b_{3}-b_{1}=\frac{1}{4}$ and $b_{3}+b_{1}=1$, then $b_{1}=b_{2}=\frac{3}{8}$ and $b_{3}=\frac{5}{8}$. Then $a(x, y)=-\frac{3}{8} x-\frac{3}{8} y+\frac{5}{8}$, $b(x, y)=\frac{3}{8} x+\frac{3}{8} y+\frac{5}{8}$, and

$$
F(-y, y)=\frac{5}{8} \frac{5}{8}>0
$$

so this also holds, meaning that this is a good choice.
5. For an arbitrary, fixed $\phi \in \mathcal{D}(\mathbf{R})$ function let us define $\phi_{j}(x):=\phi(x+2020 j)$ $(x \in \mathbf{R}, j=1,2, \ldots)$. Is this sequence convergent in the $\mathcal{D}(\mathbf{R})$ set? If yes, prove it, if not, give a counterexample!
Solution: Let us first consider the supports of these functions. It is clear that because of the term $2020 j$, the support of the function is always shifted as $j \rightarrow \infty$, so there is no such compact set K that $\operatorname{supp}\left(\phi_{j}\right) \subset K$, so it cannot converge.
6. Let $H \subset \mathbb{R}^{2}$ be the triangle on the plane with its vertices located at $(0,0),(0,1)$ and $(1,0)$. Let us define the functional $u: \mathcal{D}(H) \rightarrow \mathbb{R}$ in the following way:

$$
u(\phi):=\int_{0}^{1} \int_{0}^{x} \phi(x, y) d y d x \quad(\phi \in \mathcal{D}(H))
$$

Show that $u \in \mathcal{D}^{\prime}(H)$! Also, prove that $\partial_{1} u+\partial_{2} u=0$!
Solution: It is easy to see that it is indeed linear. For the sequentially continuous property we use the theorem:

$$
|u(\phi)| \leq \int_{0}^{1} \int_{0}^{x}|\phi(x, y)| d y d x \leq \sup _{K}|\phi| \frac{1}{2}
$$

in which we supposed that $\operatorname{supp}(\phi) \subset K$. (Here instead of $\frac{1}{2}$, one can also write the Lebesguemeasure of K.) So this is indeed a distribution.
For the second question, let us calculate the two derivatives!

$$
\begin{gathered}
\partial_{1} u=-\int_{0}^{1} \int_{0}^{x} \partial_{x} \phi(x, y) d y d x=-\int_{0}^{1} \int_{y}^{1} \partial_{x} \phi(x, y) d x d y= \\
=-\int_{0}^{1}[\phi(x, y)]_{x=y}^{1} d y=-\int_{0}^{1} \phi(1, y)-\phi(y, y) d y=\int_{0}^{1} \phi(y, y) d y \\
\partial_{2} u=-\int_{0}^{1} \int_{0}^{x} \partial_{y} \phi(x, y) d y d x=-\int_{0}^{1}[\phi(x, y)]_{y=0}^{x} d y=-\int_{0}^{1} \phi(x, x)-\phi(x, 0) d y=-\int_{0}^{1} \phi(x, x) d x
\end{gathered}
$$

From which we get that $\partial_{1} u+\partial_{2} u=0$.
7. Let $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x+1$. Is there such a $u \in \mathcal{D}(\mathbb{R})$ distribution, such that $u^{\prime}+g=\delta_{1}$ (in the distribution sense)?
Solution: We need a distribution for which $u^{\prime}=-T_{g}+\delta_{1}$. Now we use the theorem stated on the Lecture about the derivative of piece-wise differentiable regular distributions. From this, it is clear that we need a function which has derivative $-g$, and has a jump with height one at $x=1$. Let us define the following function:

$$
f(x):= \begin{cases}-\frac{x^{2}}{2}-x, & \text { if } x<1 \\ -\frac{x^{2}}{2}-x+1, & \text { if } x \geq 1\end{cases}
$$

Then the derivative of T_{f} is $T_{-g}+\delta_{1}$, so $u=T_{f}$.

