
First midterm

Partial di�erential equations

Solutions

1. Solve the following parabolic Cauchy-problem!{
∂tu(t, x)− ∂2

xu(t, x) = t2x3, on R+ × R,
u(0, x) = x2, (x ∈ R).

Solution: Let us split this equation into two di�erent ones namely{
∂tv(t, x)− ∂2

xv(t, x) = 0, on R+ × R,
v(0, x) = x2, (x ∈ R),

and {
∂tw(t, x)− ∂2

xw(t, x) = t2x3, on R+ × R,
w(0, x) = 0, (x ∈ R).

Using the formula, the solution of the �rst sub-problem is

v(t, x) =
1√
π

∫
R
e−η

2

(x− 2
√
tη)2dη =

1√
π

[∫
R
e−η

2

(x2 − 4x
√
tη + 4tη2)η

]
=

=
1√
π

[
x2

∫
R
e−η

2

dη − 4x
√
t

∫
R
e−η

2

ηdη + 4t

∫
R
e−η

2

η2dη

]
Since 1√

π

∫
R e
−η2dη = 1, the �rst term is x2. The function e−η

2
η is an odd function, so its integral

is zero. For the third integral, we do a partial integration:

1√
π

∫ ∞
−∞

e−η
2

η2dη =
1√
π

[
−1

2
e−η

2

η

]∞
−∞

+
1

2
√
π

∫ ∞
−∞

e−η
2

dη =
1

2

Hee the �rst term is zero (e−η
2
η tends to zero as |η| → ∞), and 1√

π

∫
R e
−η2dη = 1. Consequently,

v(t, x) = x2 + 2t.

For the second part, let us introduce the auxiliary problem{
∂tw̃(t, x)− ∂2

xw̃(t, x) = 0, on R+ × R,
w̃(0, x) = τ 2x3, (x ∈ R).

The solution of this Cauchy-problem is

w̃(t, x) =
1√
π

∫
R
e−η

2

τ 2(x− 2
√
tη)3dη =

1√
π

∫
R
e−η

2

τ 2
(
x3 − 6x2

√
tη + 12xtη2 − 8t

√
tη3
)
dη =

=
1√
π

[
τ 2x3

∫
R
e−η

2

dη − 6x2
√
tτ 2

∫
R
e−η

2

ηdη + 12xtτ 2

∫
R
e−η

2

η2dη − 8t
√
tτ 2

∫
R
e−η

2

η3dη

]
=

The second and the fourth functions are odd, so the integrals are zero. Also, 1√
π

∫
R e
−η2dη = 1

and
1√
π

∫∞
−∞ e

−η2η2dη = 1
2
, meaning that

w̃(t, x) = τ 2x3 + 6xtτ 2.

Then by the Duhamel principle:

w(t, x) =

∫ t

0

w̃(t− τ, x)dτ =

∫ t

0

τ 2x3 + 6x(t− τ)τ 2dτ =

∫ t

0

τ 2x3 + 6xtτ 2 − 6xτ 3dτ =

= (x3 + 6xt)

[
τ 3

3

]t
τ=0

− 6x

[
τ 4

4

]t
τ=0

= (x3 + 6xt)
t3

3
− 6x

t4

4
= x3 t

3

3
+ x

t4

2

So the solution is

u(x, t) = v(t, x) + w(t, x) = x2 + 2t+ x3 t
3

3
+ x

t4

2
.
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2. Let g, h ∈ C1(R) monotone increasing functions. Is it true that for the solution u of
the hyperbolic equation

∂2
t u(t, x)− ∂2

xu(t, x) = 0, on R+ × R,
u(0, x) = g(x), (x ∈ R),

∂tu(0, x) = h(x), (x ∈ R).

the function x→ u(t, x) is monotone increasing for any �xed t > 0?

Solution: According to the well-known formula,

u(t, x) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(ξ)dξ.

Then we know that g and h are monotone increasing, meaning that for any ε > 0, g(x+ ε) ≥ g(x)
and h(x+ ε) ≥ h(x). Then

u(t, x+ ε) =
1

2
(g(x+ ε+ t) + g(x+ ε− t)) +

1

2

∫ x+ε+t

x+ε−t
h(ξ)dξ ≥

≥ 1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(ξ + ε)dξ ≥

≥ 1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(ξ)dξ = u(t, x)

So this is indeed a monotone increasing function.

3. Let Ω ⊂ Rn be a bounded domain with a su�ciently smooth boundaries, and p ∈ C1(Ω),
for which p(x) ≥ m ≥ 0 for every x ∈ Ω and q ∈ C(Ω), q(x) ≥ 0 for every x ∈ Ω and q 6≡ 0.
Let us de�ne the following operator L : L2(Ω) ↪→ L2(Ω) in the following way:

D(L) := {u ∈ C2(Ω) ∩ C1(Ω) : u|∂Ω + ∂vu|∂Ω = 0, Lu ∈ L2(Ω)}, Lu := −div(p gradu) + qu.

Show that then this L : L2(Ω) ↪→ L2(Ω) operator is symmetric, meaning that
〈Lu, v〉L2(Ω) = 〈u, Lv〉L2(Ω) for every u, v ∈ D(L), and L is also strictly positive, i.e.
〈Lu, u〉L2(Ω) > 0 for every u ∈ D(L), u 6= 0.

Solution: First we prove the symmetry property. We are going to use the 2nd Green formula,
i.e. u, v ∈ C2(Ω), p ∈ C1(Ω) and Ω is a bounded domain with smooth boundary, then∫

Ω

(v div(p grad(u))− u div(p grad(v))) =

∫
∂Ω

p v ∂νu− p u ∂νv dσ.

Using this we get

(Lu, v)L2 − (u, Lv)L2 =

∫
∂Ω

p (v ∂νu− u ∂νv) dσ

Because of the boundary condition u|∂Ω = −∂νu, and v|∂Ω = −∂νv. Then

(p (v ∂νu− u ∂νv))|∂Ω = p (−∂νv ∂νu+ ∂νu ∂νv) = 0

So it is symmetric.
Now we prove that L is positive, i.e. (Lu, u)L2 ≥ 0. We use the �rst Green formula, i.e.∫

Ω

u div(p grad(u)) = −
∫

Ω

p grad(u) · grad(u) +

∫
∂Ω

p u ∂νu dσ.

Then using this, we get

(Lu, u)L2 =

∫
Ω

p (grad(u), grad(u))−
∫
∂Ω

p u ∂νu dσ +

∫
Ω

quu (1)

Then the �rst and the third terms are non-negative (only zero if u = 0), so we only have to
consider the second one.
By simple calculations,

0 =

∫
∂Ω

(u+ ∂νu)2 =

∫
∂Ω

(u)2 +

∫
∂Ω

(∂νu)2 + 2

∫
∂Ω

u∂νu,

from which we get that
∫
∂Ω
u∂νu ≤ 0, so the second term is also non-negative, meaning that we

got positivity.
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4. Let Ω ⊂ Rn, Ω = B(0, 2)\B(0, 1) (where B(0, r) is the ball centered at zero wit radius r).
Then for which α ∈ R does the following problem have a solution u ∈ C2(Ω) ∩ C1(Ω)?
Also, give such a solution! {

∆u = α, (x ∈ Ω)

∂µu|∂Ω = 1.

Solution: Use the �rst Green formula with v ≡ 1:∫
Ω

1 ·∆u =

∫
∂Ω

∂µudσ∫
Ω

α =

∫
∂Ω

1dσ

α(4π − π) = (4π + 2π)

α = 2

So the problem has only solution for α = 2. We need to show such a solution. By the boundary
condition, we need that ∂µu = ∂ru = 1 for r = 2 and ∂ru = −1 for r = 1. By using the Laplacian
in polar coordinates:

∂2f

∂r2
+

1

r

∂f

∂r
= 2,

which means that we have to solve the Euler equation

f ′′(r) +
1

r
f ′(r) = 2.

The solution is f(r) =
r2

2
+ c1 ln(r) + c2, and also f ′(r) = r +

c1

r
. By the boundary condition we

need that
f ′(1) = 1 + c1 = −1,

from which we get c1 = −2, and

f ′(2) = 2 +
−2

2
= 2 + (−1) = 1,

so this also holds. This means that a su�cient solution is

u(x, y) =
x2 + y2

2
− 2 ln(

√
x2 + y2) + c2,

where c2 is an arbitrary real number.

5. Let Ω = {x2−2x+y2 < 3} ⊂ R2, and solve the following elliptic boundary-value problem!{
∆u = 6x+ 8y, (x ∈ Ω)

u|∂Ω = x3 + y2.

Solution: Let us seek the solution in the form

u(x, y) = (x2 − 2x+ y2 − 3)(ax+ by + c) + x3 + y2,

since in this case the boundary condition is ful�lled. Then

∆(u(x, y)) = 8ax− 4a+ 8by + 4c+ 6x+ 2.

For this to be equal to 6x+ 8y, we need

8a+ 6 = 6

8b = 8

−4a+ 4c+ 2 = 0

From which we get that a = 0, b = 1 and c = −1
2
, so our solution is

u(x, y) = (x2 − 2x+ y2 − 3)(y − 1

2
c) + x3 + y2.
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6. Solve the following parabolic (mixed) problem!
∂tu(t, x)− ∂2

xu(t, x) = sin(t) sin(x) ((t, x) ∈ R+ × (0, π))

u(0, x) = sin(2x), (x ∈ [0, |π])

u(t, 0) = u(t, π) = 0. (t ∈ R+
0 ).

Solution: Let us split our problem into two, easier sub-problems:
∂tu1(t, x)− ∂2

xu1(t, x) = sin(t) sin(x) ((t, x) ∈ R+ × (0, π))

u1(0, x) = 0, (x ∈ [0, |π])

u1(t, 0) = u1(t, π) = 0. (t ∈ R+
0 ).

and 
∂tu2(t, x)− ∂2

xu2(t, x) = 0 ((t, x) ∈ R+ × (0, π))

u2(0, x) = sin(2x), (x ∈ [0, |π])

u2(t, 0) = u2(t, π) = 0. (t ∈ R+
0 ).

First we solve the equation for u1(t, x). Let us search for our solution in the form u1(t, x) =
c(t) sin(x). Then from the initial value:

u1(0, x) = c(0) sin(x) = 0,

we get that c(0) = 0. Also, from the equation:

c′(t) sin(x) + c(t) sin(x) = sin(t) sin(x)

c′(t) + c(t) = sin(t)

This ordinary di�. equation can be easily solved, and we get

c(t) = ce−t +
1

2
sin(t)− 1

2
cos(t),

and because of c(0) = 0, c =
1

2
, and

c(t) =
1

2
e−t +

1

2
sin(t)− 1

2
cos(t),

so

u1(t, x) =

(
1

2
e−t +

1

2
sin(t)− 1

2
cos(t)

)
sin(x).

Now we solve the second one. Let us search for our solution in the form u2(t, x) =
∑∞

k=1 ξk(t) sin(kx)
(since the eigenfunctions of the laplacian operator are sin(kx)). Then from the initial value:

u2(0, x) =
∞∑
k=1

ξk(0) sin(kx) = sin(2x)

which means that ξk ≡ 0 if k 6= 2, and ξ2(0) = 1. Then

ξ′2(t) + 4ξ2(t) = 0

from which we get that (using the initial condition) ξ2(t) = e−4t, and then

u2(t, x) = e−4t sin(2x).

So the solution of the original problem is

u(t, x) = u1(t, x) + u2(t, x) =

(
1

2
e−t +

1

2
sin(t)− 1

2
cos(t)

)
sin(x) + e−4t sin(2x).

7. Let a > 0, and then compute the eigenvalues and the eigenvectors of the following
operator!

D(L) := {u ∈ C(0, a) ∩ C1([0, a]) : u(0) = 0, u′(a) = 0}, Lu := −2u′′ + u

Solution: The eigenvalue-problem is

−2u′′ + u = λu

−u′′ = λ− 1

2
u

Depending on the sign of
λ− 1

2
, we have three cases:
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(a) If
λ− 1

2
> 0: Then the eigenvectors are in the form

u(x) = c1 sin

(√
λ− 1

2
x

)
+ c2 cos

(√
λ− 1

2
x

)

From the boundary conditions we have that u(0) = c2 = 0, and also

u′(a) = c1

√
λ− 1

2
cos

(√
λ− 1

2
a

)
= 0

If u is not the zero function, then this can only hold if√
λ− 1

2
a =

π

2
+ kπ

λ− 1

2
=

1

a2

(π
2

+ kπ
)2

λk = 1 +
2

a2

(π
2

+ kπ
)2

So the eigenvalues are in this form, and the corresponding eigenfunctions are in the form

uk(x) = c1 sin

(√
λk − 1

2
x

)
.

(b) If
λ− 1

2
= 0: Then the eigenvectors are in the form

u(x) = c1x+ c2

From the boundary conditions we have that u(0) = c2 = 0, and also u′(a) = c1 = 0 from
which u ≡ 0.

(c) If
λ− 1

2
< 0: Then the eigenvectors are in the form

u(x) = c1 exp

(√
1− λ

2
x

)
+ c2 exp

(
−
√

1− λ
2

x

)

From the boundary conditions we have that u(0) = c1 + c2 = 0, so c1 = −c2 and also

u′(a) = c1

√
1− λ

2
exp

(√
1− λ

2
a

)
+ c2

√
1− λ

2
exp

(
−
√

1− λ
2

a

)
=

= c1

√
1− λ

2

[
exp

(√
1− λ

2
a

)
+ exp

(
−
√

1− λ
2

a

)]
= 0

which can only hold if c1 = 0, so u ≡ 0.
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