# First midterm 

## Partial differential equations

## Solutions

## 1. Solve the following parabolic Cauchy-problem!

$$
\left\{\begin{aligned}
\partial_{t} u(t, x)-\partial_{x}^{2} u(t, x) & =t^{2} x^{3}, & \text { on } \mathbb{R}^{+} \times \mathbb{R} \\
u(0, x) & =x^{2}, & (x \in \mathbb{R})
\end{aligned}\right.
$$

Solution: Let us split this equation into two different ones namely

$$
\left\{\begin{array}{rlrl}
\partial_{t} v(t, x)-\partial_{x}^{2} v(t, x) & =0, & \text { on } \mathbb{R}^{+} \times \mathbb{R}, \\
v(0, x) & =x^{2}, & & (x \in \mathbb{R}),
\end{array}\right.
$$

and

$$
\left\{\begin{aligned}
\partial_{t} w(t, x)-\partial_{x}^{2} w(t, x) & =t^{2} x^{3}, & & \text { on } \mathbb{R}^{+} \times \mathbb{R}, \\
w(0, x) & =0, & & (x \in \mathbb{R}) .
\end{aligned}\right.
$$

Using the formula, the solution of the first sub-problem is

$$
\begin{aligned}
v(t, x)= & \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\eta^{2}}(x-2 \sqrt{t} \eta)^{2} d \eta=\frac{1}{\sqrt{\pi}}\left[\int_{\mathbb{R}} e^{-\eta^{2}}\left(x^{2}-4 x \sqrt{t} \eta+4 t \eta^{2}\right) \eta\right]= \\
& =\frac{1}{\sqrt{\pi}}\left[x^{2} \int_{\mathbb{R}} e^{-\eta^{2}} d \eta-4 x \sqrt{t} \int_{\mathbb{R}} e^{-\eta^{2}} \eta d \eta+4 t \int_{\mathbb{R}} e^{-\eta^{2}} \eta^{2} d \eta\right]
\end{aligned}
$$

Since $\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\eta^{2}} d \eta=1$, the first term is $x^{2}$. The function $e^{-\eta^{2}} \eta$ is an odd function, so its integral is zero. For the third integral, we do a partial integration:

$$
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^{2}} \eta^{2} d \eta=\frac{1}{\sqrt{\pi}}\left[-\frac{1}{2} e^{-\eta^{2}} \eta\right]_{-\infty}^{\infty}+\frac{1}{2 \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^{2}} d \eta=\frac{1}{2}
$$

Hee the first term is zero ( $e^{-\eta^{2}} \eta$ tends to zero as $|\eta| \rightarrow \infty$ ), and $\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\eta^{2}} d \eta=1$. Consequently,

$$
v(t, x)=x^{2}+2 t
$$

For the second part, let us introduce the auxiliary problem

$$
\left\{\begin{array}{rlrl}
\partial_{t} \tilde{w}(t, x)-\partial_{x}^{2} \tilde{w}(t, x) & =0, & \text { on } \mathbb{R}^{+} \times \mathbb{R} \\
\tilde{w}(0, x) & =\tau^{2} x^{3}, & & (x \in \mathbb{R})
\end{array}\right.
$$

The solution of this Cauchy-problem is

$$
\begin{aligned}
& \tilde{w}(t, x)=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\eta^{2}} \tau^{2}(x-2 \sqrt{t} \eta)^{3} d \eta=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\eta^{2}} \tau^{2}\left(x^{3}-6 x^{2} \sqrt{t} \eta+12 x t \eta^{2}-8 t \sqrt{t} \eta^{3}\right) d \eta= \\
& =\frac{1}{\sqrt{\pi}}\left[\tau^{2} x^{3} \int_{\mathbb{R}} e^{-\eta^{2}} d \eta-6 x^{2} \sqrt{t} \tau^{2} \int_{\mathbb{R}} e^{-\eta^{2}} \eta d \eta+12 x t \tau^{2} \int_{\mathbb{R}} e^{-\eta^{2}} \eta^{2} d \eta-8 t \sqrt{t} \tau^{2} \int_{\mathbb{R}} e^{-\eta^{2}} \eta^{3} d \eta\right]=
\end{aligned}
$$

The second and the fourth functions are odd, so the integrals are zero. Also, $\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-\eta^{2}} d \eta=1$ and $\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^{2}} \eta^{2} d \eta=\frac{1}{2}$, meaning that

$$
\tilde{w}(t, x)=\tau^{2} x^{3}+6 x t \tau^{2} .
$$

Then by the Duhamel principle:

$$
\begin{aligned}
w(t, x) & =\int_{0}^{t} \tilde{w}(t-\tau, x) d \tau=\int_{0}^{t} \tau^{2} x^{3}+6 x(t-\tau) \tau^{2} d \tau=\int_{0}^{t} \tau^{2} x^{3}+6 x t \tau^{2}-6 x \tau^{3} d \tau= \\
& =\left(x^{3}+6 x t\right)\left[\frac{\tau^{3}}{3}\right]_{\tau=0}^{t}-6 x\left[\frac{\tau^{4}}{4}\right]_{\tau=0}^{t}=\left(x^{3}+6 x t\right) \frac{t^{3}}{3}-6 x \frac{t^{4}}{4}=x^{3} \frac{t^{3}}{3}+x \frac{t^{4}}{2}
\end{aligned}
$$

So the solution is

$$
u(x, t)=v(t, x)+w(t, x)=x^{2}+2 t+x^{\frac{3}{3}} \frac{t^{3}}{3}+x \frac{t^{4}}{2}
$$

2. Let $g, h \in C^{1}(\mathbb{R})$ monotone increasing functions. Is it true that for the solution $u$ of the hyperbolic equation

$$
\left\{\begin{aligned}
\partial_{t}^{2} u(t, x)-\partial_{x}^{2} u(t, x) & =0, & & \text { on } \mathbb{R}^{+} \times \mathbb{R}, \\
u(0, x) & =g(x), & & (x \in \mathbb{R}), \\
\partial_{t} u(0, x) & =h(x), & & (x \in \mathbb{R})
\end{aligned}\right.
$$

the function $x \rightarrow u(t, x)$ is monotone increasing for any fixed $t>0$ ?
Solution: According to the well-known formula,

$$
u(t, x)=\frac{1}{2}(g(x+t)+g(x-t))+\frac{1}{2} \int_{x-t}^{x+t} h(\xi) d \xi
$$

Then we know that $g$ and $h$ are monotone increasing, meaning that for any $\varepsilon>0, g(x+\varepsilon) \geq g(x)$ and $h(x+\varepsilon) \geq h(x)$. Then

$$
\begin{aligned}
u(t, x+ & \varepsilon)=\frac{1}{2}(g(x+\varepsilon+t)+g(x+\varepsilon-t))+\frac{1}{2} \int_{x+\varepsilon-t}^{x+\varepsilon+t} h(\xi) d \xi \geq \\
& \geq \frac{1}{2}(g(x+t)+g(x-t))+\frac{1}{2} \int_{x-t}^{x+t} h(\xi+\varepsilon) d \xi \geq \\
\geq & \frac{1}{2}(g(x+t)+g(x-t))+\frac{1}{2} \int_{x-t}^{x+t} h(\xi) d \xi=u(t, x)
\end{aligned}
$$

So this is indeed a monotone increasing function.
3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with a sufficiently smooth boundaries, and $p \in C^{1}(\bar{\Omega})$, for which $p(x) \geq m \geq 0$ for every $x \in \bar{\Omega}$ and $q \in C(\bar{\Omega}), q(x) \geq 0$ for every $x \in \bar{\Omega}$ and $q \not \equiv 0$. Let us define the following operator $L: L^{2}(\Omega) \hookrightarrow L^{2}(\Omega)$ in the following way:

$$
D(L):=\left\{u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}+\left.\partial_{v} u\right|_{\partial \Omega}=0, L u \in L^{2}(\Omega)\right\}, \quad L u:=-\operatorname{div}(p \operatorname{grad} u)+q u
$$

Show that then this $L: L^{2}(\Omega) \hookrightarrow L^{2}(\Omega)$ operator is symmetric, meaning that $\langle L u, v\rangle_{L^{2}(\Omega)}=\langle u, L v\rangle_{L^{2}(\Omega)}$ for every $u, v \in D(L)$, and $L$ is also strictly positive, i.e. $\langle L u, u\rangle_{L^{2}(\Omega)}>0$ for every $u \in D(L), u \neq 0$.
Solution: First we prove the symmetry property. We are going to use the 2nd Green formula, i.e. $u, v \in C^{2}(\bar{\Omega}), p \in C^{1}(\bar{\Omega})$ and $\Omega$ is a bounded domain with smooth boundary, then

$$
\int_{\Omega}(v \operatorname{div}(p \operatorname{grad}(u))-u \operatorname{div}(p \operatorname{grad}(v)))=\int_{\partial \Omega} p v \partial_{\nu} u-p u \partial_{\nu} v d \sigma
$$

Using this we get

$$
(L u, v)_{L^{2}}-(u, L v)_{L^{2}}=\int_{\partial \Omega} p\left(v \partial_{\nu} u-u \partial_{\nu} v\right) d \sigma
$$

Because of the boundary condition $\left.u\right|_{\partial \Omega}=-\partial_{\nu} u$, and $\left.v\right|_{\partial \Omega}=-\partial_{\nu} v$. Then

$$
\left.\left(p\left(v \partial_{\nu} u-u \partial_{\nu} v\right)\right)\right|_{\partial \Omega}=p\left(-\partial_{\nu} v \partial_{\nu} u+\partial_{\nu} u \partial_{\nu} v\right)=0
$$

So it is symmetric.
Now we prove that $L$ is positive, i.e. $(L u, u)_{L^{2}} \geq 0$. We use the first Green formula, i.e.

$$
\int_{\Omega} u \operatorname{div}(p \operatorname{grad}(u))=-\int_{\Omega} p \operatorname{grad}(u) \cdot \operatorname{grad}(u)+\int_{\partial \Omega} p u \partial_{\nu} u d \sigma
$$

Then using this, we get

$$
\begin{equation*}
(L u, u)_{L^{2}}=\int_{\Omega} p(\operatorname{grad}(u), \operatorname{grad}(u))-\int_{\partial \Omega} p u \partial_{\nu} u d \sigma+\int_{\Omega} q u u \tag{1}
\end{equation*}
$$

Then the first and the third terms are non-negative (only zero if $u=0$ ), so we only have to consider the second one.
By simple calculations,

$$
0=\int_{\partial \Omega}\left(u+\partial_{\nu} u\right)^{2}=\int_{\partial \Omega}(u)^{2}+\int_{\partial \Omega}\left(\partial_{\nu} u\right)^{2}+2 \int_{\partial \Omega} u \partial_{\nu} u
$$

from which we get that $\int_{\partial \Omega} u \partial_{\nu} u \leq 0$, so the second term is also non-negative, meaning that we got positivity.
4. Let $\Omega \subset \mathbb{R}^{n}, \Omega=B(0,2) \backslash \overline{B(0,1)}$ (where $B(0, r)$ is the ball centered at zero wit radius $r$ ). Then for which $\alpha \in \mathbb{R}$ does the following problem have a solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ ? Also, give such a solution!

$$
\begin{cases}\Delta u & =\alpha, \quad(x \in \Omega) \\ \left.\partial_{\mu} u\right|_{\partial \Omega} & =1\end{cases}
$$

Solution: Use the first Green formula with $v \equiv 1$ :

$$
\begin{aligned}
\int_{\Omega} 1 \cdot \Delta u & =\int_{\partial \Omega} \partial_{\mu} u d \sigma \\
\int_{\Omega} \alpha & =\int_{\partial \Omega} 1 d \sigma \\
\alpha(4 \pi-\pi) & =(4 \pi+2 \pi) \\
\alpha & =2
\end{aligned}
$$

So the problem has only solution for $\alpha=2$. We need to show such a solution. By the boundary condition, we need that $\partial_{\mu} u=\partial_{r} u=1$ for $r=2$ and $\partial_{r} u=-1$ for $r=1$. By using the Laplacian in polar coordinates:

$$
\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}=2
$$

which means that we have to solve the Euler equation

$$
f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)=2
$$

The solution is $f(r)=\frac{r^{2}}{2}+c_{1} \ln (r)+c_{2}$, and also $f^{\prime}(r)=r+\frac{c_{1}}{r}$. By the boundary condition we need that

$$
f^{\prime}(1)=1+c_{1}=-1
$$

from which we get $c_{1}=-2$, and

$$
f^{\prime}(2)=2+\frac{-2}{2}=2+(-1)=1
$$

so this also holds. This means that a sufficient solution is

$$
u(x, y)=\frac{x^{2}+y^{2}}{2}-2 \ln \left(\sqrt{x^{2}+y^{2}}\right)+c_{2}
$$

where $c_{2}$ is an arbitrary real number.
5. Let $\Omega=\left\{x^{2}-2 x+y^{2}<3\right\} \subset \mathbb{R}^{2}$, and solve the following elliptic boundary-value problem!

$$
\begin{cases}\Delta u & =6 x+8 y, \quad(x \in \Omega) \\ \left.u\right|_{\partial \Omega}=x^{3}+y^{2}\end{cases}
$$

Solution: Let us seek the solution in the form

$$
u(x, y)=\left(x^{2}-2 x+y^{2}-3\right)(a x+b y+c)+x^{3}+y^{2}
$$

since in this case the boundary condition is fulfilled. Then

$$
\Delta(u(x, y))=8 a x-4 a+8 b y+4 c+6 x+2
$$

For this to be equal to $6 x+8 y$, we need

$$
\begin{aligned}
8 a+6 & =6 \\
8 b & =8 \\
-4 a+4 c+2 & =0
\end{aligned}
$$

From which we get that $a=0, b=1$ and $c=-\frac{1}{2}$, so our solution is

$$
u(x, y)=\left(x^{2}-2 x+y^{2}-3\right)\left(y-\frac{1}{2} c\right)+x^{3}+y^{2}
$$

6. Solve the following parabolic (mixed) problem!

$$
\left\{\begin{aligned}
\partial_{t} u(t, x)-\partial_{x}^{2} u(t, x) & =\sin (t) \sin (x) & & \left((t, x) \in \mathbb{R}^{+} \times(0, \pi)\right) \\
u(0, x) & =\sin (2 x), & & (x \in[0, \mid \pi]) \\
u(t, 0)=u(t, \pi) & =0 . & & \left(t \in \mathbb{R}_{0}^{+}\right) .
\end{aligned}\right.
$$

Solution: Let us split our problem into two, easier sub-problems:

$$
\left\{\begin{aligned}
\partial_{t} u_{1}(t, x)-\partial_{x}^{2} u_{1}(t, x) & =\sin (t) \sin (x) & & \left((t, x) \in \mathbb{R}^{+} \times(0, \pi)\right) \\
u_{1}(0, x) & =0, & & (x \in[0, \mid \pi]) \\
u_{1}(t, 0)=u_{1}(t, \pi) & =0 . & & \left(t \in \mathbb{R}_{0}^{+}\right) .
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
\partial_{t} u_{2}(t, x)-\partial_{x}^{2} u_{2}(t, x) & =0 & & \left((t, x) \in \mathbb{R}^{+} \times(0, \pi)\right) \\
u_{2}(0, x) & =\sin (2 x), & & (x \in[0, \mid \pi]) \\
u_{2}(t, 0)=u_{2}(t, \pi) & =0 . & & \left(t \in \mathbb{R}_{0}^{+}\right) .
\end{aligned}\right.
$$

First we solve the equation for $u_{1}(t, x)$. Let us search for our solution in the form $u_{1}(t, x)=$ $c(t) \sin (x)$. Then from the initial value:

$$
u_{1}(0, x)=c(0) \sin (x)=0
$$

we get that $c(0)=0$. Also, from the equation:

$$
\begin{gathered}
c^{\prime}(t) \sin (x)+c(t) \sin (x)=\sin (t) \sin (x) \\
c^{\prime}(t)+c(t)=\sin (t)
\end{gathered}
$$

This ordinary diff. equation can be easily solved, and we get

$$
c(t)=c e^{-t}+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)
$$

and because of $c(0)=0, c=\frac{1}{2}$, and

$$
c(t)=\frac{1}{2} e^{-t}+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)
$$

so

$$
u_{1}(t, x)=\left(\frac{1}{2} e^{-t}+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)\right) \sin (x)
$$

Now we solve the second one. Let us search for our solution in the form $u_{2}(t, x)=\sum_{k=1}^{\infty} \xi_{k}(t) \sin (k x)$ (since the eigenfunctions of the laplacian operator are $\sin (k x)$ ). Then from the initial value:

$$
u_{2}(0, x)=\sum_{k=1}^{\infty} \xi_{k}(0) \sin (k x)=\sin (2 x)
$$

which means that $\xi_{k} \equiv 0$ if $k \neq 2$, and $\xi_{2}(0)=1$. Then

$$
\xi_{2}^{\prime}(t)+4 \xi_{2}(t)=0
$$

from which we get that (using the initial condition) $\xi_{2}(t)=e^{-4 t}$, and then

$$
u_{2}(t, x)=e^{-4 t} \sin (2 x) .
$$

So the solution of the original problem is

$$
u(t, x)=u_{1}(t, x)+u_{2}(t, x)=\left(\frac{1}{2} e^{-t}+\frac{1}{2} \sin (t)-\frac{1}{2} \cos (t)\right) \sin (x)+e^{-4 t} \sin (2 x)
$$

7. Let $a>0$, and then compute the eigenvalues and the eigenvectors of the following operator!

$$
\left.D(L):=\left\{u \in C^{( } 0, a\right) \cap C^{1}([0, a]): u(0)=0, u^{\prime}(a)=0\right\}, \quad L u:=-2 u^{\prime \prime}+u
$$

Solution: The eigenvalue-problem is

$$
\begin{aligned}
& -2 u^{\prime \prime}+u=\lambda u \\
& -u^{\prime \prime}=\frac{\lambda-1}{2} u
\end{aligned}
$$

Depending on the sign of $\frac{\lambda-1}{2}$, we have three cases:
(a) If $\frac{\lambda-1}{2}>0$ : Then the eigenvectors are in the form

$$
u(x)=c_{1} \sin \left(\sqrt{\frac{\lambda-1}{2} x}\right)+c_{2} \cos \left(\sqrt{\frac{\lambda-1}{2} x}\right)
$$

From the boundary conditions we have that $u(0)=c_{2}=0$, and also

$$
u^{\prime}(a)=c_{1} \sqrt{\frac{\lambda-1}{2}} \cos \left(\sqrt{\frac{\lambda-1}{2}} a\right)=0
$$

If $u$ is not the zero function, then this can only hold if

$$
\begin{gathered}
\sqrt{\frac{\lambda-1}{2}} a=\frac{\pi}{2}+k \pi \\
\frac{\lambda-1}{2}=\frac{1}{a^{2}}\left(\frac{\pi}{2}+k \pi\right)^{2} \\
\lambda_{k}=1+\frac{2}{a^{2}}\left(\frac{\pi}{2}+k \pi\right)^{2}
\end{gathered}
$$

So the eigenvalues are in this form, and the corresponding eigenfunctions are in the form

$$
u_{k}(x)=c_{1} \sin \left(\sqrt{\frac{\lambda_{k}-1}{2}} x\right)
$$

(b) If $\frac{\lambda-1}{2}=0$ : Then the eigenvectors are in the form

$$
u(x)=c_{1} x+c_{2}
$$

From the boundary conditions we have that $u(0)=c_{2}=0$, and also $u^{\prime}(a)=c_{1}=0$ from which $u \equiv 0$.
(c) If $\frac{\lambda-1}{2}<0$ : Then the eigenvectors are in the form

$$
u(x)=c_{1} \exp \left(\sqrt{\frac{1-\lambda}{2}} x\right)+c_{2} \exp \left(-\sqrt{\frac{1-\lambda}{2}} x\right)
$$

From the boundary conditions we have that $u(0)=c_{1}+c_{2}=0$, so $c_{1}=-c_{2}$ and also

$$
\begin{aligned}
u^{\prime}(a) & =c_{1} \sqrt{\frac{1-\lambda}{2}} \exp \left(\sqrt{\frac{1-\lambda}{2} a}\right)+c_{2} \sqrt{\frac{1-\lambda}{2}} \exp \left(-\sqrt{\frac{1-\lambda}{2}} a\right)= \\
& =c_{1} \sqrt{\frac{1-\lambda}{2}}\left[\exp \left(\sqrt{\frac{1-\lambda}{2}} a\right)+\exp \left(-\sqrt{\frac{1-\lambda}{2}} a\right)\right]=0
\end{aligned}
$$

which can only hold if $c_{1}=0$, so $u \equiv 0$.

