## PDE Mock Midterm 1

1. (Sheet 1, Exercise 3. (a)) Give the solution $u \in C^{2}\left(\mathbb{R}^{2}\right)$ of the following equation!

$$
\left\{\begin{aligned}
\partial_{x y} u & =x+y, \\
u(x, x) & =x, \\
\partial_{x} u(x, x) & =0 .
\end{aligned}\right.
$$

2. (Sheet 1, Ex. 6.) Suppose that for some $u \in C^{4}\left(\mathbb{R}^{2}\right)$, we have $\Delta u=0$. Prove that if $v(x, y):=\left(x^{2}+y^{2}\right) u(x, y)$, then $\Delta^{2} v=0$.
3. (Sheet 2, Ex. 1. (e)) Solve the following equation!

$$
y z \partial_{x} u(x, y, z)+x z \partial_{y} u(x, y, z)+\left(x^{2}+y^{2}\right) \partial_{z} u(x, y, z)=0
$$

4. (Sheet 2, Ex. 3. (e)) Solve the following Cauchy problem!

$$
\left\{\begin{aligned}
x \partial_{x} u(x, y)+y \partial_{y} u(x, y) & =u(x, y), \\
u(x, 1) & =x^{2} .
\end{aligned}\right.
$$

5. (Sheet 3, Ex. 6.) Give the $a, b$ non-constant polynomials in a way that the differential operator

$$
L u=a(x, y) \partial_{x}^{2} u+x^{2} \partial_{x y} u+y^{2} \partial_{y x} u+b(x, y) \partial_{y}^{2} u
$$

is elliptic inside $B(0,1)$ and inside $\mathbb{R}^{2} \backslash \overline{B(0,2)}$, and hyperbolic inside $B(0,2) \backslash \overline{B(0,1)}$.
Note: The exercise in the midterm will be easier.
6. (Sheet 4, Ex. 1. (c)) Let $\Omega \subset \mathbb{R}^{n}$ be an open and connected subset, and $\phi \in \mathcal{D}(\Omega)$ (where $\mathcal{D}(\Omega)$ is the set of test functions, as defined on the lecture). Let $\Omega=\mathbb{R}^{n}$, and $\phi_{j}(x):=\frac{1}{j} \phi(j x)\left(x \in \Omega, j \in \mathbb{Z}^{+}\right)$. Is it true that this sequence is convergent in the $\mathcal{D}(\Omega)$-sense?
7. (Sheet 4, Ex. 4.) Let $\Omega=(0,2)$ and $u: \mathcal{D}(\Omega) \rightarrow \mathbb{R}$ defined as

$$
u(\phi):=\sum_{j=1}^{\infty} \phi^{(j)}\left(\frac{1}{j}\right)
$$

Show that $u$ is a distribution!

