Probability Theory 2

1st Exercise Sheet: Convolutions I

11.02.2025

- 1.1 Let X and Y be independent random variables with distribution
 - (a) BIN(n,p) and BIN(m,p) respectively, where $0 and <math>n,m \in \mathbb{N}$;
 - (b) $POI(\lambda)$ and $POI(\mu)$ respectively, where $\lambda, \mu > 0$;

What is the distribution of X + Y?

- **HW** 1.2 Give the distribution of the convolution of n independent identically distributed random variables with distribution GEO(p) (the so-called negative binomial distribution)!
 - 1.3 May B. Dunn is a student in mathematics on BUTE. She tries to pass the Probability Theory 2 course. First, she needs to get the signature in the practical part. If she fails in one semester, she tries again in the next one. The semesters are independent and in each of the semesters the probability that she gets the signature is 1/3. If she gets the signature she will try the oral exam on the theory. Again, if she fails she tries in the next semester, the semesters are independent and in each of the semesters, the probability that she passes the oral exam is 1/4. Find the distribution of the number of semesters required for May B. Dunn to pass.
 - **1.4** Let X and Y be independent random variables with distribution $EXP(\lambda)$, and $EXP(\mu)$. Find the density of Z := X + Y.
- **HW*** 1.5 Generalize the exercise 1.4: Determine the density function of the random variable $X_1 + X_2 + \cdots + X_n$, where X_i are independent random variables with distribution $EXP(\mu_i)$ for every $i = 1, \ldots, n$, and the parameters μ_i are pairwise different. (Hint: Show that for the polinomial $P_n(x) = \sum_{i=1}^n \prod_{\substack{j=1 \ j \neq i}}^n \frac{x-\mu_j}{\mu_i-\mu_j} = 1$ for every $x \in \mathbb{R}$ (check the values at μ_1, \ldots, μ_n , what is the degree of P_n ?) and use this fact.)
 - **1.6** Let X and Y be i.i.d random variables with common density function $f(x) = 2x \mathbb{1}_{[0,1]}(x)$. Find the density functions of U := X + Y and V := X Y.
 - 1.7 Let X_1, X_2 and X_3 be i.i.d random variables with distribution UNI(0,1). Find the density functions of the random variables $Y := X_1 + X_2$ and $Z := X_1 + X_2 + X_3$.
- \mathbf{HW}_2 1.8 Let $X_1, X_2, \dots, X_n, \dots$ be i.i.d random variables with distribution UNI(0,1). Denote $f_n(x)$ the density function of $S_n := \sum_{k=1}^n X_k$. Prove that

$$f_n(x) = \frac{1}{(n-1)!} \sum_{k=0}^{[x]} (-1)^k \binom{n}{k} (x-k)^{n-1}.$$

Using a computer program (e.g. Mathematica) plot the graph of the function

$$\widetilde{f}_n(x) := \sqrt{\frac{n}{12}} f_n\left(\frac{n}{2} + \sqrt{\frac{n}{12}}x\right)$$

for n = 1, 2, ..., 10. What do we see? Interpret the result!

1.9 Let X and Y be independent r.v. with dist. $POI(\lambda)$ and UNI(0,1). Find the distribution of Z := X + Y.

- **1.10** (a) We say that a random variable X has Cauchy distribution with parameters $m \in \mathbb{R}$ and $\tau > 0$ (notation: $CAU(m,\tau)$) if its density function is $f(x) = \frac{\tau}{\pi(\tau^2 + (x-m)^2)}$ for $x \in \mathbb{R}$. Show that if X has distribution CAU(0,1) then for real numbers $\tau, m \in \mathbb{R}$, $\tau X + m$ has distribution $CAU(m, |\tau|)$.
 - (b) Let X and Y by absolutely continuous random variables with density functions f and g respectively. If the density of Z = X + Y is f * g, does this imply that X and Y are independent?
- **HW 1.11** Show that it is possible to find example like **1.10**(b) for discrete distributions. Let X and Y be random variables taking values in $\{0,1,2\}$ such that $\mathbb{P}(X=i) = \mathbb{P}(Y=i) = 1/3$ for every i=0,1,2.
 - (a) Find the distribution of X + Y assuming that X and Y are independent.
 - (b) Find all joint distributions (X, Y) so that the distribution of X + Y is the same as the answer as (a).
 - **1.12** Let X be a random variable with distribution UNI(0,1), and let Y be an arbitrary random variable independent of X. Prove that the random variable $Z := \{X + Y\} := (X + Y) [X + Y]$ has distribution UNI(0,1), independently of the distribution of Y.