Probability Theory 2

3rd Exercise Sheet: Generating Function I

25.02.2025.

- **3.1** Determine the probability generating function $P(z) = \mathbb{E}(z^X)$ of BIN(n, p), $POI(\lambda)$ and GEO(p).
- **3.2** Can the following functions be a prob. generating function of some distribution?

(a)
$$\exp\left(\frac{z-1}{\lambda}\right)$$
, $\lambda > 0$; (b) $\frac{(z+1)^6}{64}$; (c) $\frac{2}{2-z}$; (d) $\frac{2}{1+z}$.

- **3.3** Let Λ be a random variable with distribution $EXP(\mu)$ and let X be the random variable, which conditional distribution is $POI(\Lambda)$ conditioned on Λ . Determine the distribution of X.
- **HW** 3.4 Let U be a random variable with distribution UNI(0,1), and let X be the random variable, which conditional distribution is BIN(n,U) conditioned on U. Determine the distribution of X.
 - **3.5** Let X be an N valued random variable and denote P(z) the prob. generating function of X. Give the prob. gen. function of Y := X + 1 and Z := 2X.
 - **3.6** Let X be an \mathbb{N} valued random variable and denote P(z) the prob. generating function of X. Give the generating functions of the following sequences: $a_n := \mathbb{P}(X \leq n)$, $b_n := \mathbb{P}(X < n)$, $c_n := \mathbb{P}(X \geq n)$, $d_n := \mathbb{P}(X > n+1)$ and $e_n := \mathbb{P}(X = 2n)$. (Note that these are not prob. distributions.)
 - **3.7** Let ξ_1, ξ_2, \ldots be i.i.d random variables with distribution: $\mathbb{P}(\xi_i = 1) = p$, $\mathbb{P}(\xi_i = 0) = 1 p$, where 0 . Let

$$\nu_{\alpha\beta}:=\min\{n\geq 2: \xi_{n-1}=\alpha,\ \xi_n=\beta\}, \qquad \alpha,\beta\in\{0,1\}.$$

Determine the prob. gen. function of $\nu_{\alpha\beta}$, and using this, the expected value and variance, for every possible combination of α, β .

HW 3.8 Let ξ_1, ξ_2, \ldots be i.i.d. N-valued random variables such that $\mathbb{P}(\xi_j = n) = p_n$ for $n = 0, 1, 2, \ldots$ Let $\nu = \min\{k \geq 2 : \xi_{k-1} = \xi_k\}$. Find the probability generating function and the expected value of ν !

(Hint: express $\mathbb{E}(z^{\nu}|\xi_1=n)$ by using the second toss with $\mathbb{E}(z^{\nu})$.)

- **3.9** We call the distribution of a random variable X infinitely divisible for every $n \geq 1$ there exist i.i.d random variables Y_1^n, \ldots, Y_n^n such that $\sum_{k=1}^n Y_k^n$ and X have the same distribution. Are the binomial, Poission and geometric distributions infinitely divisible?
- **HW* 3.10** Let $A_0A_1...A_n$ be an (n+1)-sided convex polygon on the plane. Let $a_1=1$, and for $n \geq 2$ denote a_n the number possible decompositions of this polygon to n-1 many triangles, by using (n-2)-many (pairwise) not intersecting diagonal. Prove the identity for $n \geq 2$

$$a_n = a_1 a_{n-1} + a_2 a_{n-2} + \dots + a_{n-1} a_1 = \sum_{k=1}^{n-1} a_k a_{n-k}.$$

Using the identity above, calculate the generating function of a_n , using that give an explicit formula for a_n .

3.11 Let X_1, X_2, \ldots be i.i.d. N-valued random variables and let ν be an N-valued random variable independent of X_i 's. Let $Y = \sum_{k=1}^{\nu} X_k$. Show that

$$\mathbb{E}(Y) = \mathbb{E}(\nu) \mathbb{E}(X_1)$$
 and $\mathbb{D}^2(Y) = \mathbb{D}^2(\nu) \mathbb{E}(X_1)^2 + \mathbb{E}(\nu) \mathbb{D}^2(X_1)$.

HW 3.12 Let X_1, X_2, \ldots be i.i.d random variables with distribution (optimistic) $GEO(p_1)$ ($\mathbb{P}(X_i = k) = p_1(1 - p_1)^{k-1}, k = 1, 2, \ldots$), and let ν be a random variable independent of X_i 's and with distribution (optimistic) $GEO(p_2)$ ($\mathbb{P}(\nu = k) = p_2(1 - p_2)^{k-1}, k = 1, 2, \ldots$). Show by using prob. gen. functions that

$$\sum_{i=1}^{\nu} X_i \text{ has distribution (optimistic) } GEO(p_1p_2)!$$

3.13 Show that for every $0 there exists a prob. sequence <math>p_0, p_1, \ldots$ (i.e. $p_k \ge 0$ and $\sum_{k=0}^{\infty} p_k = 1$) and a parameter $\lambda > 0$, such that $\sum_{i=1}^{\nu} X_i$ has distribution GEO(p), where X_1, X_2, \ldots are i.i.d random variables with distribution $\mathbb{P}(X_i = k) = p_k$ for every $k \ge 1$, and ν is independent of X_i with distribution $POI(\lambda)$.