Probability Theory 2

4th Exercise Sheet: Generating Function II

04.03.2025.

4.1 Let G(s,t) be the joint probability generating function of the random variables X and Y. That is $G(s,t) = \mathbb{E}(s^X t^Y)$. Prove that G(s,1) is the prob. gen. function of X, and G(1,t)is the prob. gen. function of Y. Moreover, show that

$$\mathbb{E}(XY) = \frac{\partial^2}{\partial s \partial t} G(s,t) \Big|_{s=t=1}.$$

What does the relation $G(s,t) = G(s,1) \cdot G(1,t)$ mean? What is G(s,s)?

4.2 Prove that the function HW

$$G(x, y, z, w) = \frac{1}{8} (xyzw + xy + yz + zw + zx + yw + xw + 1)$$

is the joint prob. generating function of 4 random variables such that any two and any three out of them are independent, but all the four are not independent.

- HW**4.3** Let us consider a branching process for which the expected value of the offsprings is ν and the variance is σ^2 . Denote X_n the number of individuals in the nth generation. That is, $X_0 = 1, X_1$ is the number of children of the first individual, etc. Find the variance of the nth generation!
 - (a) Give a formula for $\mathbb{D}^2(X_n)$ in case $\nu \neq 1$! (b) Give a formula for $\mathbb{D}^2(X_n)$ in case $\nu = 1$!

(*Hint*: The formula appeared in the lecture. Prove by induction!)

- **4.4** Denote $\theta(p)$ the probability that a branching process with offspring distribution GEO(p)never extinct. Plot the graph of $p \mapsto \theta(p)!$
- 4.5 Let us consider a branching process, for which the probability generating function of the offsprings is P(z). Denote X the size of the whole population (i.e. the number of all individuals who ever lived). Denote $Q(z) = \mathbb{E}(z^X)$. Prove that Q(z) is the inverse of z/P(z)!
- **4.6** (a) What is the probability that a branching process with successor distribution GEO(1/2)survives until the nth generation? (Here, Y has distribution GEO(1/2) if $\mathbb{P}(Y=k)=$ $(1/2)^{k+1}$ for every $k \ge 0$.)
 - (b) Denote X the size of the complete population. That is, if Y_n denotes the cardinality of the *n*th generation then $X = \sum_{n=0}^{\infty} \hat{Y_n}$. What is

$$\lim_{k \to \infty} k^{3/2} \mathbb{P}(X = k) = ?$$

4.7 Let ξ_1, ξ_2, \ldots be i.i.d random variables such that $\mathbb{P}(\xi_i = \pm 1) = \frac{1}{2}$. Denote $S_n = \sum_{i=1}^n \xi_i$ the simple random walk on \mathbb{Z} . Let $\tau = \min\{n \geq 1 : S_n = 1\}$. Calculate $\mathbb{P}(\tau = k)$! What $\lim_{k \to \infty} k^{3/2} \mathbb{P}(\tau = 2k - 1) = ?$ is the limit

(Hint: We saw that the prob. gen. function of τ is $P(z) = \frac{1-\sqrt{1-z^2}}{z}$ and use that $\binom{1/2}{k} = \frac{1-\sqrt{1-z^2}}{z}$ $\binom{2k}{k} \frac{(-1)^{k+1}}{2^{2k}(2k-1)}$.)

4.8 An amoebae can do during a day only two things: it splits into two with probability $\frac{1}{2}$, and HWdies with prob. $\frac{1}{2}$. Denote X the number of the branches of the branching process. Show that X and τ have the same distribution, where τ is defined in 4.7. What is the meaning of this?

- **HW*** 4.9 Let ξ_1, ξ_2, \ldots be i.i.d. random variables such that $\mathbb{P}(\xi_i = 1) = p$ and $\mathbb{P}(\xi_i = -1) = q$ with p + q = 1 and $q \neq p$. Denote by $S_n = \sum_{k=1}^n \xi_k$ the asymmetric random walk on \mathbb{Z} . Let $\nu = \#\{n \geq 1 : S_n = 0\}$ be the number of returns to the origin and let $\lambda = \sup\{n \geq 1 : S_n = S_0 = 0\}$ be the last return time. Find the prob. gen. function of ν and λ !
 - (*Hint*: We have seen that the prob. gen. of the first return time $\rho = \min\{n \geq 1 : S_n = 0\}$ is $G(z) = 1 \sqrt{1 4pqz^2}$. Express $\mathbb{P}(\nu = k)$ by using $\mathbb{P}(\rho < \infty)$ and λ by using ν and ρ !)
 - **4.10** Consider the (infinite) graph \mathbb{G}_g , which is a homogeneous tree with degree g and a symmetric random walk on it. That is, let S_n be a random walk on \mathbb{G}_g , which starts at a given vertex (the root) and in every time unit, it chooses one out of the g neighbours with uniform probability g^{-1} and steps there. Determine the functions Φ , F and L. ($\Phi(z)$: the prob. gen. function of the first hitting time of a given neighbour, F(z) the prob. gen. function of the last hitting time of the root.)