Probability Theory 2

5th Exercise Sheet: Concentration inequalities I 11.03.2025.

5.1 (a) Show that the Markov inequality is **sharp**. Namely, for every fixed real numbers $0 < m \le \lambda$ there exists a random variable X such that $\mathbb{E}(X) = m$ and

$$\mathbb{P}(X \ge \lambda) = m/\lambda.$$

(b) Show that the Markov inequality is **not sharp**. Namely, for every fixed non-negative random variable X with finite expected value

$$\lim_{\lambda \to \infty} \lambda \, \mathbb{P}(X \ge \lambda) / \mathbb{E}(X) = 0.$$

- **5.2** Let X be a random variable such that $\mathbb{E}(X) = 100$ and $\mathbb{P}(X < 30) = 0$. Give the best estimate for $\mathbb{P}(X > 70)$.
- **5.3** Let X_1, \ldots, X_9 be independent random variables with distribution UNI[0,1]. Moreover, let $Y = \sqrt[9]{X_1 \cdots X_9}$. Using Chebysev's inequality, give a lower estimate for the probability

$$\mathbb{P}(e^{-5/3} < Y < e^{-1/3})!$$

- **5.4** Let X_1, X_2, \ldots be random variables with finite variance, and 0 expected value (i.e. for every $i \geq 1$, $\mathbb{E}(X_i) = 0$, $\sigma_i^2 := \mathbb{D}^2(X_i) = \mathbb{E}(X_i^2) < \infty$). Let r_n be a sequence such that $\lim_{n \to \infty} r_n = 0$ and suppose that $\mathbf{Cov}(X_i, X_j) = \mathbb{E}(X_i X_j) \leq r_{|i-j|}$ for every $i, j \geq 1$ (In particular, $\sigma_i^2 \leq r_0$). Let $S_n := X_1 + X_2 + \cdots + X_n$. Show that $\lim_{n \to \infty} \mathbb{P}(|S_n/n| > \delta) = 0$ for every $\delta > 0$.
- **5.5** Let X_1, X_2, \ldots be uncorrelated random variables with finite variance, 0 expected value. (That is, for every $i \geq 1$, $\mathbb{E}(X_i) = 0$, $\sigma_i^2 := \mathbb{D}^2(X_i) = \mathbb{E}(X_i^2) < \infty$, and for every $i \neq j$, $\mathbb{E}(X_i X_j) = 0$). Let $S_n := X_1 + X_2 + \cdots + X_n$. Show that if $\lim_{i \to \infty} \sigma_i^2/i = 0$ then $\lim_{n \to \infty} \mathbb{P}(|S_n/n| > \delta) = 0$ for every $\delta > 0$.
- **HW*** 5.6 (WLLN for renewal processes) Let $\tau_1, \tau_2, \ldots, \tau_n, \ldots$ be i.i.d non-negative random variables. Suppose that $\mathbb{E}(\tau_i) =: m < \infty$. Let $T_n := \sum_{i=1}^n \tau_i$ and let $\nu_t := \max\{n : T_n \leq t\}$. The WLLN states that for every $\delta > 0$, $\lim_{n\to\infty} \mathbb{P}(|T_n/n m| > \delta) = 0$. Prove that the dual statement is also true, namely, for every $\delta > 0$ $\lim_{t\to\infty} \mathbb{P}(\left|\frac{\nu_t}{t} m^{-1}\right| > \delta) = 0.$

Hint: Figure out what $\left|\frac{\nu_t}{t} - m^{-1}\right| > \delta$ states about the random variables T_i .

HW₂ **5.7** Let X_1, X_2, \ldots be random variables over the same probability space $(\Omega, \mathcal{A}, \mathbb{P})$ having the same distribution function F(x). (Nothing else is assumed.) Let $M_n := \max_{1 \leq i \leq n} |X_i|$. (a) Suppose that for some $\alpha > 0$, $\int |x|^{\alpha} dF(x) < \infty$ (i.e. $\mathbb{E}(|X_i|^{\alpha}) < \infty$). Prove that for every $\varepsilon > 0$ and $\delta > 0$

 $\lim_{n \to \infty} \mathbb{P}(n^{-(1/\alpha + \varepsilon)} | M_n | > \delta) = 0.$

(b) Suppose that for some s > 0, $\int e^{s|x|} dF(x) < \infty$ (i.e. $\mathbb{E}(e^{s|X_i|}) < \infty$). Prove that for any sequence b_n such that $\lim_{n\to\infty} b_n = \infty$ and for every $\delta > 0$

$$\lim_{n \to \infty} \mathbb{P}((b_n \log n)^{-1} | M_n | > \delta) = 0.$$

Hint: Use the following Markov-like inequality.

$$\mathbb{P}\left(\max_{1\leq i\leq n}|X_i|>\lambda\right)=\mathbb{P}\left(\cup_{i=1}^n\left\{|X_i|>\lambda\right\}\right)\leq \sum_{i=1}^n\mathbb{P}\left(|X_i|>\lambda\right)=n\mathbb{P}\left(|X_i|>\lambda\right).$$

5.8 We toss a coin 60 times and denote the number of heads by X. Give an upper bound for the probability

$$\mathbb{P}(|X - 30| \ge 20)$$

by using Chebysev's inequality. A better estimate can be given by using the turbo-Markov inequality:

- (a) Let $Y_{\beta} = e^{\beta X}$, where $0 < \beta$. Show that $\mathbb{E}(Y_{\beta}) = 2^{-60}(1 + e^{\beta})^{60}$.
- (b) Give an upper estimate for $\mathbb{P}(X \geq 50)$ by using Markov-inequality for the non-negative random variable Y_{β} for all $\beta > 0$.
- (c) Find the optimal β , that is, find the minimum of the estimate in (b). (This can be done by minimizing the convex function $f(\beta) = \log(1 + e^{\beta}) \frac{5}{6}\beta$.)
- (d) Combining the previous points, show $\mathbb{P}(|X-30| \ge 20) \le 2 \cdot 3^{60} \cdot 5^{-50} < 10^{-6}$.
- **HW** 5.9 (a) Let X be a random variable. We call the function $R(t) = \mathbb{E}(e^{tX})$ the moment generating function of X. Show that for every $x \in \mathbb{R}$, $\mathbb{P}(X > x) \leq \inf_{t>0} R(t)e^{-tx}$.
 - (b) Let X be a random variable with distribution $POI(\lambda)$. Using the exercise **5.9a**, estimate $\mathbb{P}(X > x)$.